openDIEL: A Parallel Workflow Engine and Data
Analytics Framework

Frank Betancourt Kwai Wong Efosa Asemota
The University of Tennessee The University of Tennessee Morehouse College
fbetanco@vols.utk.edu kwong@utk.edu efosaasemota@gmail.com
Quindell Marshall Daniel Nichols Stanimire Tomov
Morehouse College The University of Tennessee The University of Tennessee
quindell.marshall@morehouse.edu dnicho22@vols.utk.edu tomov@eecs.utk.edu

ABSTRACT

openDIEL is a workflow engine that aims to give researchers
and users of HPC an efficient way to coordinate, organize,
and interconnect many disparate modules of computation in
order to effectively utilize and allocate HPC resources [12]. A
GUL is provided to create workflows, and allows for the spec-
ification of data science jobs, including specification neural
network architectures, data processing, and hyperparameter
tuning. Existing machine learning tools can be readily used
in the openDIEL, allowing for easy experimentation with
various models and approaches.

KEYWORDS

workflow engine, neural network, data science, graphical
user interface

1 INTRODUCTION

When conducting complicated simulations, it is often re-
quired to utilize a large variety of applications to answer
a research question. Utilizing disparate modules of compu-
tation, requires the careful coordination of dependencies,
communication, and synchronization between them, and
there is not always a clear path on how to do these kinds
of tasks. One approach to this is to utilize a script to run
all of the necessary modules. However, this falls short, as
this loses much detail with regard to complex interaction
between modules, such as inter-moduler communication
and non-linear dependencies, limiting the ability to take full
advantage of HPC systems to run modules in parallel.

This problem is solved by workflow engines, allowing
researchers to define complex dependencies between mod-
ules, and schedule communication between them. openDIEL
specifically focuses on unifying modules into a single ex-
ecutable that uses MPI for communication. Additionally,
methods are provided for specifying dependencies between
modules, with the framework resolving dependencies and
running modules in parallel.

openDIEL is designed not only to support the creation of
generic workflows, but facilities are also provided to create

data science workflows, supporting simple data cleaning,
creation of neural network architectures, and subsequently
searching for optimal parameters with a grid engine.

2 RELATED WORK

Existing workflow engines such as Galaxy give researchers
the means to utilize tools on cloud computing resources.
Galaxy is designed to operate with and couple together
domain-specific tools, without requiring the end user to
do large amounts of work to integrate tools together [1].
openDIEL has many of the same goals in mind, but aims to
provide a more tight coupling with respect to communication
between interrelated modules of computation.

Another one of the goals of openDIEL is to provide a gen-
eral framework for performing hyperparameter search and
model selection tasks. A number of tools already exist to
assist in doing this. Tools such as HyperBand, Optunity, and
BayesOpt provide methods to perform optimization with a
variety of different algorithms, but do have support for train-
ing in a distributed manner out-of-the-box [3, 6, 8]. Many
existing systems also lack support for implementing algo-
rithms beyond what is provided in the tool kit. The Tune
Framework is a system that supports custom algorithm im-
plementation, and is designed to be used in a distributed
manner [7].

openDIEL Framework Design Overview

At a high level, the openDIEL system consists of a C library
that contains all of the function needed to manage modules.
Typically, a main driver file is created which contains all of
the needed function calls to set up the main MPI commu-
nicator that the IEL library uses, set up necessary modules
for tuple space communication, and calling the user defined
modules.

The main way that users interact with the system is through
a configuration file. There are two major components of the
openDIEL system: the executive library, and the communi-
cation library.

GUI Launcher

Configuration File 4—@—)

Executive

' ,
[h

|"J Tuple Space "'l

CB) IlID|rect Cnmmlll L comm
Y / /

L 2 J‘ o J‘ o ¢ S

Y i - Tuple
: rocessing | Data n Library '
! rand VO | | Analyzer Sc'eﬂlgi and Tool Néer:z;v :
i | Modue | Module | MO9S | | yoques | | SPECE |
5 — 3 RS } e
L EEEEEE R : ————— U137 1]

Figure 1: Overview of architecture of openDIEL, top to bot-
tom: (A) The GUI launcher creates a configuration file for
the workflow, and the executive will read this file to set up
workflows. (B) After initial configuration, the executive will
start all of the modules. (C) The modules have access to the
communication library, and directly communicate or utilize
tuple space communication.

