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Quantum spacetime on a quantum simulator

Keren Li'"23415 Youning Li3*1°, Muxin Han>®"®, Sirui Lu® 4, Jie Zhou’-8, Dong Ruan?, Guilu Long®210,
Yidun Wan1'2'“'12'13*, Dawei Lu"?*, Bei Zeng1'2'3'14* & Raymond Laflamme3’/

Quantum simulation has shown its irreplaceable role in many fields, where it is difficult for
classical computers to do much. On a four-qubit Nuclear Magnetic Resonance (NMR)
quantum simulator, we experimentally simulate the spin-network states by simulating
quantum spacetime tetrahedra. The fidelities of our experimentally prepared quantum tet-
rahedra are all above 95%. We then use the quantum tetradedra prepared by the Nuclear
Magnetic Resonance to simulate a spinfoam vertex amplitude, which displays the local
dynamics of quantum spacetime. By measuring the geometric properties on the corre-
sponding quantum tetrahedra and simulating their interaction, our experiment serves as a
basic module that represents the Feynman diagram vertex in the spinfoam formulation of
Loop Quantum Gravity(LQG). This is an initial attempt to study LQG by quantum information
processing.
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sponding Hilbert space grows exponentially. Therefore,

it is impossible for classical computers to study large
quantum systems, although they have gained plenty of success
in the simulation of a variety of physical systems. A raising
hope to overcome the issue is by using quantum computers.
Since quantum computers process information intrinsically or
quantum-mechanically, they are expected to outperform their
classical counterparts exponentially. As first defined by Feyn-
man in 1982!, quantum computers are certain quantum sys-
tems that can be easily controlled to imitate the behaviors or
properties of other less accessible quantum systems®3. Here, we
demonstrate how nuclear magnetic resonance (NMR), with a
high controllable performance on the quantum system#, can be
used to develop simulation methods>® for exhibiting quantum
geometries of space and spacetime, based on the analogies
between nuclei spin states in NMR samples and spin-network
states in quantum gravity.

Quantum gravity aims at unifying the Einstein gravity with
quantum mechanics, such that our understanding of 7grawity can
be extended to the Planck scale 1.22 x 10'° GeV”8. At the
Planck level, Einstein gravity and the continuum of spacetime
break down and are replaced by a quantum spacetime. Many
current approaches toward quantum spacetimes are rooted in
spin networks—an important, non-perturbative framework of
quantum gravity. Spin networks were proposed by Penrose, as
motivated by the twistor theory®, and later have been widely
applied to loop quantum gravity (LQG)!. In LQG, spin net-
works are quantum states representing fundamentally discrete
quantum geometries of space at the Planck scale!l, serving as
the boundary data of certain 3+ 1 dimensional quantum
spacetime. A spin network is represented by a graph, whose
(oriented) links and nodes are colored by spin halves. Any node
with edges corresponds to a geometry. For example, a graph
consists of a number of four-valent (or generally n-valent)
nodes, each of which corresponds to a quantum tetrahedron
geometry!2,

A 3 + 1 dimensional quantum spacetime whose boundary is
a spin network is a spinfoam, a “network” consisting of a
number of three-dimensional world sheets (surfaces) and their
intersections, where the world sheets are colored by spin halves.
Just like the time evolution of a classical space that builds up a
classical spacetime, the time evolution of a spin network forms
a quantum spacetime!314, Examples of quantum spacetimes are
shown in Fig. la, b. Each vertex where the world sheets meet
leads to a quantum transition that changes the spin network
and represents local dynamics (interactions) of quantum geo-
metry. Similar to Feynman diagrams, quantum spacetimes
encode the transition amplitudes—spinfoam amplitudes—
between the initial and final spin networks!>~17. A spinfoam
amplitude of a quantum spacetime is determined by the vertex
amplitudes locally encoded in the intersection vertices in the
quantum spacetime (Fig. 1c, d). Thus, quantum spacetimes and
spinfoam amplitudes provide a consistent and promising
approach to quantum gravity.

