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Abstract— A Brain-Computer Interface (BCI) platform can 
be utilized by a user to control an external device without 
making any overt movements. An EEG-based computer 
cursor control task is commonly used as a testbed for BCI 
applications. While traditional computer cursor control 
schemes are based on sensorimotor rhythm, a new scheme 
has recently been developed using imagined body 
kinematics (IBK) to achieve natural cursor movement in a 
shorter time of training. This article attempts to explore 
optimal decoding algorithms for an IBK paradigm using 
EEG signals with application to neural cursor control. The 
study is based on an offline analysis of 32 healthy subjects’ 
training data. Various machine learning techniques were 
implemented to predict the kinematics of the computer 
cursor using EEG signals during the training tasks. Our 
results showed that a linear regression least squares model 
yielded the highest goodness-of-fit scores in the cursor 
kinematics model (70% in horizontal prediction and 40% 
in vertical prediction using a Theil-Sen regressor). 
Additionally, the contribution of each EEG channel on the 
predictability of cursor kinematics was examined for 
horizontal and vertical directions, separately. A directional 
classifier was also proposed to classify horizontal versus 
vertical cursor kinematics using EEG signals. By 
incorporating features extracted from specific frequency 
bands, we achieved 80% classification accuracy in 
differentiating horizontal and vertical cursor movements. 
The findings of the current study could facilitate a pathway 
to designing an optimized online neural cursor control. 
 

Index Terms—BCI, Classification, Cursor control, EEG, 
Imagined body kinematics, Multivariate regression  
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I. INTRODUCTION 
HE interest in Brain Computer Interface (BCI) applications 
has grown and advanced since its initial establishment in 

the 1960s [1]. A brain-controlled computer cursor is commonly 
investigated as one of the primary testbeds for BCI applications. 
The cursor control platform can be used to control external 
devices, which may be used to help individuals who are 
suffering from the most severe motor disabilities, including 
people with amyotrophic lateral sclerosis (ALS), spinal cord 
injury, stroke, and other serious neuromuscular diseases or 
injuries. The activities of the brain during control of the 
computer cursor are recorded by either invasive or noninvasive 
means [1]. In the invasive domain, many systems have been 
developed using electrocorticography (ECoG), single units, and 
local field potentials on humans and primates [2-4]. While these 
systems have achieved impressive results, there are potential 
risks from surgeries and implantations associated with invasive 
BCIs. To combat some of these issues, noninvasive methods 
such as electroencephalography (EEG) has been investigated as 
a more attractive option due to its low-cost, portability, and less 
associated risks [1]. Using these techniques, several paradigms 
have been developed for EEG [5], including sensorimotor 
rhythms (SMR) [6-9], external stimulation [10], and imagined 
body kinematics (IBK) [11-13]. 

SMR has been one of the most prevalent paradigms in BCI 
applications that involves extracting the mental states from 
imagined movements of large body parts such as the hands, 
legs, or tongue [12]. This approach is based on the variations in 
the mu and beta rhythms from the sensorimotor cortex [14, 15]. 
Using SMR, various researchers have mapped these signals to 
the kinematic parameters of a computer cursor in one dimension 
(1D) [6], two dimensions (2D) [7, 16, 17], and three dimensions 
(3D) [8]. Other studies have explored using a hybrid EEG 
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paradigm between SMR and other methods [18]. For example, 
SMR has been merged with Steady State Visual Evoked 
Potential (SSVEP) [10] and P300 potential [19] to attempt 1D 
and 2D cursor control. The issue with SMR-based approaches 
is a lengthy training time (often several days or weeks) for 
subjects to learn how to modulate the specific frequency bands 
necessary to manipulate the cursor in the desired manner [6-8, 
17]. 

