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Introduction

Radiopharmaceutical isotopes are widely used in medical practice, for both imaging and
therapy. Applications range widely but each begins with the creation of the artificial un-
stable isotope. This can be done in a reactor (though many are now being phased out) or
using an accelerator, almost always a cyclotron.

Such cyclotrons typically (Schmor 2011) accelerate a maximum of 2 mA of negative ion
of hydrogen (H™) to 30 MeV, while the largest commercial machines: the Cyclone 70 -
Multiparticle High Energy Industrial Cyclotron (IBA, Ion Beam Applications S.A.,
n.d.), and the BEST 70p Cyclotron (Best Cyclotron Systems Inc, n.d.), produce
about 1 mA at 70 MeV. These energies are appropriate, covering the optimum pro-
duction energies for a large number of the most desirable radioisotopes. The 60-
MeV IsoDAR cyclotron increases the available proton current to 10 mA. This
higher current provides a two-fold advantage: it enables a higher production rate
of established medical isotopes, and it opens the possible deployment of isotopes
with small production cross sections or long half-lives.

The IsoDAR experiment is designed to place a powerful neutrino source in close prox-
imity to a large (on the order of 1000 cubic meters) liquid scintillator detector (specific-
ally: KamLAND, in Japan’s Kamioka Observatory) as a definitive test for the existence of
sterile neutrinos (Bungau et al. 2012). The 600 kW of protons from the cyclotron strike a

beryllium target to produce neutrons that flood a “Li-containing sleeve generating ®Li,

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International

@ Springer Open License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
— provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s41181-020-0090-3&domain=pdf
mailto:lwaites@mit.edu
http://creativecommons.org/licenses/by/4.0/

Waites et al. EJNMMI Radiopharmacy and Chemistry (2020) 5:6 Page 2 of 14

whose decay in turn produces the desired electron antineutrinos with a flux equivalent to
that of a 2 petabecquerel (50 kiloCurie) beta-decay source.

A key to the increase in maximum current is the use of H,", rather than H™ or protons
as the accelerated particle. A major reason for the current limit in high-current cyclotrons
is “space charge” or the mutual electrostatic repulsion of particles in the beam that causes
the beam to grow in size, making it more difficult to contain and prevent beam losses.
The H," ion has charge one but contains two protons, reducing the total charge of the
beam, hence the space-charge repulsion. In addition, the greater mass of H," increases
the inertia, and slows the beam growth from the repulsive charge. As we will see in
Stripping extraction with H," cyclotrons, stripping extraction, a key feature of H™ cyclo-
trons, is also possible with H," ions. This choice of beam particle means that the cyclotron
also has the flexibility to accelerate other ions with the same charge-to-mass ratio, such as
deuterons, alpha particles or C®*, opening possibilities, discussed in Beam species flexibil-
ity, for generating isotopes not accessible with proton beams.

There are many possible uses of such a high current source, such as ***Ac from nat-
ural thorium targets, or long-lived generator parents (e.g. the *®Ge parent (t'/* = 270 d)
of the Ge/Ga generator), possibly even '*®Gd as a nuclear battery replacement for
238Dy, These are discussed in Isotope applications.

The IsoDAR beam power exceeds the capabilities of present-day isotope production tar-
gets but we do not see possible obstacles (such as heat dissipation, the large facility foot-
print, or radiation shielding) as serious impediments to the development of higher capacity
targets to make use of a high intensity beam. Alternatively, techniques for splitting the beam
amongst many targets are discussed in Targetry and beam power management.

THE IsoDAR CYCLOTRON

The IsoDAR design (Adelmann et al. 2012) is a compact cyclotron: these cyclotrons are
the workhorse of the isotope industry. The rigorous demands of this field have led to
mature designs, well-understood costs, and excellent operational reliability. We will
lead the reader through how cyclotrons work, what their limits are and how the Iso-
DAR cyclotron overcomes these limits (Calabretta et al. 1999).

