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Abstract 

The drag reduction technique involving air cavities under ship hulls is a promising energy-saving 

technology. Understanding the air cavity dynamics in unsteady conditions and developing methods for 

the air cavity system optimization are critically important for practical implementation of this 

technology. In this study, a potential flow theory is applied for modeling the air cavities under solid walls 

in water flow with fluctuating pressure. The present modeling approach incorporates detachment of 

macroscopic air pockets from the cavity tail. For specific configurations considered in this paper, it is 

found that a change of the rate of air supply into the cavity can partly mitigate degradation of the 

overall power savings by the air cavity system in unsteady conditions.  
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Introduction 

Reducing environmental impact and improving sustainability of marine transportation are important 

contemporary tasks of maritime engineering. These goals can be addressed by developing novel 

technologies that reduce hydrodynamic resistance of ships hulls and thus decrease fuel consumption 

and emissions. One promising approach is to employ air cavities under ship hulls that separate a 

significant fraction of the hull surface from contact with water and hence lead to lower frictional drag. 

Two examples of the air-cavity systems under ship hulls are illustrated in Fig. 1. Although this idea has 

been known and studied for a long time and even implemented on a handful of ships and boats [1,2], its 

broad implementation has not occurred, especially for seagoing vessels, due to lack of understanding 

how to design robust air-cavity systems that can usefully operate in variable conditions.  

 

The seemingly simple idea of supplying air to the wetted hull surfaces with a purpose to reduce drag 

involves rather complex multi-phase/surface turbulent flows with important roles of gravity, restrictive 

solid boundaries (ship hulls), and other physical phenomena [3]. A large body of basic knowledge on air-

cavity flows under solid walls has been accumulated in the last two decades, and a number of model-
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scale studies have been conducted, primarily in steady environments [4-8]. However, several 

investigations also included variations of external conditions [9-13].  

 

The development of ocean-going ships with air cavities requires analysis of the air cavity behavior in 

unsteady environments that can assist with the design of more robust systems. Moreover, it is likely 

that some sort of active control will be needed for air-cavity systems on ocean-going vessels. Effects of 

hydrodynamic elements (imitating interceptors and propulsors) on steady properties of an air cavity 

were previously analyzed [14]. It was experimentally shown that a hydrofoil located under a cavity can 

increase a length of a stable cavity and therefore enhance its drag-reducing capability [15]. With 

advanced computational techniques, the unsteady behavior of an air cavity, corresponding to a 

laboratory setup described in [10], was modeled in [16]. Effects of air supply rates on economics of drag 

reduction systems were considered in [17]. Some results for flow control involving active cavitators 

(solid parts where the air cavity is initiated) were recently presented in [18]. 

 

The main goals of this paper are to introduce a simplified numerical model for an unsteady air cavity, 

simulate air cavity dynamics in time-dependent external conditions, and demonstrate how variable air 

supply can mitigate deterioration of the air-cavity drag reduction ability. This model can assist marine 

engineers in preliminary estimations of the air-cavity system performance and can be used for guiding 

more elaborate experimental or computational fluid dynamics (CFD) studies. Details of the technical 

implementation of the air-cavity system, such as selection of the air pumping components and structural 

aspects of hulls with modified bottom geometry to accommodate air cavities, are beyond the scope of 

the present study. 

 

A hydrodynamic part of the present model, which employs a potential-flow theory, has been previously 

applied and validated for several related problems, including planing hulls [19,20], air-cavity and air-

cushion setups [4,21], and supercavitating flow [15].  

 

Mathematical Model 

A two-dimensional problem schematic with a backward-facing step is shown in Fig. 2a. The water flow is 

assumed incompressible, irrotational and inviscid. Far upstream of the step the flow is uniform. A cavity 

filled with compressible air is present behind the step. The air is assumed uniform with the same 

pressure and density throughout the cavity, although these properties, as well as the cavity shape, may 
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change in time. The air velocities are neglected, and the air density is much smaller than the water 

density. On the water streamline at the cavity boundary both the dynamic and kinematic boundary 

conditions for the water flow must be satisfied. The dynamic condition can be described by the unsteady 

Bernoulli equation [22], 

𝑝𝑤 +
1

2
𝜌𝑤𝑈2 = 𝑝𝑐 +

1

2
𝜌𝑤𝑢2 + 𝜌𝑤𝑔𝑦𝑤 + 𝜌𝑤

𝜕𝜑′

𝜕𝑡
 ,   (1) 

where 𝑝𝑤 is the upstream water pressure at 𝑦 = 0 (at the wall in front of the step), 𝜌𝑤 is the water 

density, 𝑈 is the velocity in the incident flow,  𝑝𝑐 is the pressure inside the air cavity, 𝑢 is the water 

velocity on the cavity boundary, 𝑔 is the gravitational constant, 𝑦𝑤 is the vertical coordinate of the cavity 

boundary, and 𝜑′ is the perturbation component of the water velocity potential.  