Recently, IBK has been proposed as a novel approach for 
noninvasive computer cursor control [11, 13] and real-time 
robotic manipulation [20]. In IBK, the subject is asked to 
imagine the continuous movement of one body part in multi-
dimensional space. The recorded signals are then decoded in the 
time domain. Bradberry et al. [11] investigated the 2D cursor 
control problem with this EEG-based BCI paradigm. They 
instructed their subjects to use the natural imaginary movement 
of the right-hand index finger to track a computer-controlled 
cursor. The approach has been previously investigated in the 
invasive BCI domain, where subjects with implanted electrodes 
could achieve target acquisition using imagined kinematics of 
one body part [3, 21]. Also, Ofner et al. [22] studied the 
underlying neural patterns in continuous and natural imaginary 
movements of the right hand in a 2D plane. They used 
continuous EEG signals to estimate the imagined velocities. 
Andres et al. [23]  investigated the influence of eye movements 
on both linear and nonlinear EEG decoding models on a two-
dimensional trajectory of imagined right-hand movements.  
Kim et al. [24] conducted a similar study in 3D space using 
linear models. Gu et al. [25] decoded the imaginary movements 
of the right wrist at two different speeds and in another study 
[26] utilized the imagined speed of wrist movements in 
paralyzed ALS patients. There are other studies on the 
imaginary movements of the shoulder, elbow, wrist, and finger 
[27-29]. It is believed that the IBK paradigm is a more natural 
cursor control method compared to SMR and SSVEP since the 
IBK decoder directly maps the user’s intention to the cursor 
kinematics [30, 31]. In contrast, the SMR paradigm requires the 
user to imagine activating a body part, which is associated with 
a predefined cursor movement [16]. On the other hand, the 
SSVEP paradigm utilizes shifting gaze between lights 
flickering at different frequencies [32]. IBK also provides the 
benefit of a significantly reduced training time compared to 
these other approaches [30]. Using IBK, Bradberry et al. 
controlled a cursor in a 2D space with just 40 minutes of 
training and calibration [11]. This suggests that using the more 
natural paradigm of imagined body kinematics can significantly 
reduce training time. The paradigm of IBK utilizes the low-
frequency components of EEG (less than 1 Hz) to extract the 
kinematic information necessary for control of external devices 
[11, 33]. In the previous study, a decoder model of multiple 
linear regression was used to predict the velocity of a computer 
cursor from EEG [13]. This model allowed for fast processing 
times and decent accuracy during online trials. In this work, we 

aim to explore optimal channels and algorithms to decode 
cursor kinematics from IBK data.  

II.  METHODS  

A.  Data 
Data used in this work was collected in [13]. A total of 32 

healthy subjects with no prior experience in participating in any 
BCI studies were fully informed about experimental 
procedures, potential risks, and benefits. All experimental 
procedures were approved by the Institutional Review Board at 
the University of Tennessee. The subjects were recruited from 
the University of Tennessee. The study included 32 healthy 
subjects (7 females and 25 males; with age of 22.7 ± 3.5) with 
no prior experience of using BCI. No subjects reported any 
neurophysiological problems. Twenty-nine participants were 
right-handed, two were left-handed, and one was ambidextrous. 
Subjects participated in the tests after signing informed consent. 
For the experiments, a dual-monitor PC was provided; one 
monitor for the experimenter and another one for the subjects. 
Participants were asked to sit comfortably in a fixed chair and 
at arm’s length in front of their monitor, with their hands resting 
in their lap. An Emotiv EPOC headset with 14 channels was 
chosen to collect EEG signals wirelessly [34]. The electrodes 
were hydrated and placed on the subjects’ heads in a way to 
make correct contact with the scalp (scalp-electrode resistance 
< 10KΩ). The quality of electrodes’ contact with the scalp skin 
was monitored via the TestBench software from Emotiv during 
recordings. Both EEG data and cursor kinematics were 
collected and stored by the BCI2000 software system at 128 Hz 
during the experiments. Meanwhile, a band-pass filter with 
cutoff frequencies at 0.2 Hz and 30 Hz was applied to the 
collected EEG signals [35]. 

B.  Training Protocols 
During the training phase, the participants were shown a 

computer cursor whose movements started from the center of 
the workspace and advanced with an automated trajectory in 
one dimension; refer to Fig. 1. The subjects were instructed to 
track the cursor while imagining moving a computer mouse 
with their dominant hand at the same speed and direction. They 
were asked to maintain normal eye movement while keeping 
their focus on the cursor. Meanwhile, they were asked to avoid 
blinking or moving their own body parts to prevent any further 
artifacts while the test was active. The dimension of the 
workspace was a 33 cm × 33 cm square on the monitor. The 
diameter of the cursor was selected to be 1.5cm (0.20% of the 
workspace) and targets were 2.4% of workspace with width 8% 
and length 30% of screen width. The training phase consisted 
of 5 runs of cursor horizontal movement and 5 runs of cursor 
vertical movement. The duration of each run was 60 seconds. 
The cursor movement in each run was a replay from a record, 
where the cursor was manually moved. The 5 horizontal runs 
and 5 vertical runs were recorded beforehand, and the sequence 
of the runs was kept the same for all participants. Fig. 2 shows 
the cursor trajectory in runs 1 and 2 in horizontal and vertical 
directions, respectively.  
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C.  Multivariate Regression of Cursor Velocity 
It has been identified in multiple studies that among various 

