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ARTICLE INFO ABSTRACT

Keywords: Collection of unbiased stereology data currently relies on relatively simple, low throughput technology devel-
Stereology oped in the mid-1990s. In an effort to improve the accuracy and efficiency of these integrated hardware-soft-
Cell counting ware-digital microscopy systems, we have developed an automatic segmentation algorithm (ASA) for automatic
Sleill;g;ia stereology counts using the unbiased optical fractionator method. Here we report on a series of validation

experiments in which immunostained neurons (NeuN) and microglia (Ibal) were automatically counted in tissue
sections through a mouse neocortex. In the first step, a minimum of 100 systematic-random z-axis image stacks
(disector stacks) containing NeuN- and Ibal-immunostained cells were automatically collected using a software-
controlled 3 axes (XYZ) stage motor. In the second step, each disector stack was converted to an extended depth
of field (EDF) image in which each cell is shown at its optimal plane of focus. Third, individual neurons and
microglia were segmented and the regional minimas were extracted and used as seed regions for cells in a
watershed segmentation algorithm. Finally, the unbiased disector frame and counting rules were used to make
unbiased parameter estimates for neurons and microglia cells. The results for both NeuN neurons and Ibal
microglia were compared to manual counts made by a moderately experienced data collector from the same
disector stacks. The final results show lower error rates for counts of Ibal-immunostained microglia cells than for
quantifying NeuN-immunostained neurons, most likely due to less three-dimensional overlapping of Ibal cells.
We report that the throughput efficiency of using ASA to automatically annotate images of Ibal microglia is
more than five times greater than that of manual stereology counts of the same sections. Moreover, we show that
ASA is significantly more accurate in counting microglia cells than a moderately experienced data collector
(about 10% higher overall accuracy) when both were compared to counts by an expert neurohistologist. Thus,
the ASA method applied to EDF images from disector stacks can be extremely useful to automate and increase
the accuracy of cell counts, which could be especially helpful and cost-effective when expert help is not avail-
able. Another potential use of our ASA approach is to generate unsupervised ground truth as an efficient al-
ternative to manual annotation for training deep learning models, as shown in our ongoing work.

Segmentation
Manual ground truth
Gold standard
Neural network
Optical fractionator

1. Introduction

Digital anatomy and pathology refer to the study of healthy and
diseased tissue, respectively, from digitized images of microscopic
biologic structures such as cells, fibers, and blood vessels. Unbiased
(design-based) stereology is the state-of-the-art method for quantifying
brain cells (neurons, microglia) in basic neuroscience research and drug
discovery studies involving neurodegeneration and neuroinflammation.
A major weakness of these theoretically powerful stereology methods is
the continuing dependence on low throughput technology that requires
subjective manual counting (clicks) by highly trained technicians.
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These computer-assisted manual stereology studies suffer from high
labor costs, error-prone data collection, user subjectivity and fatigue.
Here we report on our continuing efforts to improve the accuracy,
precision and efficiency of these processes by incorporating a series of
recently developed machine learning techniques to support fully auto-
matic stereology analyses of high signal:noise (S:N) stained cells on
tissue sections.

2. Related work

A large and growing number of reviewers for peer-review journals
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and funding agencies now prefer stereology data to less accurate
(methodologically biased) morphometric and image analysis methods
(Saper, 1996; Mouton, 2002, 2011). To improve throughput of these
studies over manual counts by highly trained data collectors, we de-
veloped an automated approach and show that machine learning can be
used for accurate and efficient stereology of biological tissue. As in the
case of manual stereology of immunostained cells, machine learning
can overcome common sources of stereology bias (e.g., corpuscle pro-
blem, faulty correction factors, the reference trap) to generate ste-
reology data using theoretically unbiased methods.

