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Quantum spacetime on a quantum simulator
Keren Li1,2,3,4,15, Youning Li3,4,15, Muxin Han5,6,15, Sirui Lu 4, Jie Zhou7,8, Dong Ruan4, Guilu Long4,9,10,

Yidun Wan1,2,11,12,13*, Dawei Lu1,2*, Bei Zeng1,2,3,14* & Raymond Laflamme3,7

Quantum simulation has shown its irreplaceable role in many fields, where it is difficult for

classical computers to do much. On a four-qubit Nuclear Magnetic Resonance (NMR)

quantum simulator, we experimentally simulate the spin-network states by simulating

quantum spacetime tetrahedra. The fidelities of our experimentally prepared quantum tet-

rahedra are all above 95%. We then use the quantum tetradedra prepared by the Nuclear

Magnetic Resonance to simulate a spinfoam vertex amplitude, which displays the local

dynamics of quantum spacetime. By measuring the geometric properties on the corre-

sponding quantum tetrahedra and simulating their interaction, our experiment serves as a

basic module that represents the Feynman diagram vertex in the spinfoam formulation of

Loop Quantum Gravity(LQG). This is an initial attempt to study LQG by quantum information

processing.
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As the quantum system size grows linearly, the corre-
sponding Hilbert space grows exponentially. Therefore,
it is impossible for classical computers to study large

quantum systems, although they have gained plenty of success
in the simulation of a variety of physical systems. A raising
hope to overcome the issue is by using quantum computers.
Since quantum computers process information intrinsically or
quantum-mechanically, they are expected to outperform their
classical counterparts exponentially. As first defined by Feyn-
man in 19821, quantum computers are certain quantum sys-
tems that can be easily controlled to imitate the behaviors or
properties of other less accessible quantum systems2,3. Here, we
demonstrate how nuclear magnetic resonance (NMR), with a
high controllable performance on the quantum system4, can be
used to develop simulation methods5,6 for exhibiting quantum
geometries of space and spacetime, based on the analogies
between nuclei spin states in NMR samples and spin-network
states in quantum gravity.

Quantum gravity aims at unifying the Einstein gravity with
quantum mechanics, such that our understanding of gravity can
be extended to the Planck scale 1:22 ´ 1019 GeV7,8. At the
Planck level, Einstein gravity and the continuum of spacetime
break down and are replaced by a quantum spacetime. Many
current approaches toward quantum spacetimes are rooted in
spin networks—an important, non-perturbative framework of
quantum gravity. Spin networks were proposed by Penrose, as
motivated by the twistor theory9, and later have been widely
applied to loop quantum gravity (LQG)10. In LQG, spin net-
works are quantum states representing fundamentally discrete
quantum geometries of space at the Planck scale11, serving as
the boundary data of certain 3þ 1 dimensional quantum
spacetime. A spin network is represented by a graph, whose
(oriented) links and nodes are colored by spin halves. Any node
with edges corresponds to a geometry. For example, a graph
consists of a number of four-valent (or generally n-valent)
nodes, each of which corresponds to a quantum tetrahedron
geometry12.

A 3þ 1 dimensional quantum spacetime whose boundary is
a spin network is a spinfoam, a “network” consisting of a
number of three-dimensional world sheets (surfaces) and their
intersections, where the world sheets are colored by spin halves.
Just like the time evolution of a classical space that builds up a
classical spacetime, the time evolution of a spin network forms
a quantum spacetime13,14. Examples of quantum spacetimes are
shown in Fig. 1a, b. Each vertex where the world sheets meet
leads to a quantum transition that changes the spin network
and represents local dynamics (interactions) of quantum geo-
metry. Similar to Feynman diagrams, quantum spacetimes
encode the transition amplitudes—spinfoam amplitudes—
between the initial and final spin networks15–17. A spinfoam
amplitude of a quantum spacetime is determined by the vertex
amplitudes locally encoded in the intersection vertices in the
quantum spacetime (Fig. 1c, d). Thus, quantum spacetimes and
spinfoam amplitudes provide a consistent and promising
approach to quantum gravity.

In this paper, by using 4-qubit quantum registers in the NMR
system, SUð2Þ invariant-tensor states representing the quantum
tetrahedra are created with over 95% fidelity, and we subse-
quently measure their geometrical properties–dihedral angles,
which determine the shapes of tetrahedra. This simulation with
NMR is featured by the capability of controlling individual qubits
with high precision. With these quantum tetrahedra, we simulate
a spin-1=2 spinfoam vertex amplitude in Ooguri’s model.
Quantum tetrahedra and vertex amplitudes serve as building
blocks of LQG. Our work opens up a new window of putting
LQG in experiments.

