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A novel stereology approach, the automatic optical fractionator, is presented for obtaining unbiased and
efficient estimates of the number of cells in tissue sections. Used in combination with existing
segmentation algorithms and ordinary immunostaining methods, automatic estimates of cell number
are obtainable from extended depth of field images built from three-dimensional volumes of tissue
(disector stacks). The automatic optical fractionator is more accurate, 100% objective and 8-10 times
faster than the manual optical fractionator. An example of the automatic fractionator is provided for
counts of immunostained neurons in neocortex of a genetically modified mouse model of neuro-
degeneration. Evidence is presented for the often overlooked prerequisite that accurate counting by the
optical fractionator requires a thin focal plane generated by a high optical resolution lens.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The accurate determination of stereology parameters for cells,
nuclei, fibers and other biological objects using information from
tissue sections is a well-known problem in the natural sciences.
The primary theoretical obstacle is that a two-dimensional (2-D)
sampling probe (knife blade) samples arbitrary-shape 3-D
particles (cells) with an unknown and unknowable probability
related to the cell’s size, shape, and orientation on tissue sections
(Wicksell, 1925). Use of the disector, a virtual 3-D probe, is the only
known approach to make accurate estimates of the total cell
number in tissue sections without any assumptions about the
geometric properties of the cells (Sterio, 1984). The optical
fractionator is an unbiased and efficient derivative of the disector
method for estimating total cell number in a known fraction of the
total reference volume (West et al., 1991).
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Here we propose an entirely novel disector-based approach for
making automatic, unbiased and efficient estimates of the number
of immunostained cells in an anatomically defined reference
volume. The method uses a novel combination of two recent
advancements in the field of computer science: extended depth of
field (EDF) images that represent 3-D neurons in a disector volume
at their optimal plane of focus on a 2-D image (Valdecasas et al.,
2001; Bradley and Bamford, 2004; Phoulady et al., 2015, 2016a,
2016b); and a combination of segmentation algorithms to
automatically count cells visualized by ordinary staining methods
in the EDF image. The main innovation lies in the automatic
counting of cells in disector volumes that represent a known
fraction of the reference space, hence the designation automatic
optical fractionator. The automatic optical fractionator is 100%
objective and therefore not subject to human errors that reduces
accuracy by false negatives from overlapping cells, false positives
from cells touching exclusion planes, inter-rater bias, recognition
errors and user fatigue. A practical example is given for counting
the total numbers of NeuN-immunostained neurons (Total Nyey) in
neocortex of a genetically modified mouse model of cognitive
impairment and neurodegeneration.
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2. Materials and methods

All procedures for animal handling and use were approved by
the USF Institutional Animal Care and Use Committee and followed
NIH guidelines for the care and use of laboratory animals. To
validate the automatic framework for counting NeuN-immunos-
tained neurons, this study used the well-characterized Tg4510 line
with responder and activator transgenes that drive expression of a
P301L tau mutation under control of a tetracycline operon-
responsive element (SantaCruz et al., 2005). Tg4510 mice express
mutant tau that leads to progressive cognitive decline in parallel
with neuron loss and activation of neuroglia cells. Age- and sex-
matched non-tg littermate control mice were included to test the
automatic framework on normal (non-degenerating) neurons.
Rather than test specific hypotheses related to tauopathies,
neurodegeneration or neuroinflammation, these genetically mod-
ified mice and controls were selected to show a wide range of
normal, neurodegenerative and neuroinflammatory phenotypes
under bright-field illumination. In a separate study to be published

elsewhere, we will further validate the automatic stereology
framework using adjacent sets of sections immunostained for
microglia and astrocytes.