For instance, our previous work shows that an adaptive segmenta-
tion algorithm (ASA) can make unbiased counts of NeuN-im-
munostained neurons with greater accuracy, precision and efficiency
than manual stereology counts of the same sections (Mouton et al.,
2017). The present study expands this work to show that with only
minor modifications the same ASA approach can achieve similar per-
formance for stereology counts of microglia equivalent to that of a
moderately experienced data collector in about one-fifth the time they
take. Typically, data will be collected by moderately experienced
people due to the cost of an expert for the long collection times. Im-
portantly, both methods use the same hardware configuration con-
sisting of a microscope equipped with low-to-high resolution lenses and
motorized XYZ stage; moderate resolution digital camera; and standard
computer/monitor. Besides the benefit of higher throughput, automatic
stereology reduces inter-rater variability due to user errors, subjectivity
and fatigue.

To date, our applications of automatic stereology have focused on
the total number and density of NeuN neurons on tissue sections. Here,
we show that the same ASA approach with only minor modifications
can be used for unbiased stereology counts of another important po-
pulation of brain cells, i.e., Ibal-immunopositive microglia cells, which
are critical for a wide range of neuroinflammation studies. Finally, the
ASA approach can dramatically reduce the work-effort by a human data
collector to create ground truth (image annotations) when training a
convolutional neural network (CNN) model to do segmentation using
deep learning. Building a relatively large and reliable segmentation
dataset (ground truth) is a prerequisite for training a deep neural net-
work to achieve robust results such as shown by Alahmari et al. (2019).
Thus, three novel contributions in this work arise from an ASA method
that is generalizable for different domains of immunostained tissue
sections: (1) automatic counting of both microglia cells (Ibal) and
neurons (NeuN) on immunostained tissue sections; (2) more accurate
results for stereological quantification of immunostained cells on tissue
sections in less than 20% of the time required for manual counts ap-
proaches; and (3) automatic creation of the ground truth for more ac-
curate and robust deep learning applications.

3. Materials and methods

Animal handling and use was approved by the USF Institutional
Animal Care and Use Committee and followed NIH guidelines for the
care and use of laboratory animals. These studies to validate the au-
tomatic framework for counting NeuN- and Ibal-immunostained neu-
rons and microglia cells, respectively, used the well-characterized
Tg4510 line with responder and activator transgenes that drive ex-
pression of a P301L tau mutation under control of a tetracycline op-
eron-responsive element (Santacruz et al., 2005). Tg4510 mice express
mutant tau that leads to progressive cognitive decline in parallel with
neuron loss and activation of neuroglia cells. Age- and sex-matched
non-tg littermate control mice were included to test the automatic
framework on normal (non-degenerating) neurons. Rather than test
specific hypotheses related to tauopathies, neurodegeneration or neu-
roinflammation, these genetically modified mice and controls were
selected to show a wide range of normal, neurodegenerative and neu-
roinflammatory phenotypes under brightfield illumination.
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3.1. Immunostaining

Sections were placed in a multi-sample staining tray and en-
dogenous peroxidase was blocked (10% methanol, 3% H,O, in PBS;
30 min). Mouse sections were permeabilized with 0.2% lysine, 1%
Triton X-100 in PBS solution and incubated overnight in anti-NeuN or
Iba-1 primary anti-rabbit antibodies from Millipore Sigma and Wako,
respectively, at 1:1000 dilution. Sections were washed in PBS, and then
incubated in biotinylated secondary antibody (Vector Laboratories,
Burlingame, CA). The tissue was again washed after 2h and incubated
with Vectastain® Elite® ABC kit (Vector Laboratories, Burlingame, CA)
for enzyme conjugation. Finally, sections were stained using 0.05%
diaminobenzidine in 0.03% H,0, with nickel intensification. Tissue
sections were mounted onto slides, dehydrated, and cover slipped.

