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ABSTRACT:

A correspondence between three-dimensional flat connections and constant curvature four-dimensional
simplices is used to give a novel quantization of geometry via complex SL(2, C) Chern-Simons theory. The
resulting quantum geometrical states are hence represented by the 3d blocks of analytically continued Chern-
Simons theory. In the semiclassical limit of this quantization the three-dimensional Chern-Simons action,
remarkably, becomes the discrete Einstein-Hilbert action of a 4-simplex, featuring the appropriate boundary
terms as well as the essential cosmological term proportional to the simplex’s curved 4-volume. Both signs
of the curvature and associated cosmological constant are present in the class of flat connections that give
rise to this correspondence. We provide a Wilson graph operator that picks out this class of connections. We
discuss how to promote these results to a model of Lorentzian covariant quantum gravity encompassing both
signs of the cosmological constant. This paper presents the details for the results reported in [1].
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1 Introduction and Overview

Chern-Simons theory in 3-dimensions is the quintessential topological quantum field theory and has been
studied extensively since the 1980’s (see e.g. [2]). In addition to its importance in the formulation of
topological quantum field theory [3], Chern-Simons theory has applications in many branches of modern
mathematics and physics. The celebrated work of Witten [4], exposed the remarkable relation between
Chern-Simons theory with compact gauge group and knot theory. This exchange has continued to the present
day with, for example, Chern-Simons theory playing an important role in the formulation of the Volume
Conjecture, which relates knot polynomials to the hyperbolic geometry of 3-manifolds [5-8]. Many aspects
of String theory, M-theory and Supersymmetric Gauge Theory also have close ties to Chern-Simons theory
(e.g. [11-16]). Most importantly for the present work, Chern-Simons theory has furnished exact solutions
to quantum gravity in 3-dimensions [9, 10], and provided interesting insights into Loop Quantum Gravity
(LQG) in 4 dimensions, both in its covariant formulation and in black hole physics (e.g. [17-21]). Chern-
Simons theory and its relation to four-dimensional quantum gravity with a cosmological constant (of either
sign) will be the main focus of this paper.



Chern-Simons theories with a compact gauge group and their quantization have become well understood
after the intensive investigations of the last 20 years. However, quantum Chern-Simons theory with complex
gauge group G¢, with G¢ the complexification of a compact Lie group G, is still a rather open subject. These
Chern-Simons theories are noncompact and hence qualitatively different from those with compact group. In
general, the Hilbert spaces associated to the complex case are infinite-dimensional [8, 22-24], while the
Hilbert spaces in the compact cases are finite-dimensional. Recently, there has been substantial progress in
understanding the complex gauge group case [6-8, 24, 25]. This is an active area of research.

This paper focuses on Chern-Simons theory with a complex SL(2, C) gauge group on a compact oriented
3-manifold .#5. The action for this theory is

cS [%M,A] = Sif tr(A/\dA+ zA/\A/\A)+ if tr(A/\dA+ gA/\A/\A), (1.1)
T M5 3 8 M5 3

and might include boundary terms when .3 has a boundary. Here ¢ = k + is is the Chern-Simons coupling
with k, s € R, and 7 is taken to be the complex conjugate of 7. The connection 1-form is A = A/r;, where
Jje{l,2,3} 1 = —%a‘ ;j are generators that take values in the complex Lie algebra sl,C, and o ; are the
Pauli matrices. We will focus on a certain class of 3-manifolds .#3, the simplest example of which is the
graph complement 3-manifold .#3; = S3 \ I's, where I's is the graph with five 4-valent vertices and the
single essential crossing depicted in Fig. 1. For a graph embedded in S 3, the graph complement manifold is
obtained by removing the graph as well as the interior of its tubular neighborhood from S3. The boundary
of $3\Tsisa genus-6 closed 2-surface, which we denote Xg.
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Figure 1. The I's graph can be drawn with five 4-valent vertices, ten edges ¢,;,, and the curve £,4 over-crossing ¢3. It can
also be drawn with all vertices being 3-valent by expanding each 4-valent vertex into two connected 3-valent vertices,
which results in 10 vertices and 15 edges. Both ways of drawing I's lead to the same 3-manifold §3 \ T's.

Chern-Simons theory with graph defects has been considered in [26] in the case of a compact gauge
group; and the volume conjecture has been generalized to quantum spin-networks with knotted graphs in
[27, 30]. From the mathematical point of view, the space of knotted graphs may be more interesting than the
space of knots—due to the fact that the space of trivalent knotted graphs is finitely generated. This means
that there is a finite (and small) set of trivalent knotted graphs that can generate all trivalent knotted graphs
via just a few algebraic operations, while the space of knots is a proper subset of the space of trivalent graphs
[28]. A recent study of trivalent knotted graphs, from the perspective of perturbative Vassiliev-Kontsevich
invariants, specifies these algebraic operations, [29].

Classically, the equations of motion for SL(2, C) Chern-Simons theory are

F=dA+AAA=0, and F=dA+AAA=0, (1.2)

that is, the connections A and A are flat on the 3-manifold .#3. The moduli space of flat connections
Mia (5, SL(2,C)) is the space of solutions. When .#/; has boundary a closed 2-surface X, = 0.#3, of



genus-g, the space of boundary values of A € Mg, (3, SL(2, C)) is a subvariety inside Mgy (Z,, SL(2, C)),
which is the moduli space of SL(2,C) flat connections on the two-dimensional manifold X,. In general,
Mia(Zg, SL(2, C)), known as the Hitchin moduli space, is a hyper-Kéhler variety of dimc = 6g — 6, which
has 3 distinct complex structures 1, J, and K [31]." The three corresponding Kihler forms are denoted
wr, wy, and wg. When we think of Mg (Z,, SL(2, C)) as the phase space of SL(2, C) Chern-Simons theory,
the holomorphic Chern-Simons (Atiyah-Bott-Goldman) symplectic structure wcs is given by

t t
wes = — f tr[01A A 02,A] = — [wy — iwk], (1.3)
47 %, /e

which comes from the holomorphic part of CS [///3 |A,A]. The space of flat connections on .#3 can be
embedded as a subvariety L of complex dimension dim¢ = 3g — 3 in Mg (Z,, SL(2, C)) by considering
the boundary values of these flat connections,

La = Maa(A3,SL(2,C)). (1.4)

The subvariety L is holomorphic with respect to the complex structure J, and is Lagrangian with respect
to I and K, i.e. w; and wg, and hence wcg, vanish on £, [32, 33].