kinematic parameters (position, velocity, and acceleration), 
decoding velocity of body parts has shown higher predictive 
capabilities in both offline analysis and real-time 
implementation [11, 36-38]. To correlate the brain’s activities 
and the movement of body parts, many decoding algorithms for 
EEG data have been investigated by researchers in both 
frequency and time domains. Most of the studies based on the 
sensorimotor-rhythms paradigm were developed in the 
frequency domain for cursor control and external devices 
control [6-8, 16, 39-44]. In time domain, various linear and 
nonlinear decoding methods have been developed to directly 
present a prediction model for the body kinematics parameters 

based on EEG signals. For example, Kalman filter [45], particle 
filter model [46], and kernel ridge [24] were applied in 
decoding EEG signals for offline analysis and prediction of 
body velocity parameters.  

Ordinary least square (OLS) as a multiple linear regression 
has been the most common method for decoding EEG data in 
offline modes [24, 36-38, 47, 48] and in real-time 
implementation [11]. It is a generalized multiple linear 
regression model to estimate a single response variable by 
multiple explanatory variables (features). It uses the least 
square error as an objective function. The OLS minimizes the 
sum of the squared error (L2 norm); see Equation (1)  

𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂  =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �(𝑦𝑦𝑖𝑖  −  𝑋𝑋𝑋𝑋)2
𝑛𝑛

𝑖𝑖=1

           (1) 

where 𝑦𝑦𝑖𝑖 represents the response (dependent variable), 𝑋𝑋 
represents the independent variables, and 𝛽𝛽 is the model 
coefficient. The technique is unbiased since the expected values 
of the model coefficients (𝛽𝛽) over multiple sets of data samples 
is very close to each other. This analysis can be represented by 
the following equations. Equations 2 and 3 map the acquired 
EEG data to the observed cursor velocities in the horizontal (x) 
and vertical (y) directions from the training data. In other words, 
the aim is to reconstruct the cursor trajectories off-line from 
EEG data and obtain a calibrated decoder for real-time 
implementation for each subject, individually. Output velocities 
at time sample 𝑡𝑡 in the x (horizontal) direction is 𝑢𝑢[𝑡𝑡] and in the 
y (vertical) direction is 𝑣𝑣[𝑡𝑡]. 

 

𝑢𝑢[𝑡𝑡] = 𝑎𝑎0𝑥𝑥 + ��𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛[𝑡𝑡 − 𝑘𝑘]
𝐾𝐾

𝑘𝑘=0

𝑁𝑁

𝑛𝑛=1

 (2) 

𝑣𝑣[𝑡𝑡] = 𝑎𝑎0𝑦𝑦 + ��𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛[𝑡𝑡 − 𝑘𝑘]
𝐾𝐾

𝑘𝑘=0

𝑁𝑁

𝑛𝑛=1

 (3) 

 
In these equations, 𝑒𝑒𝑛𝑛[𝑡𝑡 − 𝑘𝑘] is the measured voltage of EEG 
electrode 𝑛𝑛 at time lag 𝑘𝑘 where the total number of EEG sensors 
is 𝑁𝑁 = 14 and the total lag number is 𝐾𝐾 = 12. These numbers 
were determined during previously published works by the 
authors [13]. The variables 𝑎𝑎 and 𝑏𝑏 are the weights that could 
be obtained through multiple linear regression. To assess 
whether this method is the optimal model for velocity 
prediction, a standard least squares model was tested against 
several other regression techniques. The OLS allows more than 
one explanatory feature to be employed in the model, which 
may raise concern when there is correlation (multicollinearity) 
between the explanatory variables. Two other models selected 
for comparison were ridge regression and Theil-Sen regression 
[49]. Ridge regression is a multiple regression method, which 
tries to address the multicollinearity problem in the data feature. 
OLS regression although unbiased, can suffer a high variance if 
data features are highly correlated. This causes dramatically 
large regressor coefficients. Ridge regression minimize the 
squared residuals in addition to a regularization term to reduce 
unregularized errors; see Equation (4)  

𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �(𝑦𝑦𝑖𝑖  −  𝑋𝑋𝑋𝑋)2
𝑛𝑛

𝑖𝑖=1

 +  𝜆𝜆�𝛽𝛽𝑗𝑗2
𝑝𝑝

𝑗𝑗=1

           (4) 

where 𝜆𝜆 is a regularization term to avoid large regressor 
coefficient. We also used a nonlinear estimator named Theil-
Sen regressor. It is less sensitive to outliers and potentially can 
achieve more robust and accurate results compared to OLS 
linear regression. The regressor looks at all possible pairs of the 
data points and computes a list of slopes. Then, the regressor 
considers median for the estimation. Since the median does not 
care about a single value but it cares about the data rank, the 
Theil-Sen regression can be robust to the outliers. These models 
were chosen to assess the inclusion of L2 regularization on 
velocity prediction as well as to better deal with outlier data. 

For training of the multiple linear regression model, 12 
previous points of EEG data from each channel in memory 

 
Fig. 1.  Training protocol and model generation for horizontal and vertical 
trials 
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along with the current sample were used as features. The model 
was then cross-validated against the other four trials of the same 
dimension (leave-one-trial-out cross-validation). This cross-
validation was repeated for all five combinations of models to 
ensure the most accurate prediction. The models were evaluated 
using a developed correlation score called Goodness-of-Fit 
(GoF). This scoring technique separated the trial into segments 
of 5 seconds and averaged the Pearson correlation scores 
between the predicted and actual cursor velocities. Then, the 
averaged value of the Pearson correlation scores over each trial 
was defined as the GoF. Pearson correlation coefficient 
indicates how far away the predicted velocity is to the scaled 
cursor velocity [49]. Although we asked participants to 
minimize their body movement, noise caused by eye blinks is 
non-separable part of EEG response. Despite the very short 
period of spikes caused by the eye blinks, it usually affects the 
Pearson correlation to a great extent. Instead, our proposed 
definition of Goodness-of-fit takes the average Pearson 
correlation among segments of the 5-second period into the 
account. The 5-second period is roughly the period of pre-
recorded cursor movement. The new definition of Goodness-
of-fit is more robust to abrupt changes and occurring artifacts 
in one segment may not exceedingly affect the GoF of the 
whole trial. Thus, the method provided a better representation 
of fit by not allowing one improperly fit window to reduce the 
overall model’s score. Equation 3 represents the custom 
Goodness-of-Fit metric: 

 

GoF =
1
𝑀𝑀
� 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�V𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 ,  V𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 � ∗ 100%

𝑀𝑀

𝑖𝑖=1
 (3) 

 
Where Vdecoded𝑖𝑖  and Vobserved𝑖𝑖  represents the decoded velocity 
and the observed velocity for the 𝑖𝑖th segment, respectively. The 
number of segments for each 60 second trial is defined as 𝑀𝑀 =
60
5

=  12.  
Channel-wise prediction accuracy was investigated to 

identify patterns in predictive capability for both horizontal and 
vertical trials. The channels with the higher prediction accuracy 
could then be weighted more heavily during online testing 
while the channels with lower prediction can be eliminated. To 
perform the channel-wise identification, only the data from one 
channel was analyzed using the optimal regression model. The 
filtered data from each sample along with the 12 previous 
samples in memory were used as features. The model was then 
validated using leave-one-trial-out cross-validation. The 
prediction accuracy for the channel was scored using the 
Goodness-of-Fit metric. 

D.  Classification of Cursor Movement Direction 
It was hypothesized that a classifier for horizontal and 

vertical motion could be employed as a method to improve the 
accuracy of the prediction model. This classifier could be used 
as a gate to generate predictions on a model tailored for 
horizontal or vertical data. The foundation of the hypothesis is 
based on the assumption that imagined hand movements in the 
horizontal and vertical directions correspond to different 
brainwave patterns in EEG. Our assumption is indirectly 
motivated and supported by previous studies that successfully 
decode individual finger movement using EEG [50].  To 

classify cursor movement direction, EEG data in each trial were 
divided into 60 non-overlapping segments, each of which is 1-
second duration. Features for each segment were collected by 
taking the Fourier Transform of the EEG data from each 
channel. Specifically, the mean, median, maximum, and 
minimum values of the power spectral density across the Theta 
(4-7 Hz), Alpha (8-15 Hz), Beta (16-32 Hz), and Gamma (32-
40 Hz) bands were used to train a Classifier to discriminate 
between horizontal and vertical movements.  