In this paper, by using 4-qubit quantum registers in the NMR
system, SU(2) invariant-tensor states representing the quantum
tetrahedra are created with over 95% fidelity, and we subse-
quently measure their geometrical properties—dihedral angles,
which determine the shapes of tetrahedra. This simulation with
NMR is featured by the capability of controlling individual qubits
with high precision. With these quantum tetrahedra, we simulate
a spin-1/2 spinfoam vertex amplitude in Ooguri’s model.
Quantum tetrahedra and vertex amplitudes serve as building
blocks of LQG. Our work opens up a new window of putting
LQG in experiments.

Q s the quantum system size grows linearly, the corre-

Results
Quantum tetrahedron. Given a spin network defined on an
oriented graph I, each link / is oriented and carries a half-integer
jj» which labels a 2j, 4+ 1 dimensional SU(2) irreducible repre-
sentation space H; . Each node 7 carries a tensor |i,) in the tensor
representation ®;;, that is invariant under SU(2) action. The
state |7, ) is thus referred to as an invariant tensor. A spin-network
state is written as a triple |T, j;, i,), defined by a tensor product of
the invariant tensors |i,) at all nodes, |T,j;,i,) == ®,]i,), where
spin labels of |i,) are implicit. All spin networks with arbitrary
T,j;, i, define an orthonormal basis in the Hilbert space of LQG.
Thus, simulating a spin network with s nodes, ®_,|i,), only
amounts to producing m invariant tensors |i}),--- ,[i,) in the
experiment. It then suffices to simulate [i,).

The rank N of |i,) coincides with the valence of the node n.
The SU(2) invariance of a rank-Nli,) implies

(j(1)+f(2>+j(3>+ +i<N))|in> =0. 1)

Here, i(k> = (jik)7 A;k),jgo) are the angular momentum operators
on tl;{e Hilbert ipace H;. These operators satisfy
[iim)jg, )] = i(SmkeabJE ). where €. is the Levi-Civita symbol.

Eq. (1) is the internal gauge invariance of LQG, as the remanent
from restricting the local Lorentz symmetry in a spatial slice!®18.
As Euclidean tetrahedra with N =4 are the fundamental
building blocks of arbitrary curved 3d discrete geometries, in
this paper, we mainly focus on N = 4. In a 3d Euclidean space, a

tetrahedron gives 4 oriented areas EF=14) = (Efck),E}(,k),Egk)),

where [E®)| is the area of the kth face, and E®) /|E®)| is the unit
vector normal to the face. Four tetrahedron faces form a closed
surface, namely

EY +E® L E® L EW — 0. (2)

Conversely, the data E*®=1"4) subject to Eq. (2) uniquely

determine the (Euclidean) tetrahedron geometry!®. The compar-
ison of Egs. (1) and (2) indicates that j(k) is the quantum version
of I:Z(k>. In fact in LQG, area operators EF are related to j(k> by

Y = 87r€f,j(k), where ¢, = Gyh is the Planck length, and Gy the
Newton’s constant. Hence, Eqs. (1) and (2) lead to a geometrical
interpretation for the invariant tensor, and further for the spin
network2?, More detailed physical account for this quantization
is given in Supplementary Note 1.

Quantum spacetime atom. In a 3 + 1 dimensional dynamical
quantum spacetime shown in Fig. 1b, we consider an atom of
quantum spacetimes, namely a 3-sphere enclosing a portion
of the quantum spacetime surrounding a vertex. The boundary of
the enclosed quantum spacetime is precisely a spin network (see
Fig. 1c). Large quantum spacetimes with many vertices can be
obtained by gluing the atoms.

A vertex amplitude associated with a quantum spacetime atom,
which determines the spinfoam amplitude, is an evaluation of the
spin network ®>_,]i,), leading to a transition from the initial to
the final spin networks. The evaluation itself is a function of
invariant tensors. The spin network ®>_,|i,) in Fig. 1c shows the
(quantum) gluing of 5 tetrahedra to form a closed S, where each
invariant tensor associates with a node in the spin network (blue in
Fig. 1c). Consider the following evaluation of ®>_, |i,) by picking

up the 2-qubit maximally entangled state |¢,) = (|01) — |10))/+/2
p q y g 1
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Fig. 1 Quantum spacetime and tetrahedra. a A static 4d quantum spacetime from evolving the spin network. b A dynamical quantum spacetime with a
number of five valent vertices (in black) by intersecting world sheets, one of which is denoted by S3. € The local structure of a vertex from b by considering
a 3-sphere S? enclosing the vertex. Intersections between the world sheets and S give a spin network (in blue). Each spin network represents a state |i,)
and each link [ is oriented, which carries a half-integer j. d Quantum geometrical tetrahedra. Each node of the spin network represents a quantum

tetrahedron. Connecting 2 nodes by a link in the spin network corresponds to gluing 2 tetrahedra through the face dual to the link. Oriented areas are

denoted E=14) = (EX EY () here

for each link [

5
Aliy, -

yis) = ®<€l

I=1

i, > (3)