The ion source
State-of-the-art isotope cyclotrons inject beam from an external ion source (producing
typically 5 to 10 mA of H™ ions) placed above or below the cyclotron, with a short
beam line running along the central axis of the magnet (perpendicular to the plane of
the magnetic field). The source is held at a high voltage, typically 30 kV, providing the
initial energy for the continuous beam. Ions are deflected into the midplane by a spiral
inflector and directed to the first accelerating electrode of the cyclotron RF system (See
Fig. 1). IsoDAR follows the same scheme, except that H," ions are used rather than H.
In a typical ion source, high-power microwaves (~2.5 GHz) drive a plasma discharge
that removes an electron from the H, molecule, leaving H,". Subsequent collisions may
dissociate the H," ion into protons. Both species are extracted from the plasma by a high-
voltage electrode and formed into a beam. The desired species is selected by an analysis
system in the transport line. We have tested a state-of-the-art (40 mA) proton source
(Alonso et al. 2015) and found a maximum H," current of 15 mA, with a proton-to-H,"
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Fig. 1 Schematic of the central region of a compact cyclotron. From Winklehner et al. (2017). This figure
illustrates two-fold symmetry of the RF system. The IsoDAR cyclotron is designed with 4-fold symmetry,
there are 4 RF “dees”

ratio of 1:1. Increasing the microwave power increased the proton current to 40 mA, but
decreased the Hy" current.

A different source, using a filament to drive the discharge, built in the 1980’s by
Ehlers and Leung (Ehlers and Leung 1983), demonstrated H," currents of ~80 mA. This
indicates that a cooler plasma has a lower tendency to break apart the H," ions. A
source using this technique has been assembled at MIT, called MIST-1, and is cur-
rently being commissioned (Axani et al. 2016). It is expected to produce 30-50 mA,

considerably more than needed for the cyclotron.

Bunching

Beam from the ion source emerges in a steady continuous flow, but the cyclotron will
only accept a limited “phase range.” Particles pass through the spiral inflector and reach
the first of the accelerating electrodes (orange structures in Fig. 1, called for historical rea-
sons “dees”). These electrodes are connected to the cyclotron RF system (which operates
at around 35 MHz), and so will be at a voltage that oscillates between + and - values, typ-
ically many kV. Not shown in Fig. 1 are the so-called “dummy dees” which cover most of
the white area and are at ground potential, presenting narrow gaps on either side of the
dees. As particles pass through these gaps they are accelerated or decelerated depending
on the phase of the RF at the instant each particle finds itself in a gap. In fact, only those
particles passing through when the RF is within about 30° of the peak will receive the
proper acceleration to be accepted into stable orbits in the cyclotron. Thus only about
10% of a steady beam will be captured into a “bunch” and accelerated, and 90% will be lost
in the first few turns. As the energy of the particles is low (extraction voltage from the ion
source is typically 30 kV), these lost particles do not cause activation, but can cause ther-
mal damage and sputtering erosion. This is commonly seen in isotope cyclotrons.

An RF buncher can be placed in the transport line to increase the beam density at the
favorable phase in the RF cavity, thus improving the capture efficiency. However the usual
conventional double-gap bunchers may only increase the capture efficiency by a factor of
2, i.e. from 10% to 20%.
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IsoDAR uses a novel RFQ (Radio-Frequency Quadrupole) stage for bunching (Hamm
et al. 1981; Winklehner et al. 2015; Conrad 2017). Our design, which is under fabrication,
is expected to have bunching efficiency in excess of 80% (Winklehner et al. 2015). The
compact system is shown in Fig. 2. The RFQ operates at the cyclotron RF frequency and
must use a split-coaxial, 4-rod configuration to resonate at such a low frequency
(Schempp et al. 1985). (Typical RFQs operate at several hundred MHz.) It must be in-
stalled close to the spiral inflector, to prevent loss of the high bunching factor. In addition,
a small transverse focusing element (not shown) must be inserted just upstream of the
spiral inflector to preserve the beam size going into the inflector. The high efficiency re-
duces the ion source current requirement to <7 mA, well within the expected perform-
ance of MIST-1.

