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A B S T R A C T

A novel stereology approach, the automatic optical fractionator, is presented for obtaining unbiased and

efficient estimates of the number of cells in tissue sections. Used in combination with existing

segmentation algorithms and ordinary immunostaining methods, automatic estimates of cell number

are obtainable from extended depth of field images built from three-dimensional volumes of tissue

(disector stacks). The automatic optical fractionator is more accurate, 100% objective and 8–10 times

faster than the manual optical fractionator. An example of the automatic fractionator is provided for

counts of immunostained neurons in neocortex of a genetically modified mouse model of neuro-

degeneration. Evidence is presented for the often overlooked prerequisite that accurate counting by the

optical fractionator requires a thin focal plane generated by a high optical resolution lens.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The accurate determination of stereology parameters for cells,

nuclei, fibers and other biological objects using information from

tissue sections is a well-known problem in the natural sciences.

The primary theoretical obstacle is that a two-dimensional (2-D)

sampling probe (knife blade) samples arbitrary-shape 3-D

particles (cells) with an unknown and unknowable probability

related to the cell’s size, shape, and orientation on tissue sections

(Wicksell, 1925). Use of the disector, a virtual 3-D probe, is the only

known approach to make accurate estimates of the total cell

number in tissue sections without any assumptions about the

geometric properties of the cells (Sterio, 1984). The optical

fractionator is an unbiased and efficient derivative of the disector

method for estimating total cell number in a known fraction of the

total reference volume (West et al., 1991).

Here we propose an entirely novel disector-based approach for

making automatic, unbiased and efficient estimates of the number

of immunostained cells in an anatomically defined reference

volume. The method uses a novel combination of two recent

advancements in the field of computer science: extended depth of

field (EDF) images that represent 3-D neurons in a disector volume

at their optimal plane of focus on a 2-D image (Valdecasas et al.,

2001; Bradley and Bamford, 2004; Phoulady et al., 2015, 2016a,

2016b); and a combination of segmentation algorithms to

automatically count cells visualized by ordinary staining methods

in the EDF image. The main innovation lies in the automatic

counting of cells in disector volumes that represent a known

fraction of the reference space, hence the designation automatic

optical fractionator. The automatic optical fractionator is 100%

objective and therefore not subject to human errors that reduces

accuracy by false negatives from overlapping cells, false positives

from cells touching exclusion planes, inter-rater bias, recognition

errors and user fatigue. A practical example is given for counting

the total numbers of NeuN-immunostained neurons (Total NNeu) in

neocortex of a genetically modified mouse model of cognitive

impairment and neurodegeneration.
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2. Materials and methods

All procedures for animal handling and use were approved by

the USF Institutional Animal Care and Use Committee and followed

NIH guidelines for the care and use of laboratory animals. To

validate the automatic framework for counting NeuN-immunos-

tained neurons, this study used the well-characterized Tg4510 line

with responder and activator transgenes that drive expression of a

P301L tau mutation under control of a tetracycline operon-

responsive element (SantaCruz et al., 2005). Tg4510 mice express

mutant tau that leads to progressive cognitive decline in parallel

with neuron loss and activation of neuroglia cells. Age- and sex-

matched non-tg littermate control mice were included to test the

automatic framework on normal (non-degenerating) neurons.

Rather than test specific hypotheses related to tauopathies,

neurodegeneration or neuroinflammation, these genetically mod-

ified mice and controls were selected to show a wide range of

normal, neurodegenerative and neuroinflammatory phenotypes

under bright-field illumination. In a separate study to be published

elsewhere, we will further validate the automatic stereology

framework using adjacent sets of sections immunostained for

microglia and astrocytes.

2.1. Tissue processing

Aged 6–8 months Tg4510 male mice (n = 2) and male non-tg

littermate controls (n = 2) were selected at random from the colony

at the Byrd Alzheimer’s Disease Institute at the University of South

Florida in Tampa, FL. Mice were deeply anesthetized on an

isothermal pad and perfused with 25 ml of cold sterile buffered

saline. Brains were removed and one hemisphere immersion fixed

for 24 h in freshly prepared phosphate buffered paraformaldehyde.

After fixation, brains were transferred to Dulbecco’s phosphate

buffered saline and stored at 4 !C. Prior to sectioning, brains were

cryoprotected in 10, 20 and 30% sucrose. Frozen 50-mm sections

were collected with a sliding microtome, transferred to 24 well

plates in Dulbecco’s phosphate buffered saline and stored at 4 !C.