We chose to use the random forest for classification. The 
method uses a multitude of decision trees trained at training 
time to model the data [49]. Decision tree tends to overfit the 
data. However, by using an ensemble model like a random 
forest that utilizes underlying decision trees, we can reduce the 
variance. The method aims to reduce the correlation between 
decision trees using the pruning technique. It is robust to scaling 
and inclusion of sometimes irrelevant features. The classifier 
was cross-validated by splitting 70% of the randomized 
samples for training data and 30% for testing. Results were 
quantified using accuracy as the metric. 

III. RESULTS 

A.  Multiple Linear Regression  
The multiple linear regression model was used as a predictor 

for cursor velocity from the filtered EEG signals. Goodness-of-
Fit scoring was used to calculate the prediction accuracy. Each 
trial was cross-validated by training the linear regression model 
on the other four trials and testing on the current trials. For 
comparison, we evaluated the decoding algorithm using 
randomly generated signals and ran the simulations for 1000 
times, which indicates the outcome at chance level [51]. The 
mean [standard deviation] from the chance level simulations is 
12.9% [5.5]. Fig. 2 shows a sample of two horizontal and 
vertical trials for illustration. Ten trials for all 32 subjects were 
analyzed, and their prediction scores were averaged for vertical 
and horizontal trials. The mean [standard deviation] of GoF for 
horizontal accuracy using least squares regression across all 
subjects was 70.79% [29.14] and the mean [standard deviation] 
of GoF for vertical accuracy was 38.33% [30.14], both of which 
are significantly higher than the chance level.  
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Fig. 2.  Regression results of one subject across two horizontal (top) and 
vertical (bottom) trials. Predicted velocity (orange) and target velocity 
(blue) with goodness of fit score above plot. 
 

Time (Second) Time (Second) 
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Aside from least squares, the model was trained using several 
other variations of the least-square algorithm such as ridge 
regression and Theil-Sen regression. Ridge regression was 
trained using a regularization alpha of 1.0. The higher 
regularization of the data leads to less accurate results across all 
subjects. Theil-Sen regression was trained with a subpopulation 
of 10,000 and showed slight improvements in most subjects. 
Table I and Fig. 3 shows a comparison between the three 
models to illustrate the similarities in prediction capabilities. 
From our analysis of the performance of these models, linear 
regression demonstrated one of the best results for both 
horizontal and vertical predictions across all subjects. Theil-Sen 
regression preformed close to and in some places better than 
linear regression; however, this was often at the cost of a higher 
time complexity leading to longer training times. For this 
reason, the least squares model was identified as the optimal 
model out of the three evaluated techniques when taking into 
account time and GoF performance. Fig. 5 shows the average 
GoF of individual EEG channels for horizontal and vertical 
trials. 

B. Channel-Wise Regression  
Fig. 4 shows a heat map of the average GoF scores across all 

subjects using each individual channel. Here, the channel-wise 
analysis was based on the optimal regression model to 
determine which channels contributed the most to the overall 
prediction. The results are based on leave-one-trial-out cross-
validation. For reference, the 14-channel layout for the Emotiv 
Epoc headset used in this study is presented in Fig 5. The 

 

 
 

Fig.  3.  Predicted velocities plotted over the target for least squares, Ridge, and Theil-Sen regression for one sample subject and one sample horizontal trial. 
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Fig. 4.  Heat map for channel-wise prediction in horizontal and vertical 
trials. 
 

TABLE I 
MODEL COMPARISON FOR HORIZONTAL AND VERTICAL TRIALS 

Model 
Avg. 

Horizontal 
GoF 

Horizontal 
STD 

Avg. 
Vertical 

GoF 

Vertical 
STD 

Multiple 
Linear 

Regression 
70.79 29.14 38.33 30.14 

Ridge 
Regression 68.18 28.30 35.40 28.23 
Theil-Sen 
Regression 71.04 29.69 40.28 30.21 

 
 

Time (Second) 

 
 
 
 
 
 
 

 
Fig. 5.  Average goodness of fit of each channel for horizontal trials (top) 
and vertical trials (bottom). 
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horizontal data showed that the F7 and F8 channels contributed 
the most toward velocity prediction. It is also noteworthy to 
mention that the right hemisphere demonstrates much higher 
prediction accuracy than the left hemisphere for horizontal 
trials. The vertical data indicates that the AF3, F3, F4, and AF4 
channels contribute the most.  