Acceleration: space charge and beam dynamics

The magnet configuration in the cyclotron consists of regions of high magnetic field
(called “hills” where poles are very close to each other) and low fields (“valleys” in
which there is enough space between the poles to include RF cavities), as can be seen
in Fig. 6. The IsoDAR cyclotron has a four-fold symmetry in its magnet. The shape and
boundaries of these regions is determined by focusing and “isochronicity” conditions,
that establish that the time for a particle to make one revolution is independent of the
radius of the orbit.

The electromagnetic fields in the cyclotron preserve the particle bunches by longitu-
dinal and transverse (both horizontal and vertical) focusing forces. So, once captured, ac-
celeration is usually very efficient, with very little beam loss. As the bunches spiral
outward in the cyclotron, the separation Ar between turns is determined by the energy
gain going through the accelerating gaps, which is directly related to the voltage amplitude
of the RF sine wave at these locations. Whether turns are cleanly separated depends on
this Ar and the size of the bunch, which is determined by the focusing forces from the

electromagnetic fields, static and time-varying, in the cyclotron.

lon source

RFQ buncher

Spiral inflector

Fig. 2 Components of the IsoDAR cyclotron injection system mounted on the central axis of the cyclotron
magnet. Adapted from Winklehner et al. (2018).
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As the number of particles in the bunch increases, the higher Coulomb repulsion
forces, referred to as “space charge,” on average make the equilibrium bunch size larger,
and push particles far away from the bunch center, forming so-called beam “halos.” If
clean turn separation is required, space charge must be taken into account very
carefully.

As indicated earlier, the acceleration of H," instead of H™ reduces space charge ef-
fects in two ways (Calabretta et al. 1999). First, there are two protons for every charge,
so a beam of 5 mA of H," contains 10 mA of protons. Secondly, the kinematic effect of
space charge on bunch growth is dependent on the ion mass; the heavier mass of H,"
results in less actual growth in the beam size for a given total bunch charge. Discussed
below, in Septum extraction with H," cyclotrons, is an interesting effect seen in high-
current cyclotrons, where space-charge forces can actually contribute to stabilizing
bunch shape, through an effect called “vortex motion.” Such effects are of great import-
ance to ensure clean turn separation, needed for efficient extraction of the beam.

Extraction

When the bunch reaches the outer radius of the magnet, it is extracted and brought to
the target. This can either be done using a thin electrostatic septum, defining a channel
that steers the beam outside the cyclotron, or by a stripper foil.

If a septum is used, it lies between the trajectories of the final two turns, so it is im-
portant that turns are cleanly separated, otherwise beam particles will strike the septum
causing activation and damage (this was a big problem with early cyclotrons).

Alternatively, for H™ or H," ions, one can extract the beam by placing a thin foil in
the beam. Beam passing through this foil strips the two electrons from an H™ ion, leav-
ing a bare proton or, for IsoDAR, one electron is removed from the H," ion leaving
two bare protons. As the charge-to-mass of the ions has changed, it is bent differently
by the magnetic field. For H™ the bare proton is directed outwards, away from the cen-
ter of the magnet, as shown in Fig. 3.

Stripper foil extraction with H™ cyclotrons
The stripper foil lifetime is the main limit to the beam current in H™ cyclotrons: max-

imum ion source currents and bunching efficiencies, though significant, are not as

(®) Bfield

Electrons

Proton

Foil

Fig. 3 Schematic of the stripper foil in an H cyclotron
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important. The foils are made of carbon, around 1 um (200 pg/cm?) thick and mounted
on an open harp, with a free edge on the beam side. Figure 3 shows an H™ ion passing
through a foil at high velocity. After a few atomic layers, the ion is dissociated into a pro-
ton and two (“convoy”) electrons. All three particles have the same velocity, initially. If the
proton has 30 MeV, the kinetic energy of each electron is 30/1836 MeV (the p/e mass ra-
tio), or 16 keV. The foil is in a magnetic field where negative charges are bent inwards.
The proton is thus bent outwards, with the same radius as the original H™ ion, and cleanly
exits the cyclotron, but the electrons are bent inwards and their radius is smaller, also by
the p/e mass ratio, so if the proton radius is 0.5 m, the electron radius is 0.2 mm. The elec-
trons will be bent back into the foil, and will repeatedly spiral through the foil until all
their energy is exhausted. The proton only makes one pass through the foil, depositing
(from range/energy tables) about 2 keV, whereas the electrons deposit much more. Quan-
titatively, a 1 mA 30 MeV H™ beam deposits about 34 watts in the stripper foil, of which
94% comes from the two electrons.