 

Only a linear formulation is considered in this analysis that implies small water surface slopes and small 

perturbation velocities. Then, linearized Eq. (1) can be written in a non-dimensional form, 

𝑢′̃ +
𝑦̃𝑤

𝐹𝑟𝐻
2𝐻̃

+
𝜕𝜑̃

𝜕𝑡̃
=

𝜎

2
 ,       (2) 

where 𝑢′̃ = (𝑢𝑥 − 𝑈)/𝑈 is the normalized horizontal velocity perturbation on the cavity surface, 𝑦̃𝑤 =

𝑦𝑤/𝐿 and 𝐻̃ = 𝐻/𝐿 are the non-dimensional ordinates of the cavity boundary and the step height, 

respectively, 𝐿 is the computational domain length selected here to be longer than the air cavity (Fig. 

2a), 𝐹𝑟𝐻 = 𝑈/√𝑔𝐻 is Froude number based on the step height , 𝜑′̃ = 𝜑′/(𝑈𝐿) is the normalized 

perturbation potential, and 𝑡̃ = 𝑡𝑈/𝐿 is the non-dimensional time. The term on the right-hand side of 

Eq. (2) is the cavitation number, 

𝜎 =
𝑝𝑤−𝑝𝑐

0.5𝜌𝑤𝑈2 .        (3)    

  

A linear form of the kinematic boundary condition relates the surface elevation to the perturbed 

velocity potential [22], 

𝜕𝜑′

𝜕𝑦
= 𝑈

𝜕𝑦𝑤

𝜕𝑥
+

𝜕𝑦𝑤

𝜕𝑡
 ,       (4) 

which non-dimensional counterpart can be written as follows, 

𝜕𝜑′̃

𝜕𝑦̃
=

𝜕𝑦𝑤̃

𝜕𝑥̃
+

𝜕𝑦𝑤̃

𝜕𝑡̃
 .       (5) 

In the present model, potential hydrodynamic sources placed on the water boundary are employed in 

order to find a solution. In this approach, the vertical water velocity 𝑣 represented by the left-hand side 

term in Eq. (4) can be related to the local source density 𝑞 [23], 

𝜕𝜑′

𝜕𝑦
= 𝑣 = −

𝑞

2
 .        (6) 
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The sign minus in Eq. (5) indicates that positive sources distributed along the wall will generate 

downward velocity in the water flow.  Furthermore, the current method employs discrete (point) 

sources (Fig. 2b), while the collocation points, where the boundary conditions are imposed, are shifted 

upstream from the sources to minimize the effect of the downstream boundary [24]. Hence, a 

discretized form of Eq. (6) can be expressed as follows, 

𝜕𝜑̃′

𝜕𝑦̃
(𝑥̃𝑖

𝑐) ≈ −
𝑄̃𝑖+𝑄̃𝑖−1

4∆𝑥̃
 ,       (7) 

where 𝑥𝑖
𝑐  is the position of the i-th collocation point, 𝑄𝑖  and 𝑄𝑖−1 are intensities of the neighboring 

point sources, and ∆𝑥 is the distance between neighboring sources (or collocation points). The total 

number of sources (or collocation points) is 𝑁. 

 

The normalized horizontal velocity perturbation and its potential at each collocation point can be 

related to intensities of all sources, which are distributed in the computational domain between 𝑥 = 0 

and 𝑥 = 𝐿, using standard expressions from the two-dimensional potential theory, 

𝜑̃(𝑥̃𝑖
𝑐) =

1

2𝜋
∑ 𝑄̃𝑗ln|𝑥̃𝑖

𝑐 − 𝑥̃𝑗
𝑠|𝑗  ,      (8) 

𝑢′̃(𝑥̃𝑖
𝑐) =

1

2𝜋
∑

𝑄̃𝑗

𝑥̃𝑖
𝑐−𝑥̃𝑗

𝑠𝑗  ,       (9) 

where 𝑥𝑖
𝑠 = 𝑥𝑖

𝑐 + ∆𝑥/2 are the source coordinates. The elevations of the sources and collocation points 

are neglected in Eqs. (8-9) due to an assumption of small water elevations and step height.   