Results
Quantum tetrahedron. Given a spin network defined on an
oriented graph Γ, each link l is oriented and carries a half-integer
jl , which labels a 2jl þ 1 dimensional SUð2Þ irreducible repre-
sentation space Hjl

. Each node n carries a tensor jini in the tensor
representation �lHjl

, that is invariant under SUð2Þ action. The
state jini is thus referred to as an invariant tensor. A spin-network
state is written as a triple jΓ; jl; ini, defined by a tensor product of
the invariant tensors jini at all nodes, jΓ; jl; ini :¼ �njini, where
spin labels of jini are implicit. All spin networks with arbitrary
Γ; jl; in define an orthonormal basis in the Hilbert space of LQG.
Thus, simulating a spin network with m nodes, �m

n¼1jini, only
amounts to producing m invariant tensors ji1i; � � � ; jimi in the
experiment. It then suffices to simulate jini.

The rank N of jini coincides with the valence of the node n.
The SUð2Þ invariance of a rank-Njini implies

Ĵ
ð1Þ þ Ĵ

ð2Þ þ Ĵ
ð3Þ þ ¼ þ Ĵ

ðNÞ� �
jini ¼ 0: ð1Þ

Here, Ĵ
ðkÞ ¼ ðĴðkÞx ; Ĵ

ðkÞ
y ; Ĵ

ðkÞ
z Þ are the angular momentum operators

on the Hilbert space Hjk
. These operators satisfy

½̂JðmÞ
a ; Ĵ

ðkÞ
b � ¼ iδmkϵabcĴ

ðkÞ
c , where ϵabc is the Levi–Civita symbol.

Eq. (1) is the internal gauge invariance of LQG, as the remanent
from restricting the local Lorentz symmetry in a spatial slice10,18.
As Euclidean tetrahedra with N ¼ 4 are the fundamental
building blocks of arbitrary curved 3d discrete geometries, in
this paper, we mainly focus on N ¼ 4. In a 3d Euclidean space, a

tetrahedron gives 4 oriented areas Eðk¼1;���;4Þ ¼ ðEðkÞ
x ; EðkÞ

y ; EðkÞ
z Þ,

where jEðkÞj is the area of the kth face, and EðkÞ=jEðkÞj is the unit
vector normal to the face. Four tetrahedron faces form a closed
surface, namely

Eð1Þ þ Eð2Þ þ Eð3Þ þ Eð4Þ ¼ 0: ð2Þ

Conversely, the data Eðk¼1;���;4Þ subject to Eq. (2) uniquely
determine the (Euclidean) tetrahedron geometry19. The compar-

ison of Eqs. (1) and (2) indicates that Ĵ
ðkÞ

is the quantum version

of Ê
ðkÞ
. In fact in LQG, area operators Ek are related to Ĵ

ðkÞ
by

Ê
ðkÞ ¼ 8π‘2P Ĵ

ðkÞ
, where ‘P ¼ GN_ is the Planck length, and GN the

Newton’s constant. Hence, Eqs. (1) and (2) lead to a geometrical
interpretation for the invariant tensor, and further for the spin
network20. More detailed physical account for this quantization
is given in Supplementary Note 1.

Quantum spacetime atom. In a 3þ 1 dimensional dynamical
quantum spacetime shown in Fig. 1b, we consider an atom of
quantum spacetimes, namely a 3-sphere enclosing a portion
of the quantum spacetime surrounding a vertex. The boundary of
the enclosed quantum spacetime is precisely a spin network (see
Fig. 1c). Large quantum spacetimes with many vertices can be
obtained by gluing the atoms.

A vertex amplitude associated with a quantum spacetime atom,
which determines the spinfoam amplitude, is an evaluation of the
spin network �5

n¼1jini, leading to a transition from the initial to
the final spin networks. The evaluation itself is a function of
invariant tensors. The spin network �5

n¼1jini in Fig. 1c shows the
(quantum) gluing of 5 tetrahedra to form a closed S3, where each
invariant tensor associates with a node in the spin network (blue in
Fig. 1c). Consider the following evaluation of �5

n¼1jini by picking
up the 2-qubit maximally entangled state jϵli ¼ ðj01i � j10iÞ= ffiffiffi

2
p
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for each link l

Aði1; � � � ; i5Þ ¼
O10
l¼1

ϵl
O5

n¼1

�����
����� in

* +
: ð3Þ

The inner product above takes place at the end points of each l,
between a qubit in jϵli and the other in jini. Each link in the spin
network corresponds to gluing a pair of faces belonging to two
different quantum tetrahedra. Gluing faces requires to match in
their quantum area, but does not require to match in shape due to
quantum fluctuations.