The inner product above takes place at the end points of each I,
between a qubit in |¢;) and the other in |i,). Each link in the spin
network corresponds to gluing a pair of faces belonging to two
different quantum tetrahedra. Gluing faces requires to match in
their quantum area, but does not require to match in shape due to
quantum fluctuations.

The resulting A(i,--- ,is) is a vertex amplitude of quantum
spacetime in Ooguri’s model!>, where the spins are all 1/2.
Ooguri’s model defines a topological invariant of four-manifolds,
and the vertex amplitudes in Ooguri’s model relate to the classical
action of gravity when (1) the spins are large and (2) spins and
invariant tensors |i,) satisfy Regge-like boundary conditions?!.
A(iy,- -+ ,is) is the transition amplitude from m to 5—m
quantum tetrahedra (m<5), or covariantly, the interaction
amplitude of 5 quantum tetrahedra. The amplitude describes
the local dynamics of LQG in the 3 + 1 dimensional quantum
spacetime enclosed by the S°.

n=1

Experimental design. LQG identifies quantum tetrahedron geo-
metries with the quantum angular momenta subject to Eq. (1).
This identification enables us to simulate quantum geometries
with quantum registers. We focus on the situation with all spins
j=1/2 ('Hj:1 5 C?) and simulate quantum tetrahedra(N = 4)
with four-qubit invariant-tensor states (details are given in Sup-
plementary Note 2).

The quantum tetrahedra can be reconstructed through various
geometrical properties defined by the operators on

Invgy ) [Hj®:4l j2)- For example, with the quantization of area

operators E(k>, the quantum area of the kth face is

diagonalized!122 as

I/Gk —/g® . gk _ 8né? /j(k) -j(k). (4)

The expectation value of an area operator in an invariant tensor
|i) is (i|Ar|i) = 87¢5+/3/4. In addition, the angle 6, between
the kth and mth face normals is quantized accordingly?3 as

50 gom

E
\/E(") ' E(")\/ £m gm) 3

The dihedral angle ¢, between the kth and mth faces relates to
0y, by cos¢,, = —cosb,,. Because of Eq. (1), for a certain k,

—

cos Oy, =

there are only two independent expectation values of cos 6,,,, say,

(i]cos B),]i) and (i|cos 0,5]i). For the arbitrary tetrahedron |i),
its geometry can be uniquely determined by the expectation
values of the four areas and two dihedral angles (Supplementary
Note 3).

Since Invgy,) [Hfjl J2) s two-dimensional, this invariant-tensor
space can be presented on a Bloch sphere. With the spherical
coordinate system, any point (6, ¢) on the surface can uniquely
determine a quantum tetrahedron. In our experiments, we intend
to simulate ten quantum tetrahedra by preparing the correspond-
ing invariant-tensor states. These states are labeled by 10 colored
points on the Bloch sphere, as shown in Fig. 2, whose spherical
coordinates can be found in Supplementary Note 4.

Our experiments were conducted on a 700-MHz DRX Bruker
spectrometer at room temperature. The crotonic acid molecule
with four *C nuclei, works as our four-qubit quantum system,

COMMUNICATIONS PHYSICS| (2019)2:122 | https://doi.org/10.1038/s42005-019-0218-5 | www.nature.com/commsphys 3