Fig. 1. Intermediate results of different steps in segmentation-stereology approach: (a) original image with manual counts, (b) the EDF image used by the segmentation

method, (c) clumps segmented using the threshold computed from estimated GMM, (d) processed EDF image, (e) regional minimas in the processed image, (f) background

marker for watershed segmentation, (g) watershed regions reconstructed by regional minimas, (h) Voronoi diagram produced from foreground regions in each segmented

clump, (i) final segmentation after smoothing region boundaries by Savitzky-Golay filter. Black regions are removed due to not overlapping with cells of interest, red regions

are excluded due to overlapping with exclusion line, and blue regions are neuron targets for automated counting. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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One set of every nth section was sampled in a systematic-random to

obtain 6–8 sections through neocortex of each brain.

2.2. NeuN immunostaining

Sections were placed in a multi-sample staining tray and

endogenous peroxidase was blocked (10% methanol, 3% H202 in

PBS; 30 min). Tissue samples were permeabilized (with 0.2% lysine,

1% Triton X-100 in PBS solution) and incubated overnight in anti-

NeuN (Millipore) primary antibody. Sections were washed in PBS,

and then incubated in biotinylated secondary antibody (Vector

Laboratories, Burlingame, CA). The tissue was again washed after

2 h and incubated with Vectastain1 Elite1 ABC kit (Vector

Laboratories, Burlingame, CA) for enzyme conjugation. Finally,

sections were stained using 0.05% diaminobenzidine in 0.03% H202
with nickel intensification. Tissue sections were mounted onto

slides, dehydrated, and cover slipped.

2.3. Tissue sampling

Manual counting using the optical fractionator followed by

capture-and-save of disector stacks at each location were done

using the Stereologer system (Stereology Resource Center, Tampa,

FL). The Stereologer software (v10.5) for this system drives the

hardware consisting of a Leica DM2500 microscope equipped with

low (4x), mid (40x, NA 0.65) and high power (100x, NA 1.3) objectives;

NA 1.25 condenser; a motorized X-Y-Z stage (Prior Electronics,

Rockland, MA); Sony Firewire DXC-C33 camera; and a Dell PC

computer (Windows 10) with i7-4790 CPU and 16 GB of RAM. In

practice, there is no need to count all cells in all disectors, only to

sample sufficient numbers of disectors in a systematic-random

manner to capture most of the within-sample variance (error

variance) as measured by the coefficient of error (CE). One mouse

(02) was analyzed using manual stereology by both data collectors

(C1, C2) to estimate inter-rater variation, which is expected to

roughly parallel the error variance.

2.4. Segmentation algorithm

Since cells have arbitrary sizes, shapes, and orientations, none

of these features can be assumed a priori by an automatic

stereology approach. The segmentation method used in this study

was a combination of Gaussian Mixture Model (GMM), morpho-

logical operations, watershed segmentation, Voronoi diagrams and

boundary smoothing. Fig.1 presents the visual results of successive

steps in the segmentation method on an EDF image. Fig. 1a shows a

high optical resolution image (100x, NA 1.3) with the overlaid

unbiased disector frame used for manual counts, followed by the

EDF image built from a z-stack of images (disector stack) (Fig. 1b).

NeuN stained neuronal cell bodies (1 soma = 1 neuron = 1 cell) on

the EDF image were segmented by a GMM with two components

estimated based on pixel intensities using Expectation Maximiza-

tion (EM) algorithm. The image was binarized using the threshold

computed by a background Gaussian quantile function value and

morphological operations followed to extract separate cells

(Fig. 1c). Preprocessing of the image by morphological operations

with opening by reconstructions followed by closing by recon-

structions smoothed the image and removed very small dark or

bright cells (Fig. 1d) while connecting very close cells to each other

and removing cells below the very small minimas. For watershed

segmentation, the image foreground and background markers

were extracted with minimas for cells extracted from the

preprocessed image (Fig. 1e) and boundaries between cells of a

watershed segmentation (Fig. 1f), respectively. The watershed

segmentation was applied using the foreground and background

markers with foreground cells that overlap the map of segmented

cells kept and the others discarded (Fig. 1g). Watershed

segmentation expanded original regional minimas and gave a

better approximation of boundaries with each cell split using the

Voronoi diagrams obtained by the watershed cells inside it

(Fig. 1h). In the final step, the cell boundaries were refined using

Savitzky-Golay filter (Savitzky and Golay, 1964) which gave

smoother boundaries and produced less concave cells. The final

segmentation result (Fig. 1i) indicates inclusion (green) and

exclusion (red) lines used by the manual and automatic optical

fractionator methods. According to the unbiased counting rules for

the disector method (Gundersen, 1977), segmented cells were

removed that overlapped the exclusion lines of the disector frame.