Configuration File. Information about how modules are com-
municate and rely on one another is contained in a configu-
ration file. The configuration file defines what resources the
modules requires, such as the number of cores, and number
of GPUs required by the module. After defining the modules
themselves, a section of the file subsequently defines the
manner in which groups of modules depend on one another,
how many iterations need to run, amongst other character-
istics.

Communication Library. The communication library is es-
sentially a wrapper around various openMPI function calls,
and is responsible for managing both tuple space and direct
communication between modules. This is done by creating
a main MPI_COMM_WORLD communicator in which all of
the modules run, and then subdividing this main commu-
nicator at the level of single modules. If there are multiple
concurrent copies of the same module running at the same
time, then the module sub-communicator is further subdi-
vided between the copies [12].

Two different methods of communication are provided by
an API: tuple space communication, and direct module-to-
module communication. With tuple space communication, a
tuple server module is utilized that allows modules to concur-
rently send data to and receive data from a shared associative
array. Modules can use this form of communication with pro-
vided library functions IEL_tput and IEL_tget to send and
receive data from the tuple space respectively. Each module
that puts data into the tuple space can issue a non-blocking
IEL_tput function call, and provide a tag for the data placed in
the tuple space. The receiving module can utilize a blocking
IEL_tget function call to retrieve the data with the specified
tag.

The IEL_tput function is a wrapper around the MPI_Send
function, and the tuple server runs as an MPI process in
the MPI_COMM_WORLD communicator. The tuple server
receives the data from a module, and then places it into a
red-black tree keyed on the tag, and values is a queue into
which the data is placed. The IEL_tget function utilizes the
MPI_Send function to notify the tuple server that it wants
to retrieve a tag, and whether or not it wants to remove the
data from the tuple server after retrieving it. MPI_Recv is
then called, and the data is retrieved.

Simplified versions of IEL_tput and IEL_tget are also pro-
vided: IEL_tput_simplified and IEL_tget_simplified. The al-
low users to specify the name of the calling module and
tag for the data as a string, and does not require the user
to specify the rank upon which the tuple server is running.
This function is just a wrapper around the normal IEL_tput
function call, but the string provided is hashed and used as
the tag in the call.

The tuple space can also be distributed across a number
of different modules, essentially providing a way to store
and retrieve data in a distributed manner. The functions
IEL_dist_tget and IEL_dist_tget utilize this multiple tuple
server model. The IEL_dist_tget function will take a pointer
to data and a string to tag the data, and distribute it amongst
an array of tuple servers. Information about the distribution
of the data is stored on a meta-data server. The IEL_dist_tget
function will retrieve the data by querying the meta data
server, which returns the locations of the servers holding
the data, the data servers are queried, and the stored data is
reconstructed.

Executive Library. The executive library is the other major
part of the library responsible for starting job and managing
dependencies. When a job starts, the executive will read in a
workflow configuration file, and then based on this file, the
executive will create a dependency graph of the specified
workflow, and then start modules based on the graph. Typi-
cally, a module is included in openDIEL by linking a library
against a driver file, and function pointers are provided to

| Client | .- | Client |

t)

Metadata Server Tuple Server Tuple Server
.
IEL_dist_tzut) \A,' }

| Client | | Client |

Figure 2: Layout of the distributed tuple server model, clock-
wise from the bottom right: (A) The client data is broken
up and distributed across an array of tuple servers, and (B)
the metadata for the distributed data is stored in a metadata
server. (C) When data is to be retrieved, the metadata for the
requested data is retrieved, and (D) the data is retrieved from
the distributed array of tuple servers based on the metadata.
The received data is then reconstructed and returned to the
requesting client.

the executive so that they can be called with the appropriate
arguments [12]. Executables can also be run by calling fork()
and exec() in an MPI process, but limits the ability of the
module to utilize the inter-modular communication provided
by openDIEL.

