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Optimizing Prediction Model for a Noninvasive
Brain-Computer Interface Platform using
Channel Selection, Classification and
Regression

Soheil Borhani, Justin Kilmarx, David Saffo, Lucien Ng, Reza Abiri, and Xiaopeng Zhao

Abstract— A Brain-Computer Interface (BCI) platform can
be utilized by a user to control an external device without
making any overt movements. An EEG-based computer
cursor control task is commonly used as a testbed for BCI
applications. While traditional computer cursor control
schemes are based on sensorimotor rhythm, a new scheme
has recently been developed using imagined body
kinematics (IBK) to achieve natural cursor movement in a
shorter time of training. This article attempts to explore
optimal decoding algorithms for an IBK paradigm using
EEG signals with application to neural cursor control. The
study is based on an offline analysis of 32 healthy subjects’
training data. Various machine learning techniques were
implemented to predict the kinematics of the computer
cursor using EEG signals during the training tasks. Our
results showed that a linear regression least squares model
yielded the highest goodness-of-fit scores in the cursor
kinematics model (70% in horizontal prediction and 40%
in vertical prediction wusing a Theil-Sen regressor).
Additionally, the contribution of each EEG channel on the
predictability of cursor kinematics was examined for
horizontal and vertical directions, separately. A directional
classifier was also proposed to classify horizontal versus
vertical cursor Kkinematics using EEG signals. By
incorporating features extracted from specific frequency
bands, we achieved 80% classification accuracy in
differentiating horizontal and vertical cursor movements.
The findings of the current study could facilitate a pathway
to designing an optimized online neural cursor control.

Index Terms—BCI, Classification, Cursor control,
Imagined body kinematics, Multivariate regression
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1. INTRODUCTION

HE interest in Brain Computer Interface (BCI) applications

has grown and advanced since its initial establishment in
the 1960s [1]. A brain-controlled computer cursor is commonly
investigated as one of the primary testbeds for BCI applications.
The cursor control platform can be used to control external
devices, which may be used to help individuals who are
suffering from the most severe motor disabilities, including
people with amyotrophic lateral sclerosis (ALS), spinal cord
injury, stroke, and other serious neuromuscular diseases or
injuries. The activities of the brain during control of the
computer cursor are recorded by either invasive or noninvasive
means [1]. In the invasive domain, many systems have been
developed using electrocorticography (ECoQ), single units, and
local field potentials on humans and primates [2-4]. While these
systems have achieved impressive results, there are potential
risks from surgeries and implantations associated with invasive
BCIs. To combat some of these issues, noninvasive methods
such as electroencephalography (EEG) has been investigated as
a more attractive option due to its low-cost, portability, and less
associated risks [1]. Using these techniques, several paradigms
have been developed for EEG [5], including sensorimotor
rhythms (SMR) [6-9], external stimulation [10], and imagined
body kinematics (IBK) [11-13].

SMR has been one of the most prevalent paradigms in BCI
applications that involves extracting the mental states from
imagined movements of large body parts such as the hands,
legs, or tongue [12]. This approach is based on the variations in
the mu and beta rhythms from the sensorimotor cortex [14, 15].
Using SMR, various researchers have mapped these signals to
the kinematic parameters of a computer cursor in one dimension
(1D) [6], two dimensions (2D) [7, 16, 17], and three dimensions
(3D) [8]. Other studies have explored using a hybrid EEG
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paradigm between SMR and other methods [18]. For example,
SMR has been merged with Steady State Visual Evoked
Potential (SSVEP) [10] and P300 potential [19] to attempt 1D
and 2D cursor control. The issue with SMR-based approaches
is a lengthy training time (often several days or weeks) for
subjects to learn how to modulate the specific frequency bands
necessary to manipulate the cursor in the desired manner [6-8,
17].