Foil lifetime is determined by thermal effects and crystal dislocations. For the best carbon
foils, thermal effects become important when the foil temperature exceeds 2500 °C, as sub-
limation erodes the surface, shortening the lifetime. Above 3000 °C foils are instantly vapor-
ized. Data from a recent paper (Kim et al. 2013) indicates that 3 watts of electron power
deposited in a 200 pg/cm? foil produces a temperature of 1250 °C. Extrapolating to 34
watts, the T* law predicts the foil will reach 2300 °C, while 2 mA of 30 MeV H™ (or 1 mA
at 60 MeV) heats a foil to 2700 °C. At and above these currents, foil lifetimes will be un-
acceptably short. It is clear that attempting to run IsoDAR-level powers cannot be done
with a foil-extracted H™ cyclotron. The black body temperature would be about 5000 °C.

Septum extraction with H,* cyclotrons
Septum extraction requires clean turn separation, with the highest possible RF voltage,
and a strategy for mitigating space-charge forces.

Well-benchmarked simulation codes including space charge (Adelmann et al. 2008;
Winklehner et al. 2017; Spiral Inflector design routines n.d.) have been used to plot the
orbits and particle dynamics throughout the injection and acceleration process, and
verify that very little beam loss occurs between capture and the extraction radius. The
objective is clean turn separation at the location of the extraction septum. With a total
beam power of 600 kW, even a few parts per thousand lost on the septum can cause se-
vere damage and activation. With these codes, halo particles that would hit the extrac-
tion septum can be traced back to early turns, and collimators can be judiciously
placed to eliminate them where the particle energies are low. The strategically placed
collimators and stripper foils throughout the cyclotron control activation and thermal
damage to internal parts of the IsoDAR cyclotron.

Under the right conditions, vortex motion in the bunch induced by space charge forces,
coupled with repulsive forces from adjacent inner and outer bunches, has been observed to
actually stabilize the bunch. This effect has been observed in the high-current isochronous
Injector 2 cyclotron at the Paul Scherrer Institute (PSI) (Stetson et al. 1992), and has been
accurately modeled (see Fig. 4) with the OPAL code (Yang et al. 2010). The results of these
calculations yield the beam distributions shown in Fig. 5 (Yang et al. 2013), with demon-
strated clean turn separation at the point of the septum.
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Fig. 4 Evolution of a space-charge dominated bunch from injection (turn 0) to turn 40 - about midway to
extraction. From Yang et al. (2010)

Stripping extraction with H," cyclotrons

Stripping foils were shown to be a current limit for H™ cyclotrons because of the heat
from the convoy electrons. The dynamics are different for H,". Instead of splitting H"
into one proton and two electrons, the H," ion is split into two protons and one elec-
tron. This theoretically reduces the heat deposited by the electrons at the stripper foil
to 25%. Because the H," ion is positive, the electrons are bent outwards instead of in-
wards, and a catcher can be placed behind the foil at an outer radius to completely sup-
press the electrons from re-entering the foil. Such a catcher is not possible when the
electrons are bent inwards; it would interfere with the circulating beam.
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Fig. 5 Simulated particle density in {y,r} plane for last few turns. Electrostatic extraction channel is shown,
with field that bends beam away from cyclotron center (simulation courtesy of JJ Yang). (@) shows vertical
beam size (mm) vs radius from center (also mm). The electrostatic deflection channel has a strong electric
field between the plates that provides a kick to the last bunch to push it outside the cyclotron. Efficient
operation requires that there be as few particles as possible in the space between the last two turns, to
avoid damaging the thin septum plate. (b) shows the total particle count (plotted logarithmically) vs radius.
The lower curve demonstrates how collimators placed close to the center of the cyclotron can help
cleaning up the space between turns by absorbing halo particles. The beneficial effect of collimators is