Typical Usage. Typically, all of the needed functions are
called in a main driver file. This driver file will call MPI_init,
and then it will call openDIEL member function IELAddMod-
ule, which will take a pointer to the function in the linked
library for the module. This will be used later to start the
module in the workflow. For modules that are executables, a
model that calls fork() and exec() on the proper arguments
is started for each serial module. After this setup, the main
IELExecutive() member function is called. This function will
split up the MPI_ COMM_WORLD communicator into the
appropriate subcommunicators, resolve dependencies from
the configuration file, and then start modules.

Graphical User Interface

The GUI provides methods to easily specify modules, the
resources required to run them, and the libraries needed to
link against in order to run them. For workflow specification,
methods to visually display the resulting workflow as a de-
pendency graph are provided to aid in the ease of creating a
workflow. The other enhancement is automatically creating

a driver file to run parallel codes. A number of preconfigured
modules can also be provided, allowing for a reduced amount
of set up on the part of the end user of the system.

While manual configuration can still be accomplished, the
graphical user interface aims to reduce the amount of work
required to set up a workflow, and improve the overall use
ability of the openDIEL framework. Most operations the GUI
are normally accomplished with editing configuration files,
writing code in a driver file, linking libraries, and writing
modules. The GUI itself is divided into several different tabs:

L) tk
Welcome |UMOGUISISPEGIficationl| \orkflow Machine Learning Save Launch

Saved Modules
Automatic example | Edit

Figure 3: The module specification tab, clockwise from top
left: (A) This section is where new modules are created, and
where created modules are edited. (B) A list of the saved mod-
ules. (C) A listing of the preconfigured modules which can
be loaded, along with the option to load modules previously
created by the user

Module Specification. The module specification tab allows
users to specify information about each individual module.
Resource requirements such as the number of processes
needed (size), the number of copies of the module to run,
and the number of GPUs needed can be specified, among
others. Additionally, a number of preconfigured modules
can be loaded. These preconfigured modules consist of all
the basic information needed to include it in the openDIEL
system, such as library locations, function calls, and basic
resource requirements.

Workflow. After configuring modules in the workflow tab,
these modules can then be added to workflows. Modules
are organized into groups, and dependencies are defined be-
tween groups of modules. Within groups, a list of modules is
specified that is run linearly. If no other groups are specified
as dependencies, the groups will run as resources become
available, making parallelism the default. Workflows can also
be loaded from files, which allows users to use workflows

ece th

Welcome Module Specification |JMNOEKHOWM Machine Learning ~ Save Launch

Available Modules New Group
example Add To Group roup Nome oundl
example2 Add To Group Modules to run

example2
Available Groups.

Hterations
group_1 Edit Add Dependency

Dependencies
Load Workflow from File P aroup_1

Save Group

Figure 4: The workflow specification tab, left to right: (A)
Listing of the modules defined in the previous section of the
GUI, and a list of the already created workflow groups. This
is used to add modules to workflow groups, and to add an ex-
isting workflow group as a dependency to the current group.
(B) Entry fields for the group currently being defined.

that have already been created, and save workflows for later
use.

L} th
Welcome Module Specification Workflow Machine Learning [SBVEM Launch

CFG File Name. test.cfg|

Create Configuration File
‘ group3 arpupd

%
ielTupleServer = P

function = “ielTupleServer;
args =

%
workfiow =
groupl
tple_set =

tuple_group =

Figure 5: The Save Tab, left to right: (A) The contents of the
workflow configuration file that was created and saved. This
is what the driver will read when it starts in order to config-
ure modules. (B) A dependency graph of the groups to aid
in visualizing the dependencies between configured work-
flow groups. The vertices represent workflow groups, and
directed edges terminate at the group the originating vertex
depends upon.