%{ecently, IBK has been proposed as a novel approach for
noninvasive computer cursor control [11, 13] and real-time
robotic manipulation [20]. In IBK, the subject is asked to
imagine the continuous movement of one body part in multi-
dimensional space. The recorded signals are then decoded in the
time domain. Bradberry et al. [11] investigated the 2D cursor
control problem with this EEG-based BCI paradigm. They
instructed their subjects to use the natural imaginary movement
of the right-hand index finger to track a computer-controlled
cursor. The approach has been previously investigated in the
invasive BCI domain, where subjects with implanted electrodes
could achieve target acquisition using imagined kinematics of
one body part [3, 21]. Also, Ofner et al. [22] studied the
underlying neural patterns in continuous and natural imaginary
movements of the right hand in a 2D plane. They used
continuous EEG signals to estimate the imagined velocities.
Andres et al. [23] investigated the influence of eye movements
on both linear and nonlinear EEG decoding models on a two-
dimensional trajectory of imagined right-hand movements.
Kim et al. [24] conducted a similar study in 3D space using
linear models. Gu et al. [25] decoded the imaginary movements
of the right wrist at two different speeds and in another study
[26] utilized the imagined speed of wrist movements in
paralyzed ALS patients. There are other studies on the
imaginary movements of the shoulder, elbow, wrist, and finger
[27-29]. It is believed that the IBK paradigm is a more natural
cursor control method compared to SMR and SSVEP since the
IBK decoder directly maps the user’s intention to the cursor
kinematics [30, 31]. In contrast, the SMR paradigm requires the
user to imagine activating a body part, which is associated with
a predefined cursor movement [16]. On the other hand, the
SSVEP paradigm utilizes shifting gaze between lights
flickering at different frequencies [32]. IBK also provides the
benefit of a significantly reduced training time compared to
these other approaches [30]. Using IBK, Bradberry et al.
controlled a cursor in a 2D space with just 40 minutes of
training and calibration [11]. This suggests that using the more
natural paradigm of imagined body kinematics can significantly
reduce training time. The paradigm of IBK utilizes the low-
frequency components of EEG (less than 1 Hz) to extract the
kinematic information necessary for control of external devices
[11, 33]. In the previous study, a decoder model of multiple
linear regression was used to predict the velocity of a computer
cursor from EEG [13]. This model allowed for fast processing
times and decent accuracy during online trials. In this work, we

aim to explore optimal channels and algorithms to decode
cursor kinematics from IBK data.

II. METHODS

A. Data

Data used in this work was collected in [13]. A total of 32
healthy subjects with no prior experience in participating in any
BCI studies were fully informed about experimental
procedures, potential risks, and benefits. All experimental
procedures were approved by the Institutional Review Board at
the University of Tennessee. The subjects were recruited from
the University of Tennessee. The study included 32 healthy
subjects (7 females and 25 males; with age of 22.7 + 3.5) with
no prior experience of using BCI. No subjects reported any
neurophysiological problems. Twenty-nine participants were
right-handed, two were left-handed, and one was ambidextrous.
Subjects participated in the tests after signing informed consent.
For the experiments, a dual-monitor PC was provided; one
monitor for the experimenter and another one for the subjects.
Participants were asked to sit comfortably in a fixed chair and
at arm’s length in front of their monitor, with their hands resting
in their lap. An Emotiv EPOC headset with 14 channels was
chosen to collect EEG signals wirelessly [34]. The electrodes
were hydrated and placed on the subjects’ heads in a way to
make correct contact with the scalp (scalp-electrode resistance
< 10KQ). The quality of electrodes’ contact with the scalp skin
was monitored via the TestBench software from Emotiv during
recordings. Both EEG data and cursor kinematics were
collected and stored by the BCI2000 software system at 128 Hz
during the experiments. Meanwhile, a band-pass filter with
cutoff frequencies at 0.2 Hz and 30 Hz was applied to the
collected EEG signals [35].