 

Upon substituting Eqs. (7-9) into (2) and (5) and using a first-order stepping in time, a system of 2𝑁 

discretized equations can be written as follows, 

1

2𝜋
∑

𝑄̃𝑗

𝑥̃𝑖
𝑐−𝑥̃𝑗

𝑠𝑗 +
𝑦̃𝑖

𝑠+𝑦̃𝑖−1
𝑠

2𝐹𝑟𝐻
2𝐻̃

+
1

2𝜋
∑

𝑄̃𝑗−𝑄̃𝑗
𝑝

∆𝑡̃
ln|𝑥̃𝑖

𝑐 − 𝑥̃𝑗
𝑠|𝑗 =

𝜎

2
 ,   (10) 

−
𝑄̃𝑖+𝑄̃𝑖−1

4∆𝑥̃
=

𝑦̃𝑖
𝑠−𝑦̃𝑖−1

𝑠

∆𝑥̃
+

𝑦̃𝑖
𝑠+𝑦̃𝑖−1

𝑠

2∆𝑡̃
−

𝑦̃𝑖
𝑝

+𝑦̃𝑖−1
𝑝

2∆𝑡̃
 ,    (11) 

where 𝑄̃𝑖
𝑝

 and  𝑦̃𝑖
𝑝

 are the normalized source intensity and elevation at the previous time, and ∆𝑡̃ =

∆𝑡𝑈/𝐿 is the non-dimensional time step. In case of the first collocation point (𝑖 = 1), one can take the 

upstream elevation and source intensity as zeros (𝑦̃−1
𝑠 = 0 and 𝑄̃−1 = 0), since it is located on a 

horizontal wall at zero elevation. The unknowns in Eqs. (10-11) include 2𝑁 + 1 variables: free surface 

elevations at source locations 𝑦̃𝑖
𝑠, source intensities 𝑄̃𝑖  (𝑖 varies from 1 to 𝑁), and a cavitation number 𝜎. 

The upstream water pressure 𝑝𝑤 and velocity 𝑈 are specified in the present analysis, so cavitation 

number 𝜎 is essentially related to the cavity pressure. It is determined here form the mass balance 
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assuming an adiabatic process for air in the cavity. First, the air pressure and density are coupled to their 

given initial equilibrium values,  

𝑝𝑐(𝑡)

𝜌𝑎
𝛾

(𝑡)
= 𝑐𝑜𝑛𝑠𝑡 =

𝑝𝑐(0)

𝜌𝑎
𝛾

(0)
,       (12) 

where 𝛾 = 1.4 is the ratio of specific heats for air. Then, the air density can be found from the mass 

balance, 

𝑑

𝑑𝑡
(𝑚𝑐) = 𝑚̇𝑖𝑛 − 𝑚̇𝑜𝑢𝑡 ,       (13) 

𝑚𝑐 = 𝜌𝑎𝑉𝑐 ,        (14) 

where 𝑉𝑐 = ∑ (𝐻 − 𝑦𝑖
𝑠)∆𝑥𝑖  is the cavity volume and 𝑚𝑐 is the mass of air in the cavity. As explained 

below, it is always ensured that the cavity boundary does not cross the solid wall behind the step, i.e.,  

𝑦𝑖
𝑠 ≤ 𝐻.  

 

The input mass flow rate of air 𝑚̇𝑖𝑛 depends on the air supply system that can be controlled. The 

associated compressor power 𝑃𝑆 can be estimated as follows [25], 

𝑃𝑆 =
𝑚̇𝑖𝑛

𝜂𝐶

𝑝𝑎𝑡𝑚

𝜌𝑎𝑡𝑚

𝛾

𝛾−1
[(

𝑝𝑐

𝑝𝑎𝑡𝑚
)

𝛾−1

𝛾
− 1] ,     (15) 

where 𝜂𝐶  is the isentropic efficiency of the air supply system, 𝑝𝑎𝑡𝑚 and 𝜌𝑎𝑡𝑚  are the atmospheric 

pressure and density, respectively, and 𝛾 is the ratio of specific heats (𝛾 = 1.4 for air).  

 

The air removal rate 𝑚̇𝑜𝑢𝑡 will be determined here considering two basic forms of air leakage from 

cavities under ship hulls. The first is associated with small air bubbles departing from the sides of the 

cavity even in steady ship sailing (Fig. 3a). This is a complex three-dimensional process beyond the 

present 2D analysis. In the steady case, 𝑚̇𝑜𝑢𝑡,𝑠𝑡 = 𝑚̇𝑖𝑛,𝑠𝑡 and the input flow is approximated through a 

simple correlation [3], 

𝑚̇𝑜𝑢𝑡,𝑠𝑡 = 𝑚̇𝑖𝑛,𝑠𝑡 = 𝑐𝑄𝜌𝑎𝐻𝑊𝑈,      (16) 

where 𝑐𝑄 is the flow rate coefficient (with values around 0.01-0.02) and 𝑊 is the cavity width. Equation 

