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Abstract— Attention has a primary role in cognition and object 
selection. Sustained attention, also known as vigilance, refers to the 
capability of maintaining focus on a task over a prolonged period. 
Attentional deficits may be caused by several neurological diseases 
such as (ADHD), Alzheimer’s disease (AD), Mild Cognitive 
Impairment (MCI), Traumatic Brain Injuries (TBI), Post-
Traumatic Stress Disorder (PTSD), etc. The objective of this work 
is to evaluate sustained attention under visual stimulations of 
scenes and faces using an EEG-based brain-computer interface 
platform. The experiment consisted of two phases: image 
recognition and attention evaluation. During both phases, the 
response time to faces is significantly less than that to scenes. We 
analyzed event-related time-frequency representation of faces and 
scenes under both disturbance-free (phase 1) and disturbed (phase 
2) conditions. We also investigated causal relationship between 
object recognition and the motor response associated with the 
category selection using the brain connectivity evaluated via 
Granger causality. The developed experimental protocols and 
connectivity evaluation methods may provide insights for better 
understanding of the neural processes for object recognition and 
category selection.     

Index Terms— Brain-Computer Interface, Sustained attention, 
EEG, Event-related potential, Granger Causality, Time-
frequency, Brain connectivity 

I. INTRODUCTION 
reat advances have taken place in Brain-Computer 
Interface (BCI) since its initial establishment in the 1960s 

[1]. Brain as a complex system, contains nonlinear dynamics 
and nonstationary behavior, which makes it difficult to 
describe. Making assumptions could simplify the 
understanding of the brain. Recently, model-based approaches 
offer a systematic modelling of complex systems such as brain. 
The approach mitigates the curse of dimensionality by making 
some assumptions about the structure, dynamics, or statistics of 
the system under observation. By modelling, we can make some 
assumptions to tractably understand the system. Here, the 
complex system (e.g. brain model with millions of neurons) is 
estimated with linear dynamics and far fewer variables. 
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According to Bullmore and Sporns [2], there are three types of 
brain connectivity: 

1) Structural (anatomical) connectivity. This type of 
connectivity describes  how different areas of brain are 
anatomically wired together [3]. It shows how different parts of 
the brain can communicate with each other. The axial dendritic 
connections in the brain depicts the possibility of exchanging 
information and not the actual connection in every moment. 
Methods such as Diffusion Tensor Imaging (DTI) can visualize 
this kind of connectivity. This type of connectivity is state 
invariant; the dynamics of this connectivity at the level of 
networks of the brain evolves very slowly over the course of 
days and years [4]. 

2) Functional connectivity. Taking the assumption that 
different areas of brain can communicate with each other, 
functional connectivity studies correlation patterns and spectral 
coherence between different areas [5]. Although this type of 
connectivity is dynamic, state dependent, and can evolve in the 
order of milliseconds and seconds, it does not necessarily imply 
a causal link [6]. 
3) Effective connectivity. The method suggests that different 
areas of brain may have not only correlative activities but also 
causal relationships. One area can exchange information and 
drive another area. The connectivity is dynamic, state 
dependent, and can evolve in the order of milliseconds and 
seconds. While the functional connectivity can reveal mutual 
synchronization between different brain regions, the effective 
connectivity aims to uncover causal interaction and 
connectivity among sources of brain activities.  

Here, we explored effective connectivity in a sustained 
attention task. We exposed a number of healthy human 
participants to 1) a sequence of images of faces and scenes, and 
2) a sequence of superimposed face and scene images, while 
priming them to maintain focus, and distinguish between the 
image categories. The electroencephalogram (EEG) time series 
were collected during the tasks using a 14-channel EEG 
headset. We utilized the concept of Granger causality [7] 
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between selected sources of brain activities to reveal the 
interdependence between different brain regions using the EEG 
time-series. According to the Granger causality scheme, a time-
series x(n) can be granger cause of another time-series y(n) if 
information about x(n)’s past improves the prediction of the 
variable y(n), above and beyond the information contained in 
past of y(n) (and other measured variables) [8, 9]. We focused 
on the metric of Granger-Geweke Causality (GGC) as a 
measure of directed connectivity [10-12].  