2.1. Tissue processing

Aged 6-8 months Tg4510 male mice (n=2) and male non-tg
littermate controls (n=2) were selected at random from the colony
at the Byrd Alzheimer’s Disease Institute at the University of South
Florida in Tampa, FL. Mice were deeply anesthetized on an
isothermal pad and perfused with 25 ml of cold sterile buffered
saline. Brains were removed and one hemisphere immersion fixed
for 24 h in freshly prepared phosphate buffered paraformaldehyde.
After fixation, brains were transferred to Dulbecco’s phosphate
buffered saline and stored at 4 °C. Prior to sectioning, brains were
cryoprotected in 10, 20 and 30% sucrose. Frozen 50-pm sections
were collected with a sliding microtome, transferred to 24 well
plates in Dulbecco’s phosphate buffered saline and stored at 4°C.

(h)
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Fig. 1. Intermediate results of different steps in segmentation-stereology approach: (a) original image with manual counts, (b) the EDF image used by the segmentation
method, (c) clumps segmented using the threshold computed from estimated GMM, (d) processed EDF image, (e) regional minimas in the processed image, (f) background
marker for watershed segmentation, (g) watershed regions reconstructed by regional minimas, (h) Voronoi diagram produced from foreground regions in each segmented
clump, (i) final segmentation after smoothing region boundaries by Savitzky-Golay filter. Black regions are removed due to not overlapping with cells of interest, red regions
are excluded due to overlapping with exclusion line, and blue regions are neuron targets for automated counting. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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One set of every n'" section was sampled in a systematic-random to
obtain 6-8 sections through neocortex of each brain.

2.2. NeuN immunostaining

Sections were placed in a multi-sample staining tray and
endogenous peroxidase was blocked (10% methanol, 3% H,0, in
PBS; 30 min). Tissue samples were permeabilized (with 0.2% lysine,
1% Triton X-100 in PBS solution) and incubated overnight in anti-
NeuN (Millipore) primary antibody. Sections were washed in PBS,
and then incubated in biotinylated secondary antibody (Vector
Laboratories, Burlingame, CA). The tissue was again washed after
2h and incubated with Vectastain® Elite® ABC kit (Vector
Laboratories, Burlingame, CA) for enzyme conjugation. Finally,
sections were stained using 0.05% diaminobenzidine in 0.03% H,0,
with nickel intensification. Tissue sections were mounted onto
slides, dehydrated, and cover slipped.

2.3. Tissue sampling

Manual counting using the optical fractionator followed by
capture-and-save of disector stacks at each location were done
using the Stereologer system (Stereology Resource Center, Tampa,
FL). The Stereologer software (v10.5) for this system drives the
hardware consisting of a Leica DM2500 microscope equipped with
low (4x), mid (40x, NA 0.65) and high power (100x, NA 1.3) objectives;
NA 125 condenser; a motorized X-Y-Z stage (Prior Electronics,
Rockland, MA); Sony Firewire DXC-C33 camera; and a Dell PC
computer (Windows 10) with i7-4790 CPU and 16 GB of RAM. In
practice, there is no need to count all cells in all disectors, only to
sample sufficient numbers of disectors in a systematic-random
manner to capture most of the within-sample variance (error
variance) as measured by the coefficient of error (CE). One mouse
(02) was analyzed using manual stereology by both data collectors
(C1, C2) to estimate inter-rater variation, which is expected to
roughly parallel the error variance.

2.4. Segmentation algorithm

Since cells have arbitrary sizes, shapes, and orientations, none
of these features can be assumed a priori by an automatic
stereology approach. The segmentation method used in this study
was a combination of Gaussian Mixture Model (GMM), morpho-
logical operations, watershed segmentation, Voronoi diagrams and
boundary smoothing. Fig. 1 presents the visual results of successive
steps in the segmentation method on an EDF image. Fig. 1a shows a
high optical resolution image (100x, NA 1.3) with the overlaid
unbiased disector frame used for manual counts, followed by the
EDF image built from a z-stack of images (disector stack) (Fig. 1b).
NeuN stained neuronal cell bodies (1 soma=1 neuron=1 cell) on
the EDF image were segmented by a GMM with two components
estimated based on pixel intensities using Expectation Maximiza-
tion (EM) algorithm. The image was binarized using the threshold
computed by a background Gaussian quantile function value and
morphological operations followed to extract separate cells
(Fig. 1c). Preprocessing of the image by morphological operations
with opening by reconstructions followed by closing by recon-
structions smoothed the image and removed very small dark or
bright cells (Fig. 1d) while connecting very close cells to each other
and removing cells below the very small minimas. For watershed
segmentation, the image foreground and background markers
were extracted with minimas for cells extracted from the
preprocessed image (Fig. 1e) and boundaries between cells of a
watershed segmentation (Fig. 1f), respectively. The watershed
segmentation was applied using the foreground and background
markers with foreground cells that overlap the map of segmented