(16) is in approximate agreement with other empirical correlations [17,26]. In unsteady situations, the 

air leakage through small bubbles shed from the cavity sides can be estimated with a modified 

expression. Considering relatively small deviations of the long cavity from its equilibrium state, the 

simplest form for the air leakage rate can be related to its current length, 

𝑚̇𝑜𝑢𝑡(𝑡) = 𝑚̇𝑜𝑢𝑡,𝑠𝑡
𝐿𝑐(𝑡)

𝐿𝑐0
 .      (17) 
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where 𝐿𝑐0 is the equilibrium length of the air cavity. Equation (17) implies that the air leakage increases 

with the cavity lengthening and decreases when it becomes shorter, so the cavity tends to return to the 

equilibrium at a steady rate of air supply. It should be kept in mind that Eq. (17) is not valid for large 

fluctuations of the cavity. For example, it usually takes a large air supply rate to establish a stable long 

cavity from a very short cavity or from the no-cavity state. Such a flow rate can be several times bigger 

than that needed to maintain a stable developed cavity [9,10]. 

 

The second mechanism of air leakage considered here is associated with detachment of macroscopic air 

pockets from the cavity that can be caused by variation of external conditions. This process is modeled 

with the two-dimensional theory outlined above. The air cavity can start growing when, for example, the 

air supply is intentionally increased or the water pressure drops in the incident flow. In such cases, the 

cavity will elongate (Fig. 3b), and its surface may approach and touch the hard ceiling (Fig. 3c). In the 

present approach, similar to modeling in [16], it is assumed that upon the cavity reaching the wall the 

downstream part of the air cavity is shed away. However, in the current analysis it is also assumed that 

the detached pocket no longer influences the air remaining in the upstream part of the cavity. In the 

present numerical implementation, the source elevations are checked whether they reached or 

exceeded the step height. If this happens for the i-th source, i.e., 𝑦𝑖
𝑠 > 𝐻, then the source elevations 

downstream are forced to be at the step position, 𝑦𝑗
𝑠 = 𝐻 for 𝑗 ≥ 𝑖. The downstream source intensities 

are made zero, 𝑄𝑗 = 0 for 𝑗 > 𝑖, and the i-th source’s strength is determined from Eq. (11) using 

information about the surface vertical velocity. During this detachment event, the air cavity volume and 

mass undergo step jumps, decreasing by the following amounts, 

∆𝑉𝑐 = ∑ (𝐻 − 𝑦𝑗
𝑠)∆𝑥𝑗≥𝑖  ,      (18) 

∆𝑚𝑐 = 𝜌𝑎∆𝑉𝑐.        (19) 

Then, the air-cavity mass change (Eq. 13) during one time step can be re-written in the discretized form 

as follows, 

𝑚𝑐 − 𝑚𝑐
𝑝

= 𝑚̇𝑖𝑛∆𝑡 − 𝑚̇𝑜𝑢𝑡∆𝑡 − ∆𝑚𝑐 ,     (20) 

where 𝑚𝑐
𝑝

 is the mass of air in the cavity at the previous time and ∆𝑚𝑐 is non-zero only at time 

moments when the cavity surface reaches the wall at a location upstream of the cavity tail. This mass 

balance equation together with Eq. (14), which relates the air cavity mass to the cavity volume and the 

air density, is used to update a cavitation number in Eq. (10). For the calculation examples shown below, 

it was established that the number of sources 𝑁 = 100 achieves adequate mesh independency and the 

non-dimensional time step ∆𝑡̃ = 0.5∆𝑥/𝐿 ensures numerical stability.  
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To evaluate net power savings achieved with application of air cavities, one can compare the air supply 

system power with a reduction of the propulsion system power 𝑃𝐷 due to reduced wetted area of the 

ship hull. This reduction is estimated here with effective friction coefficient 𝐶𝑓 and propulsion system 

efficiency 𝜂𝑃,  

𝑃𝐷 =
𝐶𝑓

𝜂𝑃

𝜌𝑤𝑈3

2
𝐴𝑐 ,       (21) 

where 𝐴𝑐 = 𝐿𝑐𝑊 is the area covered by the air cavity.  

 

Results 

An illustration of a validation example of the present mathematical model for a steady air cavity is given 

in Fig. 4. A model-scale two-dimensional hull was tested previously in a water channel [4]. An air cavity 

was produced by supplying air behind a step on the hull bottom (Fig. 4a). Test data for lengths of stable 

air cavities obtained with small air supply rates are compared in Fig. 4b against numerical predictions by 

the potential-flow theory at various flow speeds and two hull submergences. A good agreement 

demonstrates an ability of the linearized potential-flow model to adequately predict shapes of 

elongated air cavities under solid surfaces.  