B. Training Protocols

During the training phase, the participants were shown a
computer cursor whose movements started from the center of
the workspace and advanced with an automated trajectory in
one dimension; refer to Fig. 1. The subjects were instructed to
track the cursor while imagining moving a computer mouse
with their dominant hand at the same speed and direction. They
were asked to maintain normal eye movement while keeping
their focus on the cursor. Meanwhile, they were asked to avoid
blinking or moving their own body parts to prevent any further
artifacts while the test was active. The dimension of the
workspace was a 33 cm % 33 cm square on the monitor. The
diameter of the cursor was selected to be 1.5cm (0.20% of the
workspace) and targets were 2.4% of workspace with width 8%
and length 30% of screen width. The training phase consisted
of 5 runs of cursor horizontal movement and 5 runs of cursor
vertical movement. The duration of each run was 60 seconds.
The cursor movement in each run was a replay from a record,
where the cursor was manually moved. The 5 horizontal runs
and 5 vertical runs were recorded beforehand, and the sequence
of the runs was kept the same for all participants. Fig. 2 shows
the cursor trajectory in runs 1 and 2 in horizontal and vertical
directions, respectively.
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C. Multivariate Regression of Cursor Velocity

It has been identified in multiple studies that among various
kinematic parameters (position, velocity, and acceleration),
decoding velocity of body parts has shown higher predictive
capabilities in both offline analysis and real-time
implementation [11, 36-38]. To correlate the brain’s activities
and the movement of body parts, many decoding algorithms for
EEG data have been investigated by researchers in both
frequency and time domains. Most of the studies based on the
sensorimotor-thythms paradigm were developed in the
frequency domain for cursor control and external devices
control [6-8, 16, 39-44]. In time domain, various linear and
nonlinear decoding methods have been developed to directly
present a prediction model for the body kinematics parameters

5 runs of
harizontal motion
1 minute each

Y

5 runs of
vertical motion
1 minute each

Data cleaned,
filtered, and
labeled for each
subject and trial

Raw data
converted to
csv format

Each subjects
vertical data
trained and tested |
using 5 fold cross
validation

Y

Subjects
vertical model

Each subjects
horizontal data
trained and tested
using 5 fold cross
validation

Subjects
horizontal model
returned

returned

Fig. 1. Training protocol and model generation for horizontal and vertical
trials

based on EEG signals. For example, Kalman filter [45], particle
filter model [46], and kernel ridge [24] were applied in
decoding EEG signals for offline analysis and prediction of
body velocity parameters.

Ordinary least square (OLS) as a multiple linear regression
has been the most common method for decoding EEG data in
offline modes [24, 36-38, 47, 48] and in real-time
implementation [11]. It is a generalized multiple linear
regression model to estimate a single response variable by
multiple explanatory variables (features). It uses the least
square error as an objective function. The OLS minimizes the
sum of the squared error (L2 norm); see Equation (1)

n
Boss = argmin ) (v = XB’ (1)

i=1
where y; represents the response (dependent variable), X
represents the independent variables, and B is the model
coefficient. The technique is unbiased since the expected values
of the model coefficients (8) over multiple sets of data samples
is very close to each other. This analysis can be represented by
the following equations. Equations 2 and 3 map the acquired
EEG data to the observed cursor velocities in the horizontal (x)
and vertical (y) directions from the training data. In other words,
the aim is to reconstruct the cursor trajectories off-line from
EEG data and obtain a calibrated decoder for real-time
implementation for each subject, individually. Output velocities
at time sample ¢ in the x (horizontal) direction is u[t] and in the
y (vertical) direction is v[t].