cells kept and the others discarded (Fig. 1g). Watershed
segmentation expanded original regional minimas and gave a
better approximation of boundaries with each cell split using the
Voronoi diagrams obtained by the watershed cells inside it
(Fig. 1Th). In the final step, the cell boundaries were refined using
Savitzky-Golay filter (Savitzky and Golay, 1964) which gave
smoother boundaries and produced less concave cells. The final
segmentation result (Fig. 1i) indicates inclusion (green) and
exclusion (red) lines used by the manual and automatic optical
fractionator methods. According to the unbiased counting rules for
the disector method (Gundersen, 1977), segmented cells were
removed that overlapped the exclusion lines of the disector frame.
In the final step, the number of NeuN neurons counted in all
disector stacks was summed [Y> Q"] and the total number in
neocortex estimated by the optical fractionator formula (Eq. (1)):

Total Nneu=[>"Q 7] ¢ F1 o F2 @ F3 (1)

where, Total Nyey is the total number of NeuN-immunostained
neurons in neocortex; > Q is the stereology designation for sum
of NeuN neurons counted in all disectors; F1 is the reciprocal of the
section sampling fraction; F2 is the reciprocal of the area sampling
fraction; and F3 is the reciprocal of the thickness sampling fraction.

2.5. Optimal magnification

To assess the optimal magnification for accurate neuron
counting, counts of NeuN neurons at low (40x, 0.65) and high
(100x oil, NA 1.3) optical resolutions were compared in one non-tg
mouse brain. At the first disector location on the first section, NeuN
neurons were manually counted using a high-resolution lens
(100x, NA 1.3) by thin focal-plan optical scanning with a 10-um
high disector. Before moving to the next x-y location, a disector
stack of ten z-axis images one micron apart was collected through
the first disector volume. This process of manual counting followed
by collection of disector stacks was repeated at 200-300
systematic-random Xx-y locations across all sections at high
resolution (100x, NA 1.3), and the entire process repeated using
an objective lens with low optical resolution (40x, N.A. 0.65) on the
same sections. Disector stacks were used for 1) counting NeuN
neurons by the automatic fractionator for comparison with results
from the manual fractionator; and, 2) for gold-standard validation
(scoring) of manual and automatic fractionator methods by 3-D
reconstruction of disector volumes and counting the true number
of NeuN neurons.

The results of this pilot study showed both manual and
automatic fractionator methods counted more neurons at high

Fig. 2. EDF images (right) created from z-stack of images (left) with low-resolution
lens (40x, NA 0.65, upper) and high-resolution lens (100x, NA 1.3, lower). Lower
right panel shows disector frame and segmented NeuN neurons counted by the
automatic version of the optical fractionator method (West et al., 1991).
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optical resolution (Fig. 2, lower) than at low optical resolution
(Fig. 2, upper).