Using this information, different combinations of these 
relevant channels can be used in our prediction model in an 
attempt to improve the overall accuracy. The combinations 
were selected based on the prediction capability represented by 
the heat map in Fig. 4. Table II shows the results of channel 
analysis for horizontal and vertical accuracy. Our results 
showed that horizontal accuracy could be improved most by 
using the channel combination of F7, FC5, T8, FC6, F4, and F8. 
For vertical accuracy, it was found that all channels are 
necessary for the highest prediction accuracy. However, it is 
interesting to note that the six frontal channels (AF3, AF4, F3, 
F4, F7, and F8) demonstrated accuracy comparable to all 14 
channels (see Fig. 6).  

C. Classification  
We also conducted numerical experiments to determine the 

movement direction from a segment of EEG signals. A Random 
Forest Classifier was used to discriminate between horizontal 
or vertical movement (refer to section II.D for a full description 
of features and cross-validation methods). Fig. 7 presents the 

classification accuracies for four different features sets. The 
average classification accuracy was 79% for all channels and 
all features of mean, median, maximum and minimum of the 
four frequency bands of Theta, Alpha, Beta, and Gamma. Using 
only the mean values from the four frequency bands yielded an 
average classification accuracy of 80%. The same methods of 
all features and only means were repeated on the six frontal 
EEG channels of AF3, AF4, F3, F4, F7, and F8. These provided 
an average classification accuracy of 68% and 69% 
respectively. 

IV. DISCUSSION 
Several models were used to test the prediction accuracy of 

the BCI platform. From a cursory analysis of various models 
and previous literature [24, 36-38, 47, 48], we choose to focus 
on variations of the least squares algorithm as they have 
typically shown the best performance. Ridge regression was 
chosen to test how the inclusion of L2 regularization affected 
the predicted velocity. Ridge regression saw the lowest GoF 
scores even when the regularization parameter was set to near 
zero (zero regularization simply being least squares). Theil-Sen 
regression was chosen for its advantages in dealing with outlier 
data and general robustness to corrupted data [52]. Theil-Sen 
reported slightly better GoF for most subjects which suggests 
that some noise, artifacts, or outliers are still present even after 
filtering. This shows the potential usefulness of robust least 
square estimators for BCI implementations. Models such as 
Theil-Sen regression and ridge regression often provided 
comparable accuracy to our multiple linear regression model 
based on least squares regression but at a much longer 
processing time. For this reason, the least squares model was 
chosen for the remaining tests. As demonstrated in the literature 
[12, 39, 41], the contribution of (electrooculogram) EOG to the 
decoding accuracy is insignificant. Bradberry et al. [12] also 
showed that the influence of muscle activity on the cursor 
movement is low. Since the EEG signal is subjected to a band-
pass filter [0.2, 1] Hz, artifacts out of this range are removed 
from the regression. 

During the evaluation of individual channels, it is interesting 
to note that there is a distinct pattern between the most 
predictive channels for horizontal and vertical trials. The F7 and 
F8 channels showed the highest standalone prediction for 
horizontal trials while the AF3, AF4, F3, and F4 channels were 

 
Fig. 6.  Emotiv EPOC channel locations; figure copied from [20]. 

 
Fig. 7.  Boxplots of the classification accuracies using four different feature 
sets. (1) All channels and all features; (2) all channels and mean of the 4 
frequency bands independently; (3) six channels (AF3, AF4, F3, F4, F7, and 
F8) and all features; (4) six channels (AF3, AF4, F3, F4, F7, and F8) and mean 
of the 4 frequency bands independently. 
 

