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Summary. We propose a class of intrinsic Gaussian processes (GPs) for interpolation, regres-
sion and classification on manifolds with a primary focus on complex constrained domains or
irregularly shaped spaces arising as subsets or submanifolds of R, R2, R® and beyond. For ex-
ample, intrinsic GPs can accommodate spatial domains arising as complex subsets of Euclidean
space. Intrinsic GPs respect the potentially complex boundary or interior conditions as well as
the intrinsic geometry of the spaces. The key novelty of the approach proposed is to utilize the
relationship between heat kernels and the transition density of Brownian motion on manifolds
for constructing and approximating valid and computationally feasible covariance kernels. This
enables intrinsic GPs to be practically applied in great generality, whereas existing approaches
for smoothing on constrained domains are limited to simple special cases. The broad utilities of
the intrinsic GP approach are illustrated through simulation studies and data examples.

Keywords: Brownian motion; Constrained domain; Gaussian process; Heat kernel; Intrinsic
covariance kernel; Manifold

1. Introduction

In recent years it has become commonplace to collect data that are restricted to a complex
constrained space. For example, data may be collected in a spatial domain but restricted to a
complex or intricately structured region corresponding to a geographic feature, such as a lake.
To illustrate, refer to Fig. 1(b), which plots satellite measurements on chlorophyll levels in the
Aral sea (Wood et al., 2008). In building a spatial map of chlorophyll levels in this sea, and in
conducting corresponding inferences and prediction tasks, it is important to take into account
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Fig. 1. lllustrative examples: in (a), a test function increases smoothly from the lower right to the upper right
within the U-shaped boundary; remote sensed chlorophyll data in the Aral sea from the SeaWifs satellite are
shown in (b); the data sets for both (a) and (b) are from Wood et al. (2008); the Swiss roll in (c) is a spiralling
band in a three-dimensional Euclidean space; the Bitten torus in (d) is constructed by removing the lower
right part of a torus; synthetic data sets are considered on the surface of (c) and (d); details for constructing
(c) and (d) are available in the on-line supplementary material

the intrinsic geometry of the sea and its complex boundary. Traditional smoothing or modelling
methods that do not respect the intrinsic geometry of the space, and in particular the boundary
constraints, may produce poor results.

For example, it is crucial to take into account the fact that pairs of locations having close
Euclidean distance may be intrinsically far apart if separated by a land barrier. Refer in particular
to the locations near longitude 58.5° and 59° in the southern region of the map in Fig. 1(b). These
locations have quite different levels of chlorophyll because of the land barrier. However, usual
smoothing or modelling approaches that do not account for the boundary would naturally
provide close estimates of the level of chlorophyll given their closeness spatially. The goal of
this paper is to provide a general methodology that can accommodate not just complex spatial
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subregions of R (refer also to the U-shaped constraint in Fig. 1(a)) but also complex subregions
of higher dimensional space (R and beyond) and constraints, such as the Swiss roll in Fig. 1(c)
and the Bitten torus in Fig. 1(d).

To accommodate modelling on these broad and complex domains, we propose a novel class
of intrinsic Gaussian processes (GPs). An intrinsic GP refers to a GP that employs the intrinsic
Riemannian geometry of the manifold, including the boundary features and interior conditions.
Note that this intrinsic notion of intrinsic GPs is different from the intrinsic random functions
that were defined in the seminal work of Matheron (1973), which refer to processes that have
a more general form of stationarity than the usual second-order stationarity. Intrinsic GPs are
designed to be useful in interpolation, regression and classification on manifolds, with a par-
ticular emphasis on complex or difficult regions arising as submanifolds. A major challenge
in constructing GPs on manifolds is choosing a valid covariance kernel—this is a non-trivial
problem and most of the focus has been on developing covariance kernels that are specific to
a particular manifold (for example, Guinness and Fuentes (2016) considered low dimensional
spheres). Castillo ef al. (2014) instead proposed to use randomly rescaled solutions of the heat
equation to define a valid covariance kernel for reasonably broad classes of compact mani-
folds. They additionally provided lower and upper bounds on contraction rates of the resulting
posterior measure. Unfortunately, they did not provide a methodology for implementing their
approach in practice, and their proposed heat kernels are computationally intractable.

This paper proposes a practical and general intrinsic GP methodology, which uses heat ker-
nels as covariance kernels. This is made possible by the major novel contribution of the paper,
which is to utilize connections between heat kernels and transition densities of Brownian motion
(BM) on manifolds to obtain algorithms for approximating covariance kernels. Specifically, the
covariance kernels are approximated by first simulating a BM on the manifold or complex con-
strained space of interest, and then evaluating the transition density of the BM. The heat kernel
generalizes the popular and well-studied squared exponential kernel to the manifold and arises
from the Laplace operator, thus fully exploiting the intrinsic geometry of the space. We utilize
a discretized version of BM on manifolds (without boundary) or reflective Brownian motion
(RBM) for a Riemannian manifold with boundary. RBMs have been defined and thoroughly
studied for Euclidean domains (Lions and Sznitman, 1984; Burdzy et al., 2004; Zhou et al.,
2017). A C%-boundary guarantees the existence and uniqueness of an RBM (remark 3 of Zhou
et al. (2017)). The transition density functions are the Neumann heat kernels of the domain
(Hsu, 1984).

Most current methods that can smooth noisy data over regions with a boundary can be
applied only to spaces that are subsets of R?; refer to Wood ez al. (2008) and Ramsay (2002).
Sangalli et al. (2013) extended Ramsay’s (2002) smoothing spline method to model the brain
surface arising as a subset of R? by first discretizing the surface. The main idea in this literature
is to develop smoothing splines that respect the boundary or interior constraints. Our intrinsic
GP approach is fundamentally different conceptually, while also having general applicability
beyond two-dimensional examples. Although intrinsic GPs have an increasing computational
cost as the dimensionality of the space increases, because of the need to simulate BM, there is no
discretization of the space unlike methods proposed in Ramsay (2002) and Sangalli ez al. (2013).

Related work includes Pelletier (2005) who extended kernel regression to a general Rieman-
nian manifold. Bhattacharya and Dunson (2010) modelled a response and covariate on a man-
ifold jointly by using a Dirichlet process mixture model. The focus of our work in contrast
aims to generalize the powerful GP model to manifold-valued data. Although GPs have been
extensively used in statistics and machine learning (see for example Rasmussen (2004)), these
models cannot be directly generalized to model data on manifolds, such as irregular shape
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spaces, because of the difficulty of constructing valid covariance kernels. Lin et al. (2018) pro-
posed extrinsic covariance kernels on general manifolds by first embedding the manifolds onto
a higher dimensional Euclidean space, and constructing a covariance kernel on the images after
embedding. However, such embeddings are not always available or easy to obtain for complex
spaces.

