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Brain Connectivity Evaluation during Sustained
Attention Using EEG-based Brain-computer
Interface

Soheil Borhani, Reza Abiri, Yang Jiang, Taylor Berger, and Xiaopeng Zhao

Abstract— Attention has a primary role in cognition and object
selection. Sustained attention, also known as vigilance, refers to the
capability of maintaining focus on a task over a prolonged period.
Attentional deficits may be caused by several neurological diseases
such as (ADHD), Alzheimer’s disease (AD), Mild Cognitive
Impairment (MCI), Traumatic Brain Injuries (TBI), Post-
Traumatic Stress Disorder (PTSD), etc. The objective of this work
is to evaluate sustained attention under visual stimulations of
scenes and faces using an EEG-based brain-computer interface
platform. The experiment consisted of two phases: image
recognition and attention evaluation. During both phases, the
response time to faces is significantly less than that to scenes. We
analyzed event-related time-frequency representation of faces and
scenes under both disturbance-free (phase 1) and disturbed (phase
2) conditions. We also investigated causal relationship between
object recognition and the motor response associated with the
category selection using the brain connectivity evaluated via
Granger causality. The developed experimental protocols and
connectivity evaluation methods may provide insights for better
understanding of the neural processes for object recognition and
category selection.

Index Terms— Brain-Computer Interface, Sustained attention,
EEG, Event-related potential, Granger Causality, Time-
frequency, Brain connectivity

I. INTRODUCTION

reat advances have taken place in Brain-Computer

Interface (BCI) since its initial establishment in the 1960s
[1]. Brain as a complex system, contains nonlinear dynamics
and nonstationary behavior, which makes it difficult to
describe. Making assumptions could simplify the
understanding of the brain. Recently, model-based approaches
offer a systematic modelling of complex systems such as brain.
The approach mitigates the curse of dimensionality by making
some assumptions about the structure, dynamics, or statistics of
the system under observation. By modelling, we can make some
assumptions to tractably understand the system. Here, the
complex system (e.g. brain model with millions of neurons) is
estimated with linear dynamics and far fewer variables.
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According to Bullmore and Sporns [2], there are three types of
brain connectivity:

1) Structural (anatomical) connectivity. This type of
connectivity describes how different areas of brain are
anatomically wired together [3]. It shows how different parts of
the brain can communicate with each other. The axial dendritic
connections in the brain depicts the possibility of exchanging
information and not the actual connection in every moment.
Methods such as Diffusion Tensor Imaging (DTI) can visualize
this kind of connectivity. This type of connectivity is state
invariant; the dynamics of this connectivity at the level of
networks of the brain evolves very slowly over the course of
days and years [4].

2) Functional connectivity. Taking the assumption that
different areas of brain can communicate with each other,
functional connectivity studies correlation patterns and spectral
coherence between different areas [5]. Although this type of
connectivity is dynamic, state dependent, and can evolve in the
order of milliseconds and seconds, it does not necessarily imply
a causal link [6].

3) Effective connectivity. The method suggests that different
areas of brain may have not only correlative activities but also
causal relationships. One area can exchange information and
drive another area. The connectivity is dynamic, state
dependent, and can evolve in the order of milliseconds and
seconds. While the functional connectivity can reveal mutual
synchronization between different brain regions, the effective
connectivity aims to uncover causal interaction and
connectivity among sources of brain activities.

Here, we explored effective connectivity in a sustained
attention task. We exposed a number of healthy human
participants to 1) a sequence of images of faces and scenes, and
2) a sequence of superimposed face and scene images, while
priming them to maintain focus, and distinguish between the
image categories. The electroencephalogram (EEG) time series
were collected during the tasks using a 14-channel EEG
headset. We utilized the concept of Granger causality [7]
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between selected sources of brain activities to reveal the
interdependence between different brain regions using the EEG
time-series. According to the Granger causality scheme, a time-
series x(n) can be granger cause of another time-series y(n) if
information about x(n)’s past improves the prediction of the
variable y(n), above and beyond the information contained in
past of y(n) (and other measured variables) [8, 9]. We focused
on the metric of Granger-Geweke Causality (GGC) as a
measure of directed connectivity [10-12].

II. MATERIALS AND METHODS

A. Participants

Thirty-eight college students (11 females: 21.3+1.9 years and
27 males: 23.1+5.2 years) participated in the experiment. There
were 33 right-handed and five left-handed participants. Only
right-handed participants were included in this study. They all
had normal or corrected to normal vision. They had no known
history of neurological or psychological disorder. The
experimental protocol was approved by the Institutional
Review Board at the University of Tennessee, Knoxville. All
participants were asked to read and sign a consent form prior to
participating in the study. The experiment consisted of two
phases, which are described in Sections II.C and 11.D.