Careful 3-D reconstruction of disector stacks confirmed over-
projection and masking are the most likely explanations for this
consistent underestimation at low optical resolution. As shown in
Fig. 3, the high depth of field of the low resolution (40x, NA 0.65)
lens prevented adjacent and overlapping cells from being resolved
as individual cells (Fig. 3) by either manual or automatic optical
fractionator. In contrast, disector stacks collected by high resolu-
tion imaging allowed for accurate cell counting, i.e., 98% of NeuN
neurons, by both manual and automatic approaches. Finally, this
pilot study confirmed that sampling NeuN neurons at 200-300
locations on 6-8 sections generated a sufficiently high level of
sampling stringency (CE < 0.05) to reveal group differences for
routine neuroscience studies. This work allowed for further
validation studies in four genetically modified mouse mice with
neurodegeneration as discussed in Section 2.6.

2.6. Validation of automatic optical fractionator

These studies were carried out using NeuN-immunostained
sections from 2 Tg4510 mice (Tg-3, Tg-21) and 2 non-tg controls
(Ntg-2, Ntg-9) by two technicians with equivalent training and
experience. As detailed in Section 2.5, manual fractionator (ground
truth) and automatic fractionator counts of NeuN neurons were
done in the same disector volumes using high optical resolution
(100x, oil immersion, N.A. 1.3) optics. In the first step, manual
fractionator counts of neocortical NeuN neurons at each x-y
location on each section were followed by collection of disector
stacks for estimation of total neuron number using the automatic
fractionator. Second, disector stacks were converted to 2-D EDF
images with all NeuN-immunostained neurons represented at
their maximal plane of focus. Neurons in each EDF image were
segmented by the method detailed in Section 2.4. In the final step,
the total number of neocortical neurons were estimated in an
unbiased manner using the optical fractionator formula [Eq. (1)].
Correlations between separate counts, e.g., manual vs. automatic
fractionator, were reported as coefficient of determination (R?). To
assess inter-rater variability, two trained technicians counted
NeuN neurons through separate sets of optical disectors in the
same sections of one mouse neocortex (mouse 02). The average
values for two data collectors and two automated counts were
used for correlating manual and automatic counts for one mouse
(animal 02; Table 1).

3. Results
Table 1 presents correlations between NeuN counts by the

automated optical fractionator and ground truth (manual stereol-
ogy). These results reflect raw counts by two data collectors for a

«
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Fig. 3. Schematic of high signal-to-noise objects in a thick section showing over-
projection (left) and masking (right). The low-resolution/high depth of field lens
causes multiple objects to be counted as one. Hence, a high-resolution lens with low
depth of field is required for accurate counts using the manual and automatic
optical fractionator.

Table 1
NeuN neurons counts by ground truth vs. automatic stereology in n=4 mice.
R?=correlation for manual and automatic counts.

Mouse ID Ground Truth Auto. Count R?
02 1249 1238 >0.96
21 858 878 >0.98
03 570 603 >0.98
09 558 697 >0.98

total of 85 sections from four mice (2 Tg4510, 2 non-tg controls)
plus one mouse (C-2) analyzed by both data collectors to assess
inter-rater reliability.

The correlations in Table 1 indicate uniformly close relation-
ships between neuron counts by the manual and automatic optical
fractionator approaches (R?>0.96). Results for counts of NeuN-
immunostained neurons in neocortex of Tg4510 mice and non-tg
controls are presented in Table 2. Comparison of neocortical
neuron counts by the manual and automatic approaches showed a
4% difference for Tg4510 mice and 7% difference for non-tg mice.
For the ground truth dataset, there was a 24% difference in neuron
number with a slightly higher difference (27%) using the automatic
approach. As expected, inter-rater reliability of two data collectors
correlated closely to each other (R?=95%, data not shown) at the
level expected for the sampling stringency (CE = 0.05). There were
no differences in the results for manual versus automatic
stereology.

4. Discussion

The optical fractionator method is widely accepted as the
current best practice for accurate estimation of total cell number in
tissue sections. This rigorous estimator of object number is based
on an unbiased design that minimizes or avoids all known sources
of stereological and methodological bias. The primary drawback of
the manual fractionator is low efficiency (low throughput) due to
the requirement for manual cell counting at hundreds of disector
locations.