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0218-5

At B1

C1 D1 E1

Fig. 2 Experimentally prepared states on the Bloch sphere and their corresponding classical tetrahedra. The states take the form cos% [0), + el sing 1), and
are labeled by A;, B;, C;, D;, E;(i = 0,1), among which, C, and C; are regular tetrahedrons. |0;) and |1,) are the basis states in a subspace of a four-qubit

system, representing a single logical qubit

whose Hamiltonian is

4 4
. T ok
Hint = Z ﬂyjajz + Z E]jkajzo'ﬂ (6)
j=1 j<k=1

where v; is the chemical shift of the jth spin and J; is the
spin-spin interaction (J-coupling) strength between spins j and k.
To achieve a universal control on this system, a transverse
magnetic field is applied at a reference frequency of *C nuclei
w,s. By tuning parameters such as amplitude w,, phase ¢, and

duration, the control Hamiltonian of each time step is

4
Hy=—w Y _(cos(wyt + ¢)al + sin(wyt + ¢)al).  (7)

i=1

All the experiments to prepare the quantum tetrahedra and
simulate its local dynamics are divided into the following
three parts:

State preparation: First, the entire system was initialized to a
pseudo-pure state. With the spatial average method, the fidelity
obtained is over 99% (Supplementary Note 4). Then, the system
was driven into the ten invariant-tensor states from i = A, A, to
E,,E, which are shown in Fig. 2. Those transformations were
implemented by ten 20 ms-shaped pulses. Those shaped pulses
were all optimized by the gradient ascent pulse engineering
(GRAPE) algorithm with the simulated fidelity over 99.7%2%. As a
result, the ten experimental states obtained were denoted as pi"™,
where i = Ay, A, ... Ey, E;.

Geometry measurement: For an arbitrary density matrix
represented with Pauli terms, the identity part generates no

signal in the NMR system. Hence, the area operators £" defined
in Eq. (4) are unmeasurable in the experiment. Thus, in our

experiment, we stress on cos 0;,, defined in Eq. (5), where k=m

and k,m =1...4. For a qubit system, these cosf,, can be
represented in terms of Pauli matrices:
cos Oy, = (oka™ + ol;a}’,” + d%a™) /6. The observables such as
TrloXo™ple™](i = Ay, A, ... Ey, E,) can be measured by adding
assistant pulses before the measurement, which function as
single-qubit rotations and were optimized by a 1ms GRAPE
pulse with a simulated fidelity over 99.7%.

We present the measured geometry properties with a three-
dimensional histogram in Fig. 3, whose vertical axis represents the
cosine value of angles between the face normals. In the figure,
the maximum difference between experiment (colored) and theory
(transparent) is within 0.08. The uncertainty came from the NMR
spectrum-fitting process when using the Lorentz shape to
guarantee the confidence level over 95%. With the consideration
of error bars, the coincidence between experiments and theoretical
simulation (Fig. 3) implies that the invariant-tensor states

Fig. 3 Cosine values of angles between face normals in the quantum
tetrahedron (cosines of dihedral angles differ by a minus sign). The results
in experiments (theory) are represented by the colored (transparent)
columns. Error bars came from the uncertainty when fitting nuclear
magnetic resonance (NMR) spectra

prepared in our experiment match the building blocks—quantum
tetrahedra.

Amplitude simulation: As the spin-network states serve as the
boundary data of 3+41-dimensional quantum spacetime, the
vertex amplitude defined in Eq. (3) determines the spinfoam
amplitude and describes the local dynamics of QG in the 4d
quantum spacetime, displaying the properties of these
boundary data.

To obtain such vertex amplitudes, one needs to calculate the
inner products between five different quantum tetrahedron states.
This could be done in a 20-qubit quantum computer by
establishing two-qubit maximally entangled state |¢;) = (|01) —

|10))/v/2 between arbitrary two tetrahedra |i ), as the link I
shown in Fig. 1. Nevertheless, such a quantum computer is
beyond the cutting-edge technology nowadays. Alternatively, a
full tomography follows our state preparation to obtain the
information of quantum tetrahedron states. The fidelities between
the experimentally prepared quantum tetrahedron states and the
theoretical ones were also calculated. They are all above 95%
(Supplementary Note 4).