Aumentado-Armstrong and Siddiqi (2017) adopted a related idea of estimating the heat kernel
for a sampled manifold (mesh or point cloud) from BM trajectories. No boundary condition is
considered. Their approach can be summarized in three steps.

(a) Construct a local surface for approximating the manifold by using moving least squares.

(b) Simulate BM trajectories that are specific to a local surface by using stochastic differential
equations with a local metric tensor. To move across different surfaces or charts, iteratively
alternate between BM simulation and project the process onto a local surface.

(c) Estimate the heat kernel from the BM trajectories by using kernel density estimation,
expressed as a summation of Gaussian kernels.

Each term is calculated on the basis of the Euclidean distance between the BM sample paths
and the target points. This is problematic when the Euclidean distance is small but the geodesic
is big, e.g. U-shaped domains or regions of a manifold where the curvature is large. Ozakin
and Gray (2009) showed that the kernel density estimation estimator is poor and biased in this
context.

In our approach, we estimate the heat kernel by simulating BM sample paths on manifolds
with or without a boundary by using a global metric tensor. Our way of constructing the heat
kernel estimator is completely different from that of Aumentado-Armstrong and Siddiqi (2017).
Instead of using an approximation approach, such as relying on kernel density estimation, we
develop a direct approach to estimate the heat kernel based on the definition of the BM transition
probability on the manifold.

The paper is organized as follows. Section 2 introduces our construction of covariance kernels
on manifolds and explores the connection between the heat kernel on a Riemannian manifold
and the transition density of BM on the manifold. This connection is utilized in developing
practical algorithms for approximating the heat kernel. Inference under intrinsic GPs using the
approximated heat kernel, including an extension to sparse intrinsic GPs, is explained in Section
2.4. Properties of the heat kernel estimator are discussed in Section 2.5. Sections 3 and 4 illustrate
our intrinsic GP methodology with various simulation and data examples. Section 5 contains
a discussion. Computational cost and algorithm complexity of the method are discussed in the
on-line supplementary material.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-
b-datasets

2. Intrinsic Gaussian process on manifolds

2.1. Intrinsic Gaussian processes with heat kernel as the covariance kernel

We propose to construct intrinsic GPs on manifolds and complex constrained spaces by using the
heat kernel as the covariance kernel. To be more specific, let M be a d-dimensional complete and
orientable Riemannian manifold, 8M its boundary that is continuous and C! almost everywhere,
Ay the Laplacian—Beltrami operator on M and ¢ the Dirac delta function. A heat kernel of M
is a smooth function K(x, y,?) on M x M x RY that satisfies the heat equation:


https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-b-datasets
https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-b-datasets
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&Kheat(SOasa t)ZEASKhCat(SOVS‘) t)a }E;r(l) Kheat(SOa s, O):(S(SO’ S)a SO,SGM,
where the initial condition holds in a distributional sense (Berline ez al., 2003). If 9M is empty, M
admits a unique heat kernel. If M is non-empty, multiple heat kernels exist, but the heat kernel
becomes unique when we also impose a suitable condition along dM, such as the Neumann
boundary condition:

0K
on
where n denotes a normal vector of OM.
Alternatively, a heat kernel can be viewed as an operator on L2(M):

0 along oM, (D)

fHAlKheat(x»y,t)f(Y)dY; (2)

and as such is equivalent to exp(%tA) f, with dy the infinitesimal Riemannian volume. The heat
kernel is symmetric with Kpeat (X, ¥, ) = Kpeat (7, X, 1) and is a positive semidefinite kernel on M
for any fixed ¢, and thus can serve as a valid covariance kernel for a Gaussian process on M.
The Neumann boundary condition can be expressed as no heat transfer across the boundary aM.

If M is a Euclidean space R?, the heat kernel has a closed form corresponding to a time
varying Gaussian function:

Kh,(xoxt)z#exp —M xeR?
eat s Xy (zﬂ_t)d/z 2t 5 .

In addition, the heat kernel of R? can be seen as the scaled version of a radial basis function
(RBF) kernel (or the popular squared exponential kernel) under different parameterizations:

w2
KRBF(X(),X,[):O'E exp(—”xozﬂxu), xeR?.

Letting Kﬂeat (x, ¥) = Kheat (x, ¥, 1), our intrinsic GP uses Kﬂeat (x, y) as the covariance kernel,
where the time parameter ¢ of Kpey has the same effect as that of the length scale parameter /
of KRrpr, controlling the rate of decay of the covariance. By varying the time parameter, one
can vary the bumpiness of the realizations of the intrinsic GP.

We use intrinsic GPs to develop non-parametric regression and spatial process models on
complex constrained domains M. Let D={(s;, y;),i=1,...,n} be the data, with n the number
of observations, s; € M the predictor or location value of observation i and y; a corresponding
response variable. We would like to do inferences on how the output y varies with the input s,
including predicting y-values at new locations sy that are not represented in the training data
set. Assuming Gaussian noise and a simple measurement structure, we let

yi= f(si) +eis i~ N0, 0hgse)s i€ M, 3)

where aﬁ oise 18 the variance of the noise. This model can be easily modified to include parametric

adjustment for covariates x;, and to accommodate non-Gaussian measurements (e.g. having
exponential family distributions). However, we focus on the simple Gaussian case without
covariates for simplicity in exposition.

Under an intrinsic GP prior for the unknown function f: M — R, we have

p(fIS],SZ,...,Sn)ZN(O,Z), (4)
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where f is a vector containing the realizations of f(-) at the sample points sy, ..., s,, fi = f(s;),
and X is the covariance matrix of these realizations induced by the intrinsic GP covariance
kernel. In particular, the entries of X are obtained by evaluating the covariance kernel at each
pair of locations, i.e.

i) = 3 Khea (51:5))- Q)

Following standard practice for GPs, this prior distribution is updated with information in the
response data to obtain a posterior distribution. Explicit expressions for the resulting predictive
distribution are provided in Section 2.3.

Remark 1. We added an additional hyperparameter a,zl by rescaling the heat kernel for extra
flexibility. The parameter ai plays a similar role to that of the magnitude parameter of an RBF
kernel in the Euclidean space. As mentioned above, the parameter ¢ replaces the length scale
parameter in an RBF or squared exponential kernel.