 

Another validation case is shown in Fig. 5a for unsteady water surface deformations due to oscillating 

pressure patch moving above and parallel to the water surface. This problem was analyzed analytically 

in [27] The non-dimensional in-phase and out-of-phase water surface elevations 𝑦1 = 𝑦𝑤𝜌𝑤𝑔/𝑝1 behind 

the patch with sinusoidal pressure fluctuations of magnitude 𝑝1 are given in Fig. 5b,c. These results are 

obtained for a specific condition with a patch length Froude number 𝐹𝑟𝑐 = 𝑈/√𝑔𝑐 = 1.3 and a non-

dimensional frequency of pressure oscillations 4𝜔𝑈/𝑔 = 5. The agreement between the theoretical 

solution and the numerical results is good, indicating an ability of the current model to adequately 

handle unsteady surface flows.   

 

To demonstrate the process of air pocket detachment from the air cavity behind a step (Fig. 2) simulated 

with the present method, the air cavity response to a sudden change of the pressure in the water flow 

has been modeled assuming constant flow rate of air supplied into the cavity. The cavity starts from an 

equilibrium state (when air inflow is equal to air leakage) with realistic operational characteristics: 

incident water speed 𝑈 = 6 m/s, step height 𝐻 = 0.1 m, and step submergence 5 m. The step height 
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Froude number is therefore 𝐹𝑟𝐻 = 𝑈/√𝑔𝐻 ≈ 6. The flow rate leakage coefficient in Eq. (16) is chosen 

as 𝑐𝑄 = 0.015. The equilibrium air-cavity pressure is assumed equal to the hydrostatic pressure at the 

mid-plane between upstream and downstream walls, which corresponds to the cavitation number 𝜎 = 

0.0278. The steady-state two-dimensional air-cavity characteristics (length, volume, air mass, and 

pressure) are shown in Fig. 6 at time zero. The equilibrium cavity shape is given in Fig. 7a with the cavity 

length of about 8 m. 

 

At time 𝑡 = 0.02 s, the pressure in the water flow is prescribed to suddenly drop by about 6.6% (Fig. 6d). 

This causes the cavity expansion (Fig. 6a,b) and formation of waves on the cavity surface near the step 

and the cavity tail (Fig. 7b). The cavity pressure starts dropping as well (Fig. 6d). Since the air cavity 

elongates, the air leakage through small bubbles slightly increases, according to Eq. (17), which results in 

gradual reduction of the air cavity mass (Fig. 6c). Due to air compressibility, the cavity volume and 

pressure also undergo oscillations noticeable in Fig. 6b,d. The wave at the cavity tail propagates further 

downstream creating a pocket susceptible to shedding from the cavity (Fig. 7c). When the crest of the 

water surface touches the ceiling, the pocket detaches. At this instant (happening around 0.45 s) the air 

cavity losses mass (Fig. 6c) and its length and volume contract (Fig. 6a,b). The cavity shape after the 

pocket detachment is shown in Fig. 7d. This process repeats several times until sufficient mass of air is 

lost. Then, the cavity continues to oscillate, and eventually it settles at a new equilibrium state 

corresponding to reduced pressure in the water flow.  

 

Another modeling example is presented here for oscillatory variation of the water pressure that can 

partially simulate heaving motions of a hull neglecting changes in the incident flow velocity and three-

dimensional effects. It is assumed that the water pressure varies as follows, 

𝑝𝑤(𝑡) = 𝑝𝑤0 + 𝑝𝑤1sin (2𝜋𝑓𝑡) ,      (22) 

where 𝑝𝑤0 is the steady component, corresponding to the equilibrium state, 𝑝𝑤1 is the amplitude of 

pressure fluctuation, and 𝑓 is the frequency. Two amplitudes are chosen here, 𝑝𝑤1/𝑝𝑤0 equal to 0.033 

and 0.1, while the frequency is taken as 0.15 Hz. Since the unsteady conditions are likely to result in 

higher air leakage, the drag reduction performance of the air cavity is expected to degrade. One can try 

to partly mitigate this effect by adjusting the air supply rate. In this study several constant values of 

supply rate of air were modeled around the value corresponding to the steady equilibrium condition. 

The ratio of mass flow rates 𝑘𝑚 = 𝑚̇𝑖𝑛/𝑚̇𝑖𝑛,0 was varied between 0.9 and 1.1. The cavity parameters 

and incident flow velocity are the same as in the previous example, whereas it is assumed that cavity 
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width is 10 m in order to obtain numerical values of interest to practical situations. The initial conditions 

correspond to the steady equilibrium state.  