3.2. Dataset

The datasets for automatic stereology were collected in conjunction
with manual stereology counts of NeuN neurons and Ibal microglia
done at the same systematic-random x-y locations across 6-8 sections
through the entire neocortex for six cases (M-1 through M-6). Both the
automatic and manual stereology methods were based on unbiased
estimation of total cell numbers using the optical fractionator method
(West et al., 1991). At each X-Y location, the user collected disector
stacks of images consisting of 10 one-mm images in the z-axis (disector
height = 10 um). Each disector stack was converted into a single syn-
thetic Extended Depth of Field (EDF) image using the algorithm in
Bradley and Bamford (2004). The algorithm was applied to over 1300
disector stacks from NeuN-stained cells (neurons) and Ibal (microglia
cells) from brains of six mice (Fig. 1). Each EDF algorithm shows all
cells within the disector stack at their optimal (most in focus) plane on a
single image (EDF image).

3.3. Segmentation methods

The ASA method proposed here is a newer version of the work in
Mouton et al. (2017) along with further experiments on new NeuN-
stained cases and then modifying and applying the algorithm for
counting Ibal-immunostained microglia cells. Since neurons and mi-
croglia appear in different shapes and brightness, no a priori shapes can
be assumed for the purpose of segmentation. Due to brightness varia-
tion at both the image and cell levels, any intensity thresholds used
during segmentation must be set in an adaptive and automatic manner.
The segmentation pipeline for the ASA is a combination of Gaussian
Mixture Model (GMM), morphological operations, watershed segmen-
tation, Voronoi diagrams and boundary smoothing. Each of these steps
are illustrated in Fig. 2 as outlined in the legend and detailed below.
Creating EDF images is useful to make it possible to process a single
image that has every cell in focus automatically rather than looking for
in focus cells manually in a Z-stack (volume). For instance, for neurons,
Fig. 2(a) shows the image used for the manual counts and Fig. 2(b) is
the EDF image. The inclusion line (green) and exclusion lines (red) lines
in Fig. 2(i) are for avoiding bias due to edge effects (Gundersen, 1977).

3.3.1. Clump segmentation

Similar to the second step of the algorithm in Ahmady Phoulady
et al. (2017), clumps of neurons in the image were segmented as fol-
lows. A GMM with two components was estimated based on pixel in-
tensities using the expectation maximization (EM) algorithm. The
image was binarized using the threshold computed by a background
Gaussian quantile function value (at ¢ = 0.06 in this study) minus an
offset f. Subsequently, morphological operations were applied to extract
the separate clumped cells regions (Fig. 2(c)). Finally, clumps with area
smaller than a pre-determined size, c,, were removed. Because the
GMM is estimated by pixel intensities of each image separately it makes
the whole framework relatively resistant to brightness variation (see
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Fig. 2. Intermediate results of different steps of the segmentation methods: (a) original microscopy image with manual counts, (b) the EDF image that is used by the
segmentation method, (c) segmented clumps after thresholding the EDF image, (d) processed EDF image, (e) regional minimas in the processed image, (f) providing
boundaries (background marker) for watershed segmentation that indicate pixels that do not belong to any cell, (g) watershed segmentation regions reconstructed by
regional minimas, (h) expanded foreground regions within each segmented clump boundary, (i) the final segmentation after smoothing region boundaries. Blue
regions are segmented regions that do not overlap with the disector frame and therefore are not used for automated counting; red regions are segmented regions that
were excluded due to overlap with the exclusion line; and green regions are segmented regions representing microglia cells used for automated counting.
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Fig. 3. Plots of manual and automated counts of different sections for six cases. These plots of NeuN neuron counts by section show the relative agreement between

the objective automated framework and subjective manual counts.

below). A deep discussion of parameter changes for this work (to count
Ibal-immunostained microglia cells) is done in Section 4.2.

3.3.2. Preprocessing

The image was preprocessed by the morphological operations
opening by re-construction followed by closing by reconstruction.
These operations smooth the image and remove very small dark or
bright regions (Fig. 2(d)). In this preprocessing step, very close regions
were connected to each other and very small regional minimas were
removed.

3.3.3. Foreground and background markers

After preprocessing the image foreground and background markers
are extracted for watershed segmentation. The foreground markers are
regional minimas extracted from the preprocessed image (Fig. 2(e)) and
background markers are the boundaries between regions of a watershed
segmentation (Fig. 2(f)). Regional minimas are an indication of neurons

and eventually those that do not fall into the previously segmented
neuron clump regions were removed by reconstructing the regional
minima map using the clumps map. Moreover, regional minimas with
area smaller than a predetermined size, m,, were removed.