The fact that £, is Lagrangian has a clear physical meaning as well. Consider an analogy with particle
mechanics, which can be seen as a field theory over the time axis. The boundary values of a physical
trajectory are the phase space points at the initial and final times #y and ¢. Introduce a boundary phase space,
which is just the Cartesian product of two copies of the phase space one at each of these times. This doubled
phase space has a symplectic form Q = dp A dg — dpy A dqo. The sign on the second term indicates that the
initial space is to the past. The statement that the dynamics is a canonical transformation, i.e. that dp A dgq is
invariant under time evolution, is precisely the statement that the space of orbits of the equations of motion
corresponds to a Lagrangian manifold of the doubled boundary phase space. That is, Q| = 0, where
Lp is the subset of points of the boundary phase space connected by a dynamical orbit. This mechanical
analogy was introduced by Tulcyjew precisely with the generalization to field theory in mind [34]. The
connections of Mg, (.#4,SL(2, C)) provide dynamical interpolations of the boundary data. So, not only is
Mia(Zg, SL(2,C)) of larger dimension, e.g. there are non-contractible loops in X, that are contractible in
M5, but Mg, (A5, SL(2,C)) is exactly half-dimensional and is Lagrangian.

The complex Fenchel-Nielsen (FN) coordinates x,,,y,, € C, m=1---3g —3 can be used to locally
parametrize the connections of Mg, (e, SL(2,C)) [35, 36], using a trinion (or pants) decomposition of the
closed 2-surface X,. Here the complex FN “length variable” x,, is the eigenvalue of the holonomy along a
closed curve ¢, transverse to a tube of the trinion decomposition. The complex FN “twist variable” y,, is the
conjugate variable such that wcg is written as

3g-3

wes = (—i)z D Lo (1.5)

2r ol Ym Xm

The explicit relation between y,, and holonomies is given in e.g. [32, 36], and is briefly reviewed in Section 3.
In terms of {x,,, ym};gj, the holomorphic Lagrangian subvariety £ =~ Mg, (.43, SL(2, C)) can be expressed

locally as a set of holomorphic polynomial equations
Anu(x,y)=0, m=1,---,3g-3. (1.6)

When .#; is the complement of a knot, so that 9.#3 = T2, we have Mg, (T2, SL(2,C)) ~ C* x C*/Z,, and
L4 is the zero-locus of a single holomorphic polynomial A(x,y), known as the A-polynomial [7, 37]. This
provides an interesting and quite different perspective on the quantum gravity quantizations discussed below.

'The complex structure I is induced from that of X, J is from the complex structure of the complex group SL(2,C), and K is
obtained through K = 1J.
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Figure 2. The graph complement 3-manifold M; after removing the thickened I's-graph from S3. The 2d boundary
Y6 = 0Mj; of the graph complement M5 is a genus-6 closed 2-surface. Left: The longitudinal paths (in green) used below
to calculate holonomies G,;,. Right: A set of meridian closed curves c,;, (in orange) defined on X4 such that X4 \ {c,} is
a set of 4-holed spheres. These curves are used to calculate the holonomies Hj,(a) below. The vertices of the graph are
labeled by a,b = 1,...,5.

In this paper we use these tools to present a novel model of four-dimensional Lorentzian quantum gravity
based on a discretized path integral over gravitational holonomy variables where the cosmological constant
emerges as a consequence of our quantization procedure via complex Chern-Simons theory. In particular,
both signs of A are treated on an equal footing in the model.

Our discretization of the path integral decomposes spacetime into a simplicial complex, with each sim-
plex of constant curvature A. We choose to work with parallel transports along closed paths (holonomies)
as they are the most natural gravitational observables. They also fit nicely with the use of constant cur-
vature simplices, as we have shown previously [20, 38], whose geometry can be completely encoded in
a finite number of these holonomies. From the Chern-Simons perspective, these holonomies arise as the
non-contractible cycles of the particular graph complement manifold M3 = §3 \ Ts.

Because the tools used in this paper are drawn from different areas and many will be unfamiliar to
sections of our intended audience, we give a detailed overview of the paper in the next few subsections. A
brief outline of the paper appears in Section 1.4 and pointers to the detailed arguments of the main body of
the paper can be found there.

1.1 Classical Correspondence

Let us focus on the 3-manifold S3 \ T's whose boundary is a genus-6 closed surface X¢ (see Fig. 2). We
are interested in a subspace of Lo = Mg (S> \ I's, SL(2,C)) in which the SL(2,C) flat connections can
be interpreted in terms of simplicial 4-geometries. More precisely, a flat connection in this particular sub-
space will determine the geometry of a convex 4-simplex in 4-dimensional Lorentzian constant curvature
spacetime (de-Sitter or Anti-de-Sitter).? Fix the Lorentzian signature to (—, +,+, +). We will find that all
non-degenerate convex constant curvature 4-simplices with both A > 0 and A < 0 can be described by a
class of SL(2, C) flat connections on the graph complement 3-manifold S \ T's. In brief:

A class of (A, A) in My (S 3 \I's, SL(2, C)) = constant curvature 4-simplex geometries. (1.7)

The particular subspace of flat connections that determines 4-simplex geometries is specified by certain
boundary conditions imposed on their boundary values on X¢. These boundary conditions are introduced in

2Four-dimensional simplices can be used as the elementary building blocks of the simplicial decomposition of a 4-dimensional
manifold. This is analogous to tetrahedral decompositions in 3 dimensions and triangulations in 2 dimensions. See Figures 1 and 4 for
two different projections of the 4-simplex that give some insight into its combinatorial structure.