The automatic method proposed here is the first fully automatic
segmentation-based approach to incorporate the unbiased prin-
ciples of the optical fractionator method (Mouton et al., 2016). The
approach begins with use of an X-Y-Z motorized stage to
automatically collect z-axis stacks of images (disector stacks) at
systematic locations in sections sampled through a defined
reference volume. Since motorized stage control is a common
feature of all commercially available stereology systems, this
unbiased sampling approach simply leverages this hardware for
capturing disector stacks. In the second step, disector stacks are
converted to EDF images in which all cells appear at their maximal
plane of focus. Third, a novel algorithm segments stained cells that
fall within an unbiased disector frame but do not overlap upper left
or bottom exclusion planes. For the segmentation step, we use a
novel combination of Gaussian Mixture Models, watershed, and
Voronoi diagrams that effectively segmented more than 98% of
NeuN neuronal cell bodies in disector stacks (Section 2.5), though
it is true that many other algorithms approaches could achieve

Table 2

Comparison of ground truth (manual optical fractionator) and the automatic optical
fractionator for estimates of total number (+SEM) of NeuN neurons in neocortex of
Tg4510 mice and Non-Tg controls.

Group N Manual Automatic % diffyeun

Mean NeuN SEMpyeun Mean NeuN  SEMpeun

Non-Tg(n=2) 2 130E+06 1I18E+5 139E+06 7.71E+04 +7
Tg4510 (n=2) 2 9.81E+05 2.76E+3 1.02E+06 141E+04 +4
% diffyeun -25 -27
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similar results. Since all sampling was carried out in a known
fraction of the total reference volume, the final step is to apply the
fractionator formula [Eq. (1)] to estimate the total number of cells,
without assumptions or considerations about size, shape or
orientation.

The approach is demonstrated for automatic counting of high
signal: noise (S: N) NeuN-immunostained neurons in neocortex of
a transgenic mouse model of tau deposition (Tg4510). Both
automatic and manual approaches revealed substantial loss (about
25%) in total number of neocortical NeuN neurons in brains of
Tg4510 mice at 6-8 months of age compared to non-tg controls as
reported previously in these mice of the same age using manual
stereology (Spires et al., 2006). Analysis of the same disector
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volumes showed a strong correlation (R*>>0.96) between the
automatic and manual versions of the optical fractionator, which
was closely comparable to the correlation of two human collectors
to each other (R>=95%). Thus, these results confirm comparable
accuracy of counting of NeuN neurons by the automatic approach
with similar precision (reproducibility; R? =96%) as manual counts
by two data collectors.

Using results from gold-standard counts, the results from
ground truth (manual) and automatic fractionator methods could
be scored for accuracy. Furthermore, these 3-D reconstruction
counts allowed for identification of the precise reasons for
mismatches (residual variation) between manual and automatic
counts. Fig. 4 shows NeuN neuron counts by section for manual
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Fig. 4. Plots of manual and automated counts of different sections for 4 cases. These plots of Neu-N neuron counts by section show the relative agreement between the
objective automated framework and subjective manual counts by 2 data collectors (C1 and C2). The residual errors in these correlations arise from both approaches. (For
interpretation of the references to colour in the text, the reader is referred to the web version of this article.)
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and automated approaches for each of the comparisons in Table 2.
These plots show the relative overlap of manual counts by two data
collectors (blue) versus automatic counts in the same disector
volumes (red). Since the two data collectors for mouse 02 were
carried out at separate disector locations, these plots show non-
overlapping counts across the same sections [Fig. 4, plots (a) and
(d)]. The first observation is that total cell counting errors by
manual and automatic methods occur in less than 5% of disector
volumes, or about 4 or 5 mismatches per 100 disectors. As
expected from our previous automatic algorithms to detect stained
cells on tissue sections (Mouton et al., 2005; Chaudhury et al.,
2013; Phoulady et al., 2015, 2016a, 2016b) most residual variance in
the correlations of ground truth (manual) and automatic counts
was due to the manual data collection. Three-dimensional
reconstruction of disector stacks showed more frequent errors
by the manual counting (~3-4 mismatches per 100 disector
stacks) than by the automatic approach (~1-2 errors per 100
disector stacks) with most manual counting errors leading to
underestimation (false negatives), e.g., Sections 1-7 in Fig. 4(c).
Specifically, 3-D reconstructions of disector stacks for these
mismatches showed the human data collector failed to resolve
overlapping neurons in the z-axis. These errors due to the high
depth of field (low resolution) of the 40x lens (Fig. 3, Section 2.5)
could be minimized by a higher numerical aperture 40x objective.
In contrast, underestimates at high resolution can be minimized by
slower focusing through the z-axis at each disector location.
Careful 3-D reconstruction of disector stacks showed the second
most common source of mismatches by manual stereology was
false positives where the data collector incorrectly counted cells
touching exclusion planes. Thus, the manual optical fractionator
method could in theory attain an equivalent accuracy of the
automatic approach, provided time is taken to carefully focus
through each disector volume. The caveat is that this process
further reduces the efficiency of conventional cell counting using
the manual optical fractionator.