II. MATERIALS AND METHODS 

A. Participants 
Thirty-eight college students (11 females: 21.3±1.9 years and 

27 males: 23.1±5.2 years) participated in the experiment. There 
were 33 right-handed and five left-handed participants. Only 
right-handed participants were included in this study. They all 
had normal or corrected to normal vision. They had no known 
history of neurological or psychological disorder. The 
experimental protocol was approved by the Institutional 
Review Board at the University of Tennessee, Knoxville. All 
participants were asked to read and sign a consent form prior to 
participating in the study. The experiment consisted of two 
phases, which are described in Sections II.C and II.D. 

B. EEG recording 
EEG Data was acquired using a water-hydrated 14-channel 

Emotiv EPOC wireless EEG headset over AF3, F7, F3, FC5, 
T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 according to 10-20 
standard with a sampling rate of 128Hz. We ensured to maintain 
low impedance (<10KΩ) for all EEG electrodes during the 
experiments. The EPOC TestBench software was used to 
monitor the quality of EEG signals. The received signals were 
referenced with respect to P3/P4 electrodes over left and right 
mastoids.  

C. Phase 1: Image recognition 

1) Experimental protocol 
Each participant was conditioned to recognize 200 “Face” 

and 200 “Scene” individual images as trials by keypresses. The 
conditioned trials were divided into eight blocks, in which the 
two image categories were equally distributed. There was a 
short pause between blocks. The participants were exposed to 
male and female faces in four blocks and indoor and outdoor 
scenes in the other four blocks. To ensure high attention to the 
image category throughout the experiment, we instructed the 
participants to distinguish between the subcategory images. An 
illustration of this phase is shown in Fig. 1. The sequence of 
images was displayed on a 33cm×33cm LCD monitor with a 60 
Hz refresh rate and 1920×1200 resolution. Participants were 
asked to look at the center of the monitor and keep their distance 
at 60 cm. Each trial was a single greyscale image followed by a 
black screen. Each block started with a 1000ms cue texture that 
guided participants on the attended images and the expected 
behavioral response. Then, it continued with showing single 
images randomly selected from scene subcategories (Indoor 
scene & outdoor scene) or face subcategories (male face & 
female face) with a black screen between images. Each image 
was shown for 1000ms and the inter-trial duration was a 

random variable between 1000ms and 1500ms. Overall, 50 
images were shown to each participant during each block. 

A computer keyboard was used to collect behavioral 
responses of participants. Pressing Back quote button on the top 
left corner collected left hand responses and hyphen button on 
the top right corner collected right hand responses. Table I 
shows the expected behavioral responses for corresponding 
subcategories of images for eight blocks. Keyboard button 
assignments were counterbalanced across all blocks to 
minimize the projection of motor-related activities over EEG 
signals. A one-minute practice block was designed to 
familiarize the participants with the task. The participants were 
asked to minimize eye blinks and body movements during the 
experiment. This phase took approximately 20 minutes.  

 

 
2) Input and ground truth 

We aimed to analyze and generate an individual model of 
visual attention. Since there were 33 participants in this study, 
the data have been utilized to analyze and generate 33 

 

 

Fig. 1.  A schematic illustration of phase 1: image recognition phase. 
 TABLE I 
THE SUBCATEGORIES OF IMAGES TO WHICH A PARTICIPANT SHOULD PAY 

ATTENTION DURING EACH BLOCK AND THE EXPECTED BEHAVIORAL 
RESPONSES FROM THE PARTICIPANT. 

Block No. and stimuli 
(attended) category 

Left-Hand 
Response 

Right-Hand 
Response 

1: Face category Male face Female face 

2: Scene category Indoor scene Outdoor scence 

3: Scene category Outdoor scence Indoor scene 

4: Face category Female face Male face 

5: Scene category Indoor scence Outdoor scence 

6: Face category Male face Female face 

7: Face category Female face Male face 

8: Scene category Outdoor scene Indoor scence 

The same sequence was maintained for phases 1 and 2.  
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individual models. We chose a trial-wise training scheme, 
which considers EEG data of a whole trial as an input to the 
model. We primed participants to discriminate between male 
and female subcategories in four blocks and between indoor and 
outdoor subcategories in other four blocks by key presses. 
Using this strategy, we assumed that the participants have 
relatively high attention towards face and scene categories in 
the corresponding blocks. Consistently, the shown image 
category (regardless of the subcategories) during each trial has 
been chosen as the ground truth. 