Section 2.2, and can be summarized in the following way: X can be decomposed into five 4-holed spheres
S,=1... 5 by cutting through the 10 meridian closed curves on the right in Fig. 2. The boundary conditions
require that the boundary value of A € Mg, (S 3\ T's, SL(2,C)) reduces to an SU(2) flat connection, up to
gauge transformations, when it is restricted to each of the 4-holed spheres S,. This does not imply that A is
an SU(2) flat connection on all of Z¢, since the different 4-holed spheres may correspond to different SU(2)
subgroups in SL(2, C).

These boundary conditions are motivated by a geometrical interpretation of the SU(2) flat connections
on a 4-holed sphere S,. Each of these connections determines uniquely a convex tetrahedron in constant
curvature 3d space (spherical or hyperbolic). This holds for a dense subset of Mg, (S,, SU(2)), and only
excludes the flat connections corresponding to degenerate geometries. If we consider PSU(2) flat connec-
tions instead of SU(2), the correspondence becomes 1-to-1 (see Theorem 2.1). This interpretation of SU(2)
flat connections on a 4-holed sphere was introduced in [20] and is reviewed in Section 2.2 (see [38] for a
thorough exploration).

A flat connection A € Mg(S3 \ T's, SL(2,C)) on the Ts graph complement manifold that satisfies
the above boundary conditions on the full complement goes further and determines uniquely a convex 4-
simplex geometry in 4-dimensional Lorentzian spacetime with constant curvature A (see Theorem 2.3 and
the analysis of [20]). The closed boundary of the 4-simplex determined by A is formed by 5 constant
curvature tetrahedra, which are congruent to the tetrahedral geometries determined by the boundary data
of A on the 4-holed spheres S,. Again the statement holds up to those flat connections that correspond
to degenerate 4-simplex geometries. If we consider PSL(2,C) flat connections instead of SL(2,C), the
correspondence once again becomes 1-to-1. In the following, we will refer to flat connections satisfying
the boundary conditions that put them into correspondence with a 4-simplex geometry as simplicial flat
connections.

A simple intuition lies behind the above correspondence between flat connections on a 3-manifold and
the geometry of a 4-manifold. The 1-skeleton of a 4-simplex gives a triangulation of the 3-sphere, thought of
as the boundary of the 4-simplex. The I's graph can be viewed as a “dual” graph of the 4-simplex skeleton,
in the sense that the fundamental group of S3 \ T's is isomorphic to the fundamental group of the 4-simplex
skeleton 7| (simplex). The isomorphism is unique under a few natural assumptions (see Lemma 2.2). On the
one hand, an SL(2, C) flat connection on S3 \ T’s is a representation of the fundamental group 71(S3\ Ts)
up to conjugation. On the other, if the 4-simplex is embedded in a geometrical 4d spacetime (M, gop),
the spin connection on 9i4 gives a representation up to conjugation of m;(simplex) using holonomies. The
isomorphism between (S 3\ T5) and m(simplex) identifies the flat connection on § 3\ TIs5 and the spin
connection on the 4-simplex. More precisely, it identifies the holonomies of the flat connection along the
loops in 71;(S? \ I's) and the holonomies of the spin connection along the closed paths of 7 (simplex). In
terms of a commutative diagram,

(3 \ Ts) a 1 (simplex)
Wilat N\ v Wspin
< {Hu € SL2,C)}acp | algebraic relations Eqs.(2.12a) — (2.6) >/conjugati0n, (1.8)

where X denotes the isomorphism between ;(S> \ I's) and ; (simplex) and wg, and Wspin denote the rep-
resentations by the flat connection on §3 \ I's and the spin connection on i, respectively. In this way,
the SL(2, C) flat connections on S3 \ I's relate to the spin connections on a spacetime (M4, gop). If we take
(M4, gop) to be a Lorentzian spacetime with constant curvature A, and all 10 triangles of the 4-simplex flatly
embedded in (M4, gup) (i.e. with vanishing extrinsic curvature), the holonomy of the spin connection along
a closed path in 7 (simplex) enclosing a single triangle determines the area of the triangle, as well as the



embedding property of the triangle, i.e. the 2 normal directions of the triangle embedded in 9t;. The above
relation between wyy and wgyin, as well as the geometrical properties of the spin connections, result in the
correspondence between the SL(2, C) flat connections on S 3\ Ts and the 4d geometry of constant curvature
4-simplices.

Each geometrical flat connection A € Mgy (S 3\ T5,SL(2,0)) is naturally accompanied by an A e
M (S3\Ts, SL(2, C)), which is the complex conjugate of A with respect to the complex structure J induced
from the complex group SL(2, C). The pair A and A determine the same 4-simplex geometry but result in 2
opposite 4d orientations for the 4-simplex. We call (A, A) a “parity pair,” because complex conjugation using
J naturally relates to a parity inversion in 4d spacetime [20]. This complex conjugation leaves the SU(2) flat
connections invariant, so A and A induce the same SU(2) flat connections on the 4-holed spheres S,=i.... 5.
This is consistent with the fact that the 4-simplex geometries determined by A and A are the same, and give
the same set of geometrical tetrahedra on the boundary.