3.3.4. Watershed segmentation

Watershed segmentation was applied using the foreground and
background markers described in the previous step. One of the regions
corresponded to the background and the others are foreground regions.
Those foreground regions that overlap with the map of segmented
clumps were kept and the others were discarded (Fig. 2(g)). This wa-
tershed segmentation usually expands original regional minimas and
gives a better approximation of neuron boundaries. Lastly, each of the
clump regions were split using the Voronoi diagrams obtained by the
watershed regions inside it (Fig. 2(h)).
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3.3.5. Boundary smoothing and neuron counting

In the final step, the region boundaries were refined using the
Savitzky-Golay filter (Savitzky and Golay, 1964). This filter results in
more smooth boundaries and produces less concave regions. It was
observed that a single neuron or microglia cell may be split into two or
more sub-regions if more than one regional minima was detected. To
diminish the adverse effect of such splits, a region was not split if its size
was less than a maximum threshold and the solidity of the region ob-
tained by the refined boundary of the original region was larger than
the average solidity of all regions obtained by the refined boundaries of
sub-regions. To count the cells, those segmented regions that do not fall
inside the disector frame or overlap with the exclusion line were re-
moved and the number of the remaining regions were chosen as the
number of counted cells for that disector location.

4. Experiments and results

The ASA approach was initially designed for automatic counts of
NeuN stained neurons in images (Mouton et al., 2017). To evaluate the
adaptability of this framework, this work applied ASA with minor
modifications (discussed in Section 4.2) to detect and count Ibal-im-
munostained microglia cells. Other than the counts, we also report the
correlation (in terms of R?) between the manual and automated counts
for NeuN images to measure the effectiveness of the automation; and
use precision and recall to measure the detection accuracy for auto-
matic counts of Ibal-positive microglia. In these experiments, the per-
formance of the framework was evaluated on one mouse, a few values
for parameters were checked and set based on the obtained results and
then the framework was tested on the remaining mice.

4.1. ASA for counts of NeuN and Ibal images

We used the ASA to automatically count neurons in all cases. The
offset f, introduced in Section 3.3.1, was set to 20. This offset was used
due to the higher signal to noise ratio for NeuN and Ibal images.
Moreover, the minimum clump size, c4 (discussed in Section 3.3.1), was
set to 1000 pixels. The correlation between the manual and automated
counts were assessed by the R? measure at the section level. Therefore,
for each section of a case the manual counts of all stacks were summed
up to give the counts for that section of neurons (Fig. 3) and microglia
(Fig. 4). Finally, the automated count is computed for each section and
for the entire neocortex using the optical fractionator method. Table 1
presents the final manual and automated counts (the sum of all section
counts) for different cases and the correlation between the manual and
automated neuron counts at the section level. The estimates of the total
number of neurons after application of the optical fractionator scheme
can be obtained by extrapolating the raw data to the total neocortex.
Finally, Fig. 3 presents the plots of the manual and automated counts
for each of the NeuN cases.

~-Manual Count
~Gold Standard Count
~Automated Count

Manual Counts
Automated Counts

1 2 3 4 s 6 7 ]

Section
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Table 1

Total manual and automated neuron counts of different cases in the dataset.
The counts represent the raw data for cells (neurons) sampled and counted
through the entire neocortex in an unbiased systematic-random manner using
the unbiased optical disector method.

Case Manual count Auto. count R?

M-1 276 316 0.99
M-2 554 607 0.99
M-3 1287 1163 0.96
M-4 570 501 0.95
M-5 737 950 0.96
M-6 558 524 0.97

Fig. 5. Sample an Ibal image with two manually marked microglia cells. Such
images were manually annotated by a moderately-experienced data collector to
create the manual truth for cell annotations.