In the final step, the number of NeuN neurons counted in all

disector stacks was summed [
P

Q"] and the total number in

neocortex estimated by the optical fractionator formula (Eq. (1)):

Total NNeu= [
P

Q"] # F1 # F2 # F3 (1)

where, Total NNeu is the total number of NeuN-immunostained

neurons in neocortex;
P

Q" is the stereology designation for sum

of NeuN neurons counted in all disectors; F1 is the reciprocal of the

section sampling fraction; F2 is the reciprocal of the area sampling

fraction; and F3 is the reciprocal of the thickness sampling fraction.

2.5. Optimal magnification

To assess the optimal magnification for accurate neuron

counting, counts of NeuN neurons at low (40x, 0.65) and high

(100x oil, NA 1.3) optical resolutions were compared in one non-tg

mouse brain. At the first disector location on the first section, NeuN

neurons were manually counted using a high-resolution lens

(100x, NA 1.3) by thin focal-plan optical scanning with a 10-um

high disector. Before moving to the next x-y location, a disector

stack of ten z-axis images one micron apart was collected through

the first disector volume. This process of manual counting followed

by collection of disector stacks was repeated at 200–300

systematic-random x-y locations across all sections at high

resolution (100x, NA 1.3), and the entire process repeated using

an objective lens with low optical resolution (40x, N.A. 0.65) on the

same sections. Disector stacks were used for 1) counting NeuN

neurons by the automatic fractionator for comparison with results

from the manual fractionator; and, 2) for gold-standard validation

(scoring) of manual and automatic fractionator methods by 3-D

reconstruction of disector volumes and counting the true number

of NeuN neurons.

The results of this pilot study showed both manual and

automatic fractionator methods counted more neurons at high

Fig. 2. EDF images (right) created from z-stack of images (left) with low-resolution

lens (40x, NA 0.65, upper) and high-resolution lens (100x, NA 1.3, lower). Lower

right panel shows disector frame and segmented NeuN neurons counted by the

automatic version of the optical fractionator method (West et al., 1991).
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optical resolution (Fig. 2, lower) than at low optical resolution

(Fig. 2, upper).

Careful 3-D reconstruction of disector stacks confirmed over-

projection and masking are the most likely explanations for this

consistent underestimation at low optical resolution. As shown in

Fig. 3, the high depth of field of the low resolution (40x, NA 0.65)

lens prevented adjacent and overlapping cells from being resolved

as individual cells (Fig. 3) by either manual or automatic optical

fractionator. In contrast, disector stacks collected by high resolu-

tion imaging allowed for accurate cell counting, i.e., 98% of NeuN

neurons, by both manual and automatic approaches. Finally, this

pilot study confirmed that sampling NeuN neurons at 200–300

locations on 6–8 sections generated a sufficiently high level of

sampling stringency (CE < 0.05) to reveal group differences for

routine neuroscience studies. This work allowed for further

validation studies in four genetically modified mouse mice with

neurodegeneration as discussed in Section 2.6.

2.6. Validation of automatic optical fractionator

These studies were carried out using NeuN-immunostained

sections from 2 Tg4510 mice (Tg-3, Tg-21) and 2 non-tg controls

(Ntg-2, Ntg-9) by two technicians with equivalent training and

experience. As detailed in Section 2.5, manual fractionator (ground

truth) and automatic fractionator counts of NeuN neurons were

done in the same disector volumes using high optical resolution

(100x, oil immersion, N.A. 1.3) optics. In the first step, manual

fractionator counts of neocortical NeuN neurons at each x-y

location on each section were followed by collection of disector

stacks for estimation of total neuron number using the automatic

fractionator. Second, disector stacks were converted to 2-D EDF

images with all NeuN-immunostained neurons represented at

their maximal plane of focus. Neurons in each EDF image were

segmented by the method detailed in Section 2.4. In the final step,

the total number of neocortical neurons were estimated in an

unbiased manner using the optical fractionator formula [Eq. (1)].

Correlations between separate counts, e.g., manual vs. automatic

fractionator, were reported as coefficient of determination (R2). To

assess inter-rater variability, two trained technicians counted

NeuN neurons through separate sets of optical disectors in the

same sections of one mouse neocortex (mouse 02). The average

values for two data collectors and two automated counts were

used for correlating manual and automatic counts for one mouse

(animal 02; Table 1).