B. EEG recording

EEG Data was acquired using a water-hydrated 14-channel
Emotiv EPOC wireless EEG headset over AF3, F7, F3, FC5,
T7, P7, 01, 02, P8, T8, FC6, F4, F8, AF4 according to 10-20
standard with a sampling rate of 128Hz. We ensured to maintain
low impedance (<10KQ) for all EEG electrodes during the
experiments. The EPOC TestBench software was used to
monitor the quality of EEG signals. The received signals were
referenced with respect to P3/P4 electrodes over left and right
mastoids.

C. Phase 1: Image recognition

1) Experimental protocol

Each participant was conditioned to recognize 200 “Face”
and 200 “Scene” individual images as trials by keypresses. The
conditioned trials were divided into eight blocks, in which the
two image categories were equally distributed. There was a
short pause between blocks. The participants were exposed to
male and female faces in four blocks and indoor and outdoor
scenes in the other four blocks. To ensure high attention to the
image category throughout the experiment, we instructed the
participants to distinguish between the subcategory images. An
illustration of this phase is shown in Fig. 1. The sequence of
images was displayed on a 33cmx*33cm LCD monitor with a 60
Hz refresh rate and 19201200 resolution. Participants were
asked to look at the center of the monitor and keep their distance
at 60 cm. Each trial was a single greyscale image followed by a
black screen. Each block started with a 1000ms cue texture that
guided participants on the attended images and the expected
behavioral response. Then, it continued with showing single
images randomly selected from scene subcategories (Indoor
scene & outdoor scene) or face subcategories (male face &
female face) with a black screen between images. Each image
was shown for 1000ms and the inter-trial duration was a

random variable between 1000ms and 1500ms. Overall, 50
images were shown to each participant during each block.

A computer keyboard was used to collect behavioral
responses of participants. Pressing Back quote button on the top
left corner collected left hand responses and hyphen button on
the top right corner collected right hand responses. Table I
shows the expected behavioral responses for corresponding
subcategories of images for eight blocks. Keyboard button
assignments were counterbalanced across all blocks to
minimize the projection of motor-related activities over EEG
signals. A one-minute practice block was designed to
familiarize the participants with the task. The participants were
asked to minimize eye blinks and body movements during the
experiment. This phase took approximately 20 minutes.
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Fig. 1. A schematic illustration of phase 1: image recognition phase.

TABLE I

THE SUBCATEGORIES OF IMAGES TO WHICH A PARTICIPANT SHOULD PAY
ATTENTION DURING EACH BLOCK AND THE EXPECTED BEHAVIORAL
RESPONSES FROM THE PARTICIPANT.

Block No. and stimuli Left-Hand Right-Hand
(attended) category Response Response
1: Face category Male face Female face

: Scene category Indoor scene Outdoor scence

: Scene category Outdoor scence Indoor scene

: Face category Female face Male face

: Scene category Indoor scence Outdoor scence

: Face category Male face Female face
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: Face category Female face Male face

8: Scene category Outdoor scene Indoor scence

The same sequence was maintained for phases 1 and 2.

2) Input and ground truth

We aimed to analyze and generate an individual model of
visual attention. Since there were 33 participants in this study,
the data have been utilized to analyze and generate 33



individual models. We chose a trial-wise training scheme,
which considers EEG data of a whole trial as an input to the
model. We primed participants to discriminate between male
and female subcategories in four blocks and between indoor and
outdoor subcategories in other four blocks by key presses.
Using this strategy, we assumed that the participants have
relatively high attention towards face and scene categories in
the corresponding blocks. Consistently, the shown image
category (regardless of the subcategories) during each trial has
been chosen as the ground truth.

D. Phase 2: Attention evaluation

1) Experimental protocol

Each participant was conditioned to recognize 200 “Face”
and 200 “Scene” superimposed images as trials by keypresses.
During each trial, the participants were exposed to a male or a
female face that was superimposed by an indoor or an outdoor
scene image. The conditioned image trials were evenly divided
into eight blocks. The participants were instructed to
discriminate between male and female subcategories in the
sequence of superimposed images in four blocks, and to
discriminate between indoor and outdoor subcategories in the
sequence of superimposed images in the other four blocks by
key presses. The two conditioned image subcategories were
equally distributed to cancel out the associated motor-related
response on the EEG signals. There was a short pause between
blocks. Fig. 2 illustrates a schematic of the phase. A pilot study
was conducted using the same experimental protocol [13]. The
same keyboard buttons as the phase 1 were assigned for
collecting participants’ behavioral response. The conditioned
visual stimuli were displayed on the same screen as the phase
1. We ensured that images used to construct the superimposed
images had the same opacity, contrast, and luminance level.
This phase took approximately 10 minutes.

