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A B S T R A C T

Collection of unbiased stereology data currently relies on relatively simple, low throughput technology devel-

oped in the mid-1990s. In an effort to improve the accuracy and efficiency of these integrated hardware-soft-

ware-digital microscopy systems, we have developed an automatic segmentation algorithm (ASA) for automatic

stereology counts using the unbiased optical fractionator method. Here we report on a series of validation

experiments in which immunostained neurons (NeuN) and microglia (Iba1) were automatically counted in tissue

sections through a mouse neocortex. In the first step, a minimum of 100 systematic-random z-axis image stacks

(disector stacks) containing NeuN- and Iba1-immunostained cells were automatically collected using a software-

controlled 3 axes (XYZ) stage motor. In the second step, each disector stack was converted to an extended depth

of field (EDF) image in which each cell is shown at its optimal plane of focus. Third, individual neurons and

microglia were segmented and the regional minimas were extracted and used as seed regions for cells in a

watershed segmentation algorithm. Finally, the unbiased disector frame and counting rules were used to make

unbiased parameter estimates for neurons and microglia cells. The results for both NeuN neurons and Iba1

microglia were compared to manual counts made by a moderately experienced data collector from the same

disector stacks. The final results show lower error rates for counts of Iba1-immunostained microglia cells than for

quantifying NeuN-immunostained neurons, most likely due to less three-dimensional overlapping of Iba1 cells.

We report that the throughput efficiency of using ASA to automatically annotate images of Iba1 microglia is

more than five times greater than that of manual stereology counts of the same sections. Moreover, we show that

ASA is significantly more accurate in counting microglia cells than a moderately experienced data collector

(about 10% higher overall accuracy) when both were compared to counts by an expert neurohistologist. Thus,

the ASA method applied to EDF images from disector stacks can be extremely useful to automate and increase

the accuracy of cell counts, which could be especially helpful and cost-effective when expert help is not avail-

able. Another potential use of our ASA approach is to generate unsupervised ground truth as an efficient al-

ternative to manual annotation for training deep learning models, as shown in our ongoing work.

1. Introduction

Digital anatomy and pathology refer to the study of healthy and

diseased tissue, respectively, from digitized images of microscopic

biologic structures such as cells, fibers, and blood vessels. Unbiased

(design-based) stereology is the state-of-the-art method for quantifying

brain cells (neurons, microglia) in basic neuroscience research and drug

discovery studies involving neurodegeneration and neuroinflammation.

A major weakness of these theoretically powerful stereology methods is

the continuing dependence on low throughput technology that requires

subjective manual counting (clicks) by highly trained technicians.

These computer-assisted manual stereology studies suffer from high

labor costs, error-prone data collection, user subjectivity and fatigue.

Here we report on our continuing efforts to improve the accuracy,

precision and efficiency of these processes by incorporating a series of

recently developed machine learning techniques to support fully auto-

matic stereology analyses of high signal:noise (S:N) stained cells on

tissue sections.

2. Related work

A large and growing number of reviewers for peer-review journals
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and funding agencies now prefer stereology data to less accurate

(methodologically biased) morphometric and image analysis methods

(Saper, 1996; Mouton, 2002, 2011). To improve throughput of these

studies over manual counts by highly trained data collectors, we de-

veloped an automated approach and show that machine learning can be

used for accurate and efficient stereology of biological tissue. As in the

case of manual stereology of immunostained cells, machine learning

can overcome common sources of stereology bias (e.g., corpuscle pro-

blem, faulty correction factors, the reference trap) to generate ste-

reology data using theoretically unbiased methods.