TABLE II 
PREDICTION ACCURACY FOR VARIOUS CHANNEL COMBINATIONS 

 

Channels Horizontal Accuracy Vertical Accuracy 

F7, F8 69.96% 15.27% 

F7, F8 + FC5, FC6, F4, T8 72.41% 31.78% 

F7, F8 + O2, P8, T8, FC6, 
F4, AF4 71.03% 33.67% 

AF3, AF4 41.89% 27.55% 

AF3, AF4 + F3, F4 49.21% 28.35% 

AF3, AF4 + F3, F4, F7, F8 70.02% 34.32% 

All Channels 70.79% 38.33% 
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the highest for vertical. Using just the F7 and F8 channels as 
features for the linear regression model provided a GoF score 
that was less than 1% lower than using all channels for 
horizontal trials. This suggests that a headset with two sensors 
can be used with great effectiveness in horizontal tasks 
compared to 14 channels. Vertical channels were unable to be 
improved by using different channel combinations. The 
combination of AF3 and AF4 channels gives the worst score 
among the tested combinations in Table II. Since AF3 and AF4 
are influenced the most by eye movement, this indicates that 
eye movement may play an insignificant role in velocity 
prediction. It is worthy of pointing out that using EEG headsets 
with 32 or 62 electrodes may improve the decoding accuracies.  

It can be seen from the results that horizontal prediction 
accuracy is much higher than vertical prediction accuracy. 
Further research is needed to determine the cause of this 
difference. It is also interesting to note that Fig. 4 shows the 
channels located on the right hemisphere of the brain as more 
relevant to velocity prediction. The results of the classification 
approach show a very promising method of distinguishing 
between the intended horizontal and vertical movement. By 
achieving an average accuracy of 80%, this classifier can 
potentially be used in front of the regression model to improve 
performance. It is also noteworthy to mention that subjects with 
high Goodness-of-Fit scores did not always achieve high 
classification accuracies. In some cases, subjects with low-
velocity prediction scores have much higher classification 
scores. Unlike previous work in the literature [11, 23], this 
research separated the training for two-dimensional cursor 
control into two simple one-dimensional training in horizontal 
and vertical directions, respectively. The results here suggest a 
novel approach to expand the cursor control experiment from 
one direction to higher dimensions. Since the horizontal and 
vertical training are conducted separately, it allows us to 
distinguish between horizontal and vertical trials. The 
classification results suggest that patterns of the brain activities 
are different during horizontal and vertical cursor movements.  
The classification models developed here may be used to 
inform better decoding mechanisms.  

V.  CONCLUSION 
In this article, an EEG-based Brain-Computer Interface 

platform was optimized through the evaluation of machine 
learning techniques, channel selection, and classification of 
cursor movement direction. Offline analysis of 32 healthy 
subjects’ training data from a two-dimensional cursor control 
task was analyzed. A multiple linear regression decoder model 
derived from least squares was compared to models of ridge 
regression and Theil-Sen regression. While our results showed 
that the Theil-Sen model demonstrated the highest accuracy, the 
model generated from least squares regression provided 
comparable accuracy at a lower processing time which is 
necessary for online trials. Therefore, it was determined that the 
least squares method is the optimal model of the three 
regression techniques.  

The platform can also see minor improvement through 
channel selection during dimensional tasks. For instance, tasks 
involving primarily horizontal movement can place a higher 
weight on channels F7 and F8 along with channels located on 

the right hemisphere of the brain. However, for vertical trials, 
there was no combination of channels that provided improved 
results found in this study. A classifier for horizontal and 
vertical direction can also be implemented as a gate to generate 
predictions on a model tailored for the intended dimension. The 
approach can be used to improve the accuracy of the model 
beyond regression alone. Our results showed a classification 
accuracy of 80% for mean values of power spectral density 
across the Theta, Alpha, Beta, and Gamma frequency bands for 
all channels.  

It is interesting to note that prefrontal electrodes produce the 
best decoding results. This probably indicates that the IBK 
paradigm relies on higher cognitive functions compared to 
sensorimotor and externally triggered sensory paradigms. As 
pointed out in Min et al. [53], paradigms based on prefrontal 
cognitive functions are natural candidates for efficient and 
intuitive applications in goal-directed BCIs, which have great 
potential for applications in improving the quality of life of 
individuals with sensorimotor or cognitive impairments [54, 
55]. While linear regression has given the best results so far, 
there remains the question of whether it is optimal. Further 
research needs to be done to explore other models and 
parameters (such as a Long Short-Term Memory network and 
variations of support vector machines) as well as methods to 
transfer knowledge from other subjects’ data [56]. Future work 
will also include implementing what we have learned from 
channel selection and classification in real-time testing. 
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