clearly seen (Yang et al. 2013)
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If electron heating is reduced or eliminated, the limit to foil lifetime becomes crystal
dislocations due to passage of the protons. We have performed an experiment, in col-
laboration with PSI (Doelling et al. 2018), to measure the lifetime of a 79 pg/cm? foil in
a 1.72 mA 72 MeV proton beam. This foil was placed in the transport line between the
Injector 2 cyclotron and their main ring in an area with no magnetic fields, guarantee-
ing no recirculating electrons. Foil damage was seen, but only after about 60 h of beam
exposure.

In IsoDAR, the protons emerging from the stripper have a bending radius half that of
the H," ion. Calabretta has shown (see Fig. 6b), that if the stripper is placed in the cor-
rect location, the proton orbits can loop around inside the higher hill field and return
into the valley region where the magnetic field is much lower, to exit cleanly from the
cyclotron. In addition, if a narrow stripper foil is introduced upstream of the extraction
septum, it can shadow the septum (Fig. 6a and b), and ions that would strike it are bent
(as protons) to pass inside its inner edge.

Figure 6 also shows an option where stripper foils are used for extracting all the beam
from the cyclotron. As is the case with modern isotope cyclotrons, several stripper loca-
tions can be used, in our case a maximum of four, because of the four-fold symmetry of
the cyclotron magnet. Using pure stripping extraction reduces the wall-plug power needed
(from 3.5 MW to 2.7 MW) to drive the cyclotron, because a lower RF voltage can be used

since clean turn separation is not required.

Summary: IsoDAR cyclotron parameters

Table 1 compares the basic parameters of the IsoDAR cyclotron (Abs et al. 2015) with two
leading commercial isotope cyclotrons: the IBA C30 and C70 (IBA Brochures with tech-
nical specifications for the C30 and C70 cyclotrons n.d.). Though the proton energy is
slightly lower for the IsoDAR cyclotron (60 MeV vs 70 MeV for the IBA C70), this machine
is larger and heavier because of the higher magnetic rigidity of the H," ion accelerated, but
these penalties are outweighed by the benefits. IsoDAR delivers roughly ten times the
current of the C70 but requires significantly less than ten times the wall plug power, and

for less than three times the footprint.

ISOTOPE applications
With the factor of 10 increase in beam current, the benefits of an IsoDAR-class cyclotron
are higher production rates for lower cross section isotopes and efficient production of
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Fig. 6 a Shadow stripper protects septum from halo particles. (Underlying simulations courtesy of JJ Yang).
b Orbits of protons from shadow stripper avoid septum, and exit cleanly. Different orbits correspond to
changes in stripper location in hill fringe field. c: 4-fold symmetry of magnetic field allows 4 locations for
stripper foils to remove all beam from cyclotron via stripping. b and ¢ Courtesy of L. Calabretta)
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Table 1 Comparison of I1soDAR with IBA commercial isotope cyclotrons

Parameter IsoDAR IBA C30 IBA C70
lon species accelerated H,* H™ H™
Maximum energy (MeV/nucleon) 60 30 70
Proton beam current (mA) 10 12 0.75
Available beam power (kW) 600 36 52

Pole radius (m) 1.99 091 124
Quter diameter (m) 6.2 3 4

Iron weight (metric tons) 450 50 140
Electric power required (MW) 35o0r27 0.15 0.5

larger amounts of long-lived isotopes. This will require development of targets that can
take advantage of the high powers. We address the flexibility of a Q/A = 0.5 cyclotron to
accelerate a wide variety of ions, and, finally, examples are given of the yields possible for
two isotopes in high demand at present.

Targetry and beam power management

Due to the very high beam power of the IsoDAR cyclotron, state of the art facilities
would be required for handling and processing of such a high levels of isotopes as well
as for ensuring radiation safety. While this an important challenge, it is not a particu-
larly novel one and could be overcome with existing technologies.