N K
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In these equations, e, [t — k] is the measured voltage of EEG
electrode n at time lag k where the total number of EEG sensors
is N = 14 and the total lag number is K = 12. These numbers
were determined during previously published works by the
authors [13]. The variables a and b are the weights that could
be obtained through multiple linear regression. To assess
whether this method is the optimal model for velocity
prediction, a standard least squares model was tested against
several other regression techniques. The OLS allows more than
one explanatory feature to be employed in the model, which
may raise concern when there is correlation (multicollinearity)
between the explanatory variables. Two other models selected
for comparison were ridge regression and Theil-Sen regression
[49]. Ridge regression is a multiple regression method, which
tries to address the multicollinearity problem in the data feature.
OLS regression although unbiased, can suffer a high variance if
data features are highly correlated. This causes dramatically
large regressor coefficients. Ridge regression minimize the
squared residuals in addition to a regularization term to reduce
unregularized errors; see Equation (4)
n

p
Briage = argmin D (vi = XB)* + A) B (#)
i=1 =1

where A is a regularization term to avoid large regressor
coefficient. We also used a nonlinear estimator named Theil-
Sen regressor. It is less sensitive to outliers and potentially can
achieve more robust and accurate results compared to OLS
linear regression. The regressor looks at all possible pairs of the
data points and computes a list of slopes. Then, the regressor
considers median for the estimation. Since the median does not
care about a single value but it cares about the data rank, the
Theil-Sen regression can be robust to the outliers. These models
were chosen to assess the inclusion of L2 regularization on
velocity prediction as well as to better deal with outlier data.
For training of the multiple linear regression model, 12
previous points of EEG data from each channel in memory
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along with the current sample were used as features. The model
was then cross-validated against the other four trials of the same
dimension (leave-one-trial-out cross-validation). This cross-
validation was repeated for all five combinations of models to
ensure the most accurate prediction. The models were evaluated
using a developed correlation score called Goodness-of-Fit
(GoF). This scoring technique separated the trial into segments
of 5 seconds and averaged the Pearson correlation scores
between the predicted and actual cursor velocities. Then, the
averaged value of the Pearson correlation scores over each trial
was defined as the GoF. Pearson correlation coefficient
indicates how far away the predicted velocity is to the scaled
cursor velocity [49]. Although we asked participants to
minimize their body movement, noise caused by eye blinks is
non-separable part of EEG response. Despite the very short
period of spikes caused by the eye blinks, it usually affects the
Pearson correlation to a great extent. Instead, our proposed
definition of Goodness-of-fit takes the average Pearson
correlation among segments of the 5-second period into the
account. The 5-second period is roughly the period of pre-
recorded cursor movement. The new definition of Goodness-
of-fit is more robust to abrupt changes and occurring artifacts
in one segment may not exceedingly affect the GoF of the
whole trial. Thus, the method provided a better representation
of fit by not allowing one improperly fit window to reduce the
overall model’s score. Equation 3 represents the custom
Goodness-of-Fit metric:

1M ; .
GoF = MZ Corr(véecodedt V(;bserved) *100% (3)
i=1

Where Vi coded and Vipserveq Tepresents the decoded velocity
and the observed velocity for the ith segment, respectively. The
number of segments for each 60 second trial is defined as M =

2= 12

Channel-wise prediction accuracy was investigated to
identify patterns in predictive capability for both horizontal and
vertical trials. The channels with the higher prediction accuracy
could then be weighted more heavily during online testing
while the channels with lower prediction can be eliminated. To
perform the channel-wise identification, only the data from one
channel was analyzed using the optimal regression model. The
filtered data from each sample along with the 12 previous
samples in memory were used as features. The model was then
validated using leave-one-trial-out cross-validation. The
prediction accuracy for the channel was scored using the
Goodness-of-Fit metric.

D. Classification of Cursor Movement Direction

It was hypothesized that a classifier for horizontal and
vertical motion could be employed as a method to improve the
accuracy of the prediction model. This classifier could be used
as a gate to generate predictions on a model tailored for
horizontal or vertical data. The foundation of the hypothesis is
based on the assumption that imagined hand movements in the
horizontal and vertical directions correspond to different
brainwave patterns in EEG. Our assumption is indirectly
motivated and supported by previous studies that successfully
decode individual finger movement using EEG [50]. To

classify cursor movement direction, EEG data in each trial were
divided into 60 non-overlapping segments, each of which is 1-
second duration. Features for each segment were collected by
taking the Fourier Transform of the EEG data from each
channel. Specifically, the mean, median, maximum, and
minimum values of the power spectral density across the Theta
(4-7 Hz), Alpha (8-15 Hz), Beta (16-32 Hz), and Gamma (32-
40 Hz) bands were used to train a Classifier to discriminate
between horizontal and vertical movements.