The posterior distribution of f evaluated at locations S=(s1,...,sy,) has the form
J$)ID~ GP(mpost, Xpost),
Mpost = L5,5(Is.8 + OpoiseD) 'Y,
Spost = Sss — 5.5(5s.8 + Tagise) T Is.s,

where y = (y1,..., Yn)-

One of the key challenges for inference using intrinsic GPs with the construction in this section
is that closed form expressions for Ki_,. do not exist for general Riemannian manifolds. Explicit
solutions are available only for very special manifolds, such as Euclidean spaces and spheres.
Therefore, for most cases, one cannot explicitly evaluate K| ., or the corresponding covariance
matrices. To overcome this challenge and to bypass the need to solve the heat equation directly,
we utilize the fact that heat kernels can be interpreted as transition densities of BM on M. Our
recipe is to simulate BM on M, to evaluate the transition density of the BM numerically and then
to use the evaluation to approximate the kernel K7, (s;, s;) for any pair (s;,s;). The simulation
of BM on Riemannian manifolds is discussed in Section 2.2. We also provide some background
on Riemannian geometry and stochastic calculus on manifolds.

2.2. Simulating Brownian motion on manifolds

To estimate the transition density of BM on M, we first need to simulate BM sample paths
on M. Let ¢:RY— M be a smooth local parameterization of M around sy € M. A demon-
stration of ¢ is depicted in Fig. 2. Let x(fp) € R? be such that ¢{x(z9)} = s¢. In this paper, we
assume that the local parameterization ¢ is known. Examples of ¢ are given in the on-line
supplementary material for the Swiss roll and Bitten torus. If ¢ is unknown, Tosi et al. (2014)
provided an approach to learn ¢ by doing non-linear dimension reduction using latent variable
models.

The Riemannian manifold M is equipped with a metric tensor g. For example, if M is a
submanifold of a Euclidean space, the induced metric tensor can be described in local co-
ordinates as follows:

gij(x) = %(X) gj;(X)- (6)
Based on its metric tensor, a Riemannian manifold has an associated Laplace—Beltrami operator
Ag. In local co-ordinates, Ag can be written as
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(a) (b)

Fig. 2. BM on M and its equivalent stochastic process in a local co-ordinate system in R%: ¢:R2 — M is a
local parameterization of M

_ 13 ij9f
Af =753 (JGgf ax,.), 7

where G is the determinant of the matrix g and g%/ is the (i, j) element of its inverse. As we have
seen in Section 2.1, the heat kernel is a solution of the heat equation. The Laplace—Beltrami
operator is also the infinitesimal generator of BM on the manifold. Let so be the starting point
of the BM S; on manifold M, and introduce a function v: M — R. The expectation E;{v(S;)} =
u(sy, t) satisfies the heat equation, du /ot = %Ayu, u(sg,0) =v(sp).

As in Fig. 2, simulating a sample path of BM on M with starting point sg is equivalent
to simulating a stochastic process in R¢ with starting point x(79). The BM on a Riemannian
manifold in a local co-ordinate system is given as a system of stochastic differential equations
in the Ito form (Hsu, 1988, 2008):

1 d 9 -
dx,»<t)=56—”2 ) T(QUGlﬂ)dt-i-(g_l/de(l))i, (8)
j=1 0%

where ¢ is the metric tensor of M, G is the determinant of g and B(f) represents independent
BM in the Euclidean space. If M = R?, g becomes an identity matrix and x;(7) is standard BM
in R?. The first term of equation (8) is related to the local curvature of M. The second term
relates to the position-specific alignment of the BM by transforming the standard BM B(¢) in
R on the basis of the metric tensor g.

For simulating BM sample paths, the discrete form of equation (8) is first derived in equation
(9). Specifically, the Euler—Maruyama method is used (Kloeden and Platen, 1992; Lamberton
and Lapeyre, 2007), which yields

J dg 1 d dg
iO=xit—D+=S(—-g'==g7") Ar+- “Hitr( g7 == ) Ar+ (g7 V2dB@));
xi()=x;(t )+2j:1( g ijg )ij t+4j:1(g )]tr(g o, t+(g dB(1))

= pu(xi (1 — 1), A + (JArg 1224y, 9

where Ar is the diffusion time of each step of the BM simulation and z¢ represents a d-
dimensional standard normal random variable. The discrete form of the above stochastic dif-
ferential equation defines the proposal mechanism of the BM with density

g{x@)|x(t — D)} =Nx(®|p{x( — 1), Ar}, Arg™"]. (10)
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This proposal makes BM move according to the metric tensor. If the manifold M has boundary
dM, we apply the Neumann boundary condition as in Section 2.1, equation (1). It implies that
the simulated sample paths exist only within the boundary.

The simulation of BM from the discretization of stochastic differential equations at points
of singularity in the co-ordinate system (e.g. the north pole of a sphere) could be difficult. The
drift term (the dz-term in equation (8)) may become too large for the simulated step to be a good
approximation of the actual BM. A possible way to address this issue is to limit the size of drift
in each simulation step by reducing the time step adaptively.

2.8. Numerical approximation of the heat kernel: exploiting connections with the
transition density of Brownian motion

To explain explicitly the equivalence between the heat kernel and the transition density of the
BM, let S(7) denote a BM on M started from s at time ¢t =0. The probability of S(r)e A C M,
for any Borel set 4, is given by

P{S(l)eA|S(0):s0}:/ Kieat (50, 8)ds, 11
A

where the integral is defined with respect to the volume form of M. In this context, the Neumann
boundary condition on the heat kernel corresponds to BM reflecting at the boundary. This
can be approximated by pausing time and resampling the next step until it stays within the
boundary. The difference between reflecting and resampling is small when the proposed BM
step is not far from the boundary. Further discussions are provided in the on-line supplementary
material.

We approximate the heat kernel via approximating the integral in equation (11) by simulating
BM sample paths and numerically evaluating the transition probability. Considering the BM
{S(®):t>0} on M with the starting point S(0) = sg, we simulate N sample paths. For any >0
and s € M, the probability of S(¢) in a small neighbourhood 4 of s can be estimated by counting
how many BM sample paths reach A4 at time ¢. Note that the BM diffusion time ¢ works as the
smoothing parameter. If ¢ is large, the BM has higher probability of reaching the neighbourhood
of the target point and leads to higher covariance and vice versa. The transition probability is
approximated as

k
P{S()eA|SO) =50}~ . (12)

where N is the number of simulated BM sample paths and k is the number of BM sample paths
which reach A at time ¢. An illustrative diagram is shown in Fig. 3. The transition density of S(t)
at s is approximated as

. k
Kt (s0,5) ~ K =P{S(t) € A| S(0) =50} ~

V(A) N’
where V(A) is the Riemannian volume of A, which is parameterized with the radius of 4, and

K is the estimated transition density. The error (numerical and Monte Carlo) of this estimator
of the heat kernel is discussed in Section 2.5.