Targets are currently designed for a maximum of a few kW. Recent developments
(Johnson and Gelbart 2014) extend this into a few 10’s of kW. The full 600 kW is con-
siderably beyond the present state of the art.

As power density is a key parameter, development activities should probably concen-
trate on larger targets and capabilities for spreading beam over larger areas. In addition,
focus should be on more efficient cooling and heat-transport designs. These must be
coupled with metallurgy and chemistry of suitable isotope source materials. Operating
at higher temperatures should also be investigated, for instance using liquid metal tar-
gets where this might be possible, and high-temperature coolants.

While having such a powerful beam presents an opportunity for development of more
heat-tolerant targets, strategies exist for splitting the beam amongst several targets. For Iso-
DAR, up to four stations can be used with internal strippers, though experience with H™
cyclotrons indicates that tuning for more than two at a time may prove difficult.

A technique has been proposed (Alonso 2012) to use an extracted H," beam, consist-
ing of a modular transport line with stations where a small amount of beam is peeled
off and directed to a target. As shown in Fig. 7 each station would have a separating
magnet. Just upstream of the magnet, a stripper foil is inserted into the edge of the
broadened H," beam, producing a proton fraction that is directed to a target. The
remaining H," is refocused and sent to the next station. In this way adjustable amounts
of protons can be sent to many targets.

Key for developing higher power targets is to spread the beam over a larger area, thus
keeping the power density on the target to within limits for cooling. In doing so it is im-
portant to ensure that beam uniformity over the area of the target is maintained, and that
there are no hot spots on the target. This can be done with beam line magnets, including
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Target N

Station N
Protons
Stripper

Station N+1

H,*

Station N-1 —

Separating magnet

Fig. 7 Technique for sharing beam between many targets using sequential stations

quadrupole and higher-order (sextupole and octupole) focusing elements, and also with
raster or wobbler magnets that rapidly move the beam spot over the face of the target.
Both techniques have been used successfully for ensuring uniform irradiation of targets.

The beam power available from the cyclotron has the potential of causing damage to
internal and external components. Appropriately placed radiation monitors will detect
increase in beam loss and enable shutting the beam off before damage can occur.

Our designs and simulations indicate that the full beam power can be extracted with-
out untoward beam losses, however reaching this level of performance will require very
careful tuning and commissioning. To do this, it will be necessary to run at lower pow-
ers, and slowly ramp up the power as losses are reduced.

As indicated earlier, space charge is a very important element in the beam dynamics. To
reduce total power, then, it is best to reduce the duty factor rather than reducing the
current level from the source. A chopper has been built into the short transport line be-
tween the source and the RFQ, so time structure can be introduced into beam injected
into the RFQ. This chopper can turn the beam on or off in under a microsecond, and is
adjustable to provide a beam duty factor between 0 and 100%. In this way the beam power
can be adjusted without changing the number of particles in an RF bunch, preserving the
space charge effects in the bunch.

This adjustment in duty factor can also be used productively for developing higher
power targets, to continuously increase the power on a target up to its design limit. One
should note that the chopper timing needs to be coordinated with any beam sweeping
over the target, and with thermal time constants in the target heat-handling designs.

Beam species flexibility
A cyclotron designed to accelerate H," can, with only minor tuning changes, accept any

** C® or other like ions could

ion with a charge-to-mass ratio of 0.5. So, deuterons, He
be accelerated to the same energy-per-nucleon (60 MeV) as H,". The tuning changes are
needed because of the small proton/neutron and nuclear binding mass differences; very
slight adjustments to the magnetic field are needed to preserve isochronicity for each ion
species. Such adjustments could be done with trim coils placed in the valley regions of the
cyclotron magnet.