Save and Launch. The Save and Launch tabs are used for
saving the current state and launching the job respectively.
The save tab will create a configuration file that can be either
used by the GUI later on to load in the same workflow, or it
can be used by the openDIEL back end to run a workflow
job. The launch tab allows a user to launch the job as it was

previously specified, and directs the output to a specified
directory. Example workflows are also provided for the pur-
poses of tutorials, which will load a pre-existing workflow
containing the requisite information to run.

L] [) tk
Welcome Module Specification Workflow |JMaGhinellearningl| Save Launch

Data Network Architecture Hyperparameters

[Users/frankie/academic/utkr input: No Options Needed Learning Rate
Load CsV Data) : sat 01 ¢
fully connected: Number of Hidden Units 512 ¢
V Data Info 5

Ed 10
. . activation: activation function

File name: train.csv relu | stepSize [00
Number of rows: 14899 fully connected: Number of Hidden Units 10 Weigh Decay

Number of columns: 8 output: No Options Needed st 01

Transform Columns selectlayertype [Add new layer ed 10

Tweet OneHot Encode Step Size 0.0
following Normalize Epochs

follower: Normalize Start |25

actions Drop Column End 200

is_retwe No Transformation stepsize |25
location Drop Column
Type Ordinal Encode

Unname Drop Column

Figure 6: Machine Learning Tab, left to right: (A) Data tab,
CSV files can be loaded, and a summary of the columns is
provided. Shown are a number of transformations that can
be applied to the columns of the CSV file that was read in.
(B) Network architecture can be defined here, along with the
parameters for each layer. (C) Hyperparameters grid search
range parameters can be defined here.

Machine Learning. The Machine Learning tab implements
a number of functions. Users can specify a CSV data file,
and get a basic idea of the contents of the file, such as the
number of rows, columns, and the names of the columns
in the file. The option to perform common pre-processing
tasks on columns in the data set is provided, such as data
centering, normalizing, missing value imputation, and encod-
ing. The interface also provides a method to specify a DNN
architecture for classification tasks, with support for fully
connected, flattening and activation layers. After specify the
model, hyperparameter search can be performed. This is
done by providing a starting, and ending value for the hyper-
parameter, and a step size. The grid search is then performed
on the Cartesian product of all of the parameters.

Grid Engine
One of the goals of the framework is to not only provide
facilities for hyperparameter optimization and search, but
allow for users to readily use existing libraries to perform
these tasks. One such implementation is a grid search en-
gine that uses the openDIEL tuple space communication to
distribute parameters to worker processes in an exhaustive
search of a specified parameter space, collect the results, and
report the best parameters found.

The module consists of a master process that chooses
hyperparameters, and a set of processes that receive the

hyperparameters. The master process first selects a set of
parameters, distributes them to the workers via the tuple
space, and waits for the group to finish. The group of worker
processes receive the parameters, train, and report their re-
sults to the trainer via tuple space communication. These
results are then gathered by the master process, and then
the next group of processes is started on the next batch of
parameters.

3. Receive Results
L

.

N

Tupie Space]
h

\\‘

Master Process

1. Distribute Parameters
2. Report Training Results

Figure 7: Distributing Parameters to Workers With Tuple
Space

openDIEL uses magmaDNN to define neural networks.
magmaDNN is a deep neural network library that makes use
of highly optimized Magma BLAS to achieve speeds beyond
other frameworks [9]. The grid engine module works by
creating a configuration file that contains a specification
of a parameter space, and a network architecture. When
the openDIEL framework starts, this file is read in, and the
exhaustive search over the specified hyperparameter space
begins. Workers use the identical network architecture, with
varied parameters for each run.

3 CONCLUSION AND FUTURE WORK

Increasing the ability of the openDIEL framework to do full
pipeline optimization of machine learning systems is envi-
sioned. Currently, the hyperparameter search is constrained
to simple grid search through a specified search space, lead-
ing to an exponential increase in search time as more pa-
rameters are added, limiting the feasibility of doing this kind
of analysis. Support of more “smartly” choosing parameters
is envisioned, by allowing the master process to perform
a specified optimization procedure between receiving pa-
rameters from workers and distributing new ones. Common
approaches such as Bayesian Optimization [11] and learning
curve prediction [5] will be supported [2]. Parallel to improv-
ing the hyperparameter grid search, support for searching
for an entire model is envisioned. Similar to providing the
framework with a generic search space for selecting the best
hyperparameters, the framework could provide the capabil-
ity a search for a model.