13)

Remark 2. We are not aware of any rigorous definition of RBM for a general Riemannian
manifold with boundary. We conjecture that, given a suitable definition of RBM in a general
Riemannian manifold with boundary (that generalizes the existing definition for a Euclidean
domain), the RBM exists and is unique if the boundary is C? (almost everywhere), and its
transition density functions are the Neumann heat kernels.
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Fig. 3. BM on a manifold M: s is the starting point of BM sample paths (in this example, only the black
sample path reaches A at time t and the estimate of the transition probability p{S(t) € A|S(0) = sy} is 1
, three independent BM sample paths from time 0 to t; <, a set A, which is a neigﬁ-

bourhood of a point s on M

The intrinsic GP can be constructed by using approximation (13). The covariance matrix of
the training data X¢ can be explicitly obtained as follows: for the ith row of X¢, N BM sample
paths are simulated, with the starting point the ith data point indexed by the corresponding
row. For each element of the ith row, 3¢, K ! (si,s;) is then estimated by using expression (13).
Algorithm 1 in Table 1 provides details on how to generate Y.

Optimization of the kernel hyperparameters is discussed in Section 2.6. Given intrinsic GPs
as the prior, we can then update with the likelihood to obtain the posterior distribution for
inference. Let f, be a vector of values of f(-) at some test points that are not represented in the
training sample. The joint distribution of f and fy is

_ S X,

where ¥ 1 is the covariance matrix for training and test data points. Each entry of the covariance
matrix of the joint distribution can be calculated by using equation (15):

5, =02k (si,5)). (15)

Table 1. Algorithm 1: simulating BM sample paths for estimating £

Step 1(a): generate BM sample paths

fori=1,...,Nq do (N4 is the size of data points)
for j=1,...,Npm do (NM is the number of sample paths)
forl=1,...,T do (T-steps BM, T Ar— maximum diffusion time)
do (keep proposing x until the value is within the boundary)
q{xij(D1xij (1 — D} < Nlxi (O p{xi (0 — 1), Ar}, Arg™"] (use equation (10))
while x; j is located outside M
return x

Step 1(b): given a discrete choice of the diffusion time ¢ € {At,2A¢, ..., TAt}, the covariance matrix ¥/
is estimated on the basis of the BM simulation from step 1(a)
fori=1,...,Nq do
for j=1,...,Nq do

k = which {x() € A;} (counting how many BM paths reach A ;)
K} ot (5i-5)) =k/{NpMV(A )} (use equation (13))
Z:zt'j = U%Kltqeat (si>5)

return Xt
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For the same row of 3¢ and Y¢ , all elements can be estimated from the same patch of BM
simulations which share the same starting points. No additional BM simulations are needed to
estimate ¢, . The predictive distribution is derived by marginalizing out f:

pExly) = / PV =N {Sg 1S + 02030 D 7Y, Btp, — (St + 0205 D™ Sir, )

If we are interested only in the predictive mean, only ¢ ¢ and Xg need to be estimated. The
predictive variance of test points requires computing the covariance matrix Ef ¢, This requires
extra BM simulations whose starting points are the test points. This could be computatlonally
heavy if the number of test points is big. The sparse intrinsic GP is introduced in the next section
to handle this problem.

2.4. Sparse intrinsic Gaussian process on manifolds to reduce computation cost

The construction of intrinsic GPs proposed in Section 2.3 requires simulating BM sample paths
at each data point. Although the BM simulations are embarrassingly (or trivially parallelizable,
the computational cost can be high when the sample size is large. In addition, GPs face the well-
known problem of high computational complexity O(n?) due to the inversion of the covariance
matrix. In this section, we propose to combine intrinsic GPs with sparse GP approximations
proposed by Quinonero-Candela et al. (2007). We call the resulting construction a sparse intrinsic
GP. By employing a sparse intrinsic GP, BM paths only need to be simulated starting at the
induced points instead of every data point. The intuition behind this is that many training data
are located close together, implying that there may be a large amount of redundant information.
The inducing point approximation summarizes the training data into a small set of inducing
points, so that inference could be done more efficiently.

The GP prior can be augmented with an additional set of m inducing points on M denoted
asz=(zy,...,Zm), Zi € M, and we have m random variablesu=( f(z1), ..., f(zi)). The marginal
prior distribution p(fy, f) remains unchanged after the model has been rewritten in terms of the
prior distribution p(u) and the conditional distribution p(fy, f|u):

p(f*,f)=/p(f*,f,u)dU=/p(f*,flu)p(U)du, p) =N (0, Xyu), (16)

where the distribution of u is multivariate Gaussian with mean 0 and covariance matrix Yyy.
The above augmentation does not reduce the computational complexity. For efficient inference,
we adopt the deterministic inducing conditional approximation by Quifionero-Candela et al.
(2007), where fy and f are assumed to be conditionally independent given u and the relationships
between any f and u are deterministic:

P, £) ~q(fs, ) = / q(fx g (flu) p(u)du, (17)
q(flu) =N(ur,0), pr =SS, (18)
q(fxu) =N(px, 0), B =SS g U (19)

The resulting sparse intrinsic GP prior is

O O ) } { (Efuz_lzuf St gn Suf ) }
f,f.)=N<O0, * =N<0, mu u - 5
9.5 { ( Ot Ot Stulm Suf Sl Suf,
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where Q is defined as Qa b =3 uYy, luEu,b. Using algorithm 1, 3y, 3¢ and Xy, are all obtained
by estimating the transition density of BM simulation paths with inducing points as the starting
points.

We then only need to simulate the BM sample paths starting from the inducing points. The
total number of BM simulations is reduced from n x Ngym to m x Ngm, where m is the number
of inducing points, # is the number of data points and Npy is the number of BM sample paths
given a single starting point. The complexity of inverting the covariance matrix is decreased
from O(n?) to O(n x m?).