The ion source would need to provide the fully-stripped ions injected. While it is diffi-

cult to remove all the electrons from helium and carbon atoms, a commercially-available
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Electron Cyclotron Resonance (ECR) source, the PK-ISIS unit from Pantechnik (PK-ISIS
source n.d.), delivers 2.4 mA of alpha particles and 50 uA of C°*. Beyond the ion source,
the transport, bunching, injection and acceleration of these ions does not differ from H,".
As these ions are fully stripped, foils will not change the charge-state of the ion, so con-
ventional septum extraction must be used. Expected beam-on-target for these ions would
be about 1 mA for alpha particles (240 MeV, at 120 kW of beam power) or 30 pA of car-
bon (3.6 kW, 720 MeV of total energy).

Deuteron beams of 5 mA would be indistinguishable, as far as the accelerator is con-
cerned, from the planned H," beams (except, again, that foils cannot be used for extrac-
tion). This current level would be easily obtained from a standard proton source using
deuterium instead of hydrogen as the source gas. Because of the prevalence of breakup of
the deuteron in the target and production of beam-energy neutrons, the limit on deuteron
beam current would probably come from the facility shielding emplaced. In principle,
beam power on target could reach 600 kW.

These beam species, and power levels, provide for totally new areas of research in iso-
tope production. Regions totally inaccessible at present would open up, and while most
isotopes directly produced would have short half-lives, decay chains could yield new or
existing isotopes that could prove interesting and economical for medical or other
applications.

Example: a ®®Ge/ °3Ga generator for diagnostic imaging

The high power of the IsoDAR cyclotron opens the possibility of highly efficient produc-
tion of the ®®Ge/ ®®*Ga generator. This generator has many advantages in a clinical setting,
and improving its accessibility and reducing production costs can have a very large impact
on nuclear medicine. ®*Ge decays with a half-life of 270 days to ®*Ga, which is a positron
emitter, that is today finding increasing application in PET imaging.

Generators (often referred to as “cows”) offer great advantages for nuclear medicine
studies, in that the imaging isotope is available without an on-site accelerator. A long-
lived parent is produced in an accelerator, or reactor, and is shipped to the use site.
The short-lived daughter is “milked” from the source as needed, this short-lived isotope
is used in the diagnostic study.

The usefulness of a generator is related to the half-life of the parent. If one compares
the ®®*Ge/**Ga generator with the widely-used **Mo/**™Tc generator, the *>Mo lifetime
is 66 h, so such generators have a useful lifetime of a week or two, whereas the 270-day
half-life of ®*Ge provides a much longer shelf life, typically one year.

Because of the long parent half life, production of a viable ®*Ge/**Ga generator requires
many hours of cyclotron time, leading to high costs and scarce availability. The IsoDAR
cyclotron, with its factor of 10 higher beam current, immediately increases the production
rate by a factor of 10. In addition, however, we note that the higher energy of the proton
beam (60 MeV) can almost double again the production yield.

Natural gallium, the target material, has two isotopes, ®>Ga (60% abundance) and "'Ga
(40%). Both these isotopes can produce %8Ge: 71Ga(p,4n)68Ge, and 69Ga(p,2n)6SGe. Both
are compound nucleus reactions, with approximately equal cross sections (around 150
mb), the first peaks at a proton energy of around 50 MeV, the second at about 25 MeV.
Both have excitation function widths of about +5MeV. So, bringing a 60 MeV proton
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beam into a thick target of gallium will first make use of the heavier isotope, and as the
protons lose energy they will produce the ®*Ge from the lighter isotope. Other Ge isotopes
produced in the target have substantially lower half-lives than ®*Ge; the longer-lived ones
are: 'Ge (11 days), %Ge (39 h) and **Ge (2.2 h). "*Ge and *Ge decay to stable Ga isotopes
so do not contaminate the generator, and waiting a day before processing the target ad-
equately removes any ®°Ga from the generator.

The 10 mA intensity of the proton beam from the IsoDAR cyclotron could produce,
assuming the above cross sections, approximately 50 Ci of the ®®*Ge parent in a week of
running. This could yield a very large number of generators, which, with a year or more
useful lifetime, could greatly reduce the dependence on a rapid supply chain for distri-
bution of the generator.