For the automatic approach, converting disector stacks to EDF
images allowed for clear separation and segmentation of each
NeuN neuron at its optimal plane of focus, thereby allowing the
algorithm to resolve the correct number of overlapping cells in the
z-axis. Pixel-level resolution of exclusion planes and cell bound-
aries eliminated errors at the exclusion planes. Except for a few
parameters, e.g., minima and maxima, most of the parameters in
the segmentation algorithm were set in an automatic and adaptive
manner separately for each image, making the automatic
framework resistant to variations in image acquisition. For
instance, because images collected in the dataset had varying
brightness, intensity thresholds were set adaptively by the
estimated GMM for each image, allowing the algorithm to generate
consistent segmentations for different cell types, staining intensi-
ties and microscope settings that vary brightness at the image and
neuron levels under bright-field illumination (Fig. 5).

It is worth reiterating that only 1-2 errors per 100 disectors
occurred during automatic counting of NeuN neurons in disector
stacks. In most of these cases, 3-D reconstruction indicated the

automatic algorithm counted fewer NeuN neurons than the true
number, e.g., Fig. 4(f), Sections 1-3. The most likely explanation for
these mismatches are (a) one neuron minima is not detected; (b)
two overlapping neurons are not split because the size is less than
the maximum threshold; or (c) the solidity of the neuron obtained
by the refined boundary of original neuron is larger than the
average solidity of all neurons. These mismatches tended to occur
in areas with highly crowded cells and very low contrast, as was the
case for underestimate errors by manual cell counting. In a few rare
cases, the automatic algorithm failed to split multiple cells leading
to a false positive, or the algorithm detected a staining artifact.
Further segmentation optimization will minimize mismatches by
pre-processing to remove artifacts and post-processing to merge
close regions (avoid split cells). Another practical step to further
improve the automatic optical fractionator is optimization of
immunostaining protocols to increase S: N and avoid staining
artifacts.

Beside equal or superior accuracy and precision to manual cell
counting, two advantages of the automatic optical fractionator are
8-fold higher throughput efficiency and 100% objectivity as
compared to manual cell counting. Though this work compared
the proposed automatic framework with manual counting using
just one commercially available stereology system, all current
systems use essentially the same hardware technology and manual
cell counting approaches. All these systems require about 20-
30 min to delineate reference areas and compute results, and 3-4 h
to achieve a CE of 0.05 by manual thin-focal plane optical scanning
and counting (clicking) on stained cells in about 200-300 optical
disectors across 6-8 sections. This level of sampling rigor is
typically sufficient to show significant group differences down to
about 15%, or demonstrate significant differences do not exist
without risking a Type 2 statistical error. To achieve the same level
of accuracy and sampling stringency, the automatic stereology
framework (ASF, Fig. 6) required an average of about 30 min per
case, including 6-8 min to manually delineate reference spaces at
low power; 10-12 min to automatically capture and save disector
stacks to random access memory; and 8-10min to create EDF
images, run the segmentation algorithm, and compute the total
number of neurons.