Consider M, (S3 \ I's, SL(2,C)) ~ L4 as a holomorphic Lagrangian subvariety in Mgz (Zg, SL(2, C)).
Given A € Mgyu(S3\ T, SL(2,C)) corresponding to a constant curvature 4-simplex, the complex Fenchel-
Nielsen (FN) variables of A have direct interpretations in terms of the 4-simplex geometry (see Section 3).
The 10 length variables x;, for the closed curves c,; in Fig. 2 relate respectively to the 10 areas a,;, of the
triangles A, in the 4-simplex. The 10 conjugate twist variables y,;, relate respectively to the 10 hyperdihedral
angles @, of the 4-simplex. Each hyperdihedral angle ®,, between a pair of boundary tetrahedra is hinged
by the triangle A, shared by the tetrahedra. Interestingly the canonical conjugacy of a,, and ®,, that
follows from the correspondence between flat connections and their geometrical counterparts, relates to the
canonical structure induced by the 4-dimensional Einstein-Hilbert action in General Relativity (GR), see
[42] for a derivation in the GR case. This further motivates the relation between the flat connections on
3-manifolds and (simplicial) gravity on 4-dimensional manifolds.

The phase space of flat connections has complex dimension dimg[ Mg, (Z6, SL(2, C))] = 30. In addition
to the 20 coordinates {x.p, Vap}a<p, there are 5 pairs of variables {xa,ya}z=l that parametrize the SU(2) flat
connections on S,-.. s. Geometrically they correspond to the shapes of the 5 constant curvature tetrahedra
on the boundary of the 4-simplex.

1.2 Quantum Correspondence

Our correspondence between SL(2,C) flat connections on S 3\ T's and the constant curvature geometry
of 4-simplices inspires a new understanding of 4-dimensional quantum simplicial geometry in terms of the
quantization of flat connections on a 3-manifold. For any 3-manifold .#3 with boundary X, the quantization
of Mpa(Z,, SL(2,C)) with the symplectic structure wes results in an operator algebra for the canonically

conjugate variables, e.g. the operators representing the complex FN variables %,, and 9, satisfy x,,9,, =
2nih

et YmXy (h € R) and X,,9, = ¥, X, for n # m. The states are represented as the wave functions Z(u), where
u is the logarithmic coordinate u,, = In x,,. The reader is referred to, e.g [39, 40], for details of quantizing
Mia(Zg, SL(2, C)). The quantization of the holomorphic Lagrangian subvariety Mg, (.43, SL(2,C)) =~ L4
gives a set of operator constraint equations:

A, (39, M) Zu)y=0, m=1,---,3g-3. (1.9)

The solutions Z(u) of the above operator constraint equations are the physical states of SL(2,C) Chern-
Simons theory on .#3. A basis of solutions Z(C“S)(u) can be found using semiclassical, WKB methods [6, 8,

25]:
u,v(a)

Z(C‘*S)(u)zexp[if G+
n Ccla

The leading term is completely determined by the classical phase space and a Lagrangian subvariety within
it. Here the Liouville 1-form ¢ satisfies d = w¢g and is integrated along a contour € in the Lagrangian

(1.10)
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subvariety L. The logarithmic coordinates u,, and v,, are related to x,,,y,, by x,, = €*" and y,, = e
The label « indexes the branches of £,. On each of these branches the defining equation of the subvariety
A,,(x,y) = 0 can be solved to give a unique set of v,, as functions of the u,,. The end point of the contour
€, which labels Z(C“S)(u), is a flat connection determined by u, v(a) in Mgy (#3,SL(2,C)) ~ L (or more
precisely, in the cover space of Mgy (.#5,SL(2,C)) =~ L4). Thus each Z(C‘g)(u) is associated to a unique flat
connection A € Mg, (#5,SL(2,C)). The starting point of € is conventional and corresponds to a choice
of overall phase for Zg’S) (u). The ellipsis “---” in Eq. (1.10) stands for the quantum corrections, which
in principle can be obtained recursively from the operator constraint equations. The semiclassical wave
function Z(Cas) (u), often called an holomorphic 3d block, can also be formulated nonperturbatively as a “state-
integral model,” see [8, 41].

The holomorphic 3d block Zg’s)(u) can also be defined by a functional integral of the holomorphic part
of CS [///3 IA,A] over a certain integration cycle, known as a Lefschetz thimble [6]. The Lefschetz thimble
is an integration cycle that only contains a single critical point of the action; this provides another way to
understand the association between Z(cas) () and a single flat connection on .Z5.

The holomorphic 3d block Z(C“S)(u) plays a central role in the quantum part of this work. We again
specialize to the 3-manifold S* \ I's with boundary ¥ and impose boundary conditions on Z¢ to pick out
the flat connections in My (S> \ T's, SL(2, C)) corresponding to constant curvature 4-simplices. Given such
an A € Mgu(S3 \ T's, SL(2,C)), as well as its parity partner A, we can construct an holomorphic 3d block
Z(C”S)(u) associated with A and using A as a reference. We simply let A be the end point of the contour €
and use A as its initial point. Our classical correspondence between flat connections on S \ T's and constant
curvature 4-simplex geometries suggests that the so constructed Z(C“S) (u) is a wave function for the quantum

4d geometry of a constant curvature 4-simplex. Schematically,
Z(C“S) (u) with boundary conditions = quantum constant curvature 4-simplex geometry. (1.11)

This quantum correspondence indicates that the asymptotic expansion of Z(C”S)(u) in Eq.(1.10) should have the
classical action for the simplicial 4d geometry as its leading term. In particular, due to the relation between
the symplectic structures of flat connections and 4d simplicial gravity, it is natural to expect that the leading
term should give the action of 4d gravity in the simplicial context.