The resulting Aði1; � � � ; i5Þ is a vertex amplitude of quantum
spacetime in Ooguri’s model15, where the spins are all 1=2.
Ooguri’s model defines a topological invariant of four-manifolds,
and the vertex amplitudes in Ooguri’s model relate to the classical
action of gravity when (1) the spins are large and (2) spins and
invariant tensors jini satisfy Regge-like boundary conditions21.
Aði1; � � � ; i5Þ is the transition amplitude from m to 5�m
quantum tetrahedra ðm< 5Þ, or covariantly, the interaction
amplitude of 5 quantum tetrahedra. The amplitude describes
the local dynamics of LQG in the 3þ 1 dimensional quantum
spacetime enclosed by the S3.

Experimental design. LQG identifies quantum tetrahedron geo-
metries with the quantum angular momenta subject to Eq. (1).
This identification enables us to simulate quantum geometries
with quantum registers. We focus on the situation with all spins
j ¼ 1=2 (Hj¼1=2 ’ C

2) and simulate quantum tetrahedra(N ¼ 4)
with four-qubit invariant-tensor states (details are given in Sup-
plementary Note 2).

The quantum tetrahedra can be reconstructed through various
geometrical properties defined by the operators on

InvSUð2Þ½H�4
j¼1=2�. For example, with the quantization of area

operators Ê
ðkÞ
, the quantum area of the kth face is

diagonalized11,22 as

cArk � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê
ðkÞ � ÊðkÞ

q
¼ 8π‘2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĵ
ðkÞ � ĴðkÞ

q
: ð4Þ

The expectation value of an area operator in an invariant tensor
jii is hijcArkjii ¼ 8π‘2P

ffiffiffiffiffiffiffiffi
3=4

p
. In addition, the angle θkm between

the kth and mth face normals is quantized accordingly23 as

dcos θkm ¼ Ê
ðkÞ � ÊðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ê
ðkÞ � ÊðkÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê
ðmÞ � ÊðmÞ

q ¼ 4
3
Ĵ
ðkÞ � ĴðmÞ

: ð5Þ

The dihedral angle ϕkm between the kth and mth faces relates to
θkm by cos ϕkm ¼ �cos θkm. Because of Eq. (1), for a certain k,

there are only two independent expectation values of dcos θkm, say,
hij dcos θ12jii and hij dcos θ13jii. For the arbitrary tetrahedron jii,
its geometry can be uniquely determined by the expectation
values of the four areas and two dihedral angles (Supplementary
Note 3).

Since InvSUð2Þ½H�4
j¼1=2� is two-dimensional, this invariant-tensor

space can be presented on a Bloch sphere. With the spherical
coordinate system, any point ðθ; ϕÞ on the surface can uniquely
determine a quantum tetrahedron. In our experiments, we intend
to simulate ten quantum tetrahedra by preparing the correspond-
ing invariant-tensor states. These states are labeled by 10 colored
points on the Bloch sphere, as shown in Fig. 2, whose spherical
coordinates can be found in Supplementary Note 4.

Our experiments were conducted on a 700-MHz DRX Bruker
spectrometer at room temperature. The crotonic acid molecule
with four 13C nuclei, works as our four-qubit quantum system,

a

c

E(k = 1,··· ,4)

Space

Space

Space

Space

Spacetime

S3

S3

Γ

b

d

jl

l

n
in

Fig. 1 Quantum spacetime and tetrahedra. a A static 4d quantum spacetime from evolving the spin network. b A dynamical quantum spacetime with a
number of five valent vertices (in black) by intersecting world sheets, one of which is denoted by S3. c The local structure of a vertex from b by considering
a 3-sphere S3 enclosing the vertex. Intersections between the world sheets and S3 give a spin network (in blue). Each spin network represents a state jini
and each link l is oriented, which carries a half-integer jl . d Quantum geometrical tetrahedra. Each node of the spin network represents a quantum
tetrahedron. Connecting 2 nodes by a link in the spin network corresponds to gluing 2 tetrahedra through the face dual to the link. Oriented areas are
denoted Eðk¼1;���;4Þ ¼ ðEðkÞx ; EðkÞy ; EðkÞz Þ here
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whose Hamiltonian is

Hint ¼
X4
j¼1

πνjσ
j
z þ

X4
j < k;¼1

π

2
Jjkσ

j
zσ

k
z ; ð6Þ

where νj is the chemical shift of the jth spin and J jk is the
spin–spin interaction (J-coupling) strength between spins j and k.
To achieve a universal control on this system, a transverse
magnetic field is applied at a reference frequency of 13C nuclei
ωrf . By tuning parameters such as amplitude ω1, phase ϕ, and
duration, the control Hamiltonian of each time step is