 

The time variations of pressure in the incident water flow, as well as mass of air in the cavity and the 

cavity volume, are shown in Fig. 8 for two magnitudes of pressure fluctuations and the equilibrium air 

supply rate 𝑚̇𝑖𝑛,0. The pressure varies sinusoidally (Fig. 8a) in accordance with Eq. (22). In the first cycle 

during the phase of pressure decrease, the air cavity increases, and some air departs from the cavity via 

several detached pockets similar to the process described above. As a consequence, the mass of the air 

in the cavity decreases, and its time-averaged value approaches a constant (Fig. 8b). The resulting mass 

loss is larger for higher amplitude pressure fluctuations. The cavity volume exhibits oscillatory motions 

(Fig. 8c) similar to the previously considered case (Fig. 6d), and the mean volume value also decreases. 

Therefore, it can be expected the drag reducing capability of the air cavity will degrade such unsteady 

conditions.  

 

The net power savings due to air cavity constitute the difference between reduction of propulsion 

system power because of reduced drag (Eq. 21) and the power of the air supply system (Eq. 15). For 

power calculations, it is assumed that the friction coefficient is 𝐶𝑓 = 0.004, the overall efficiency of the 

propulsion system is 𝜂𝑃 = 0.65, and the overall efficiency of the air supply system is 𝜂𝑆 = 0.45. The net 

power saving metric 𝑃𝐷 − 𝑃𝑆 is shown in Fig. 9 for the case of no fluctuations in the water flow pressure, 

as well as for two amplitudes of pressure variations. The power savings degrade with increase of the 

oscillation magnitude. For example, at the constant (equilibrium) air flow rate the savings drop from 

about 41 kW down to 39.5 kW and 36 kW at two considered levels of fluctuations.  

 

One can attempt to reduce this degradation of performance by adjusting the air supply rate. The 

calculations with the present setup indicate that it is beneficial to raise the supply rate by 5% at the 

condition when 𝑝𝑤1/𝑝𝑤0 = 0.033 (Fig. 9b). While more power is need to increase the air supply, longer 

cavity can be maintained, and the overall effect will optimize the system performance. Further increase 

of air flow is not beneficial since more air will be lost through detaching air pockets. Reducing flow rate 

at this condition will result in shorter cavities with larger performance degradation. 

 

In contrast, at higher amplitudes of pressure fluctuations in the water flow, the slight improvement can 

be achieved by decreasing the air supply rate (Fig. 9c). The unsteadiness in the water flow is greater in 
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this case, and maintaining long air cavities is problematic, since the air is more easily shed away. It 

appears that decrease of air inflow by 5% would allow saving more power in the air supply system than 

the increased amount of propulsion power.  

 

It should be noted that the presented calculation results are specific to the studied conditions and 

subject to the several assumptions, such as two-dimensional flow under infinite walls. Hence, these 

results should be treated only as examples of possible performance trends of the air-cavity systems.  

 

Conclusions 

A simplified potential-flow method has been developed for unsteady modeling of air cavities formed 

under horizontal walls, including processes of air pocket detachment. The model application for a 

situation with oscillatory pressure in the flow demonstrated degradation of the air-cavity drag reduction 

due to air loss from the cavity and a subsequent cavity contraction. Manipulation of the air supply rate 

can partly alleviate decrease of power savings in unsteady conditions. For specific setups considered in 

this study it is found that an increase of the air supply is beneficial at low amplitudes of pressure 

fluctuations in the flow, whereas a slight decrease of air supply provides more optimal operational state 

with regard to the overall power savings at high amplitudes of pressure oscillations.  

 

Promising directions for future model developments include three-dimensional and more complex 

geometrical configurations, nonlinear formulation, addition of surface tension, and incorporation of 

moving solid parts, such as morphing hull surface, which can lead to higher performance of air-cavity 

drag reduction systems in broader range of operational conditions. Additional validation studies against 

well-defined experiments with high spatio-temporal resolution of air-cavity flows will be of great value 

as well.  

 

Acknowledgement 

This material is based upon research supported by the National Science Foundation under Grant No. 

1800135.  

 

  



11 
 

References 

1. Latorre R. Ship hull drag reduction using bottom air injection. Ocean Engineering 1997; 24: 161-175. 

2. Matveev KI. Application of artificial cavitation for reducing ship drag. Oceanic Engineering 

International 2005; 9(1): 35-41. 

3. Ceccio SL. Friction drag reduction of external flows with bubble and gas injection. Annual Review of 

Fluid Mechanics 2010; 42: 183-203. 

4. Matveev KI, Burnett T and Ockfen A. Study of air-ventilated cavity under model hull on water surface. 

Ocean Engineering 2009; 36(12-13): 930-940. 