4.2. Extension to other brain histology images

To evaluate the generalizability of the ASA approach to images
stained for other proteins, we used the NeuN framework to automate
the tasks of counting microglia cells in images from Ibal-im-
munoistained sections (Fig. 5). Because of the different characteristics
of such images (e.g., contrast) and difference in size and appearance of
microglia cells compared to neurons, modifications were needed in
parameters trained for NeuN images, as discussed below. To assess the
performance, Ibal images from two cases, denoted by M-7 and M-8,
were processed manually and the manual counts were compared to the
automated counts achieved by the ASA. For this task, algorithm para-
meters were modified to achieve acceptable results on M-7 and the
method with the new parameters were tested on M-8.

4.2.1. Microglia cell counting in Ibal images
Segmenting microglia cells in Ibal images is a relatively more

M-8
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Fig. 4. Plots of manual truth, automated and gold standard counts of each section in Ibal cases.
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difficult task than segmenting neurons in NeuN images due to the
presence of microglial processes (see Fig. 5). The ASA method for NeuN
neurons was modified to also achieve acceptable results for Ibal
images. Three modifications that were applied to the step of Clump
Segmentation (discussed in Section 3.3.1) are listed below:

1 Minimum clump size was decreased from 1000 to 900: because of
the smaller size of microglia cells compared to neurons.

2 The structuring element used in morphological operations was en-
larged from a radius of 5 to radius of 10: to remove microglial
projections in the final segmentation.

3 The offset f, introduced in Section 3.3.1, was set to 70: because of
the higher S:N ratio in Ibal images compared to NeuN images.

Otherwise, all other steps of the ASA were used without modifica-
tion. During the assessment of the quality of the annotation in the
training dataset, it was observed that the counts were not accurate for
some stacks of images. Therefore, an expert neurohistologist (PRM)
recounted the microglia cells in all collected stacks. Hence, the micro-
glia cells were counted in eight sections of each of two Ibal cases both
by a moderately experienced data collector (resulting in Manual Truth)
and the expert (resulting in Gold Standard). Table 2 presents the manual
truth, automated and gold standard counts for both cases used in this
study. Moreover, to evaluate and compare the detection accuracy of the
framework to that of the data collector, we present the detection
measures, precision, recall and F1 score (Table 3).

Plots in Fig. 4 show the manual truth, gold standard and automated
counts for each section of two cases in the Ibal dataset. Table 3 presents
the precision, recall and F1 score of the manual truth and automated
method evaluated using the gold standard counts as the reference:

TP
Recall = TP+—FN .
Precision-Recall

Precision + Recall ’

Precision = —
~ TP+FP’

F1Score = 2-

where TP, FP and FN are True Positive (segmented cells that have an
annotation in the gold standard dataset), False Positive (segmented cells
that include no annotation) and False Negative (annotations that do not
fall inside a segmented cell), respectively.

5. Discussion

The high correlation values between manual and automated counts
of NeuN cases indicate that the framework can be used to automate the
time-consuming and error-prone manual method for stereology counts
of NeuN neurons images. With the exception of a few parameters such
as minimum size of neuron regions (which was set based on image
resolution), most of the parameters in the framework were set ac-
cording to the properties of each image. This makes the results of the
framework more reliable under variable conditions of image acquisi-
tion. As an example, it was observed that some of the images in the
dataset were collected under the condition of varying light intensity.
Because intensity thresholds were set adaptively, automatically and
separately by the estimated GMM for each image, the framework pro-
duced consistent image segmentation despite apparent differences in
image brightness. Fig. 6 illustrates two images with extreme intensities
and their corresponding segmentation results.

In the Ibal dataset, one case was used for parameter tuning and the

Table 2
Total manual truth, automated and gold standard microglia counts of the two
Ibal cases.

Case Manual truth count Automated count Gold standard count
M-7 215 179 132
M-8 521 353 404
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Table 3

Detection accuracy of microglia cells in terms of Precision, Recall and F1 Score
of the manual truth and automated methods (superior results in each case are
shown in bold text).