This expectation is confirmed by the analysis in Section 3.3. We show that the leading asymptotic
behavior of Z(gs) (u) is a simplicial discretization of the four-dimensional Einstein-Hilbert action on a constant
curvature 4-simplex

Sgegge = Z aab®ab - AV012\7 (112)

a<b

we call this the curved Regge action, and it is expressed here up to an integration constant and a term
depending on the lift to the logarithmic variables (u, v). The coefficient A is the cosmological constant and
can also be identified as the constant curvature of the 4-simplex, while Volf‘\ is its 4-volume. We refer the
reader to, e.g. [43-46], for the derivation of the curved 4d Regge action through a discretization of the
Einstein-Hilbert action (see also [20] for a summary).

Because Zg’s) (u) is holomorphic, its leading asymptotic behavior is not necessarily an oscillatory phase.
In studying the full SL(2,C) Chern-Simons action CS [///g |A,A], including both holomorphic and anti-

holomorphic parts, we are interested in the 3d block Z(C“S) (u)Z(CES) (1), where Z(C? (&) is associated to A. For a
flat connection with corresponding 4-simplex geometry, the leading asymptotic behavior of Z(Cas) (u)Z(CaS) (@) is

an oscillatory phase:

Zgys) (u) Z(CES) () = exp

i At i At :
ﬁzRe(ﬁ)S,gegge + £2Re(?)ZNabaab + iCin + -+ | . (1.13)

a<b



This is shown in section 3. Thus we see that Z(C‘? (u)Zg)(zZ) is an analog of the functional integral quantization

of the Einstein-Hilbert action in the simplicial context,

Zen(My) = exp {2% f R —2A + “Quantum Corrections”|. (1.14)
P Jm,
With this analogy in mind, we identify the gravitational constant Gy in terms of Chern-Simons coupling ¢
and cosmological constant A as

3 ’ (1.15)

On = ‘ZIm(t)A

The quantity Ci,, € R in (1.13) is an (integration) constant that is independent of the 4-simplex geometry.
The additional term %ZRe (%) Ya<h Napaay (Ngp € Z) in the leading asymptotics comes from the choice of
lift of the FN variables x,, and y,, to the logarithmic variables u,, and v,,. This term disappears trivially when
t € iR. However, for general complex 7, the additional term can also be made to disappear by imposing a
quantization condition on the triangle areas a,:

At
2Re(?) Z Nopay, € 2nhZ. (1.16)

a<b

Indeed, this quantization condition is natural: when the boundary conditions on A € My, (S >\ T's, SL(2, C))
are imposed using a Wilson graph operator, the quantization condition is automatically satisfied (see Section
4). The quantization condition is also consistent with the discrete area spectrum in Loop Quantum Gravity
(LQG) [47, 94].

The bulk of this paper is devoted to the flat-connection-to-geometry correspondences at the single 4-
simplex level because this is the most crucial step in building models for more general situations. The
analysis is generalized, in Section 6, to a simplicial complex with an arbitrary number of 4-simplices. In the
resulting simplicial geometry, the 4-simplices are of constant curvature A, while the large simplicial geom-
etry built by many 4-simplices can approximate an arbitrary smooth geometry on a 4-manifold. However, a
generic A € Mua (43, SL(2,C)) that corresponds to a 4d simplicial geometry may result in a non-uniform
4d orientation throughout the simplicial complex, that is, different 4-simplices may obtain different 4d ori-
entations. For an orientable simplicial complex Ky, we find the class of flat connections on .3 that not
only determine all possible (nondegenerate) 4-dimensional simplicial geometries, but also induce consistent
global 4d orientations. Each flat connection A in the class is accompanied by its global parity partner A. We
construct the Chern-Simons 3d block Z(c(? (.///3' u) Z(CES) (///3| ﬁ) associated with A (and reference A) in the
same way as above. The asymptotic expansion in 7 of the resulting 3d block generalizes Eq. (1.13) to the
level of a simplicial complex:

(@) @ o\ i At \ A i At .
79 (] u) 28 (A5 @) = exp [ﬁzRe(Tm)sRegge + %ZRe(z ZA]NAaA +iCin+ -+, (1.17)
where S%, gz is the 4-dimensional Lorentzian Regge action on the entire simplicial complex Kj:
Shgge = D, AWM+ > a(A)O(A) - A Y Vol (o). (1.18)
A internal A boundary o

Here A denotes a triangle in K4 and o denotes a 4-simplex. If we denote the hyperdihedral boost angle of
A in the 4-simplex o by @, (o) (the same as ®,, above), then £(A) is the Lorentzian deficit angle defined
by &(A) := Y, acoe Oa(o) for A an internal triangle, and ®@(A) is the Lorentzian boundary hyperdihedral
angle defined by ®(A) := },acer Oa(o) for A a boundary triangle. In Eq. (1.17) the additional term
%ZRe (%) > aNaap (Na € Z) again disappears when ¢ € iR, or when the quantization condition Eq. (1.16)
is satisfied, for general 7.



This asymptotic expansion in 7 suggests that the Chern-Simons 3d block Z(C‘? (u) Z(CES) (1), which asso-
ciates with a flat connection on .#3 a corresponding 4d simplicial geometry on Kj, is a wave function for
4-dimensional simplicial quantum gravity; its subleading terms in 7 should give the quantum corrections to

the classical Einstein-Hilbert action.