3. Results

Table 1 presents correlations between NeuN counts by the

automated optical fractionator and ground truth (manual stereol-

ogy). These results reflect raw counts by two data collectors for a

total of 85 sections from four mice (2 Tg4510, 2 non-tg controls)

plus one mouse (C-2) analyzed by both data collectors to assess

inter-rater reliability.

The correlations in Table 1 indicate uniformly close relation-

ships between neuron counts by the manual and automatic optical

fractionator approaches (R2 > 0.96). Results for counts of NeuN-

immunostained neurons in neocortex of Tg4510 mice and non-tg

controls are presented in Table 2. Comparison of neocortical

neuron counts by the manual and automatic approaches showed a

4% difference for Tg4510 mice and 7% difference for non-tg mice.

For the ground truth dataset, there was a 24% difference in neuron

number with a slightly higher difference (27%) using the automatic

approach. As expected, inter-rater reliability of two data collectors

correlated closely to each other (R2= 95%, data not shown) at the

level expected for the sampling stringency (CE = 0.05). There were

no differences in the results for manual versus automatic

stereology.

4. Discussion

The optical fractionator method is widely accepted as the

current best practice for accurate estimation of total cell number in

tissue sections. This rigorous estimator of object number is based

on an unbiased design that minimizes or avoids all known sources

of stereological and methodological bias. The primary drawback of

the manual fractionator is low efficiency (low throughput) due to

the requirement for manual cell counting at hundreds of disector

locations.

The automatic method proposed here is the first fully automatic

segmentation-based approach to incorporate the unbiased prin-

ciples of the optical fractionator method (Mouton et al., 2016). The

approach begins with use of an X-Y-Z motorized stage to

automatically collect z-axis stacks of images (disector stacks) at

systematic locations in sections sampled through a defined

reference volume. Since motorized stage control is a common

feature of all commercially available stereology systems, this

unbiased sampling approach simply leverages this hardware for

capturing disector stacks. In the second step, disector stacks are

converted to EDF images in which all cells appear at their maximal

plane of focus. Third, a novel algorithm segments stained cells that

fall within an unbiased disector frame but do not overlap upper left

or bottom exclusion planes. For the segmentation step, we use a

novel combination of Gaussian Mixture Models, watershed, and

Voronoi diagrams that effectively segmented more than 98% of

NeuN neuronal cell bodies in disector stacks (Section 2.5), though

it is true that many other algorithms approaches could achieve

Fig. 3. Schematic of high signal-to-noise objects in a thick section showing over-

projection (left) and masking (right). The low–resolution/high depth of field lens

causes multiple objects to be counted as one. Hence, a high-resolution lens with low

depth of field is required for accurate counts using the manual and automatic

optical fractionator.

Table 1

NeuN neurons counts by ground truth vs. automatic stereology in n = 4 mice.

R2 = correlation for manual and automatic counts.

Mouse ID Ground Truth Auto. Count R2

02 1249 1238 >0.96

21 858 878 >0.98

03 570 603 >0.98

09 558 697 >0.98

Table 2

Comparison of ground truth (manual optical fractionator) and the automatic optical

fractionator for estimates of total number ($SEM) of NeuN neurons in neocortex of

Tg4510 mice and Non-Tg controls.

Group N Manual Automatic % diffNeuN

Mean NeuN SEMNeuN Mean NeuN SEMNeuN

Non-Tg (n = 2) 2 1.30E + 06 1.18E + 5 1.39E + 06 7.71E + 04 +7

Tg4510 (n = 2) 2 9.81E + 05 2.76E + 3 1.02E + 06 1.41E + 04 +4

% diffNeuN "25 "27
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similar results. Since all sampling was carried out in a known

fraction of the total reference volume, the final step is to apply the

fractionator formula [Eq. (1)] to estimate the total number of cells,

without assumptions or considerations about size, shape or

orientation.

The approach is demonstrated for automatic counting of high

signal: noise (S: N) NeuN-immunostained neurons in neocortex of

a transgenic mouse model of tau deposition (Tg4510). Both

automatic and manual approaches revealed substantial loss (about

25%) in total number of neocortical NeuN neurons in brains of

Tg4510 mice at 6-8 months of age compared to non-tg controls as

reported previously in these mice of the same age using manual

stereology (Spires et al., 2006). Analysis of the same disector

volumes showed a strong correlation (R2 > 0.96) between the

automatic and manual versions of the optical fractionator, which

was closely comparable to the correlation of two human collectors

to each other (R2 = 95%). Thus, these results confirm comparable

accuracy of counting of NeuN neurons by the automatic approach

with similar precision (reproducibility; R2 = 96%) as manual counts

by two data collectors.