Case Count Precision Recall F1 score
M-7 Manual truth 59.53% 96.97 % 73.77%
Automated 70.39% 95.45% 81.03%
M-8 Manual truth 69.67% 89.85% 78.48%
Automated 96.32% 84.16% 89.83%

other case was used for testing. Initially, detecting microglia cells in
Ibal images was thought to be a relatively more challenging task than
detecting neurons in NeuN images. After visually inspecting the results
of ASA along with the data collector manual annotation (manual truth)
for microglia cells counts in the first Ibal case, it was found that the
manual count and the automated count data were not in agreement in
several cases; furthermore, this careful examination showed the ASA to
be more accurate. Therefore, an expert neurohistologist was asked to
manually review and count microglia cells in all the stacks, resulting in
the Gold Standard dataset that contained the fewest errors. In the final
analysis, the manual truth and automated counts created by the ASA
were checked against the gold standard counts manually and the de-
tection accuracy was quantified. As summarized in Table 3, the auto-
mated count had higher overall detection accuracy for both cases ex-
amined, achieving about 10% higher accuracy in terms of F1 score than
manual truth counts.

Through careful investigation of these results we identified three
sources of segmentation errors in NeuN and Ibal counts using the ASA-
optical fractionator framework: (1) very high density cell populations;
(2) cells with very low contrast (low S:N); and (3) image artifacts. The
errors caused by artifacts or cells with very low contrast can be po-
tentially minimized by extra preprocessing steps to remove artifacts and
post-processing steps to merge over-segmented regions. Complete
elimination of segmentation errors for high density cell populations is a
more challenging task that we are addressing with ongoing studies in-
volving 3D segmentation, iterative neural networks and active deep
learning. Fortunately, very high density populations are rare events for
the vast majority of cells, including NeuN neurons and Ibal microglia
cells in brain tissue.

Testing is ongoing using ASA to create segmentation ground truth
for training a CNN to further reduce the error rates and increase the
robustness of the whole framework for automatic counting of multiple
populations of immunostained cells on tissue sections. Finally, future
work will explore the tolerance of this approach under variable con-
ditions of low to high S:N, staining protocols and biological structures.

6. Conclusions

These experiments with new image datasets expand our previous
work with a small set of NeuN (neurons) images to show that the ASA-
optical fractionator framework can be successful with a range of
staining domains from multiple types of immunostained brain cells. The
results for NeuN counting confirm earlier reports of high correlation
with manual annotation (with R> > 0.95). Testing with Ibal microglia
cell slides to get counts showed the ASA-optical fractionator framework
is substantially more accurate than a moderately experienced data
collector when compared to the results of an expert neurohistologist.
Moreover, Ibal microglia cells showed lower error rates than for NeuN
neurons, most likely due to less cell overlap for Ibal microglia than
NeuN neurons in the mouse neocortex. Together, these results provide
further indication that automatic stereology can reliably replace the
manual, labor-intensive and tedious process of cell counting by a
moderately experienced data collector with a method that decreases the
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Fig. 6. Two EDF images with very different brightness levels and their segmentation results. This visual comparison shows how the method achieved consistent
results under varying intensity as it could find and mark all cells in both images correctly.

time, effort and costs of stereology data collection while increasing the
accuracy, precision and throughput of the final results. This attribute
may be especially useful in settings where computer-assisted equipment
is present but expert and highly trained data collectors are not available
or are needed for more highly technical activities. Finally, these find-
ings show that the ASA approach can be effectively used to auto-
matically annotate EDF images of NeuN neurons and Ibal microglia
cells for automatic counts by deep learning neural networks.

In our ongoing work (Alahmari et al., 2018, 2019), this feature
shows promising results for automatically generating segmentation
ground truth datasets for training CNN models to make automatic ste-
reology counts of brain cells. The segmentation ground truth generated
by ASA is used to train an iterative deep learning segmentation model
with human-in-the-loop to reject, verify or modify the segmentations.
Using ASA to generate the initial ground truth segmentation masks
significantly reduced the time needed for manual annotation and seg-
mentation mask creation and hence made training a robust deep
learning model practical.
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