With the above approximation, the marginal distribution of the corresponding GP with a
Gaussian likelihood is written as

n
pYID ~q(ylw) = [ NI fuZgu 0, 020550 D- (20)
i=1

The inducing points in the above marginal likelihood can be further marginalized out by
substituting the definition of its prior distribution (16):

P(¥ISinduce) = / q(ylw) p(ulSinduce)du=N(0, EqulTul Yuf + Urzloisel)' 1)
With this model, we can also obtain the predictive distribution as
g 1y) =N{ Q1.1 (Qu +°D "y, Or.r, — Crr(Qr+ 0D ™' O, }. (22)

There is a huge literature on reducing the matrix inversion bottleneck in GP computa-
tion (Schwaighofer and Tresp, 2002; Quifionero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2006; Titsias, 2009). Recent approaches, such as Katzfuss and Guinness (2017),
can achieve linear time computation complexity under certain conditions. However, such ap-
proaches require an analytical form of covariance kernel; to apply these methods, we would
need to simulate BM paths at the training and prediction points. For this reason, we use the
deterministic inducing conditional because of its avoidance of the need to estimate the diagonal
elements of the covariance matrix.

2.5. Monte Carlo and numerical error for approximation of heat kernel
In this section, we discuss the error of our heat kernel estimator as defined in equation (13). We
also consider numerical experiments in the special case of R in which case the true heat kernel
is known.

Consider BM {S(r) :#>0} on a Riemannian manifold M with S(0) = sy. Fix some >0 and
s € M. The probability density of S(¢) at s is Kfleat(so,s). The true BM transition probability
evaluated at a set A4 is given by p(A) =P{S() € A|S(0) =50} = fA Kltleat (sg, 8)ds. The error of our
estimator K consists of two parts.

2.5.1.  Part I: numerical error
Choose local co-ordinates (rq,...,rs) near s with ri(s) =...=ry(s) =0 (for convenience of

illustration) and a window size w. The heat kernel Kfleat can then be approximated by

t/_ 1 . T
K" = VA Pllri{S®O}H<wfori=1,...,d],

where V(A) denotes the volume of the region defined by {|r;| <w,i=1,...,d}. By Taylor series
expansion around s, we have
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KV =K} + O0). (23)

Therefore, the approximation error increases (quadratically) with w, i.e. the order of magnitude
of KV — Kl is Ow?).

If M = R%, we can explicitly derive the error. Assuming that the starting point of BM sy is the
origin for simplicity, the heat kernel K fleat on R? can be approximated as

1 1
K= 7[F°{||S(t)—s||<w}—v(A)/Kﬁeat(so,s)ds,

V(A)

s|+w Sq+w d 2
T2 ) gy, dy. 24
(2W)d S1—w Sd—WwW CXp 2t ) d A ( )

Taylor series expansion of equation (24) yields

d 2 2 4

sy —drw w
Kt/_KLeatZZl_l&ft—i_O(ﬂ)' (25)

Assuming that w is small compared with ./, the order of magnitude of this error is o(w?).

Remark 3. For convenience in computing the integral in equation (24), a hypercube is used
instead of the Euclidean ball. The order of magnitude of the error remains the same.

2.5.2.  Part II: Monte Carlo error

Given Ngw, the number of BM sample paths, K’ is approximated by K .
At 1 k
K=——"—,

V(A) Ngm

Recall that k is the number of sample paths within || S(¢) — s|| < w and has binomial distribution

with Ny trials and probability of success V(A) K ' Here k/Npm i1s the estimate of the transition

probability of BM.

The expectation and the standard error of k' are

k ~ Bin{ Ngm, V(A)K''}. (26)

E{K'(s0,9} =K' =K}, (50,8 + O(?), 7)
AN 1 t/py t/
(R = s VINpw VA K {1 = VK]
</ { K" } = O(Ngyi w7, (28)
SV L NemV(A) BM

The standard deviation decreases with w and Ngp. As w? — 0, E {K (50,9} = Kheat (sg,s), and
also as w4 /Npm — 0, Val‘{Kt(S(),S)} 0. The estimator K (s, s) is asymptotically unbiased
and consistent.

The optimal order of magnitude of wqpe can be calculated by minimizing the sum of the
numerical error and Monte Carlo error as described above. Specifically, for an arbitrary M,
given a fixed number of BM simulations Npy, we have

Lw)= O0w?) + 0Ow=4?). (29)

In particular if M is R?, an explicit expression of the error is available:
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ot d 2 2
. K ¢ D Si—drw
L= / { NQw)d } T Knea =g, t’ G0

Given a prespecified error level, the order of the minimum number of BM simulations N re-
quired can be derived. Refer to the on-line supplementary material for the example of estimating
the heat kernel in a one-dimensional Euclidean space.

Numerical accuracy of estimates for the special case of R are shown in Table 2 and Fig. 4.
The true heat kernel K| cat (0, 9) is calculated by using equation (1) in the on-line supplementary
material at 70 equally spaced s € (—9,9). The diffusion time is fixed as 10. The transition prob-
ability of BM from the origin to the grid point s is estimated by counting how many BM paths
reach the neighbourhood of s ([s — w, s + w]) at time ¢. The transition density of BM at each grid

Table 2. Comparison of estimates of BM transition density and the heat

kernel in Rt
Number of sample ~ Median absolute error ~ Median relative error (%)
paths Ngm
3x102 8.4x1073 (8.9x1073) 24.6 (25.6x1071)
3x103 2.8x1073 (2.9x1073) 6.4 (5.5%1072)
3x10% 7.2x107% (6.8x10~%) 1.6 (1.9x1072)
3x10° 47x107% (3.8x107%) 1.3(1.1x1072)

TThe table shows the medlan absolute error and median relative error between
the true heat kernel K and the numerical estimate of the BM transition
density. Values in parent?leses show the median absolute deviation.

density
004 006 008 0.10 0.12 0.14

0.02

0.00

T T T
-5 0 5

S

, true heat kernel;
, 300000

Fig. 4. Comparison of estimates of BM transition density and the heat kernel in R:
, 300 BM simulations; , 3000 BM simulations; , 30000 BM simulations;
BM simulations
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point is then evaluated by using equation (13). Using equation (7) in the on-line supplemen-
tary material the order of magnitude of wop is derived as 10~1. We fix the radius w as 0.5 in
equation (13).

The number of BM simulation sample paths Npy is selected from 300 to 300000 with increas-
ing order of magnitude. The median of relative error decreases as Ngy increases and stabilizes
after 30000. A similar pattern is observed for the median absolute error. Derivations for the
transition density estimate of heat kernel in R? are shown in the supplementary material.