This production rate assumes that all of the 600 kW of available beam power can be de-
posited on production targets. If stripping extraction is used, and all four ports used sim-
ultaneously, each target would need to absorb 150 kW. As gallium has a low melting
point, the metal in the target would undoubtedly be in liquid form. High-power liquid gal-
lium targets have been engineered, the current limit is around 50 kW (Johnson and Gel-
bart 2014). Extending this to 150 kW or higher will require further development efforts.

Example: production of >**Ac: an a emitter for targeted radiotherapy

Alpha-emitting isotopes are in high demand for therapeutic applications. The short
range of alpha particles, and the high LET (Linear Energy Transfer) of the stopping
alpha lead to extremely effective cell killing. One of the most effective isotopes is Actin-
ium 225, with a 9.9 day half-life. It is the parent of a chain that includes four alpha
emitters ending up with stable **’Bi. The four alpha particles at the site of the original
222Ac all contribute to the radiation damage to the cells within a radius of about 50 p-
meters of the decaying nucleus. Reference (Miederer et al. 2008) outlines the develop-
ment of this radioisotope for clinical applications.

The initial source of ***Ac arose from the chemical separation of ***Th from ***U.
For this process, the sophisticated hot-chemistry resources at Oak Ridge and Karlsruhe
were used. Alpha decay of ***Th (8000 year half-life) could yield small quantities of
*?>Ra that then beta decayed (with a 14-day half-life) to ***Ac. Though very complex,
this process did yield small quantities of ***Ac, sufficient for some highly-successful
clinical studies. Another production method is proton irradiation of **°Ra, that yields
225Ac via the (p,2n) reaction. However, isolating sufficient ***Ra for the targets involves
a process almost as complex as the one described above.

A more promising possibility arose from studies at Los Alamos, where thick targets of
natural thorium were bombarded with 200 MeV protons. In these experiments, researchers
demonstrated that ***Ac can be produced with acceptable efficiency (Weidner et al. 2012).
Cumulative cross sections were measured, from 200 MeV (15 mb) to 50 MeV (5 mb). Their
publication states that use of BLIP (Brookhaven) and LANSCE (LANL) at 100 pA for pro-
duction of ***Ac could increase the world supply by a factor of 60. Increasing the current
from 100 pA to 10 mA increases this number by another factor of 100.

We estimate the IsoDAR production rate from a thorium target to be around 7.4 gigabec-
querel (200 mCi) per hour. Thus, in 5 h, we match the current yearly production. This appli-
cation will require two technical advances. First, the development of high-power thorium
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targets. However thorium has a high melting point, so it can withstand considerable heating.
A rotating target configuration might provide a good path to the high powers needed. Sec-
ond, appropriate separation processes to extract the **>Ac from the bombarded target must
be devised. This will be complex due to radioactivity in the target. These are solvable prob-
lems that are motivated by the game-changing quantities of ***Ac that IsoDAR can provide.

Conclusion

Meeting the beam-current requirement for the IsoDAR Cyclotron, to satisfy its mission
as a driver for a neutrino source, has led to the development of the capability to pro-
duce high current proton beams. This places it above all existing cyclotrons. Achieving
these currents has required innovative developments in ion sources, bunching and in-
jection, capture, acceleration and extraction of the ions in a highly-optimized cyclotron
design. The IsoDAR team has made good progress towards demonstrating the expected
performance.

The intensity increase improves commercial and clinical viability of difficult-to-produce
radioisotopes, such as **’Ac and the long-lived ®*Ge/**Ga PET generator. As newly emer-
ging isotopes are investigated, this flexible, enhanced performance technology will allow for
more efficient evaluation of new candidates. Isotope target development to fully utilize the
available beam power will be a significant challenge. However, having the very high beam
power available provides an effective testbed for target development. The capability of such
high production rates of rare isotopes is a strong incentive to fully utilize the power of a
high-power cyclotron. In addition, techniques for beam splitting which are unique to H,"
could make efficient use of lower-power targets. The powerful capabilities of the IsoDAR
cyclotron including novel target development, multiple beam species flexibility, and
massive production rates of rare medical isotopes demonstrate that it is the next step in
high-power cyclotron technology.
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