Using results from gold-standard counts, the results from

ground truth (manual) and automatic fractionator methods could

be scored for accuracy. Furthermore, these 3-D reconstruction

counts allowed for identification of the precise reasons for

mismatches (residual variation) between manual and automatic

counts. Fig. 4 shows NeuN neuron counts by section for manual

Fig. 4. Plots of manual and automated counts of different sections for 4 cases. These plots of Neu-N neuron counts by section show the relative agreement between the

objective automated framework and subjective manual counts by 2 data collectors (C1 and C2). The residual errors in these correlations arise from both approaches. (For

interpretation of the references to colour in the text, the reader is referred to the web version of this article.)
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and automated approaches for each of the comparisons in Table 2.

These plots show the relative overlap of manual counts by two data

collectors (blue) versus automatic counts in the same disector

volumes (red). Since the two data collectors for mouse 02 were

carried out at separate disector locations, these plots show non-

overlapping counts across the same sections [Fig. 4, plots (a) and

(d)]. The first observation is that total cell counting errors by

manual and automatic methods occur in less than 5% of disector

volumes, or about 4 or 5 mismatches per 100 disectors. As

expected from our previous automatic algorithms to detect stained

cells on tissue sections (Mouton et al., 2005; Chaudhury et al.,

2013; Phoulady et al., 2015, 2016a, 2016b) most residual variance in

the correlations of ground truth (manual) and automatic counts

was due to the manual data collection. Three-dimensional

reconstruction of disector stacks showed more frequent errors

by the manual counting (%3–4 mismatches per 100 disector

stacks) than by the automatic approach (%1–2 errors per 100

disector stacks) with most manual counting errors leading to

underestimation (false negatives), e.g., Sections 1–7 in Fig. 4(c).

Specifically, 3-D reconstructions of disector stacks for these

mismatches showed the human data collector failed to resolve

overlapping neurons in the z-axis. These errors due to the high

depth of field (low resolution) of the 40x lens (Fig. 3, Section 2.5)

could be minimized by a higher numerical aperture 40x objective.

In contrast, underestimates at high resolution can be minimized by

slower focusing through the z-axis at each disector location.

Careful 3-D reconstruction of disector stacks showed the second

most common source of mismatches by manual stereology was

false positives where the data collector incorrectly counted cells

touching exclusion planes. Thus, the manual optical fractionator

method could in theory attain an equivalent accuracy of the

automatic approach, provided time is taken to carefully focus

through each disector volume. The caveat is that this process

further reduces the efficiency of conventional cell counting using

the manual optical fractionator.

For the automatic approach, converting disector stacks to EDF

images allowed for clear separation and segmentation of each

NeuN neuron at its optimal plane of focus, thereby allowing the

algorithm to resolve the correct number of overlapping cells in the

z-axis. Pixel-level resolution of exclusion planes and cell bound-

aries eliminated errors at the exclusion planes. Except for a few

parameters, e.g., minima and maxima, most of the parameters in

the segmentation algorithm were set in an automatic and adaptive

manner separately for each image, making the automatic

framework resistant to variations in image acquisition. For

instance, because images collected in the dataset had varying

brightness, intensity thresholds were set adaptively by the

estimated GMM for each image, allowing the algorithm to generate

consistent segmentations for different cell types, staining intensi-

ties and microscope settings that vary brightness at the image and

neuron levels under bright-field illumination (Fig. 5).

It is worth reiterating that only 1–2 errors per 100 disectors

occurred during automatic counting of NeuN neurons in disector

stacks. In most of these cases, 3-D reconstruction indicated the

automatic algorithm counted fewer NeuN neurons than the true

number, e.g., Fig. 4(f), Sections 1–3. The most likely explanation for

these mismatches are (a) one neuron minima is not detected; (b)

two overlapping neurons are not split because the size is less than

the maximum threshold; or (c) the solidity of the neuron obtained

by the refined boundary of original neuron is larger than the

average solidity of all neurons. These mismatches tended to occur

in areas with highly crowded cells and very low contrast, as was the

case for underestimate errors by manual cell counting. In a few rare

cases, the automatic algorithm failed to split multiple cells leading

to a false positive, or the algorithm detected a staining artifact.