We chose to use the random forest for classification. The
method uses a multitude of decision trees trained at training
time to model the data [49]. Decision tree tends to overfit the
data. However, by using an ensemble model like a random
forest that utilizes underlying decision trees, we can reduce the
variance. The method aims to reduce the correlation between
decision trees using the pruning technique. It is robust to scaling
and inclusion of sometimes irrelevant features. The classifier
was cross-validated by splitting 70% of the randomized
samples for training data and 30% for testing. Results were
quantified using accuracy as the metric.
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Fig. 2. Regression results of one subject across two horizontal (top) and
vertical (bottom) trials. Predicted velocity (orange) and target velocity
(blue) with goodness of fit score above plot.

III. RESULTS

A. Multiple Linear Regression

The multiple linear regression model was used as a predictor
for cursor velocity from the filtered EEG signals. Goodness-of-
Fit scoring was used to calculate the prediction accuracy. Each
trial was cross-validated by training the linear regression model
on the other four trials and testing on the current trials. For
comparison, we evaluated the decoding algorithm using
randomly generated signals and ran the simulations for 1000
times, which indicates the outcome at chance level [51]. The
mean [standard deviation] from the chance level simulations is
12.9% [5.5]. Fig. 2 shows a sample of two horizontal and
vertical trials for illustration. Ten trials for all 32 subjects were
analyzed, and their prediction scores were averaged for vertical
and horizontal trials. The mean [standard deviation] of GoF for
horizontal accuracy using least squares regression across all
subjects was 70.79% [29.14] and the mean [standard deviation]
of GoF for vertical accuracy was 38.33% [30.14], both of which
are significantly higher than the chance level.
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TABLE I
MODEL COMPARISON FOR HORIZONTAL AND VERTICAL TRIALS
Avg. . Avg. .
Model Horizontal Horsl,f%mal Vertical Vgr,;ll;al
GoF GoF
Multiple
Linear 70.79 29.14 38.33 30.14
Regression
R Ridge 68.18 28.30 35.40 28.23
egression
]Iheﬂ's.e“ 71.04 29.69 40.28 30.21
cgression

Aside from least squares, the model was trained using several
other variations of the least-square algorithm such as ridge
regression and Theil-Sen regression. Ridge regression was
trained using a regularization alpha of 1.0. The higher
regularization of the data leads to less accurate results across all
subjects. Theil-Sen regression was trained with a subpopulation
of 10,000 and showed slight improvements in most subjects.
Table I and Fig. 3 shows a comparison between the three
models to illustrate the similarities in prediction capabilities.
From our analysis of the performance of these models, linear
regression demonstrated one of the best results for both
horizontal and vertical predictions across all subjects. Theil-Sen
regression preformed close to and in some places better than
linear regression; however, this was often at the cost of a higher
time complexity leading to longer training times. For this
reason, the least squares model was identified as the optimal
model out of the three evaluated techniques when taking into
account time and GoF performance. Fig. 5 shows the average
GoF of individual EEG channels for horizontal and vertical
trials.

B. Channel-Wise Regression

Fig. 4 shows a heat map of the average GoF scores across all
subjects using each individual channel. Here, the channel-wise
analysis was based on the optimal regression model to
determine which channels contributed the most to the overall
prediction. The results are based on leave-one-trial-out cross-
validation. For reference, the 14-channel layout for the Emotiv
Epoc headset used in this study is presented in Fig 5. The
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horizontal data showed that the F7 and F8 channels contributed
the most toward velocity prediction. It is also noteworthy to
mention that the right hemisphere demonstrates much higher
prediction accuracy than the left hemisphere for horizontal
trials. The vertical data indicates that the AF3, F3, F4, and AF4
channels contribute the most.