Hrf ¼ �ω1

X4
i¼1

ðcosðωrf t þ ϕÞσ ix þ sinðωrf t þ ϕÞσ iyÞ: ð7Þ

All the experiments to prepare the quantum tetrahedra and
simulate its local dynamics are divided into the following
three parts:

State preparation: First, the entire system was initialized to a
pseudo-pure state. With the spatial average method, the fidelity
obtained is over 99% (Supplementary Note 4). Then, the system
was driven into the ten invariant-tensor states from i ¼ A0;A1 to
E0; E1 which are shown in Fig. 2. Those transformations were
implemented by ten 20 ms-shaped pulses. Those shaped pulses
were all optimized by the gradient ascent pulse engineering
(GRAPE) algorithm with the simulated fidelity over 99.7%24. As a
result, the ten experimental states obtained were denoted as ρtetrai ,
where i ¼ A0;A1 ¼ E0; E1.

Geometry measurement: For an arbitrary density matrix
represented with Pauli terms, the identity part generates no

signal in the NMR system. Hence, the area operators Ê
ðkÞ

defined
in Eq. (4) are unmeasurable in the experiment. Thus, in our

experiment, we stress on dcos θkm defined in Eq. (5), where k≠m

and k;m ¼ 1¼ 4. For a qubit system, these dcos θkm can be
represented in terms of Pauli matrices:dcos θkm ¼ ðσkxσmx þ σkyσ

m
y þ σkzσ

m
z Þ=6. The observables such as

Tr½σkxσmx ρtetrai �ði ¼ A0;A1 ¼ E0; E1Þ can be measured by adding
assistant pulses before the measurement, which function as
single-qubit rotations and were optimized by a 1 ms GRAPE
pulse with a simulated fidelity over 99.7%.

We present the measured geometry properties with a three-
dimensional histogram in Fig. 3, whose vertical axis represents the
cosine value of angles between the face normals. In the figure,
the maximum difference between experiment (colored) and theory
(transparent) is within 0:08. The uncertainty came from the NMR
spectrum-fitting process when using the Lorentz shape to
guarantee the confidence level over 95%. With the consideration
of error bars, the coincidence between experiments and theoretical
simulation (Fig. 3) implies that the invariant-tensor states

prepared in our experiment match the building blocks—quantum
tetrahedra.

Amplitude simulation: As the spin-network states serve as the
boundary data of 3+1-dimensional quantum spacetime, the
vertex amplitude defined in Eq. (3) determines the spinfoam
amplitude and describes the local dynamics of QG in the 4d
quantum spacetime, displaying the properties of these
boundary data.

To obtain such vertex amplitudes, one needs to calculate the
inner products between five different quantum tetrahedron states.
This could be done in a 20-qubit quantum computer by
establishing two-qubit maximally entangled state jϵli ¼ ðj01i �
j10iÞ= ffiffiffi

2
p

between arbitrary two tetrahedra jini, as the link l
shown in Fig. 1. Nevertheless, such a quantum computer is
beyond the cutting-edge technology nowadays. Alternatively, a
full tomography follows our state preparation to obtain the
information of quantum tetrahedron states. The fidelities between
the experimentally prepared quantum tetrahedron states and the
theoretical ones were also calculated. They are all above 95%
(Supplementary Note 4).

By using the prepared quantum tetrahedra, we simulated the
vertex amplitude in Eq. (3) by restricting jiniðn ¼ 1¼ 4Þ as the
regular tetrahedra and substituted the ji5i with the experimental
ρtetrai . Mixed states are inevitably introduced to the experiment

Z

X
Y

1.210.80.60.40.200
0.2

0.4
0.6

0.8
1

1.2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
21.81.61.41.210.80.60.40.200

0.5

0.6

0.5

0.4

0.3

0.2

0.1

0

10.80.60.40.200

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

0.9

0.8

1.81.61.41.210.80.60.40.200
0.2

0.4
0.6

0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0.80.60.40.200
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.60.40.200
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2