Further segmentation optimization will minimize mismatches by

pre-processing to remove artifacts and post-processing to merge

close regions (avoid split cells). Another practical step to further

improve the automatic optical fractionator is optimization of

immunostaining protocols to increase S: N and avoid staining

artifacts.

Beside equal or superior accuracy and precision to manual cell

counting, two advantages of the automatic optical fractionator are

8-fold higher throughput efficiency and 100% objectivity as

compared to manual cell counting. Though this work compared

the proposed automatic framework with manual counting using

just one commercially available stereology system, all current

systems use essentially the same hardware technology and manual

cell counting approaches. All these systems require about 20–

30 min to delineate reference areas and compute results, and 3–4 h

to achieve a CE of 0.05 by manual thin-focal plane optical scanning

and counting (clicking) on stained cells in about 200–300 optical

disectors across 6–8 sections. This level of sampling rigor is

typically sufficient to show significant group differences down to

about 15%, or demonstrate significant differences do not exist

without risking a Type 2 statistical error. To achieve the same level

of accuracy and sampling stringency, the automatic stereology

framework (ASF, Fig. 6) required an average of about 30 min per

case, including 6–8 min to manually delineate reference spaces at

low power; 10–12 min to automatically capture and save disector

stacks to random access memory; and 8–10 min to create EDF

images, run the segmentation algorithm, and compute the total

number of neurons.

A survey of segmentation algorithms proposed to improve

efficiency of cell counting methods show these segmentation

approaches focus on finding number of 2-D cell profiles (Sjöström

et al., 1999; Nattkemper et al., 2001; Ray et al., 2002; Benali et al.,

2003; Peng et al., 2003; Lin et al., 2005; Long et al., 2005, 2006;

Costa and Bollt 2006; Inglis et al., 2008; Ho et al., 2011; Liu et al.,

2014; de Gracia et al., 2015). Per the Delesse principle (1847), the

total number of arbitrary 3-D cells on tissue sections is not equal to

the total number of their 2-D profiles, i.e., Total Ncells 6¼ Total

Nprofiles. Though automatic and therefore rapid, current automatic

segmentation approaches are biased by failure to count in 3-D,

reliance on cell densities (Reference Trap), use of faulty correction

factors, and other assumption- and model-based morphometry

(Gundersen et al., 1988; Mouton, 2016), and therefore lack the

robustness required for bioscience research.

Fig. 5. Two EDF images with variable brightness [left (a) and (b)] and the same images after segmentation [right (a) and (b)].
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Another factor that limits the accuracy of previous approaches

is the often ignored prerequisite that accurate use of the optical

fractionator method requires a thin focal plane for optical scanning

in the z-axis. A pilot study to assess optimal magnification for these

studies provided empirical evidence that low resolution optics

causes systematic underestimation of counts due to over-projec-

tion and masking. These factors could be practically eliminated at

high resolution by applying a modified segmentation algorithm

with advanced post-processing steps, e.g., using a classifier to

indicate likely split or overlapping neurons. For the automatic and

manual counts at low resolution, a similar strategy would not

resolve the correct number of cells because the high depth of field

of standard low resolution lenses effectively collapse cells onto a

single observation plane. A second argument in favor of high

resolution optics for both manual and automatic fractionator

methods is that both approaches require thin focal plane scanning

through the z-axis to determine the section thickness, i.e.,

difference in linear distance between the upper and lower optical

planes of each section (Elozory et al., 2012). Accurate identification

of section thickness by high optical resolution is required for

accurate calculation of the thickness sampling fraction (tsf; see

Eq. (1)). Though we only compared optical resolution using one

low (40x, NA 0.65) and one high (100x oil, NA oil) lens in this study,

it is expected that other high resolution lenses with thin focal

planes such as 63x oil (NA 1.3) would give comparable accuracy.

A further application of the present automatic stereology

framework is that the mean cell (soma) volume and true size

distribution (Gundersen et al., 1988; Jensen and Gundersen, 1993;

Mouton et al., 2015). These size parameters can be determined

from the cell boundaries at their maximum focal plane on EDF

images without additional labor or images, and only negligible

increase in computation time. In contrast, estimating mean cell

size by manual stereology more than doubles the time and effort

over estimation of cell number alone. Future directions to improve

efficiency include automatic delineation of reference spaces by

pattern recognition at low power, and high performance comput-

ing, i.e., increased number of cores, for parallelization of EDF image

creation and algorithm computations.

5. Conclusions

The proposed automatic, objective and accurate optical

fractionator method achieves a dramatic improvement in

throughput efficiency over the current manual optical fractionator.