For instance, our previous work shows that an adaptive segmenta-

tion algorithm (ASA) can make unbiased counts of NeuN-im-

munostained neurons with greater accuracy, precision and efficiency

than manual stereology counts of the same sections (Mouton et al.,

2017). The present study expands this work to show that with only

minor modifications the same ASA approach can achieve similar per-

formance for stereology counts of microglia equivalent to that of a

moderately experienced data collector in about one-fifth the time they

take. Typically, data will be collected by moderately experienced

people due to the cost of an expert for the long collection times. Im-

portantly, both methods use the same hardware configuration con-

sisting of a microscope equipped with low-to-high resolution lenses and

motorized XYZ stage; moderate resolution digital camera; and standard

computer/monitor. Besides the benefit of higher throughput, automatic

stereology reduces inter-rater variability due to user errors, subjectivity

and fatigue.

To date, our applications of automatic stereology have focused on

the total number and density of NeuN neurons on tissue sections. Here,

we show that the same ASA approach with only minor modifications

can be used for unbiased stereology counts of another important po-

pulation of brain cells, i.e., Iba1-immunopositive microglia cells, which

are critical for a wide range of neuroinflammation studies. Finally, the

ASA approach can dramatically reduce the work-effort by a human data

collector to create ground truth (image annotations) when training a

convolutional neural network (CNN) model to do segmentation using

deep learning. Building a relatively large and reliable segmentation

dataset (ground truth) is a prerequisite for training a deep neural net-

work to achieve robust results such as shown by Alahmari et al. (2019).

Thus, three novel contributions in this work arise from an ASA method

that is generalizable for different domains of immunostained tissue

sections: (1) automatic counting of both microglia cells (Iba1) and

neurons (NeuN) on immunostained tissue sections; (2) more accurate

results for stereological quantification of immunostained cells on tissue

sections in less than 20% of the time required for manual counts ap-

proaches; and (3) automatic creation of the ground truth for more ac-

curate and robust deep learning applications.

3. Materials and methods

Animal handling and use was approved by the USF Institutional

Animal Care and Use Committee and followed NIH guidelines for the

care and use of laboratory animals. These studies to validate the au-

tomatic framework for counting NeuN- and Iba1-immunostained neu-

rons and microglia cells, respectively, used the well-characterized

Tg4510 line with responder and activator transgenes that drive ex-

pression of a P301L tau mutation under control of a tetracycline op-

eron-responsive element (Santacruz et al., 2005). Tg4510 mice express

mutant tau that leads to progressive cognitive decline in parallel with

neuron loss and activation of neuroglia cells. Age- and sex-matched

non-tg littermate control mice were included to test the automatic

framework on normal (non-degenerating) neurons. Rather than test

specific hypotheses related to tauopathies, neurodegeneration or neu-

roinflammation, these genetically modified mice and controls were

selected to show a wide range of normal, neurodegenerative and neu-

roinflammatory phenotypes under brightfield illumination.

3.1. Immunostaining

Sections were placed in a multi-sample staining tray and en-

dogenous peroxidase was blocked (10% methanol, 3% H2O2 in PBS;

30min). Mouse sections were permeabilized with 0.2% lysine, 1%

Triton X-100 in PBS solution and incubated overnight in anti-NeuN or

Iba-1 primary anti-rabbit antibodies from Millipore Sigma and Wako,

respectively, at 1:1000 dilution. Sections were washed in PBS, and then

incubated in biotinylated secondary antibody (Vector Laboratories,

Burlingame, CA). The tissue was again washed after 2 h and incubated

with Vectastain® Elite® ABC kit (Vector Laboratories, Burlingame, CA)

for enzyme conjugation. Finally, sections were stained using 0.05%

diaminobenzidine in 0.03% H2O2 with nickel intensification. Tissue

sections were mounted onto slides, dehydrated, and cover slipped.

3.2. Dataset

The datasets for automatic stereology were collected in conjunction

with manual stereology counts of NeuN neurons and Iba1 microglia

done at the same systematic-random x–y locations across 6–8 sections

through the entire neocortex for six cases (M-1 through M-6). Both the

automatic and manual stereology methods were based on unbiased

estimation of total cell numbers using the optical fractionator method

(West et al., 1991). At each X–Y location, the user collected disector

stacks of images consisting of 10 one-mm images in the z-axis (disector

height= 10 μm). Each disector stack was converted into a single syn-

thetic Extended Depth of Field (EDF) image using the algorithm in

Bradley and Bamford (2004). The algorithm was applied to over 1300

disector stacks from NeuN-stained cells (neurons) and Iba1 (microglia

cells) from brains of six mice (Fig. 1). Each EDF algorithm shows all

cells within the disector stack at their optimal (most in focus) plane on a

single image (EDF image).