1.3 Wilson Graph Operator and Loop Quantum Gravity

The analysis in the present paper is a continuation of the work done in [20], where a class of Wilson graph
operators are studied in SL(2, C) Chern-Simons theory on S 3. The Wilson graph operators are defined by a
I's graph embedded in S3 colored by certain principle unitary irreducible representations of SL(2, C). The
definition is summarized in Section 4. In [20], we have studied the Chern-Simons expectation value < of
the Wilson graph operators on S3, and in particular the asymptotic behavior of <7 in the “double-scaling
limit”, that is, when both the Chern-Simons coupling ¢ and the Wilson-graph representation labels are scaled
to infinity, but their ratio is kept fixed. In this double-scaling limit, the Chern-Simons expectation value ./
of the Wilson graph operator again yields the 4d Regge action S&  of a constant curvature 4-simplex as its

Regge
leading asymptotics,
o = o R T e (1.19)
up to a possible overall phase factor. Here the ellipsis “ - - represent the subleading terms in the double-

scaling limit. These asymptotics and their relation with simplicial gravity suggest that ./’ can be viewed as
a 4d gravity analog of the quantum 6 j-symbol in the Turaev-Viro model of 3d quantum gravity [57, 58].3
The Chern-Simons expectation value 7 has a close relationship with Loop Quantum Gravity (LQG).
LQG is an attempt to make a background independent, non-perturbative, quantization of 4-dimensional
gravity; for reviews, see [48-50]. The central objects in the covariant dynamics of LQG, which adapts
the idea of path integral quantization to the framework of LQG, are the spinfoam amplitudes. A spinfoam
amplitude is defined on a 4-dimensional simplicial complex % and encodes the transition amplitude for
a given boundary quantum 3-geometry. In LQG, the quantum 3-geometries are described by spin-network
states. A spinfoam amplitude sums over the history of spin-networks, and suggests a foam-like quantum
spacetime structure. An important building block for a general spinfoam amplitude is the Engle-Pereira-
Rovelli-Livine (EPRL) partial 4-simplex amplitude /zpg; associated to a 4-simplex o in K [51]1.4 The
Chern-Simons expectation value .27 of the Wilson graph is a deformation of the EPRL 4-simplex amplitude,
in the sense that 7 approaches .27z pg; asymptotically in the decoupling limit, that is, when the Chern-Simons
coupling ¢ is scaled to infinity keeping the Wilson graph representation labels fixed (see [20] or Section 5).
This deformation is largely motivated by two streams of research: (1) studies of the relation between LQG
and Topological Quantum Field Theory [17, 18, 53] and (2) the quantum group deformation of spinfoam
amplitudes that include a cosmological constant [19, 54]. We have the following commutative diagram for

the relations among <7, </gpg;, and the Regge action S ge cge (or S gegee) With (or without) a cosmological
constant term:
double-scaling limit LS Rogee =S Rgee
o — e " re b
l decoupling l A—0
large-j limit 5 S Regee =5 S Regge
%EPRL —> e'r +e » (1.20)

The asymptotic behavior on the bottom line has been established for the EPRL 4-simplex amplitude .«/¢pg;
in [55, 56]. The action S e, that results from the asymptotic analysis of <7z pg; is the Regge action without

3The double-scaling limit of quantum 6 j-symbol gives the 3d Regge action on a constant curvature tetrahedron [58].
“It is also called the EPRL/FK amplitude, including Freidel and Krasnov, when referring to the version for Euclidean gravity [52].



cosmological constant for a flat 4-simplex, while the action S% Regge that comes out of the Chern-Simons
expectation value o7 is the Regge action with cosmological constant A for a constant curvature 4-simplex,
that of Eq. (1.12). In this sense <7 is a deformation of the spinfoam amplitude 7zpg; that includes the
cosmological constant in the framework of LQG.

The 4-dimensional Lorentzian Regge action S%  appears in both the leading asymptotics of the Chern-

Regge
Simons expectation value .7 of the Wilson graph operator and in the Chern-Simons 3d block Z(a) () Z: (u)
This is not a coincidence (see Section 4). Firstly it turns out that the double-scaling limit of Chern Slmons
theory on S with a Wilson graph insertion is the same as the semiclassical limit # — 0 of Chern-Simons
theory on the graph complement, keeping the boundary data fixed. Secondly the Chern-Simons expectation
value .« can be understood as an inner product

o = (N(Ts)|S*\Ts), (1.21)

where |[N(I's)) is the Chern-Simons state on the tubular neighborhood of I's excited by the Wilson graph
operator, and |S3 \ T's) is the Chern-Simons ground state on S 3\ Ts. In the double-scaling limit, the Wilson
graph operators in [20] that define .7 impose the right boundary conditions on the boundary Z¢ of S3 \ I's
(including the quantization condition Eq. (1.16)). Right in the sense that these boundary conditions pick
out the parity pair of flat connections A & A on S* \ I's and determine a constant curvature 4-simplex
geometry. In other words, the state [N(I'5)) is a “semiclassical state” peaked at the right phase space point in
Mia(Zs, SL(2, ©)). The state |S*\ I's) is a linear combination of Chern-Simons 3d blocks Z (1) Z&) (@) on
S3\Ts. The peakedness of |N Ts)) selects the pair of 3d blocks that associate to A and A respectlvely, and

Rq,ge ,z Reggt

which have respectively e and e in their leading asymptotics.

Separate study of the Chern-Simons 3d block and the Wilson graph operator clarify the different roles
they play in the asymptotics of 7. The Regge-action asymptotic behavior of &7 crucially depends on the
peakedness of [N(I's)) created by the Wilson graph operator. However, different Wilson graph operators can
produce the same peakedness in the phase space,’ and thus lead to the same asymptotics of 7. The close
relationship with the EPRL 4-simplex amplitude motivates us to study the particular type of Wilson graph
operators in [20]. In principle other types of Wilson graph operators could work equally well, as long as they
produce the same peaking.® However, independent of the choice of Wilson graph, the essential ingredient
leading to the Regge-action asymptotics of <7 is the Chern-Simons 3d block on §3 \ T's with the right
boundary conditions imposed. This means that the Chern-Simons 3d block Z(") (u) Zm (1) studied here plays
an important role in the covariant formulation of LQG. Both the classical and the quantum correspondences
between flat connections on 3-manifolds and simplicial geometries on 4-manifolds studied here may be
viewed as a re-formulation of covariant LQG that emphasizes its relationship with SL(2, C) Chern-Simons
theory.