The automatic approach is 100% objective and not subject to the

subjective human errors that reduce accuracy including false

negatives from overlapping cells, false positives from cells

overlapping with exclusion planes, inter-rater bias, recognition

errors and user fatigue. This automatic stereology approach will be

useful for a wide range of bioscience studies, and especially those

with large workloads that are currently inaccessible to unbiased

stereology methods.

Acknowledgments

The authors would like to acknowledge funding support from

Small Business Innovative Research (SBIR) grants to PRM from the

U.S. Public Health Service (NIH), grants to PRM and DG from the

Florida High Technology Corridor program, and a grant to PRM

from the Byrd Alzheimer’s Institute at the University of South

Florida, Tampa, FL. The authors thank Raj Patel and Robert D. Elkins

for manual cell counting for these studies.

References

Benali, A., Leefken, I., Eysel, U.T., Weiler, E., 2003. A computerized image analysis

system for quantitative analysis of cells in histological brain sections. J.
Neurosci. Methods 125 (1), 33–43.

Bradley, A.P., Bamford, P.C., 2004. A one-pass extended depth of field algorithm
based on the over-complete discrete wavelet transform. Image Vision Comput.

‘04 N. Z. 279–284.
Chaudhury, B., Phoulady, H.A., Goldgof, D., Hall, L.O., Mouton, P.R., Hakam, A., Siegel,

E.M., 2013. An ensemble algorithm framework for automated stereology of

cervical cancer. International Conference on Image Analysis and Processing,
Springer, Berlin Heidelberg, pp. 823–832.

dCosta, L. da F., Bollt, E., 2006. Fast and accurate nonlinear spectral method for
image recognition and registration. Appl. Phys. Lett. 89 (17), 174102.

Delesse, M.A., 1847. Procede mecanique pour determiner la composition des roches.

C. R. Acad. Sci. Paris 25, 544–545.
Elozory, D.T., Kramer, K.A., Chaudhury, B., Bonam, O.P., Goldgof, D.B., Hall, L.O.,

Mouton, P.R., 2012. Automatic section thickness determination using an
absolute gradient focus function. J. Microsc. 248 (3), 245–259.

Gundersen, H.J.G., Bagger, P., Bendtsen, T.F., Evans, S.M., Korbo, L.X.M.N., Marcussen,

N., Sorensen, F.B., 1988. The new stereological tools: disector, fractionator,
nucleator and point sampled intercepts and their use in pathological research

and diagnosis. APMIS 96 (7–12), 857–881.
Gundersen, H.J.G., 1977. Notes on the estimation of the numerical density of

arbitrary profiles: the edge effect. J. Microsc. 111 (2), 219–223.
Ho, S.Y., Chao, C.Y., Huang, H.L., Chiu, T.W., Charoenkwan, P., Hwang, E., 2011.

NeurphologyJ: an automatic neuronal morphology quantification method and

its application in pharmacological discovery. BMC Bioinf. 12 (1), 1.
Inglis, A., Cruz, L., Roe, D.L., Stanley, H.E., Rosene, D.L., Urbanc, B., 2008. Automated

identification of neurons and their locations. J. Microsc. 230 (3), 339–352.
Jensen, E.V., Gundersen, H.J.G., 1993. The rotator. J. Microsc. 170 (1), 35–44.

Lin, G., Chawla, M.K., Olson, K., Guzowski, J.F., Barnes, C.A., Roysam, B., 2005.

Hierarchical, model-based merging of multiple fragments for improved three-
dimensional segmentation of nuclei. Cytom. Part A 63 (1), 20–33.

Liu, J.Y., Ellis, M., Brooke-Ball, H., de Tisi, J., Eriksson, S.H., Brandner, S., Thom, M.,
2014. High-throughput, automated quantification of white matter neurons in

mild malformation of cortical development in epilepsy. Acta Neuropathol.
Commun. 2 (1), 1.

Long, X., Cleveland, W.L., Yao, Y.L., 2005. A new preprocessing approach for cell

recognition. IEEE Trans. Inf. Technol. Biomed. 9 (3), 407–412.

Fig. 6. Schematic diagram of the proposed ASF workflow.

P.R. Mouton et al. / Journal of Chemical Neuroanatomy 80 (2017) A1–A8 A7



Long, X., Cleveland, L., Yao, Y.L., 2006. Automatic detection of unstained viable cells

in bright field images using a support vector machine with an improved training
procedure. Comput. Biol. Med. 36 (4), 339–362.