2) Input and ground truth

In phase 2, participants were conditioned to discriminate
between male and female subcategories in four blocks and
between indoor and outdoor subcategories in other four blocks
by key presses when exposed with the sequence of composite
images. Compared to the phase 1, phase 2 did not have a black
screen between trials.

E. Signal preprocessing

The experimental setup was designed using MATLAB and
Simulink software. While participants were performing the
experiment, the continuous EEG signals as well as the key
presses (behavioral responses) were recorded. Psychophysics
toolbox extensions was incorporated to calculate response time
(RT) and account for synchronous collection of behavioral
response [14-16]. The EEG signals were filtered out using an
intrinsic [0.16-46] Hz band-pass filter and stored on the
computer. We utilized EEGLAB for EEG channels and source
space processing using a pipeline outlined in Fig. 3 [17]. The
EEG signals collected during each block of stimuli for each
participant were merged together to yield a solitary set of
independent component weights common to all conditions. The
continuous data was first filtered with a 1 Hz high-pass Finite-
Impulse Response (FIR) filter. The filter removed the signal
drift, cope with the non-stationarity of EEG signals caused by

sweating and stabilize the subsequent Independent Component
Analysis (ICA). Then, bad channels and large amplitude noise
caused by muscle artifacts were identified and rejected using
Artifact Subspace Reconstruction (ASR) [18]. Since the EEG
signals are generated with no external source, the potentials
over all EEG channels are summed up to zero at every moment.
So, we re-referenced the EEG signals to the average channel
values. Re-referencing is also helpful to reject external noise.
To minimize the risk of bias in the referencing, the previously
rejected channels were interpolated using sphering
transformation [19]. To avoid confusion caused by the channel
interpolation, we applied Principal Component Analysis (PCA)
to keep the data full-rank.
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F. Independent component analysis



Brain activity measured over each EEG channel is a linear
mixture of different cortical and different non-cortical sources
of activities. There are methods proposed to estimate sources of
activity. ICA was applied to extract maximally independent
sources of information. The EEG signals recorded during all
eight blocks of sustained attention task during the associated
phase for each participant were combined. Then, the ICA
method was applied on the continuous data to extract
independent sources. The scheme yielded single set of ICA
weights common to “Faces” and “Scenes” stimuli on each
phase. The scheme manifests a valid approach since the EEG
headset were constantly turned on and the headset placement
was not altered during each phase of the experiment. This
allows for comparisons of neural activity conditioned by the
various visual sustained attention within spatial independent
components common to the different stimuli. We used AMICA
algorithm to decompose the EEG signals [19]. The algorithm
pulled out the contributing source of EEG signals that helped
later for signal source and causality analysis. Using Emotiv
EEG headset, at most we could have extracted 14 independent
sources for EEG signals collected during each sustained
attention task. Each component was then projected on to the
scalp map using the inverse weight matrix. We evaluated each
component to discriminate between neural and non-neural
signal sources using different methods. Comparing the
components’ activity spectrum gave a good illustration for
determining the non-neural sources. With a semi-automated
procedure we included mutually inclusive neural sources
identified by two EEGLAB libraries named ADJUST [20] and
ICLabel [21]. This allows for accurate rejection of non-neural
sources. The ICA over the datasets yielded 472 ICs. We found
a high commonality of more than 99% between 41 ICs of 36
participants within the right fusiform gyrus which is associated
with the face fusiform form area (FFA). We focused on the
participants’ contributing ICs for all event-related spectral
perturbation (ERSP) analysis in the result section. The data
were segmented into 1200 ms epochs, starting 200 ms prior to
and 1000ms after the stimulus onset. The baseline was
considered the neural activity during -200 ms to 0 ms relative
to stimulus onset.

G. Equivalent current dipole extraction

Following to the ICA decomposition, equivalent current
dipole models were fitted for each component by using the
DIPFIT2 EEGLAB extension [22]. The spherical head model
was co-registered to Montreal Neurological Institute (MNI)
head model to better localize the estimated current dipoles. The
default parameters were applied to transform between ICA and
estimated current dipole [23]. Then, Kmeans clustering was
applied and estimated current dipoles were clustered into 10
different clusters. Due to the difference among participants’
scalp sizes, we excluded estimated outlier current dipoles.