D. Phase 2: Attention evaluation 

1) Experimental protocol 
Each participant was conditioned to recognize 200 “Face” 

and 200 “Scene” superimposed images as trials by keypresses. 
During each trial, the participants were exposed to a male or a 
female face that was superimposed by an indoor or an outdoor 
scene image. The conditioned image trials were evenly divided 
into eight blocks. The participants were instructed to 
discriminate between male and female subcategories in the 
sequence of superimposed images in four blocks, and to 
discriminate between indoor and outdoor subcategories in the 
sequence of superimposed images in the other four blocks by 
key presses. The two conditioned image subcategories were 
equally distributed to cancel out the associated motor-related 
response on the EEG signals. There was a short pause between 
blocks. Fig. 2 illustrates a schematic of the phase. A pilot study 
was conducted using the same experimental protocol [13]. The 
same keyboard buttons as the phase 1 were assigned for 
collecting participants’ behavioral response. The conditioned 
visual stimuli were displayed on the same screen as the phase 
1. We ensured that images used to construct the superimposed 
images had the same opacity, contrast, and luminance level. 
This phase took approximately 10 minutes. 

2) Input and ground truth 
In phase 2, participants were conditioned to discriminate 

between male and female subcategories in four blocks and 
between indoor and outdoor subcategories in other four blocks 
by key presses when exposed with the sequence of composite 
images. Compared to the phase 1, phase 2 did not have a black 
screen between trials.  

E. Signal preprocessing 
The experimental setup was designed using MATLAB and 

Simulink software. While participants were performing the 
experiment, the continuous EEG signals as well as the key 
presses (behavioral responses) were recorded. Psychophysics 
toolbox extensions was incorporated to calculate response time 
(RT) and account for synchronous collection of behavioral 
response [14-16]. The EEG signals were filtered out using an 
intrinsic [0.16-46] Hz band-pass filter and stored on the 
computer. We utilized EEGLAB for EEG channels and source 
space processing using a pipeline outlined in Fig. 3 [17]. The 
EEG signals collected during each block of stimuli for each 
participant were merged together to yield a solitary set of 
independent component weights common to all conditions. The 
continuous data was first filtered with a 1 Hz high-pass Finite-
Impulse Response (FIR) filter. The filter removed the signal 
drift, cope with the non-stationarity of EEG signals caused by 

sweating and stabilize the subsequent Independent Component 
Analysis (ICA). Then, bad channels and large amplitude noise 
caused by muscle artifacts were identified and rejected using 
Artifact Subspace Reconstruction (ASR) [18]. Since the EEG 
signals are generated with no external source, the potentials 
over all EEG channels are summed up to zero at every moment. 
So, we re-referenced the EEG signals to the average channel 
values. Re-referencing is also helpful to reject external noise. 
To minimize the risk of bias in the referencing, the previously 
rejected channels were interpolated using sphering 
transformation [19]. To avoid confusion caused by the channel 
interpolation, we applied Principal Component Analysis (PCA) 
to keep the data full-rank.  

 

 
F. Independent component analysis 

 

Fig. 2.  A schematic illustration of phase 2: attention evaluation phase. 