2.6. Optimizing the kernel hyperparameters and comparison with a reflective Brownian
motion kernel in R
Given a diffusion time ¢, using algorithm 1 we can generate a covariance matrix X for the

training data indexed by . The log-marginal-likelihood function (over f') is given by (Rasmussen,
2004)

The hyperparameters can be obtamed by maximizing the logarithm of the margmal likelihood.
The maximum of the BM diffusion time is set as T A¢, where T is a positive integer, and Az
is the BM simulation time step as defined in expression (10). 7' covariance matrices E}'f"T can
be generated on the basis of the BM simulations. Optimization of diffusion time # can be done
by selecting the corresponding Xf that maximizes the log-marginal-likelihood. Estimation of
oy, given the smoothing parameter ¢ follows by using standard optimization routines, such as
quasi-Newton optimization. For the sparse intrinsic GP, the likelihood function is replaced by
equation (21) and the hyperparameters can be obtained by similar procedures.

We compare the estimates of kernel hyperparameters from a Euclidean GP (the standard GP
in the Euclidean space) and the intrinsic GP in R by applying both methods to 10 sets of test
data. Data sets are generated by sampling 20 data points from a multivariate normal distribution
with mean 0 and covariance Yegt. 2test 1S produced by a standard RBF kernel with /=1 and
oy =1. In this case, the ground truth of the hyperparameters of the heat kernel is known.

We simulate Ngp; =40000 BM sample paths for each test data point. The estimates of hy-
perparameters ¢ and o, are obtained by maximizing equation (31). For the case of R, the two
methods should produce very similar results, since the heat kernel is equivalent to an RBF kernel
in R.

The result is shown in Table 3, which records the true value and the median estimates of
kernel hyperparameter / and o. Values in parentheses show the median absolute deviation. The
error bounds provide insights about the level of error that is introduced by a random walk. The
p-values of Wilcoxon tests indicate that the difference in medians between the two methods are
not significant.

Table 3. Comparison of estimates of kernel hyperparameters
from the Euclidean GP and intrinsic GP in R

Case Median estimates of |~ Median estimates of oy
Truth 1 1

Euclidean GP 1.13(0.16) 0.94 (0.36)
Intrinsic GP 1.15(0.2) 0.94 (0.38)
p-value 0.91 0.85
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3. Simulation studies

In this section, we carry out simulation studies for a regression model with true regression
functions defined on a U-shaped domain, a two-dimensional Swiss roll embedded in R3 and
the Bitten torus. The performance of the intrinsic GP is compared with that of a Euclidean GP
(the standard GP as in Rasmussen (2004)) and the soap film smoother in Wood et al. (2008) for
the U-shape example. For the Swiss roll and Bitten torus examples, the results from an intrinsic
GP are compared with those from a Euclidean GP model. Examples of BM sample paths on
the U-shape domain, Swiss roll and Bitten torus are shown in Fig. 5.

3.1. U-shape example
A U-shaped domain (see for example Wood (2001)), defined as a subset of R?, is plotted in

e
-

0.5

y
0.0

-0.5

()
Fig. 5. Examples of BM sample paths on (a) the U-shape domain (

), on (b) the Swiss roll (

)

and on (c) the Bitten torus (

)
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Table 4. Comparison of the root-mean-squared error of
predictive means for various methods on the U-shape domaint

Case Result for the following methods:

Euclidean GP  Intrinsic GP Soap film smoother

30db 1(0.01) 0.274 (0.04) 0.271 (0.22)
10 db 1.36 (0.17) 0.754 (0.14) 0.747 (0.37)

TThe table shows the mean of the root-mean-squared error over
50 data sets. Values in parentheses show the standard deviation.

Fig. 6(a). The value of a test or regression function (i.e. the colour of the map) varies smoothly
from the lower right-hand corner to the upper right-hand corner of the domain ranging from
—6 to 6. The black crosses represent 20 observations which were equally spaced in both x- and
y-directions within the domain of interest. The goal is to estimate the test function and to make
predictions at 450 equally spaced grid points within the domain.

Since the U-shaped domain is defined as a subset of R?, the mapping function ¢ in equation (2)
is a constant. Therefore, BM reduces to standard BM in the two-dimensional Euclidean space
restricted within the boundary. When a proposed BM step hits the boundary, the proposed move
is rejected. New proposal steps will be made until the proposed sample path locates within the
boundary. The trajectory of a sample path (the black line) of the BM is shown in Fig. 5(a) with
the blue dot serving as the starting location.

The heat map of the predictive mean of an intrinsic GP at the grid points is shown in Fig. 6(e).
The coloured contours of the prediction are similar to that of the true function in Fig. 6(a).
The contours of the Euclidean GP predictive mean in Fig. 6(c) are more squashed, and the
differences are exacerbated when certain observations are removed as in Fig. 6(b). It is clear that
the Euclidean GP smooths across the gap between the two arms of the domain (see Fig. 6(d)).
This is because the upper arm and lower arm are close in Euclidean distance. In contrast, the
intrinsic GP, which takes into account the intrinsic geometry, does not smooth across the gap
as seen in Fig. 6(f). Given a fixed diffusion time, the transition probability of BM from points
in the lower arm to points in the upper arm within the boundary is relatively small. This leads
to lower covariance between these two regions and more accurate predictions.

The U-shaped domain example has also been used for evaluating the performance of the soap
film smoothers in Wood et al. (2008), in comparison with some other methods such as thin plate
splines and the method of Ramsay (2002). Comparisons that were made in Wood et al. (2008)
show that the soap film smoother outperforms the other methods. In our study, the intrinsic
GP, Euclidean GP and soap film smoother are compared for various levels of signal-to-noise
ratio. The values of the true function are perturbed by Gaussian noise with a standard deviation
of 0.1 and 1 (the signal-to-noise ratios are 30 db and 10 db respectively) with 50 replicates for
each level of noise. For each of the replicates, different methods are applied to estimate the test
function at the grid points. The mean and standard deviation of the mean-squared error for
these 50 replicates are reported in Table 4. The soap film smoother is constructed by using 10
inner knots and 10 cubic splines. The intrinsic GP and soap film are both significantly better
than the Euclidean GP. There is no substantial difference in terms of the mean mean-squared
error between the two methods. However, the standard deviation of the mean-squared error for
the intrinsic GP is substantially smaller for both levels of noise. This indicates that the prediction
of the intrinsic GP is more robust.
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Centre of Swiss Roll r Tail of Swiss Roll 2 4 6 8