A survey of segmentation algorithms proposed to improve
efficiency of cell counting methods show these segmentation
approaches focus on finding number of 2-D cell profiles (Sjostrom
et al., 1999; Nattkemper et al., 2001; Ray et al., 2002; Benali et al.,
2003; Peng et al., 2003; Lin et al., 2005; Long et al., 2005, 2006;
Costa and Bollt 2006; Inglis et al., 2008; Ho et al., 2011; Liu et al.,
2014; de Gracia et al., 2015). Per the Delesse principle (1847), the
total number of arbitrary 3-D cells on tissue sections is not equal to
the total number of their 2-D profiles, i.e., Total Ncjs# Total
Nprofiles- Though automatic and therefore rapid, current automatic
segmentation approaches are biased by failure to count in 3-D,
reliance on cell densities (Reference Trap), use of faulty correction
factors, and other assumption- and model-based morphometry
(Gundersen et al., 1988; Mouton, 2016), and therefore lack the
robustness required for bioscience research.
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Fig. 5. Two EDF images with variable brightness [left (a) and (b)] and the same images after segmentation [right (a) and (b)].
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Fig. 6. Schematic diagram of the proposed ASF workflow.

Another factor that limits the accuracy of previous approaches
is the often ignored prerequisite that accurate use of the optical
fractionator method requires a thin focal plane for optical scanning
in the z-axis. A pilot study to assess optimal magnification for these
studies provided empirical evidence that low resolution optics
causes systematic underestimation of counts due to over-projec-
tion and masking. These factors could be practically eliminated at
high resolution by applying a modified segmentation algorithm
with advanced post-processing steps, e.g., using a classifier to
indicate likely split or overlapping neurons. For the automatic and
manual counts at low resolution, a similar strategy would not
resolve the correct number of cells because the high depth of field
of standard low resolution lenses effectively collapse cells onto a
single observation plane. A second argument in favor of high
resolution optics for both manual and automatic fractionator
methods is that both approaches require thin focal plane scanning
through the z-axis to determine the section thickness, i.e.,
difference in linear distance between the upper and lower optical
planes of each section (Elozory et al., 2012). Accurate identification
of section thickness by high optical resolution is required for
accurate calculation of the thickness sampling fraction (tsf; see
Eq. (1)). Though we only compared optical resolution using one
low (40x, NA 0.65) and one high (100x oil, NA oil) lens in this study,
it is expected that other high resolution lenses with thin focal
planes such as 63x oil (NA 1.3) would give comparable accuracy.

A further application of the present automatic stereology
framework is that the mean cell (soma) volume and true size
distribution (Gundersen et al., 1988; Jensen and Gundersen, 1993;
Mouton et al., 2015). These size parameters can be determined
from the cell boundaries at their maximum focal plane on EDF
images without additional labor or images, and only negligible
increase in computation time. In contrast, estimating mean cell
size by manual stereology more than doubles the time and effort
over estimation of cell number alone. Future directions to improve
efficiency include automatic delineation of reference spaces by
pattern recognition at low power, and high performance comput-
ing, i.e., increased number of cores, for parallelization of EDF image
creation and algorithm computations.

5. Conclusions

The proposed automatic, objective and accurate optical
fractionator method achieves a dramatic improvement in
throughput efficiency over the current manual optical fractionator.
The automatic approach is 100% objective and not subject to the
subjective human errors that reduce accuracy including false
negatives from overlapping cells, false positives from cells

overlapping with exclusion planes, inter-rater bias, recognition
errors and user fatigue. This automatic stereology approach will be
useful for a wide range of bioscience studies, and especially those
with large workloads that are currently inaccessible to unbiased
stereology methods.
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