 
Fig.  3. Data processing pipeline using EEGLAB. 
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Brain activity measured over each EEG channel is a linear 
mixture of different cortical and different non-cortical sources 
of activities. There are methods proposed to estimate sources of 
activity. ICA was applied to extract maximally independent 
sources of information. The EEG signals recorded during all 
eight blocks of sustained attention task during the associated 
phase for each participant were combined. Then, the ICA 
method was applied on the continuous data to extract 
independent sources. The scheme yielded single set of ICA 
weights common to “Faces” and “Scenes” stimuli on each 
phase. The scheme manifests a valid approach since the EEG 
headset were constantly turned on and the headset placement 
was not altered during each phase of the experiment. This 
allows for comparisons of neural activity conditioned by the 
various visual sustained attention within spatial independent 
components common to the different stimuli. We used AMICA 
algorithm to decompose the EEG signals [19]. The algorithm 
pulled out the contributing source of EEG signals that helped 
later for signal source and causality analysis. Using Emotiv 
EEG headset, at most we could have extracted 14 independent 
sources for EEG signals collected during each sustained 
attention task. Each component was then projected on to the 
scalp map using the inverse weight matrix. We evaluated each 
component to discriminate between neural and non-neural 
signal sources using different methods. Comparing the 
components’ activity spectrum gave a good illustration for 
determining the non-neural sources. With a semi-automated 
procedure we included mutually inclusive neural sources 
identified by two EEGLAB libraries named ADJUST [20] and 
ICLabel [21]. This allows for accurate rejection of non-neural 
sources. The ICA over the datasets yielded 472 ICs. We found 
a high commonality of more than 99% between 41 ICs of 36 
participants within the right fusiform gyrus which is associated 
with the face fusiform form area (FFA). We focused on the 
participants’ contributing ICs for all event-related spectral 
perturbation (ERSP) analysis in the result section. The data 
were segmented into 1200 ms epochs, starting 200 ms prior to 
and 1000ms after the stimulus onset. The baseline was 
considered the neural activity during -200 ms to 0 ms relative 
to stimulus onset.  

G. Equivalent current dipole extraction 
Following to the ICA decomposition, equivalent current 

dipole models were fitted for each component by using the 
DIPFIT2 EEGLAB extension [22]. The spherical head model 
was co-registered to Montreal Neurological Institute (MNI) 
head model to better localize the estimated current dipoles. The 
default parameters were applied to transform between ICA and 
estimated current dipole [23]. Then, Kmeans clustering was 
applied and estimated current dipoles were clustered into 10 
different clusters. Due to the difference among participants’ 
scalp sizes, we excluded estimated outlier current dipoles. 

H. Calculation of ERSP 
We focused on the estimated current dipole cluster over the 

FFA area (Fig. 4). Time-frequency analysis was performed 
using EEGLAB toolbox on all participants’ ICA components 
on this cluster. We calculated ERSP over the epoched data to 
measure power fluctuations on the independent component in 
the frequency range of [3-40] Hz. A tapered moving Hanning 

window with a Morlet wavelet transforms extracted the time-
frequency event-related perturbation over all trials of each 
participant. We applied a linearly increasing cycle of 1 at 3Hz 
and 7 at 40Hz for the wavelet transform. To obtain ERSP, we 
averaged the spectral power across all trials of “Faces” and 
“Scenes” stimuli, separately. Then, the calculated spectral 
power converted to log power for better illustration. Baseline 
correction was applied by subtracting mean signal power at 
100ms prior to the onset of each image category. The event-
related synchronization (ERS) for both phase 1 and phase 2 has 
been calculated as follows: 

where 𝑁𝑁 is the number of trials associated with a condition and 
𝑊𝑊 is the Morelet wavelet transform over each epoch of data. 
The ERSP is computed separately across trials of “Faces” and 
“Scenes” for each individual participant. 

where 𝛤𝛤 is the mean spectral power at the defined baseline.  
 

 
I. Group level analysis 

By collecting components associated with neural patterns 
conditioned by faces and scenes stimuli for each individual, we 
conducted a group analysis using EEGLAB STUDY module. 
The group study allows for comparison between associated 
components across participants. To determine ICs with non-
neural source of activities among the participants’ batch 
datasets, we clustered all the ICs using estimated current 
dipoles as the feature with Kmeans clustering method into 10 
clusters. Then, the time-frequency representations of neural 
sources in the cluster over the right occipital cortex (over the 
FFA) has been extracted.  