Fig. 6. Emotiv EPOC channel locations; figure copied from [20].

TABLE II
PREDICTION ACCURACY FOR VARIOUS CHANNEL COMBINATIONS

Channels Horizontal Accuracy Vertical Accuracy
F7,F8 69.96% 15.27%
F7, F8 + FC5, FC6, F4, T8 72.41% 31.78%
F7,F8+ g‘z”fﬁf& FC6, 71.03% 33.67%
AF3, AF4 41.89% 27.55%
AF3, AF4 +F3,F4 49.21% 28.35%
AF3, AF4 + F3, F4, F7, F8 70.02% 34.32%
All Channels 70.79% 38.33%

Using this information, different combinations of these
relevant channels can be used in our prediction model in an
attempt to improve the overall accuracy. The combinations
were selected based on the prediction capability represented by
the heat map in Fig. 4. Table II shows the results of channel
analysis for horizontal and vertical accuracy. Our results
showed that horizontal accuracy could be improved most by
using the channel combination of F7, FC5, T8, FC6, F4, and F8.
For vertical accuracy, it was found that all channels are
necessary for the highest prediction accuracy. However, it is
interesting to note that the six frontal channels (AF3, AF4, F3,
F4, F7, and F8) demonstrated accuracy comparable to all 14
channels (see Fig. 6).

C. Classification

We also conducted numerical experiments to determine the
movement direction from a segment of EEG signals. A Random
Forest Classifier was used to discriminate between horizontal
or vertical movement (refer to section I1.D for a full description
of features and cross-validation methods). Fig. 7 presents the
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Fig. 7. Boxplots of the classification accuracies using four different feature
sets. (1) All channels and all features; (2) all channels and mean of the 4
frequency bands independently; (3) six channels (AF3, AF4, F3, F4, F7, and
F8) and all features; (4) six channels (AF3, AF4, F3, F4, F7, and F8) and mean
of the 4 frequency bands independently.

classification accuracies for four different features sets. The
average classification accuracy was 79% for all channels and
all features of mean, median, maximum and minimum of the
four frequency bands of Theta, Alpha, Beta, and Gamma. Using
only the mean values from the four frequency bands yielded an
average classification accuracy of 80%. The same methods of
all features and only means were repeated on the six frontal
EEG channels of AF3, AF4, F3, F4, F7, and F8. These provided
an average classification accuracy of 68% and 69%
respectively.

IV. DISCUSSION

Several models were used to test the prediction accuracy of
the BCI platform. From a cursory analysis of various models
and previous literature [24, 36-38, 47, 48], we choose to focus
on variations of the least squares algorithm as they have
typically shown the best performance. Ridge regression was
chosen to test how the inclusion of L2 regularization affected
the predicted velocity. Ridge regression saw the lowest GoF
scores even when the regularization parameter was set to near
zero (zero regularization simply being least squares). Theil-Sen
regression was chosen for its advantages in dealing with outlier
data and general robustness to corrupted data [52]. Theil-Sen
reported slightly better GoF for most subjects which suggests
that some noise, artifacts, or outliers are still present even after
filtering. This shows the potential usefulness of robust least
square estimators for BCI implementations. Models such as
Theil-Sen regression and ridge regression often provided
comparable accuracy to our multiple linear regression model
based on least squares regression but at a much longer
processing time. For this reason, the least squares model was
chosen for the remaining tests. As demonstrated in the literature
[12, 39, 41], the contribution of (electrooculogram) EOG to the
decoding accuracy is insignificant. Bradberry et al. [12] also
showed that the influence of muscle activity on the cursor
movement is low. Since the EEG signal is subjected to a band-
pass filter [0.2, 1] Hz, artifacts out of this range are removed
from the regression.