5. Lay KA, Yakushiji R, Makiharju S, Perlin M and Ceccio SL. Partial cavity drag reduction at high Reynolds 

numbers. Journal of Ship Research  2010; 54: 109-119. 

6. Makiharju SA, Elbing BR, Wiggings A, Shinasi S, Vanden-Broeck J-M, Perlin M, Dowling DR and Ceccio 

SL. On the scaling of air entrainment from a ventilated partial cavity. Journal of Fluid Mechanics 2013; 

732: 47-76. 

7. Shiri A, Leer-Andersen M, Bensow RE and Norrby J. Hydrodynamics of a displacement air cavity ship. 

In: 29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden, 2012. 

8. De Marco A, Mancini S, Miranda S, Scognamiglio R and Vitiello L. Experimental and numerical analysis 

of a stepped planing hull. Applied Ocean Research 2017; 64: 135-154. 

9. Arndt REA, Hambleton WT, Kawakami E and Amromin EL. Creation and maintenance of cavities under 

horizontal surfaces in steady and gust flows. Journal of Fluids Engineering 2009; 131: 111301-1. 

10. Makiharju SA, Elbing BR, Wiggings A, Dowling DR, Perlin M and Ceccio SL. Perturbed partial cavity 

drag reduction at high Reynolds numbers. In: 28th Symposium on Naval Hydrodynamics, Pasadena, 

California, USA, 2009. 

11. Amromin E, Karafiath G and Metcalf B. Ship drag reduction by air bottom ventilated cavitation in 

calm water and in waves. Journal of Ship Research 2011: 55: 196-207. 

12. Zverkhovskyi O, Van Terwisga T, Gunsing M, Westerweel J and Delfos R. Experimental study on drag 

reduction by air cavities on a ship model. In: 30th Symposium on Naval Hydrodynamics, Hobart, 

Tasmania, Australia, 2014.  

13. Butterworth J, Atlar M and Shi W. Experimental analysis of an air cavity concept applied on a ship hull 

to improve the hull resistance. Ocean Engineering 2015; 110: 2-10. 

14. Matveev KI. On the limiting parameters of artificial cavitation. Ocean Engineering 2003; 30(9): 1179-

1190. 



12 
 

15. Matveev KI and Miller MJ. Air cavity with variable length under model hull. Journal of Engineering for 

the Maritime Environment 2011; 225(2): 161-169. 

16. Choi J-K and Chahine L. Numerical study on the behavior of air layers used for drag reduction. In: 28th 

Symposium on Naval Hydrodynamics, Pasadena, California, USA, 2010. 

17. Makiharju SA, Perlin M and Ceccio SL. On the energy economics of air lubrication drag reduction. 

International Journal of Naval Architecture and Ocean Engineering 2012; 4: 412-422. 

18. Amromin E. Ships with ventilated cavitation in seaways and active flow control. Applied Ocean 

Research 2015; 50: 163-172. 

19. Matveev KI and Ockfen A. Modeling of hard-chine hulls in transitional and early planing regimes by 

hydrodynamic point sources. International Shipbuilding Progress 2009; 56(1-2): 1-13. 

20. Matveev KI. Hydrodynamic modeling of planing hulls with twist and negative deadrise. Ocean 

Engineering 2014; 82: 14-19. 

21. Matveev KI and Chaney C. Heaving motions of a ram wing translating above water. Journal of Fluids 

and Structures 2013; 38: 164-173. 

22. Newman JN. Marine Hydrodynamics. Cambridge, MA, USA: MIT Press, 1977. 

23. Katz J and Plotkin A. Low-Speed Aerodynamics. Cambridge, UK: Cambridge University Press, 2001. 

24. Bertram V. Practical Ship Hydrodynamics. Oxford, UK: Butterworth-Heinemann, 2000. 

25. Cengel YA and Boles MA. Thermodynamics: An Engineering Approach. New York, USA: McGraw-Hill, 

2015. 

26. Amromin E. Analysis of interaction between ship bottom air cavity and boundary layer. Applied 

Ocean Research 2016; 59: 451-458. 

27. Magnuson H. The disturbance produced by an oscillatory pressure distribution in uniform translation 

on the surface of a liquid. Journal of Engineering Mathematics 1977; 11: 121-137. 

 

 

 

 

 

  



13 
 

Figure captions 

 

Fig. 1 Examples of possible implementations of air-cavity systems. (a) Single multi-wave cavity; (b) 

system of single-wave cavities.  

Fig. 2 (a) Schematic of two-dimensional air-cavity flow around a step. (b) Horizontal positions of sources 

and collocation points. Step height and distances between neighboring sources are exaggerated.  