J. Causal connectivity analysis 
 There are various post-hoc analysis applied to neural activity 

to estimate effective connectivity such as Dynamic Causal 
Modeling (DCM) [24] and structural equation modeling [25]. 
The methods are confirmatory in the sense that these 
connectivity tests can reveal connectivity by imposing different 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =  
1
𝑁𝑁
�|𝑊𝑊(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)|2                   (2)
𝑁𝑁

𝑖𝑖=1

 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =  10 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝛤𝛤

)       (3) 

 

Fig. 4. Estimated current dipoles of each participant’s independent component 
in the FFA cluster for the trials during a) “image recognition” and b) “attention 
evaluation” phases. The picture from left to right constitutes sagittal, coronal, 
and axial slices of the MNI MRI template, as well as the averaged scalp 
topography. 

(a) 

(b) 
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hypothesis. By conducting statistical tests, the models can 
confirm if the hypothesis is significant. There are other 
exploratory approaches that assume a model for the neural 
activity and test different hypothesis under the data-driven 
model. We applied granger causality as an exploratory method 
since it is data-driven, scalable to many variables, extendable to 
nonlinear [26] nonstationary [27, 28] and/or nonparametric [29] 
systems. These characteristics makes it a good fit for EEG 
neural responses. The method is also capable of evaluating the 
hypothesis of a system being affected by an unobserved 
exogenous cause [30, 31]. The framework allows us to explore 
time and frequency varying multivariate causal relationships in 
the EEG data. We identified three cortical sources of interest 
over left occipital cortex (OccL), right occipital cortex (OccR), 
left supplementary motor area (SmaL), right supplementary 
motor area (SmaR). We assume a linear multivariate 
autoregressive (MVAR) dynamic system for the brain. The 
model describes EEG data as a linear combination of 𝑘𝑘 data 
samples into the past. The model can represent as:  

 
where 𝑋𝑋𝑁𝑁 is 𝑁𝑁 channel EEG signals, 𝑝𝑝 is the model order 
defined the number of data points in the past to look for causal 
relationship, 𝐴𝐴 is the model coefficients, and 𝐸𝐸 is random 
Gaussian noise. We assume stationarity of the data within a 
short time window, and stability of the model. The stability 
corresponds to all eigenvalues of matrix 𝐴𝐴 being less than one. 
Practically, it means that the amplitude of the EEG as a time 
series is always bounded. 

The important parameter to choose is the order of the MVAR 
model. There are different methods to determine the optimal 
number of data points in the past to include in the model. We 
can use data itself to calculate the model order. Data-driven 
criterion such as Akaike Information Criteria (AIC) [32], 
Schwarz-Bayes, and Hannan-Quinn can be utilized to calculate 
model order. Basically, all of these methods may suggest a 
different model order based on penalizing a different criterion. 
However, the simpler model (model with smaller 𝑝𝑝) is always 
preferred over other higher order models. Also, the model order 
depends on the EEG sampling rate. The higher the sampling 
rate, the higher the model order should be. Because the 
information above 64 Hz on the collected EEG signals may be 
insignificant, downsampling of the EEG signals to somewhat 
100 to 120 Hz for linear modelling is preferred. Since the 
original sampling rate of the EEG signals (128Hz) were about 
the preferred sampling rate, we decided to keep the original data 
sampling rate. We chose the window size of 0.3 s with 90% 
overlap on windows to ensure the conformity with the AIC 
criterion [33, 34]. A range of possible model order between 1 
to 40 was computed for Face and Scene trials in image 
recognition and attention evaluation phase for each 
participants’ data, independently. The optimal model order for 
each criterion was automatically determined by choosing the 
minimum order that meet the constraints.  

K. Connectivity model validation 
In order to evaluate the accuracy of the model to capture the 

sources of interested dynamics, we conducted various tests. We 

ran whiteness test to make sure that the information left on the 
residuals is insignificant, consistency test with random signal as 
an input to the model to see if the model can generate data with 
the same correlation structure as the real data, and stability test 
to assess the stability and stationarity of the model. On average, 
the model order for all the participants’ EEG data were 16. 