H. Calculation of ERSP

We focused on the estimated current dipole cluster over the
FFA area (Fig. 4). Time-frequency analysis was performed
using EEGLAB toolbox on all participants’ ICA components
on this cluster. We calculated ERSP over the epoched data to
measure power fluctuations on the independent component in
the frequency range of [3-40] Hz. A tapered moving Hanning

window with a Morlet wavelet transforms extracted the time-
frequency event-related perturbation over all trials of each
participant. We applied a linearly increasing cycle of 1 at 3Hz
and 7 at 40Hz for the wavelet transform. To obtain ERSP, we
averaged the spectral power across all trials of “Faces” and
“Scenes” stimuli, separately. Then, the calculated spectral
power converted to log power for better illustration. Baseline
correction was applied by subtracting mean signal power at
100ms prior to the onset of each image category. The event-
related synchronization (ERS) for both phase 1 and phase 2 has
been calculated as follows:

N
1
ERS(freq,time) = NZ|W(freq, time)|? 2

i=1

where N is the number of trials associated with a condition and
W is the Morelet wavelet transform over each epoch of data.
The ERSP is computed separately across trials of “Faces” and
“Scenes” for each individual participant.

ERS(freq, time))

ERSP(freq,time) = 10 loglo( T

3)

where I is the mean spectral power at the defined baseline.

Fig. 4. Estimated current dipoles of each participant’s independent component
in the FFA cluster for the trials during a) “image recognition” and b) “attention
evaluation” phases. The picture from left to right constitutes sagittal, coronal,
and axial slices of the MNI MRI template, as well as the averaged scalp
topography.

L. Group level analysis

By collecting components associated with neural patterns
conditioned by faces and scenes stimuli for each individual, we
conducted a group analysis using EEGLAB STUDY module.
The group study allows for comparison between associated
components across participants. To determine ICs with non-
neural source of activities among the participants’ batch
datasets, we clustered all the ICs using estimated current
dipoles as the feature with Kmeans clustering method into 10
clusters. Then, the time-frequency representations of neural
sources in the cluster over the right occipital cortex (over the
FFA) has been extracted.

J. Causal connectivity analysis

There are various post-hoc analysis applied to neural activity
to estimate effective connectivity such as Dynamic Causal
Modeling (DCM) [24] and structural equation modeling [25].
The methods are confirmatory in the sense that these
connectivity tests can reveal connectivity by imposing different



hypothesis. By conducting statistical tests, the models can
confirm if the hypothesis is significant. There are other
exploratory approaches that assume a model for the neural
activity and test different hypothesis under the data-driven
model. We applied granger causality as an exploratory method
since it is data-driven, scalable to many variables, extendable to
nonlinear [26] nonstationary [27, 28] and/or nonparametric [29]
systems. These characteristics makes it a good fit for EEG
neural responses. The method is also capable of evaluating the
hypothesis of a system being affected by an unobserved
exogenous cause [30, 31]. The framework allows us to explore
time and frequency varying multivariate causal relationships in
the EEG data. We identified three cortical sources of interest
over left occipital cortex (OccL), right occipital cortex (OccR),
left supplementary motor area (SmaL), right supplementary
motor area (SmaR). We assume a linear multivariate
autoregressive (MVAR) dynamic system for the brain. The
model describes EEG data as a linear combination of k data
samples into the past. The model can represent as:

p
N@= ) AOXMNE-DIEO O

where Xy is N channel EEG signals, p is the model order
defined the number of data points in the past to look for causal
relationship, A is the model coefficients, and E is random
Gaussian noise. We assume stationarity of the data within a
short time window, and stability of the model. The stability
corresponds to all eigenvalues of matrix A being less than one.
Practically, it means that the amplitude of the EEG as a time
series is always bounded.