By using the prepared quantum tetrahedra, we simulated the
vertex amplitude in Eq. (3) by restricting |i,)(n = 1... 4) as the
regular tetrahedra and substituted the |i;) with the experimental
pier@. Mixed states are inevitably introduced to the experiment
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Table 1 Results of theoretical and experimentally simulated vertex amplitudes defined in Eq. (3). Vertex amplitudes are
calculated from the regular tetrahedra |i,)(n = 1... 4) and experimentally prepared |i5). The real and imaginary parts are listed

A, B, Co D, Eq A B, (4 D, E,
Re(107°) Theory —13.5635 —20.1590 0.0000 —26.2024 —26.5339 23.4924 18.1513 —27.1270 7.0208 —5.6401
Experiment —12.74 —19.89 0.01 —24.59 —25.72 —22.16 18.73 —25.48 432 —3.84
Im(10~°) Theory —23.4923 —18.1514 0.0000 —7.0210 5.6400 —13.5634 —20.1591 —46.9848 —26.2024 —26.5339
Experiment —23.67 —-17.78 0.05 —7.98 6.63 13.16 -18.10 —44.14 —25.62 —25.86
a s b
10
3
5
2
F4
F1
F3
-0
F2
F—1
2n
1 -2
n/2
3n/4 0
0 T -3

Fig. 4 Results of simulated vertex amplitudes a are the amplitude of Eq. (3) and b describe the information of its phase. 8 and ¢ are the parameters of the

four-qubit invariant-tensor state defined in Supplementary Note 4

because of experimental errors. To calculate the inner products
in the vertex amplitude formula in Eq. (3), we purified the
measured density matrices, with the method of maximal
likelihood. The comparison between the experiment and the
numeric simulation is listed in Table 1. The vertex amplitude
A(iy, ... ,is) is the transition amplitude of the evolution from
m to 5—m quantum tetrahedra (m<5) or the interaction
among all five tetrahedra. As seen in Fig. 4 and Table 1, the
maximum and minimum of the magnitude of the amplitude
occur, respectively when pi*"* describes the two regular-
tetrahedron states C; and C,. Table 1 also records the precise
values of the amplitudes.

As a result, our experiment demonstrates that the saddle points
of the amplitude indeed occur where the five interacting
tetrahedra have a sensible geometric meaning, namely they glue
to form a four-simplex. Such a geometrical meaning is manifest in
the large-J or classical limit. To present the consequences
intuitively, we also calculated the vertex amplitude based on the
condition above, by varying the parameters 6 and ¢ in |is).
Figure 4a, b depicts the value of the simulated amplitude and
phase, respectively. When 6=m/2 and ¢ =n/2(C,) or
¢ =3m/2(C,), the invariant-tensor states correspond to the
regular tetrahedrons.

Discussion
Quantum fluctuations arise because the operators cos 8, do not
commute, where (k, m) = (1,2), (1,3), (1,4). The fluctuations A,,,

are defined as (co/s\ka — (i|c3\30km|i>) , and we add three A, to
obtain the total quantum fluctuation (Supplementary Note 5)

2 8 0 0 2
A :g—kgcoszisinzi(l — cos*¢) > 3 (8)

The experimentally prepared states are all in the minimal fluc-
tuation of area because the second term in Eq. (8) equals 0 (the

experimental values are listed in Supplementary Note 4). These
tetrahedra are of Planck size (Ar ~ ¢3) and typically appear in
quantum spacetime near the big bang or a black-hole singular-
ity?>. The quantum fluctuations are quite large because the
quantum tetrahedra simulated correspond to j = 1/2. For j > 1,
we would see tetrahedron geometries with small quantum
fluctuations?®.

By using a four-qubit quantum register in the NMR system, we
created ten invariant-tensor states representing ten quantum
tetrahedra with a fidelity over 95%, and subsequently measured
their dihedral angles. By considering the spectrum-fitting errors,
the geometrical identification implies our success in simulating
quantum tetrahedra. We then simulated spin-1/2 vertex ampli-
tudes A(ij, ... ,is) (in Ooguri’s model). As the vertex amplitudes
determine the spinfoam amplitudes and display the local
dynamics, the results imply the interaction amplitude of five
gluing quantum tetrahedra or display the transition from m to
(5 — m) quantum tetrahedra. As the first step toward exploring
spin-network states and spinfoam amplitudes by using a quantum
simulator, our work provides valid experimental demonstrations
toward studying LQG.

Data availability
The data sets generated during and/or analyzed during the current study are available
from the corresponding author upon reasonable request.

Received: 8 February 2019; Accepted: 22 August 2019;
Published online: 04 October 2019
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