3.3. Segmentation methods

The ASA method proposed here is a newer version of the work in

Mouton et al. (2017) along with further experiments on new NeuN-

stained cases and then modifying and applying the algorithm for

counting Iba1-immunostained microglia cells. Since neurons and mi-

croglia appear in different shapes and brightness, no a priori shapes can

be assumed for the purpose of segmentation. Due to brightness varia-

tion at both the image and cell levels, any intensity thresholds used

during segmentation must be set in an adaptive and automatic manner.

The segmentation pipeline for the ASA is a combination of Gaussian

Mixture Model (GMM), morphological operations, watershed segmen-

tation, Voronoi diagrams and boundary smoothing. Each of these steps

are illustrated in Fig. 2 as outlined in the legend and detailed below.

Creating EDF images is useful to make it possible to process a single

image that has every cell in focus automatically rather than looking for

in focus cells manually in a Z-stack (volume). For instance, for neurons,

Fig. 2(a) shows the image used for the manual counts and Fig. 2(b) is

the EDF image. The inclusion line (green) and exclusion lines (red) lines

in Fig. 2(i) are for avoiding bias due to edge effects (Gundersen, 1977).

3.3.1. Clump segmentation

Similar to the second step of the algorithm in Ahmady Phoulady

et al. (2017), clumps of neurons in the image were segmented as fol-

lows. A GMM with two components was estimated based on pixel in-

tensities using the expectation maximization (EM) algorithm. The

image was binarized using the threshold computed by a background

Gaussian quantile function value (at q=0.06 in this study) minus an

offset f. Subsequently, morphological operations were applied to extract

the separate clumped cells regions (Fig. 2(c)). Finally, clumps with area

smaller than a pre-determined size, cA, were removed. Because the

GMM is estimated by pixel intensities of each image separately it makes

the whole framework relatively resistant to brightness variation (see
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Fig. 1. EDF images of NeuN neurons (upper) and Iba1 microglia (lower) created from z-axis image stacks (left upper and lower) at high power (100× oil, n.a. 1.4).

Fig. 2. Intermediate results of different steps of the segmentation methods: (a) original microscopy image with manual counts, (b) the EDF image that is used by the

segmentation method, (c) segmented clumps after thresholding the EDF image, (d) processed EDF image, (e) regional minimas in the processed image, (f) providing

boundaries (background marker) for watershed segmentation that indicate pixels that do not belong to any cell, (g) watershed segmentation regions reconstructed by

regional minimas, (h) expanded foreground regions within each segmented clump boundary, (i) the final segmentation after smoothing region boundaries. Blue

regions are segmented regions that do not overlap with the disector frame and therefore are not used for automated counting; red regions are segmented regions that

were excluded due to overlap with the exclusion line; and green regions are segmented regions representing microglia cells used for automated counting.

H. Ahmady Phoulady, et al. Journal of Chemical Neuroanatomy 98 (2019) 1–7
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below). A deep discussion of parameter changes for this work (to count

Iba1-immunostained microglia cells) is done in Section 4.2.

3.3.2. Preprocessing

The image was preprocessed by the morphological operations

opening by re-construction followed by closing by reconstruction.

These operations smooth the image and remove very small dark or

bright regions (Fig. 2(d)). In this preprocessing step, very close regions

were connected to each other and very small regional minimas were

removed.

3.3.3. Foreground and background markers

After preprocessing the image foreground and background markers

are extracted for watershed segmentation. The foreground markers are

regional minimas extracted from the preprocessed image (Fig. 2(e)) and

background markers are the boundaries between regions of a watershed

segmentation (Fig. 2(f)). Regional minimas are an indication of neurons

and eventually those that do not fall into the previously segmented

neuron clump regions were removed by reconstructing the regional

minima map using the clumps map. Moreover, regional minimas with

area smaller than a predetermined size, mA, were removed.