The important parameter to choose is the order of the MVAR
model. There are different methods to determine the optimal
number of data points in the past to include in the model. We
can use data itself to calculate the model order. Data-driven
criterion such as Akaike Information Criteria (AIC) [32],
Schwarz-Bayes, and Hannan-Quinn can be utilized to calculate
model order. Basically, all of these methods may suggest a
different model order based on penalizing a different criterion.
However, the simpler model (model with smaller p) is always
preferred over other higher order models. Also, the model order
depends on the EEG sampling rate. The higher the sampling
rate, the higher the model order should be. Because the
information above 64 Hz on the collected EEG signals may be
insignificant, downsampling of the EEG signals to somewhat
100 to 120 Hz for linear modelling is preferred. Since the
original sampling rate of the EEG signals (128Hz) were about
the preferred sampling rate, we decided to keep the original data
sampling rate. We chose the window size of 0.3 s with 90%
overlap on windows to ensure the conformity with the AIC
criterion [33, 34]. A range of possible model order between 1
to 40 was computed for Face and Scene trials in image
recognition and attention evaluation phase for each
participants’ data, independently. The optimal model order for
each criterion was automatically determined by choosing the
minimum order that meet the constraints.

K. Connectivity model validation

In order to evaluate the accuracy of the model to capture the
sources of interested dynamics, we conducted various tests. We

ran whiteness test to make sure that the information left on the
residuals is insignificant, consistency test with random signal as
an input to the model to see if the model can generate data with
the same correlation structure as the real data, and stability test
to assess the stability and stationarity of the model. On average,
the model order for all the participants’ EEG data were 16.

III. RESULTS

A. Behavioral response

After collecting behavioral response, we examined the ability
of participants to accurately distinguish between faces and
scenes in both “image recognition” and “attention evaluation”
phases. Specifically, we examined the difficulty of the task by
evaluating the mean RT for the attended face and scene stimuli.
We only included key presses during the trial and excluded all
other key presses after the one-second trial. We applied a paired
two-tailed t-test on the correct responses between the average
RT to attended faces and scenes to determine the difficulty of
focusing attention towards face versus scene for both clear and
ambiguous stimuli. Fig. 5 shows the violin plot [35] of the mean
correct RT for attended faces and scenes in the “image
recognition” and “attention evaluation” phases. The analysis
revealed a significant lower average RT for face versus scene
in the “image recognition” phase (p < 0.02). This supports the
assumption that, compared to scenes, it is easier to distinguish
faces since faces are the most distinctive visual stimuli [36].
The question is how adding ambiguity to the visual stimuli by
superimposing images with another image may affect the
behavioral response. Although the t-test still shows a significant
lower average RT for attended faces versus scenes (p < 0.02)
on noisy images on the “attention evaluation” phase, the mean
value for the two categories are very close. We also expected
that adding ambiguity would increase the average RT for each
attended category. The t-test also revealed a significant
difference between the average RT to the attended categories
between phase 1 and the ambiguous categories in the phase 2 (p
<0.02). Fig. 6 shows the percentage of correct responses in both
phase 1 and phase 2. As expected, adding ambiguity to the
stimuli and eliminating the inter-trial blank screen would result
in lower correct responses in the “attention evaluation” phase.

B. Time-Frequency EEG response

Phase 1: Image recognition task. We inspected the
corresponding time-frequency plots to identify the components
of interests. Fig. 7 shows the spectral perturbation associated
with face and scene stimuli conditions in one sample participant
during image recognition task. Using 10% bootstrap
significance level (@) on 200 trials collected under each
condition for each participant’s data, we filtered out the non-
significant perturbations which is showed by green areas. A
stronger activation pattern in frequencies (25 — 40 Hz) across
scene condition compared to face condition for the image
recognition phase is identified. The pattern is more pronounced
within the time window between 50 and 350 ms after stimulus
presentation.

Phase 2: Attention evaluation task. We also inspected the
corresponding time-frequency plots to identify the components
of interests. Fig. 8. depicts the calculated ERSP on a



representative participant over faces and scenes conditioned
trials during attention evaluation task. The same significance
level of @ = 10% was applied to filter out non-significant
perturbations. The overlapped image of face and scene seems
to shift the pattern to the face conditioned stimuli. As Fig. 8
shows, a stronger activation pattern on the frequencies (15-25
Hz) for the face conditioned stimuli is depicted during attention
evaluation phase. Also, scene conditioned stimuli exhibit higher
gamma within the time window between 100 and 500 ms after
stimulus presentation.
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Fig. 2. Violin plot of the mean RT in the a) “Image recognition” and b)
“Attention evaluation” phases. The red dotted line shows the mean correct
response time (RT) over all participants.

a) Mean[std] RT was 547[69] ms for faces and 633 [53] for scenes

b) Mean[std] RT was 667[73] ms for faces and 706 [62] for scenes
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Fig. 6. Violin plot of mean correct responses in both “Image recognition”
and “Attention evaluation” phases. The red dotted line shows the average
over all participants. The mean[std] behavioral performance was 95.7 [2.7]
% for “Image recognition” and 88.1 [5.4] % for “Attention evaluation”
phases.