Mouton, P.R., Durgavich, J., Ingram, D.K., 2005. Automatic estimation of size
parameters using verified computerized stereoanalysis. Image Anal. Stereol. 24

(1), 41–49.

Mouton, P.R., Phoulady, H.A., Goldgof, D., Hall, L.O., Siegel, E., 2015. Automatic
stereology of substantia nigra using a novel segmentation framework based on

the balloon active contour model. Soc. Neurosci. 735.08, Chicago, IL.
Mouton, P.R., Phoulady, H.A., Goldgof, D., Hall, L.O., Gordon, M., Patel, R., Elkins, R.D.,

Morgan, D., 2016. Tg4510 mice provide an effective model for testing
neuroprotective therapies in early stage Alzheimer’s disease. Soc. Neurosci.

767.08, San Diego.

Mouton, P.R., 2016. Quantitative anatomy using unbiased stereology. In: Neu, Corey
P., Genin, Guy M. (Eds.), CRC Handbook of Imaging in Biological Mechanics. CRC

Press, London 579 pp., October 23, 2014.
Nattkemper, T.W., Ritter, H.J., Schubert, W., 2001. A neural classifier enabling high-

throughput topological analysis of lymphocytes in tissue sections. IEEE Trans.

Inf. Technol. Biomed. 5 (2), 138–149.
Peng, S., Urbanc, B., Cruz, L., Hyman, B.T., Stanley, H.E., 2003. Neuron recognition by

parallel potts segmentation. Proc. Natl. Acad. Sci. 100 (7), 3847–3852.
Phoulady, H.A., Goldgof, D., Hall, L., Mouton, P.R., 2015. An approach for overlapping

cell segmentation in multi-layer cervical cell volumes. First place overlapping
cervical cytology image segmentation challenge. International Society for

Biomedical Imaging (IEEE), Brooklyn, NY.

Phoulady, H.A., Goldgof, D.B., Hall, L.O., Mouton, P.R., 2016a. Histopathology image
segmentation with hierarchical multilevel thresholding. Proceedings of the SPIE

Medical Imaging On Digital Pathology, San Diego, CA.

Phoulady, H.A., Goldgof, D.B., Hall, L.O., Mouton, P.R., 2016b. A new approach to

detect and segment overlapping cells in multi-layer cervical cell volume images.
Proceedings Of The International Symposium On Biomedical Imaging (ISBI),

Prague, Czech Republic.
Ray, N., Acton, S.T., Ley, K., 2002. Tracking leukocytes in vivo with shape and size

constrained active contours. IEEE Trans. Med. Imaging 21 (10), 1222–1235.

SantaCruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Forster, C.,
2005. Tau suppression in a neurodegenerative mouse model improves memory

function. Science 309 (5733), 476–481.
Savitzky, A., Golay, M.J., 1964. Smoothing and differentiation of data by simplified

least squares procedures. Anal. Chem. 36 (8), 1627–1639.
Sjöström, P.J., Frydel, B.R., Wahlberg, L.U., 1999. Artificial neural network-aided

image analysis system for cell counting. Cytometry 36, 18–26.

Spires, T.L., Orne, J.D., SantaCruz, K., Pitstick, R., Carlson, G.A., Ashe, K.H., Hyman, B.T.,
2006. Region-specific dissociation of neuronal loss and neurofibrillary

pathology in a mouse model of tauopathy. Am. J. Pathol. 168 (5), 1598–1607.
Sterio, D.C.,1984. The unbiased estimation of number and sizes of arbitrary particles

using the disector. J. Microsc. 134 (2), 127–136.

Valdecasas, A.G., Marshall, D., Becerra, J.M., Terrero, J.J., 2001. On the extended depth
of focus algorithms for bright field microscopy. Micron 32 (6), 559–569.

West, M.J., Slomianka, L.H.J.G., Gundersen, H.J.G., 1991. Unbiased stereological
estimation of the total number of neurons in the subdivisions of the rat

hippocampus using the optical fractionator. Anat. Rec. 231 (4), 482–497.
Wicksell, S.D., 1925. The corpuscle problem: a mathematical study of a biometric

problem. Biometrika 84–99.

de Gracia, P., Gallego, B.I., Rojas, B., Ramirez, A.I., de Hoz, R., Salazar, J.J., Ramirez, J.M.,
2015. Automatic counting of microglial cells in healthy and glaucomatous

mouse retinas. PLoS One 10 (11), e0143278.

A8 P.R. Mouton et al. / Journal of Chemical Neuroanatomy 80 (2017) A1–A8