3.3.4. Watershed segmentation

Watershed segmentation was applied using the foreground and

background markers described in the previous step. One of the regions

corresponded to the background and the others are foreground regions.

Those foreground regions that overlap with the map of segmented

clumps were kept and the others were discarded (Fig. 2(g)). This wa-

tershed segmentation usually expands original regional minimas and

gives a better approximation of neuron boundaries. Lastly, each of the

clump regions were split using the Voronoi diagrams obtained by the

watershed regions inside it (Fig. 2(h)).

Fig. 3. Plots of manual and automated counts of different sections for six cases. These plots of NeuN neuron counts by section show the relative agreement between

the objective automated framework and subjective manual counts.
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3.3.5. Boundary smoothing and neuron counting

In the final step, the region boundaries were refined using the

Savitzky–Golay filter (Savitzky and Golay, 1964). This filter results in

more smooth boundaries and produces less concave regions. It was

observed that a single neuron or microglia cell may be split into two or

more sub-regions if more than one regional minima was detected. To

diminish the adverse effect of such splits, a region was not split if its size

was less than a maximum threshold and the solidity of the region ob-

tained by the refined boundary of the original region was larger than

the average solidity of all regions obtained by the refined boundaries of

sub-regions. To count the cells, those segmented regions that do not fall

inside the disector frame or overlap with the exclusion line were re-

moved and the number of the remaining regions were chosen as the

number of counted cells for that disector location.

4. Experiments and results

The ASA approach was initially designed for automatic counts of

NeuN stained neurons in images (Mouton et al., 2017). To evaluate the

adaptability of this framework, this work applied ASA with minor

modifications (discussed in Section 4.2) to detect and count Iba1-im-

munostained microglia cells. Other than the counts, we also report the

correlation (in terms of R2) between the manual and automated counts

for NeuN images to measure the effectiveness of the automation; and

use precision and recall to measure the detection accuracy for auto-

matic counts of Iba1-positive microglia. In these experiments, the per-

formance of the framework was evaluated on one mouse, a few values

for parameters were checked and set based on the obtained results and

then the framework was tested on the remaining mice.

4.1. ASA for counts of NeuN and Iba1 images

We used the ASA to automatically count neurons in all cases. The

offset f, introduced in Section 3.3.1, was set to 20. This offset was used

due to the higher signal to noise ratio for NeuN and Iba1 images.

Moreover, the minimum clump size, cA (discussed in Section 3.3.1), was

set to 1000 pixels. The correlation between the manual and automated

counts were assessed by the R2 measure at the section level. Therefore,

for each section of a case the manual counts of all stacks were summed

up to give the counts for that section of neurons (Fig. 3) and microglia

(Fig. 4). Finally, the automated count is computed for each section and

for the entire neocortex using the optical fractionator method. Table 1

presents the final manual and automated counts (the sum of all section

counts) for different cases and the correlation between the manual and

automated neuron counts at the section level. The estimates of the total

number of neurons after application of the optical fractionator scheme

can be obtained by extrapolating the raw data to the total neocortex.

Finally, Fig. 3 presents the plots of the manual and automated counts

for each of the NeuN cases.

4.2. Extension to other brain histology images

To evaluate the generalizability of the ASA approach to images

stained for other proteins, we used the NeuN framework to automate

the tasks of counting microglia cells in images from Iba1-im-

munoistained sections (Fig. 5). Because of the different characteristics

of such images (e.g., contrast) and difference in size and appearance of

microglia cells compared to neurons, modifications were needed in

parameters trained for NeuN images, as discussed below. To assess the

performance, Iba1 images from two cases, denoted by M-7 and M-8,

were processed manually and the manual counts were compared to the

automated counts achieved by the ASA. For this task, algorithm para-

meters were modified to achieve acceptable results on M-7 and the

method with the new parameters were tested on M-8.