C. Connectivity Analysis using time-frequency distribution

We investigated causal relationships between OccL, OccR,
Smal, and SmaR brain regions for face and scene conditions.
We assumed that left and right occipital areas may represent
participants’ perception towards attended image category while
brain activities over supplementary motor area represents
category selection for the behavioral task. We extracted time-
frequency illustrations of granger causality between the regions
of interest (ROI) considering the statistical significance of
p_value < 0.05 for the conditioned stimuli for both “image
recognition” (Fig. 9) and “attention evaluation” (Fig. 10)
phases. The figures show the changes in Granger causality over
the time course of sustained attention towards different image
categories between ROIs on a sample participant’s data. The
blue regions indicate non-significant connectivity, and the
warmer regions (yellow to red) indicates stronger connectivity.
During the beginning of face trials, the information outflow
between the independent neural components over OccL area
and SmaR area becomes hyper-coupled. The occipital region
over FFA drives the neural activity in the supplementary motor

area across both Theta and Beta waves (Fig. 9.a). In contrast,
the connectivity between OccL area and SmaR is more
pronounced over Alpha wave (Fig. 9.b).
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Fig. 7. ERSP response for a representative participant over all a) face and
b) scene stimuli in image recognition phase
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Fig. 9. Time-frequency distribution of granger causality from left occipital
(OccL), right occipital (OccR), left supplementary motor area (SmaL), and
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same areas on the rows as sink for (a) Face trials and (b) Scene trials in the
image recognition phase. The red dotted lines show the average behavioral
response time for each condition. Non-zero connectivity with the
significance level of p_value < 0.05 is illustrated with warm regions (Red).



IV. DISCUSSION AND CONCLUSION

In this work, we developed an EEG-based BCI platform
using a portable, water-hydrated, and wireless EEG headset.
We conducted a two-phase experiment to evaluate sustained
visual attention to face and to scene images by exposing a group
of participants to sequence of images and asking them to
distinguish image categories using key presses. In the first
phase, a sequence of untainted images was shown, and
participants were given a pause between images. In the second
phase, a sequence of noisy, superimposed images was displayed
while there was no pause between trials. We analyzed stable
time-frequency representations of sustained visual attention
towards face and scene images both in a pure and in a noisy
environment. We also investigated causal connectivity between
brain regions associated with category identification and
selection. Our analysis focused on the granger causality
underlying sustained attention towards face and scene images
in as a pure or a noisy image.
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(b)
Fig. 10. Time-frequency distribution of granger causality from left
occipital (OccL), right occipital (OccR), left supplementary motor area
(SmaL), and right supplementary motor area (SmaR) as source on the
columns to the same areas on the rows as sink for (a) Face trials and (b)
Scene trials in the attention evaluation phase. The red dotted lines show the
average behavioral response time for each condition. Non-zero
connectivity with the significance level of p_value < 0.05 is illustrated with
warmer regions (Red).

Connectivity models of sustained attention can provide us
with a better understanding of the neural processes for object
recognition and category selection. The models have been
recognized and received support in the literature. Friston et al.
[37] reviewed different approaches of dynamic causal

modelling. There are studies that have included measures of
fMRI connectivity to predict sustained attention in people with
different clinical conditions including traumatic brain injury
(TBI) [38] and ADHD [39] . The measure has shown a potential
to predict abnormalities in sustained attention [40] with resting
state blood oxygen-level dependent (BOLD) signals. The
information flow during an object-based attention has been
studied with fMRI [41]. Baldauf and Desimone [41]
investigated the neural connectivity during streams of
overlapping objects of faces and houses. They identified the
causality network between attention-related and object
recognition related ROIs. The measure of EEG signals
connectivity has also been investigated with resting state and
task-related activities. For instance, channel-space functional
connectivity using EEG signals collected in a continuous
attention task were used to discriminate target and non-target
visual stimuli [42]. Directionality of brain oscillations extracted
with Granger causality on a visual object recognition task
showed different patterns with familiar versus unfamiliar
objects [43].

An interesting study for future work can be utilizing
connectivity-related features in a real-time brain computer
interface discrimination task. We will also conduct a group-
level analysis to mathematically model the sustained attention
using both neural and behavioral response to construct the
model. The linear model built upon both measures may enhance
our understandings of the neural structure for visual object
discrimination. Moreover, future studies shall address the
significance of phase-related connectivity.
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