In the quantum case, this correspondence suggests that the Chern-Simons 3d block Z(") (u) Zm (1) is the
wave function of simplicial quantum gravity in 4 dimensions. Given its relation with LQG, thlS 3d block may
be understood as the physical wave function for LQG in 4 dimensions, at least for simplicial geometries. In
future research it will be interesting to find the behavior of Z(“) (u) Z(”) (1) under refinement of the simplicial
complex K. This should shed light on the continuum limit in covariant LQG.

The physical wave function of LQG describes quantum transitions in a 4-dimensional region that go
between boundary quantum 3d geometries. In this logic, the boundary data of Z(Q) (u) Z(ES) (&1), namely the
flat connections on the 2d boundary of the graph complement 3-manifold, should descrlbe the quantum 3d
geometry in LQG. Indeed, as discussed in Section 5, the boundary data of Z(”) W) Z. (L't) relate naturally to
spin-network states, which quantize 3d geometry in the kinematical framework of LQG.

SFor instance, for an harmonic oscillator, different squeezed coherent state can have the same peakedness.
5The different types of Wilson graphs having the same peakedness may relate to the spinfoam amplitudes defined in [59].
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1.4 Structure of the Paper

The structure of the paper is as follows: Section 2 explains the classical correspondence between the SL(2, C)
flat connections on S3 \ T's specified by certain boundary conditions and constant curvature 4-simplex ge-
ometries in 4 dimensions. Section 3 discusses the correspondence between quantum SL(2, C) Chern-Simons
theory on 3 \ T's and quantum 4-simplex geometry. After a brief review of quantum Chern-Simons theory,
Fenchel-Nielsen coordinates, and the holomorphic 3d block in Sections 3.1 and 3.2, we analyze, in Sec-
tion 3.3, the asymptotic expansion of the Chern-Simons 3d block. The leading order asymptotics of this
block gives the 4-dimensional Regge action on a constant curvature 4-simplex and includes a cosmological
constant. Section 4 discusses the relation with [20], in which Wilson graph operators were used to impose
the correct boundary conditions. Section 5 treats the relationship between SL(2, C) Chern-Simons theory
and Loop Quantum Gravity in 4 dimensions. In Section 6, the correspondence is generalized from a sin-
gle 4-simplex to a 4d simplicial complex. A particular class of Chern-Simons 3d block is defined and the
asymptotics of this block gives the 4d Regge action on a full simplicial complex. The two Appendices go
deeper into the mathematical structure of (A) K,-Lagrangian subvarieties, alluded to in Section 3, and ( B)
of the coadjoint orbit quantization used in Section 4.

2 From Flat Connections on a 3-Manifold to 4d Simplicial Geometry

In this section we explain the classical correspondence between SL(2, C) flat connections on S3\Ts subject
to a certain set of boundary conditions and constant curvature 4-simplices in four-dimensions. In order to
explain the boundary conditions that allow us to achieve this correspondence, we begin in subsection 2.1 by
explaining the Wirtinger algorithm for generating the fundamental group of a graph complement manifold.
The desired boundary conditions on the flat connection are most easily expressed in terms of the generators
of this fundamental group and are made explicit in subsection 2.2. This section concludes by connecting
these boundary conditions to our previous work on constant curvature tetrahedra [38] and hence establishes
that these boundary conditions allow the reconstruction of geometrical constant curvature tetrahedra around
each of the vertices of the graph. In subsection 2.3 these tetrahedral pieces are assembled into the full
geometry of a constant curvature 4-simplex. This section also provides a commutative diagrams that helps
explicate how such a correspondence is possible in abstract terms. Finally subsection 2.4 explains some
discrete symmetries of the reconstructed geometries that will be useful in what follows.

2.1 Flat Connections on a Graph-Complement 3-Manifold

Consider the embedding of the pentagon graph I's in a 3-sphere S, Figure 1, and let N(I's) be (the interior
of) its tubular neighborhood. Define the 3-manifold M3 := S3 \ N(T's), which has boundary M3 = ON(T's).
With a slight abuse of notation we will often write

M; =S’ \Ts. (2.1)
The moduli space of flat sI,C connections on M3 is defined as
Mia (M3, SL(2, C)) = Hom (711 (M3), SL(2, C)) /conjugation, (22)

i.e. as the space of representations p of the fundamental group of M3 in the group SL(2, C), up to conjugation.
As defined above, the moduli space of flat connections is often badly behaved, e.g. it is non-Hausdorff. It is
customary—and enough for our purposes—to make a further restriction to the so-called ‘character variety’,
which is an algebraic variety. For details see [60].

The fundamental group m;(M) of a graph complement M is easily characterized via a generalized
Wirtinger presentation [61]. This construction proceeds in four steps: (i) Project the graph onto a plane;
(ii) Take a point * not lying in this plane as base point; (iii) Take as generators of m;(M) the independent
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loops starting and ending at . These go around each edge once and cross the plane of the projected graph
twice; (iv) Every crossing of the initial graph breaks the original undergoing edge into two pieces in the
planar projection—the associated loops [V and [® should be considered as independent generators.