4.2.1. Microglia cell counting in Iba1 images

Segmenting microglia cells in Iba1 images is a relatively more

Fig. 4. Plots of manual truth, automated and gold standard counts of each section in Iba1 cases.

Table 1

Total manual and automated neuron counts of different cases in the dataset.

The counts represent the raw data for cells (neurons) sampled and counted

through the entire neocortex in an unbiased systematic-random manner using

the unbiased optical disector method.

Case Manual count Auto. count R2

M-1 276 316 0.99

M-2 554 607 0.99

M-3 1287 1163 0.96

M-4 570 501 0.95

M-5 737 950 0.96

M-6 558 524 0.97

Fig. 5. Sample an Iba1 image with two manually marked microglia cells. Such

images were manually annotated by a moderately-experienced data collector to

create the manual truth for cell annotations.
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difficult task than segmenting neurons in NeuN images due to the

presence of microglial processes (see Fig. 5). The ASA method for NeuN

neurons was modified to also achieve acceptable results for Iba1

images. Three modifications that were applied to the step of Clump

Segmentation (discussed in Section 3.3.1) are listed below:

1 Minimum clump size was decreased from 1000 to 900: because of

the smaller size of microglia cells compared to neurons.

2 The structuring element used in morphological operations was en-

larged from a radius of 5 to radius of 10: to remove microglial

projections in the final segmentation.

3 The offset f, introduced in Section 3.3.1, was set to 70: because of

the higher S:N ratio in Iba1 images compared to NeuN images.

Otherwise, all other steps of the ASA were used without modifica-

tion. During the assessment of the quality of the annotation in the

training dataset, it was observed that the counts were not accurate for

some stacks of images. Therefore, an expert neurohistologist (PRM)

recounted the microglia cells in all collected stacks. Hence, the micro-

glia cells were counted in eight sections of each of two Iba1 cases both

by a moderately experienced data collector (resulting in Manual Truth)

and the expert (resulting in Gold Standard). Table 2 presents the manual

truth, automated and gold standard counts for both cases used in this

study. Moreover, to evaluate and compare the detection accuracy of the

framework to that of the data collector, we present the detection

measures, precision, recall and F1 score (Table 3).

Plots in Fig. 4 show the manual truth, gold standard and automated

counts for each section of two cases in the Iba1 dataset. Table 3 presents

the precision, recall and F1 score of the manual truth and automated

method evaluated using the gold standard counts as the reference:

= =

=

+ +

+

Precision , Recall ,

F1Score 2· ,

TP

TP FP

TP

TP FN

Precision·Recall

Precision Recall

where TP, FP and FN are True Positive (segmented cells that have an

annotation in the gold standard dataset), False Positive (segmented cells

that include no annotation) and False Negative (annotations that do not

fall inside a segmented cell), respectively.

5. Discussion

The high correlation values between manual and automated counts

of NeuN cases indicate that the framework can be used to automate the

time-consuming and error-prone manual method for stereology counts

of NeuN neurons images. With the exception of a few parameters such

as minimum size of neuron regions (which was set based on image

resolution), most of the parameters in the framework were set ac-

cording to the properties of each image. This makes the results of the

framework more reliable under variable conditions of image acquisi-

tion. As an example, it was observed that some of the images in the

dataset were collected under the condition of varying light intensity.

Because intensity thresholds were set adaptively, automatically and

separately by the estimated GMM for each image, the framework pro-

duced consistent image segmentation despite apparent differences in

image brightness. Fig. 6 illustrates two images with extreme intensities

and their corresponding segmentation results.