Fig. 3 (a) Bottom view on the cavity illustrating air leakage through small bubbles shed at the cavity 

sides. (b) Side view on elongated air cavity. (c) Side view on air cavity at the moment of large air 

pocket detachment.  

Fig. 4 (a) Schematic of tested air-cavity hull. (b) Length of air cavity. Symbols, experimental data; curves, 

numerical results. Solid line and circles correspond to relative draft d/H = 1.4; dashed curve and 

squares are for d/H = 4.3. Error bars indicate experimental uncertainties.  

Fig. 5 (a) Schematic of oscillating pressure patch translating over water surface. Wave elevations: (b) in-

phase and (c) out-of-phase components. Curves, current numerical results; squares, previous 

analytical solution.   

Fig. 6 Time evolution of cavity characteristics upon step change of external pressure: (a) cavity length, 

(b) cavity volume per unit width, (c) mass of air in the cavity per unit width, and (d) upstream water 

pressure (solid line) and cavity pressure (dashed line).  

Fig. 7 Cavity shapes (dashed lines) at times: (a) t = 0 s (equilibrium state), (b) t = 0.1 s, (c) t = 0.35 s, and 

(d) t = 0.47 s. Ready-to-detach air pocket can be noticed at the cavity tail in (c). Solid lines indicate 

rigid hull surfaces.  

Fig. 8 Time variation of (a) upstream water pressure, (b) mass of air in the cavity, and (c) cavity volume. 

Solid lines, 𝑝𝑤1/𝑝𝑤0 = 0.033; dashed line, 𝑝𝑤1/𝑝𝑤0 = 0.01.  

Fig. 9 Time-average net power savings at different rates of air supply and magnitudes of pressure 

variation. (a) 𝑝𝑤1/𝑝𝑤0 = 0, (b) 𝑝𝑤1/𝑝𝑤0 = 0.033, and (c) 𝑝𝑤1/𝑝𝑤0 = 0.1. 
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Figures 

 

 

 

Fig. 1 Examples of possible implementations of air-cavity systems. (a) Single multi-wave cavity; (b) 

system of single-wave cavities.  

 

 

 

 

Fig. 2 (a) Schematic of two-dimensional air-cavity flow around a step. (b) Horizontal positions of sources 

and collocation points. Step height and distances between neighboring sources are exaggerated.  
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Fig. 3 (a) Bottom view on the cavity illustrating air leakage through small bubbles shed at the cavity 

sides. (b) Side view on elongated air cavity. (c) Side view on air cavity at the moment of large air pocket 

detachment.  
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Fig. 4 (a) Schematic of tested air-cavity hull. (b) Length of air cavity. Symbols, experimental data; curves, 

numerical results. Solid line and circles correspond to relative draft d/H = 1.4; dashed curve and squares 

are for d/H = 4.3. Error bars indicate experimental uncertainties.  

 

 

Fig. 5 (a) Schematic of oscillating pressure patch translating over water surface. Wave elevations: (b) in-

phase and (c) out-of-phase components. Curves, current numerical results; squares, previous analytical 

solution.   
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Fig. 6 Time evolution of cavity characteristics upon step change of external pressure: (a) cavity length, 

(b) cavity volume per unit width, (c) mass of air in the cavity per unit width, and (d) upstream water 

pressure (solid line) and cavity pressure (dashed line).  
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Fig. 7 Cavity shapes (dashed lines) at times: (a) t = 0 s (equilibrium state), (b) t = 0.1 s, (c) t = 0.35 s, and 

(d) t = 0.47 s. Ready-to-detach air pocket can be noticed at the cavity tail in (c). Solid lines indicate rigid 

hull surfaces.  
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Fig. 8 Time variation of (a) upstream water pressure, (b) mass of air in the cavity, and (c) cavity volume. 

Solid lines, 𝑝𝑤1/𝑝𝑤0 = 0.033; dashed line, 𝑝𝑤1/𝑝𝑤0 = 0.01.  

 

 

0 10 20 30 40 50
130

140

150

160

170

t [s]

p
w

 [
kP

a
]

(a)

0 10 20 30 40 50
6.6

6.8

7

7.2

7.4

t [s]

m
c
 [

kg
]

(b)

0 10 20 30 40 50
3.4

3.6

3.8

4

4.2

4.4

t [s]

V
c
 [

m
3
]

(c)



20 
 

 

 

Fig. 9 Time-average net power savings at different rates of air supply and magnitudes of pressure 

variation. (a) 𝑝𝑤1/𝑝𝑤0 = 0, (b) 𝑝𝑤1/𝑝𝑤0 = 0.033, and (c) 𝑝𝑤1/𝑝𝑤0 = 0.1. 
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