III. RESULTS 

A. Behavioral response 
After collecting behavioral response, we examined the ability 

of participants to accurately distinguish between faces and 
scenes in both “image recognition” and “attention evaluation” 
phases. Specifically, we examined the difficulty of the task by 
evaluating the mean RT for the attended face and scene stimuli. 
We only included key presses during the trial and excluded all 
other key presses after the one-second trial. We applied a paired 
two-tailed t-test on the correct responses between the average 
RT to attended faces and scenes to determine the difficulty of 
focusing attention towards face versus scene for both clear and 
ambiguous stimuli. Fig. 5 shows the violin plot [35] of the mean 
correct RT for attended faces and scenes in the “image 
recognition” and “attention evaluation” phases. The analysis 
revealed a significant lower average RT for face versus scene 
in the “image recognition” phase (p < 0.02). This supports the 
assumption that, compared to scenes, it is easier to distinguish 
faces since faces are the most distinctive visual stimuli [36]. 
The question is how adding ambiguity to the visual stimuli by 
superimposing images with another image may affect the 
behavioral response. Although the t-test still shows a significant 
lower average RT for attended faces versus scenes (p < 0.02) 
on noisy images on the “attention evaluation” phase, the mean 
value for the two categories are very close. We also expected 
that adding ambiguity would increase the average RT for each 
attended category. The t-test also revealed a significant 
difference between the average RT to the attended categories 
between phase 1 and the ambiguous categories in the phase 2 (p 
< 0.02). Fig. 6 shows the percentage of correct responses in both 
phase 1 and phase 2. As expected, adding ambiguity to the 
stimuli and eliminating the inter-trial blank screen would result 
in lower correct responses in the “attention evaluation” phase. 

B. Time-Frequency EEG response  

Phase 1: Image recognition task. We inspected the 
corresponding time-frequency plots to identify the components 
of interests. Fig. 7 shows the spectral perturbation associated 
with face and scene stimuli conditions in one sample participant 
during image recognition task. Using 10% bootstrap 
significance level (𝛼𝛼) on 200 trials collected under each 
condition for each participant’s data, we filtered out the non-
significant perturbations which is showed by green areas. A 
stronger activation pattern in frequencies (25 – 40 Hz) across 
scene condition compared to face condition for the image 
recognition phase is identified. The pattern is more pronounced 
within the time window between 50 and 350 ms after stimulus 
presentation. 

Phase 2: Attention evaluation task. We also inspected the 
corresponding time-frequency plots to identify the components 
of interests. Fig. 8. depicts the calculated ERSP on a 

𝑋𝑋𝑘𝑘(𝑡𝑡) =  � 𝐴𝐴𝑁𝑁𝑘𝑘 (𝑡𝑡) 𝑋𝑋𝑁𝑁(𝑡𝑡 − 𝑘𝑘) + 𝐸𝐸(𝑡𝑡)                 (1)
𝑝𝑝

𝑘𝑘=1
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representative participant over faces and scenes conditioned 
trials during attention evaluation task. The same significance 
level of 𝛼𝛼 =  10% was applied to filter out non-significant 
perturbations. The overlapped image of face and scene seems 
to shift the pattern to the face conditioned stimuli. As Fig. 8 
shows, a stronger activation pattern on the frequencies (15-25 
Hz) for the face conditioned stimuli is depicted during attention 
evaluation phase. Also, scene conditioned stimuli exhibit higher 
gamma within the time window between 100 and 500 ms after 
stimulus presentation. 

 

 
C. Connectivity Analysis using time-frequency distribution 

We investigated causal relationships between OccL, OccR, 
SmaL, and SmaR brain regions for face and scene conditions. 
We assumed that left and right occipital areas may represent 
participants’ perception towards attended image category while 
brain activities over supplementary motor area represents 
category selection for the behavioral task. We extracted time-
frequency illustrations of granger causality between the regions 
of interest (ROI) considering the statistical significance of 
p_value < 0.05 for the conditioned stimuli for both “image 
recognition” (Fig. 9) and “attention evaluation” (Fig. 10) 
phases. The figures show the changes in Granger causality over 
the time course of sustained attention towards different image 
categories between ROIs on a sample participant’s data. The 
blue regions indicate non-significant connectivity, and the 
warmer regions (yellow to red) indicates stronger connectivity. 
During the beginning of face trials, the information outflow 
between the independent neural components over OccL area 
and SmaR area becomes hyper-coupled. The occipital region 
over FFA drives the neural activity in the supplementary motor 

area across both Theta and Beta waves (Fig. 9.a). In contrast, 
the connectivity between OccL area and SmaR is more 
pronounced over Alpha wave (Fig. 9.b).  