Currently, magmaDNN is the only way to create machine
learning models. In the future, support will be added to use

frameworks such as TensorFlow [4], Sklearn [10], and other
other machine learning frameworks.

The overall usability of the framework as a whole is still
a large question. A user study would need to be conducted
to determine how easily a user could accomplish common
workflow tasks, and how much work it takes to learn the
system as a whole.

The openDIEL framework provides a powerful set of tools
to create workflows with a GUI, and run many different mod-
ules on HPC resources. A set of communication primitives
is provided to efficiently and easily connect together parallel
MPI codes. Machine learning model creation and hyperpa-
rameter search is done easily without the need for heavy
coding to be done.

4 ACKNOWLEDGEMENTS

This work was conducted at the Joint Institute for Com-
putational Sciences (JICS), sponsored by the National Sci-
ence Foundation (NSF), through NSF REU Award #1659502,
with additional Support from the University of Tennessee,
Knoxville (UTK), and the National Institute for Computa-
tional Sciences (NICS). This work used the Extreme Science
and Engineering Discovery Environment (XSEDE), which
is supported by National Science Foundation grant number
ACI-1548562. Computational Resources are available through
a XSEDE education allocation award TG-ASC170031. In ad-
dition, the computing work was also performed on technical
workstations donated by the BP High Performance Comput-
ing Team.

REFERENCES

[1] Enis Afgan, Jeremy Goecks, Dannon Baker, Nate Coraor, Anton
Nekrutenko, James Taylor, Galaxy Team, et al. 2011. Galaxy: A gateway
to tools in e-science. In Guide to e-Science. Springer, 145-177.

[2] Tal Ben-Nun and Torsten Hoefler. 2018. Demystifying parallel and
distributed deep learning: An in-depth concurrency analysis. arXiv
preprint arXiv:1802.09941 (2018).

[3] Marc Claesen, Jaak Simm, Dusan Popovic, Yves Moreau, and Bart
De Moor. 2014. Easy hyperparameter search using optunity. arXiv
preprint arXiv:1412.1114 (2014).

[4] Sanjay Surendranath Girija. 2016. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. Software available
from tensorflow. org (2016).

[5] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hut-
ter. 2016. Learning curve prediction with Bayesian neural networks.
(2016).

[6] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. 2016. Hyperband: A novel bandit-based approach to
hyperparameter optimization. arXiv preprint arXiv:1603.06560 (2016).

[7] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E
Gonzalez, and Ion Stoica. 2018. Tune: A research platform for dis-
tributed model selection and training. arXiv preprint arXiv:1807.05118
(2018).

[8] Ruben Martinez-Cantin. 2014. Bayesopt: A bayesian optimization
library for nonlinear optimization, experimental design and bandits.
The Journal of Machine Learning Research 15, 1 (2014), 3735-3739.

[9] Lucien Ng, Kwai Wong, Azzam Haidar, Stanimire Tomov, and Jack Don-
garra. 2017. Magmadnn high-performance data analytics for manycore
gpus and cpus. In magma-DNN, 2017 Summer Research Experiences for
Undergraduate (REU).

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research 12 (2011), 2825-2830.

[11] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical

[12]

bayesian optimization of machine learning algorithms. In Advances in
neural information processing systems. 2951-2959.

Kwai Wong, Logan Brown, Jason Coan, and David White. 2014. Dis-
tributive Interoperable Executive Library (DIEL) for Systems of Multi-
physics Simulation. In 2014 15th International Conference on Parallel
and Distributed Computing, Applications and Technologies. IEEE, 49-55.

	Abstract
	1 Introduction
	2 Related Work
	openDIEL Framework Design Overview
	Graphical User Interface
	Grid Engine

	3 Conclusion and Future Work
	4 Acknowledgements
	References