In the Iba1 dataset, one case was used for parameter tuning and the

other case was used for testing. Initially, detecting microglia cells in

Iba1 images was thought to be a relatively more challenging task than

detecting neurons in NeuN images. After visually inspecting the results

of ASA along with the data collector manual annotation (manual truth)

for microglia cells counts in the first Iba1 case, it was found that the

manual count and the automated count data were not in agreement in

several cases; furthermore, this careful examination showed the ASA to

be more accurate. Therefore, an expert neurohistologist was asked to

manually review and count microglia cells in all the stacks, resulting in

the Gold Standard dataset that contained the fewest errors. In the final

analysis, the manual truth and automated counts created by the ASA

were checked against the gold standard counts manually and the de-

tection accuracy was quantified. As summarized in Table 3, the auto-

mated count had higher overall detection accuracy for both cases ex-

amined, achieving about 10% higher accuracy in terms of F1 score than

manual truth counts.

Through careful investigation of these results we identified three

sources of segmentation errors in NeuN and Iba1 counts using the ASA-

optical fractionator framework: (1) very high density cell populations;

(2) cells with very low contrast (low S:N); and (3) image artifacts. The

errors caused by artifacts or cells with very low contrast can be po-

tentially minimized by extra preprocessing steps to remove artifacts and

post-processing steps to merge over-segmented regions. Complete

elimination of segmentation errors for high density cell populations is a

more challenging task that we are addressing with ongoing studies in-

volving 3D segmentation, iterative neural networks and active deep

learning. Fortunately, very high density populations are rare events for

the vast majority of cells, including NeuN neurons and Iba1 microglia

cells in brain tissue.

Testing is ongoing using ASA to create segmentation ground truth

for training a CNN to further reduce the error rates and increase the

robustness of the whole framework for automatic counting of multiple

populations of immunostained cells on tissue sections. Finally, future

work will explore the tolerance of this approach under variable con-

ditions of low to high S:N, staining protocols and biological structures.

6. Conclusions

These experiments with new image datasets expand our previous

work with a small set of NeuN (neurons) images to show that the ASA-

optical fractionator framework can be successful with a range of

staining domains from multiple types of immunostained brain cells. The

results for NeuN counting confirm earlier reports of high correlation

with manual annotation (with R2 > 0.95). Testing with Iba1 microglia

cell slides to get counts showed the ASA-optical fractionator framework

is substantially more accurate than a moderately experienced data

collector when compared to the results of an expert neurohistologist.

Moreover, Iba1 microglia cells showed lower error rates than for NeuN

neurons, most likely due to less cell overlap for Iba1 microglia than

NeuN neurons in the mouse neocortex. Together, these results provide

further indication that automatic stereology can reliably replace the

manual, labor-intensive and tedious process of cell counting by a

moderately experienced data collector with a method that decreases the

Table 2

Total manual truth, automated and gold standard microglia counts of the two

Iba1 cases.

Case Manual truth count Automated count Gold standard count

M-7 215 179 132

M-8 521 353 404

Table 3

Detection accuracy of microglia cells in terms of Precision, Recall and F1 Score

of the manual truth and automated methods (superior results in each case are

shown in bold text).

Case Count Precision Recall F1 score

M-7 Manual truth 59.53% 96.97% 73.77%

Automated 70.39% 95.45% 81.03%

M-8 Manual truth 69.67% 89.85% 78.48%

Automated 96.32% 84.16% 89.83%
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time, effort and costs of stereology data collection while increasing the

accuracy, precision and throughput of the final results. This attribute

may be especially useful in settings where computer-assisted equipment

is present but expert and highly trained data collectors are not available

or are needed for more highly technical activities. Finally, these find-

ings show that the ASA approach can be effectively used to auto-

matically annotate EDF images of NeuN neurons and Iba1 microglia

cells for automatic counts by deep learning neural networks.

In our ongoing work (Alahmari et al., 2018, 2019), this feature

shows promising results for automatically generating segmentation

ground truth datasets for training CNN models to make automatic ste-

reology counts of brain cells. The segmentation ground truth generated

by ASA is used to train an iterative deep learning segmentation model

with human-in-the-loop to reject, verify or modify the segmentations.

Using ASA to generate the initial ground truth segmentation masks

significantly reduced the time needed for manual annotation and seg-

mentation mask creation and hence made training a robust deep

learning model practical.
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