(©) (d)

Fig. 7. Comparison of the Euclidean GP and intrinsic GP on a Swiss roll: (a) true function and data points
(@) plotted on the surface of a Swiss roll; (b) true function plotted in the two-dimensional unfolded Swiss roll
with co-ordinates r and z; (c) GP predictions plotted with contours (the left-hand end and right-hand end
marked by a blue broken box are quite different from (b) in colour); (d) instrinsic GP prediction (the prediction
at the centre and the tail part of the Swiss roll (the right-hand end and left-hand end) has been improved)

3.2. Swiss roll
The intrinsic GP model applies to general Riemannian manifolds and has much wider appli-
cability to complex spaces beyond subsets of R>. Here we consider a synthetic data set on a
Swiss roll which is a two-dimensional manifold embedded in R*. The soap film method is only
appropriate for smoothing over regions of R? and hence cannot be applied here. A Swiss roll is
a spiralling band in a three-dimensional Euclidean space. A non-linear function f is defined on
the surface of a Swiss roll with
Yi= f(xi, i, zi) + i,

where x;, y; and z; are the co-ordinates of a point on the surface. The construction of the Swiss
roll and the derivation of the metric tensor are shown in the on-line supplementary material.

The true function f is plotted in Fig. 7(a). 20 equally spaced observations are marked with
black crosses. For better visualization, the true function is plotted in the unfolded Swiss roll in
the radius r- and width z-co-ordinates in Fig. 7(b). The true function values are indicated by
colour and with contours at the grid points.
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We first applied a Euclidean GP to this example by using an RBF kernelin R3. To visualize the
differences between the prediction and the true function, the GP predictive mean is plotted in
the unfolded Swiss roll in Fig. 7(c). The overall shape of contours is more wiggly compared with
the true function in Fig. 7(b). In addition, the predictive mean is quite different from the truth
in colour in certain regions, e.g. the left-hand end of Fig. 7(c) marked by the blue broken box
corresponding to the centre of the Swiss roll and the right-hand end of Fig. 7(c) corresponding
to the tail of the Swiss roll. The prediction performance of the Euclidean GP in these regions
is poor. This is because the Euclidean distance between the two regions is small as shown in
Fig. 7(a) whereas the geodesic distance between them (defined on the surface of the Swiss roll)
is big.

In applying the intrinsic GP to these data, the BM sample paths can be simulated by using
equation (9) using the metric tensor of the Swiss roll. In particular, BM on the Swiss roll can be
modelled as the stochastic differential equation

_ —2r l 2r 2\—1/2
dr() = (1+r2)2dt+2 (1+r2)2dt+(1+r )" /“dB, (1), (32)
dz(n=dB. (1), (33)

where B, (f) and B,(f) are two independent BMs in Euclidean space. A trace plot of a single BM
sample path is shown in Fig. 5(b). Following the procedure that was introduced in Section 2.1,
the predictive mean of the intrinsic GP is shown in Fig. 7(d). The overall shape of the contour
of the predictive mean is similar to that of the true function. The prediction at the centre and
tail part of the Swiss roll has been improved compared with the results of the Euclidean GP.
The root-mean-square error is calculated between the predictive mean and the true value at
the grid points. It has been reduced from 0.53 (Euclidean GP) to 0.29 for the intrinsic GP.
The Neumann condition states that at any boundary point the heat kernel is stationary along
the normal direction. This directly implies that the level curves of the intrinsic GP prediction
are orthogonal to the boundary. However, when the training data are far from the boundary,
the level curve can be parallel to the boundary. For example, the right-hand part of Fig. 7(d)
corresponds to the tail part of the Swiss roll. When r is big the distance on the surface of the
Swiss roll is bigger. The training data are far from the boundary in the tail, so the intrinsic GP
prediction tends to be close to the prior mean.

3.3. Bitten torus

Here we consider another more substantial example: a Bitten torus. The torus is a two-dimen-
sional manifold embedded in R3. The three-dimensional co-ordinates can be parameterized by
four variables: r, the radius of the tube, R, the distance from the centre of the tube to the centre
of the torus, and (0, ¢) angles to parameterize the two full circles with 6 for the angle of the
torus and ¢ for the angle of the tube. In our case, we fix R and r and vary # and ¢. We removed
the lower right-hand part to construct the Bitten torus. The Bitten torus is not as ‘flat’ as the
other examples that were considered above.

The value of the test function (i.e. the colour of the map; low values in dark blue and high values
in dark red in Fig. 8(a)) increases smoothly from 0.57 to 5.5 on the surface of the Bitten torus.
The true function and the noisy observations are plotted in Fig. 8(a). 19 observations are marked
with orange balls. 18 of the observations are evenly spaced and one additional observation is
near the centre of the Bitten torus. Similarly to the Swiss roll example, the non-linear function
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f is defined on the surface of the Bitten torus with
Yi= f(xi, yi,zi) + i,

where x;, y; and z; are the co-ordinates of a point on the surface. More details on construction
of the torus and the derivation of the metric tensor are shown in the on-line supplementary
material. A demonstration of the BM on the Bitten torus is shown in Fig. 5(c).

We first applied a Euclidean GP to this example by using an RBF kernel in R*. The GP
predictive mean is plotted in Fig. 8(b) with colour. Compared with the true function in Fig.
8(a), the GP predictive mean is brighter (the colour is similar to yellow) in the centre area. The
Euclidean distance between a data point and a grid point in the centre area is smaller than
the geodesic distance on the torus surface. The RBF kernel assigns bigger covariances between
these points which makes the data point in the centre dominate the region.

By applying the intrinsic GP to these data, the BM sample paths can be simulated by using
equation (9) with the metric tensor of the Bitten torus. In particular, BM on the Bitten torus
can be modelled via the stochastic differential equations

do() =—1r7"sin(@){R+rcos(0)} ~'dr+r~'dBy(1), (34)
de(n) = {R+rcos(0)} " dBy (). (39)

A trace plot of a single BM sample path is shown in Fig. 5(c). Following the procedure in
Section 2.1, the predictive mean of the intrinsic GP is plotted in Fig. 8(c). The intrinsic GP
prediction in the centre area looks more similar to the true function in Fig. 8(a). Also the
colour in the region near the lower bound is dark red, which is more similar to the true function
compared with the GP prediction in Fig. 8(b).