0.8

0.7
0.6
0.5
0.4

0.3

0.2
0.1

0

10.80.60.40.200

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

0.9

0.8

0.60.40.200

0.5

1

1.5

2

0.6

0.5

0.4

0.3

0.2

0.1

0

0.60.40.200
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2

0.6

0.5

0.4

0.3

0.2

0.1

0

0.40.200

0.5

1

1.5

2

2.5

0.5

0.4

0.3

0.2

0.1

0

A0

A1

B0

B1

C0

C1

D0

D1

E0

E1

ϕ

θ

A1

A0 B0

B1

C0

C1

D0

D1

E0

E1

Fig. 2 Experimentally prepared states on the Bloch sphere and their corresponding classical tetrahedra. The states take the form cos θ2 j0iL þ eiϕ sin θ
2 j1iL and

are labeled by Ai; Bi;Ci;Di; Eiði ¼ 0; 1Þ, among which, C0 and C1 are regular tetrahedrons. j0Li and j1Li are the basis states in a subspace of a four-qubit
system, representing a single logical qubit

–0.4

1.2

0.8

0.4

0

E1

D1

C1

B1

A1

E0

D0

C0

B0

A0

cos�14

cos�13

cos�12

Fig. 3 Cosine values of angles between face normals in the quantum
tetrahedron (cosines of dihedral angles differ by a minus sign). The results
in experiments (theory) are represented by the colored (transparent)
columns. Error bars came from the uncertainty when fitting nuclear
magnetic resonance (NMR) spectra

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0218-5

4 COMMUNICATIONS PHYSICS |           (2019) 2:122 | https://doi.org/10.1038/s42005-019-0218-5 | www.nature.com/commsphys

www.nature.com/commsphys


because of experimental errors. To calculate the inner products
in the vertex amplitude formula in Eq. (3), we purified the
measured density matrices, with the method of maximal
likelihood. The comparison between the experiment and the
numeric simulation is listed in Table 1. The vertex amplitude
Aði1; ¼ ; i5Þ is the transition amplitude of the evolution from
m to 5�m quantum tetrahedra ðm< 5Þ or the interaction
among all five tetrahedra. As seen in Fig. 4 and Table 1, the
maximum and minimum of the magnitude of the amplitude
occur, respectively when ρtetrai describes the two regular-
tetrahedron states C1 and C0. Table 1 also records the precise
values of the amplitudes.

As a result, our experiment demonstrates that the saddle points
of the amplitude indeed occur where the five interacting
tetrahedra have a sensible geometric meaning, namely they glue
to form a four-simplex. Such a geometrical meaning is manifest in
the large-J or classical limit. To present the consequences
intuitively, we also calculated the vertex amplitude based on the
condition above, by varying the parameters θ and ϕ in ji5i.
Figure 4a, b depicts the value of the simulated amplitude and
phase, respectively. When θ ¼ π=2 and ϕ ¼ π=2ðC1Þ or
ϕ ¼ 3π=2ðC0Þ, the invariant-tensor states correspond to the
regular tetrahedrons.

Discussion
Quantum fluctuations arise because the operators dcos θkm do not
commute, where ðk;mÞ ¼ ð1; 2Þ; ð1; 3Þ; ð1; 4Þ. The fluctuations Δkm

are defined as ðdcos θkm � hijdcos θkmjiiÞ2, and we add three Δkm to
obtain the total quantum fluctuation (Supplementary Note 5)

Δ ¼ 2
3
þ 8
3
cos2

θ

2
sin2

θ

2
ð1� cos2ϕÞ � 2

3
: ð8Þ

The experimentally prepared states are all in the minimal fluc-
tuation of area because the second term in Eq. (8) equals 0 (the

experimental values are listed in Supplementary Note 4). These
tetrahedra are of Planck size (Ar � ‘2P) and typically appear in
quantum spacetime near the big bang or a black-hole singular-
ity25. The quantum fluctuations are quite large because the
quantum tetrahedra simulated correspond to j ¼ 1=2. For j 	 1,
we would see tetrahedron geometries with small quantum
fluctuations26.

By using a four-qubit quantum register in the NMR system, we
created ten invariant-tensor states representing ten quantum
tetrahedra with a fidelity over 95%, and subsequently measured
their dihedral angles. By considering the spectrum-fitting errors,
the geometrical identification implies our success in simulating
quantum tetrahedra. We then simulated spin-1=2 vertex ampli-
tudes Aði1; ¼ ; i5Þ (in Ooguri’s model). As the vertex amplitudes
determine the spinfoam amplitudes and display the local
dynamics, the results imply the interaction amplitude of five
gluing quantum tetrahedra or display the transition from m to
ð5�mÞ quantum tetrahedra. As the first step toward exploring
spin-network states and spinfoam amplitudes by using a quantum
simulator, our work provides valid experimental demonstrations
toward studying LQG.

Data availability
The data sets generated during and/or analyzed during the current study are available
from the corresponding author upon reasonable request.
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