 

 

 

 

(a)                                              (b) 
Fig. 2.  Violin plot of the mean RT in the a) “Image recognition” and b) 
“Attention evaluation” phases. The red dotted line shows the mean correct 
response time (RT) over all participants.  
a) Mean[std] RT was 547[69] ms for faces and 633 [53] for scenes 
b) Mean[std] RT was 667[73] ms for faces and 706 [62] for scenes 
 

 

Fig. 6.  Violin plot of mean correct responses in both “Image recognition” 
and “Attention evaluation” phases. The red dotted line shows the average 
over all participants. The mean[std] behavioral performance was 95.7 [2.7] 
% for “Image recognition” and 88.1 [5.4] % for “Attention evaluation” 
phases. 
 

 

(a)                    (b) 
Fig. 7. ERSP response for a representative participant over all a) face and 
b) scene stimuli in image recognition phase  
                      

 

(a)                  (b) 
Fig. 8. ERSP response for a representative participant over all a) face and 
b) scene stimuli in attention evaluation phase  
 

 

 

 

                      

 

(a) 

 

(b) 
Fig.  9. Time-frequency distribution of granger causality from left occipital 
(OccL), right occipital (OccR), left supplementary motor area (SmaL), and 
right supplementary motor area (SmaR) as source on the columns to the 
same areas on the rows as sink for (a) Face trials and (b) Scene trials in the 
image recognition phase. The red dotted lines show the average behavioral 
response time for each condition. Non-zero connectivity with the 
significance level of p_value < 0.05 is illustrated with warm regions (Red). 
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IV. DISCUSSION AND CONCLUSION 
In this work, we developed an EEG-based BCI platform 

using a portable, water-hydrated, and wireless EEG headset. 
We conducted a two-phase experiment to evaluate sustained 
visual attention to face and to scene images by exposing a group 
of participants to sequence of images and asking them to 
distinguish image categories using key presses. In the first 
phase, a sequence of untainted images was shown, and 
participants were given a pause between images. In the second 
phase, a sequence of noisy, superimposed images was displayed 
while there was no pause between trials. We analyzed stable 
time-frequency representations of sustained visual attention 
towards face and scene images both in a pure and in a noisy 
environment. We also investigated causal connectivity between 
brain regions associated with category identification and 
selection. Our analysis focused on the granger causality 
underlying sustained attention towards face and scene images 
in as a pure or a noisy image.  

 
Connectivity models of sustained attention can provide us 

with a better understanding of the neural processes for object 
recognition and category selection. The models have been 
recognized and received support in the literature. Friston et al. 
[37] reviewed different approaches of dynamic causal 

modelling. There are studies that have included measures of 
fMRI connectivity to predict sustained attention in people with 
different clinical conditions including traumatic brain injury 
(TBI) [38] and ADHD [39] . The measure has shown a potential 
to predict abnormalities in sustained attention [40] with resting 
state blood oxygen-level dependent (BOLD) signals. The 
information flow during an object-based attention has been 
studied with fMRI [41]. Baldauf and Desimone [41] 
investigated the neural connectivity during streams of 
overlapping objects of faces and houses. They identified the 
causality network between attention-related and object 
recognition related ROIs. The measure of EEG signals 
connectivity has also been investigated with resting state and 
task-related activities. For instance, channel-space functional 
connectivity using EEG signals collected in a continuous 
attention task were used to discriminate target and non-target 
visual stimuli [42]. Directionality of brain oscillations extracted 
with Granger causality on a visual object recognition task 
showed different patterns with familiar versus unfamiliar 
objects [43].  

An interesting study for future work can be utilizing 
connectivity-related features in a real-time brain computer 
interface discrimination task. We will also conduct a group-
level analysis to mathematically model the sustained attention 
using both neural and behavioral response to construct the 
model. The linear model built upon both measures may enhance 
our understandings of the neural structure for visual object 
discrimination. Moreover, future studies shall address the 
significance of phase-related connectivity.  
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