For visualization convenience, we have also plotted the function in two dimensions of ¢ (the
angle of the tube) and 6 (the angle of the torus) in Fig. 8(d). The differences of the prediction
in the centre area are clearer from the two-dimensional contour plot of the GP prediction in
Fig. 8(e) and the intrinsic GP prediction in Fig. 8(f). In the two-dimensional contour plots,
the distance between § =0 and 6 =2 is 27 in R2. However, given a fixed ¢, # =0 and 6 =27
represent the same point on the torus and the distance between them is 0. Therefore, methods
such as Sampson and Guttorp’s (1992) mapping the domain with a diffeomorphism to a regular
region of R¥ can lead to a big error for this case.

The performance of the Euclidean GP and intrinsic GP are compared by varying the noise
with various signal-to-noise ratios. The values of the true function are perturbed by Gaussian
noise (30 db and 10 db) with 50 replicates for each level of noise. For each of the replicates,
different methods are applied to estimate the test function at some equally spaced grid points.
The mean and standard deviation of the mean-squared error for these 50 replicates are reported
in Table 5. The prediction of the intrinsic GP is significantly better at all levels of noise.

We have also carried out experiments by removing the data point from the centre of the
torus. Details on more comparison results are also provided in the on-line supplementary
material.

4. Application to chlorophyll data in the Aral sea

In this section, we consider an analysis of remotely sensed chlorophyll data at 485 locations in
the Aral sea. The data are available from the gamair package (Wood, 2006) and are plotted in
Fig. 9(a). The level of chlorophyll concentration is represented by the intensity of the colour. The
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Table 5. Comparison of the root-mean-squared
errors of predictive means of two methods on the
Bitten torust

Case Result for the following methods:
Euclidean GP Intrinsic GP

30 db 167.3 (11.7) 25.8 (11.6)

10 db 229.2(93.4) 74.6 (32.7)

+The table shows the mean of root-mean-squared
errors over 50 data sets. Values in parentheses show
the standard deviation.

chlorophyll data from the satellite sensors are noisy and vary smoothly within the boundary but
not across the gap corresponding to the isthmus of the peninsula. We applied different methods
to estimate the spatial pattern of the chlorophyll density.

The logarithm of chlorophyll concentration is modelled as a function of the latitude and
longitude co-ordinates of the measurement locations:

chl; = f(lon;, lat;) +¢;,

where lon; and lat; are standardized by subtracting the mean.

To reduce the computation cost, the sparse intrinsic GP from Section 2.4 is applied. 42
inducing points are introduced that are equally spaced within the boundary of the Aral sea
(represented by small triangles in Fig. 9(¢)). The number of BM sample paths has been reduced
from 485Ngm to 42Npm, where Ny is 20000 in this example.

The predictive mean of the Euclidean GP is shown in Fig. 9(c). As expected, the Euclidean
GP smooths across the isthmus of the central peninsula. Relatively high levels of chlorophyll
concentration are estimated for the southern part of the eastern shore of the western basin
of the sea, whereas all observations in this region have rather low concentrations. Similarly a
decline in level of chlorophyll towards the southern half of the western shore of the eastern
basin is estimated, which is different from the pattern of the data in the region. In contrast,
the predictive mean using a sparse intrinsic GP does not produce these artefacts (see Fig. 9(e))
and tracks the data pattern better. The values of the predictive variance are plotted as a heat
map in Fig. 1(a) in the on-line supplementary material. The level curves are orthogonal to
the boundary in the north and east part of the Aral sea in Fig. 9(e). The inducing points are
more sparse in the west part of the Aral sea. Approximation errors, due to insufficiently dense
inducing points and/or Monte Carlo errors in approximating RBM with resampling, can lead
to non-orthogonality in some cases.

These artefacts become even more pronounced when the coverage of the data is uneven. In
Fig. 9(b) we removed most of the data points in the southern part of the western basin of the
sea, and the same models are applied to this uneven data set. Fig. 9(d) shows the Euclidean
GP extrapolation across the isthmus from the eastern basin of the sea. In contrast, the sparse
intrinsic GP estimates as plotted in Fig. 9(f) do not seem to be affected by the data from the
eastern side of the isthmus. The values of the predictive variance are plotted as a heat map in
Fig. 1(b) in the supplementary material.

Since most of the data points in the southern part of the western basin of the sea have been
removed, the values of the variance estimates have increased in this region. To compare with the
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soap film approach, we divide the data sets into 10 equal size batches randomly and iteratively
pick one batch as the training data to make prediction for the other nine batches. The mean
root-mean-squared error RMSE for the intrinsic GP is 17.9 with standard deviation 0.71. The
mean RMSE for the soap film method is 17.2 with standard deviation 1.72. The statistical test
shows no significant difference between these two methods. However, the standard deviation of
the RMSE for the intrinsic GP is much smaller.

5. Discussion

Our work proposes a novel class of intrinsic GPs on manifolds and complex constrained do-
mains employing the equivalence relationship between heat kernels and the transition density
of BM on manifolds. One of the key features of the intrinsic GP is to incorporate fully the in-
trinsic geometry of the spaces for inference while respecting the potentially complex boundary
or interior constraints. To reduce the computational cost of simulating BM sample paths when
the sample size is large, sparse intrinsic GPs are developed leveraging ideas from the literature
on fast computation in GPs in Euclidean spaces. The results in Sections 3 and 4 indicate that
an intrinsic GP achieves significant improvement over usual GPs. Although we did not conduct
a formal asymptotic study for intrinsic GPs, with insights gained from the Euclidean GP with
squared exponential kernel in the Euclidean space (see, for example, van der Vaart and van
Zanten (2009)), we expect intrinsic GPs to yield posterior consistency with respect to appro-
priate neighbourhoods of the true regression function f. The focus of this paper has been on
developing intrinsic GPs on manifolds with known metric tensors. There has been abundant
interest in learning of unknown lower dimensional manifold structure in high dimensional data.
Intrinsic GPs can be combined with these approaches for performing supervised learning on
lower dimensional latent manifolds.

6. Code and supplementary material

R code implementation of the examples in Sections 3 and 4 are available on the GitHub repos-
itory https://github.com/mu2013/Intrinsic-GP-on-complex-constrained-
domain. The on-line supplementary material includes a description on the choice of the sample
and window sizes for estimating the heat kernel in R and R2. It also provides some details on
the BM on the Swiss roll and the Bitten torus. A discussion on the differences between reflecting
and resampling for the BM is also provided. The last section of the supplementary material is
devoted to a discussion of the computational cost and algorithm complexity.
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