During the evaluation of individual channels, it is interesting
to note that there is a distinct pattern between the most
predictive channels for horizontal and vertical trials. The F7 and
F8 channels showed the highest standalone prediction for
horizontal trials while the AF3, AF4, F3, and F4 channels were
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the highest for vertical. Using just the F7 and F8 channels as
features for the linear regression model provided a GoF score
that was less than 1% lower than using all channels for
horizontal trials. This suggests that a headset with two sensors
can be used with great effectiveness in horizontal tasks
compared to 14 channels. Vertical channels were unable to be
improved by using different channel combinations. The
combination of AF3 and AF4 channels gives the worst score
among the tested combinations in Table II. Since AF3 and AF4
are influenced the most by eye movement, this indicates that
eye movement may play an insignificant role in velocity
prediction. It is worthy of pointing out that using EEG headsets
with 32 or 62 electrodes may improve the decoding accuracies.

It can be seen from the results that horizontal prediction
accuracy is much higher than vertical prediction accuracy.
Further research is needed to determine the cause of this
difference. It is also interesting to note that Fig. 4 shows the
channels located on the right hemisphere of the brain as more
relevant to velocity prediction. The results of the classification
approach show a very promising method of distinguishing
between the intended horizontal and vertical movement. By
achieving an average accuracy of 80%, this classifier can
potentially be used in front of the regression model to improve
performance. It is also noteworthy to mention that subjects with
high Goodness-of-Fit scores did not always achieve high
classification accuracies. In some cases, subjects with low-
velocity prediction scores have much higher classification
scores. Unlike previous work in the literature [11, 23], this
research separated the training for two-dimensional cursor
control into two simple one-dimensional training in horizontal
and vertical directions, respectively. The results here suggest a
novel approach to expand the cursor control experiment from
one direction to higher dimensions. Since the horizontal and
vertical training are conducted separately, it allows us to
distinguish between horizontal and vertical trials. The
classification results suggest that patterns of the brain activities
are different during horizontal and vertical cursor movements.
The classification models developed here may be used to
inform better decoding mechanisms.

V. CONCLUSION

In this article, an EEG-based Brain-Computer Interface
platform was optimized through the evaluation of machine
learning techniques, channel selection, and classification of
cursor movement direction. Offline analysis of 32 healthy
subjects’ training data from a two-dimensional cursor control
task was analyzed. A multiple linear regression decoder model
derived from least squares was compared to models of ridge
regression and Theil-Sen regression. While our results showed
that the Theil-Sen model demonstrated the highest accuracy, the
model generated from least squares regression provided
comparable accuracy at a lower processing time which is
necessary for online trials. Therefore, it was determined that the
least squares method is the optimal model of the three
regression techniques.

The platform can also see minor improvement through
channel selection during dimensional tasks. For instance, tasks
involving primarily horizontal movement can place a higher
weight on channels F7 and F8 along with channels located on

the right hemisphere of the brain. However, for vertical trials,
there was no combination of channels that provided improved
results found in this study. A classifier for horizontal and
vertical direction can also be implemented as a gate to generate
predictions on a model tailored for the intended dimension. The
approach can be used to improve the accuracy of the model
beyond regression alone. Our results showed a classification
accuracy of 80% for mean values of power spectral density
across the Theta, Alpha, Beta, and Gamma frequency bands for
all channels.

It is interesting to note that prefrontal electrodes produce the
best decoding results. This probably indicates that the IBK
paradigm relies on higher cognitive functions compared to
sensorimotor and externally triggered sensory paradigms. As
pointed out in Min et al. [53], paradigms based on prefrontal
cognitive functions are natural candidates for efficient and
intuitive applications in goal-directed BClIs, which have great
potential for applications in improving the quality of life of
individuals with sensorimotor or cognitive impairments [54,
55]. While linear regression has given the best results so far,
there remains the question of whether it is optimal. Further
research needs to be done to explore other models and
parameters (such as a Long Short-Term Memory network and
variations of support vector machines) as well as methods to
transfer knowledge from other subjects’ data [56]. Future work
will also include implementing what we have learned from
channel selection and classification in real-time testing.
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