The generators obtained in this manner are required to satisfy the following two sets of relations:

e When n edges meet at a vertex (all oriented ingoing for the moment), we require
bl =e F\“\Q, (2.3)

where e denotes the identity in 71 (M), and we have supposed them to be numbered from 1 to n in a
clockwise fashion on the projection plane. To change the i-th edge from ingoing to outgoing, substitute
[; with Ii‘lg

e Upon projection onto the plane, an edge with generator T over-crosses another edge, the latter gets
associated with two independent generators [ and ® as in point (iv) above, see figure below. These
three generators I, [V, and [® are required to satisfy

//Ia)
=771, ) (2.4)

Q)

Using this algorithm, 7 (M3 = S3\Ts) can be computed in a straightforward manner; this is the task we
take up now. To fix notation, label the vertices of I's as in Figure 1 with an index a € {1, ..., 5}, and call its
(unoriented) edges €., = {pq. The generators of ;(M3) are then the loops [, associated to every edge £,;, of
I's except €13, which is broken by a crossing, and hence is associated to two distinct generators 1(113) and 1(123).
A representation p € Hom (711 (M3), SL(2, C)) maps each of these generators to an element of SL(2,C), i.e.
o () = Hy, for every (ab) # (13) and p (1(12) = I-NIE’;, for i € {1,2}. The requirements of Eqgs. (2.3) and (2.4),
when expressed in terms of these group elements (holonomies) are:

vertex 1 : 1:114151%)1:[121:115 =1, (2.5a)
vertex 2 Hy, HyyHyyHps = 1, (2.5b)
vertex 31 Hyl (HO) ' Haulss = 1, (2.5¢)
vertex 4 : ﬁgjﬁgjfll’iﬁ“ =1, (2.5d)
vertex 5: Hyd Hyd Hi Hd =1, (2.5¢)
crossing : ITI%) = 1:1241:1%)1:1223. (2.6)

Notice that all the above holonomies, collectively referred to as {I:I,lb}, have the same base-point * € S3\Ts.
The moduli space Mgy (M3, SL(2,C)) is defined as the group elements {Flab} modulo simultaneous

conjugation by a g € SL(2,C), i.e. {Hab} ~ {gﬁabg‘l}.

2.2 The Boundary Conditions and their Geometrical Interpretation as Curved Tetrahedra

For our geometrical purposes, we are not interested in a generic connection in Mg, (M3, SL(2, C)). Rather,
we want to restrict to connections satisfying a certain type of boundary conditions on the graph complement
manifold’s boundary

Y6 := OM; = ON(Ts), 2.7)
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which is a closed 2-surface of genus 6. The restriction of a connection A € Mg, (M3,SL(2,C)) to the
boundary surface X¢ gives an element of Mg, (X6, SL(2, C)). In this sense one can write

Mia (M3, SL(2, C)) € Mpa (Z6, SL(2,C)). (2.8)
On X4, we specify 10 meridian curves {c,} each cutting one edge of I's transversally. Hence,

Ze\lea} = | Sa (2.9)

where S, = S? \ {4pts} is a four-punctured sphere associated to the a-th vertex of I's. A representation
o € Hom (7;(Z6), SL(2, C)) when restricted to S, gives a representation ols, € Hom (;(S,), SL(2, C))
(defined up to global SL(2,C) conjugation). We think of these punctured spheres as (the boundaries of)
tetrahedra whose ‘quanta of area’ are ‘concentrated’ at the punctures in the form of defects. We want each
of these tetrahedra to define a three-dimensional space-like frame in (A)dS.

With this geometrical picture in mind we define the following boundary conditions: a representation
o € Hom (71(Z¢), SL(2,C)) is said to satisfy geometric boundary conditions if there exists five elements
8a € SL(2,C), such that

8a(0ls,) g;" € Hom (11(S,), SU2)) . (2.10)

In words, an SL(2, C) representation of the fundamental group of Z¢ is said to satisfy the geometric boundary
conditions if on each four-punctured sphere S, it restricts to an SU(2) representation up to conjugation by
an element g, € SL(2,C):

Va3g, € SL2,C) suchthat g,Hug," =: Hy(a) € SUQR) Vb, b #a. @2.11)

We call the gauge associated to such a set of {g,}, the ‘time gauge’.
An immediate consequence of the geometric boundary conditions is that Eqs. (2.5) can be written after
conjugation by g, € SL(2, C) as equations in SU(2):

vertex 1 : Hy(1)Hs(1)Ho(1)Hs(1) = 1, (2.12a)
vertex 2 :  H;'(2)H,(2)H3(2)Hs(2) = 1, (2.12b)
vertex 3 : H,'(3)H;'(3)H4(3)H5(3) = 1, (2.12¢)
vertex 4 1 Hy'(4)H;'(4)H; ' (4)Hs(4) = 1, (2.12d)
vertex 5 : H;'(5)H,' (5)H;' (5)H,'(5) = 1, (2.12€)

where again the argument of the parentheses indicates the vertex where the holonomy is based, see Eq.
(2.11). We will refer to these equations as the ‘closure equations’.

The missing information, with respect to Eqs. (2.5) and (2.6), can be encoded in terms of a G, €
SL(2, C) defined by

Gra = 8,'ga forall (ab), except Gis = gi' |g2Ha(2)g;'| 3. (2.13)

This information can be interpreted as a set of “parallel transport equations’ encoding the relation H,, = H,
through

GapHp(@)Gpa = Ha(D), (2.14)
and as a set of ‘bulk equations’ encoding the position of the crossing

GucGeaGra =1 (abc) € {125,235,345,124,234}, (2.15a)
G13G32Ga1 = Hy(2). (2.15b)
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Connections satisfying the geometric boundary conditions are denoted

MBC (26, SL(2, ©)) € Mgu(Z6, SL(2, C)). (2.16)

flat

In section 3.3, we will come back to these boundary conditions and express them in terms of a set
of preferred coordinates, the complex Fenchel-Nielsen coordinates. These are Darboux coordinates on
Maa(Ze6, SL(2, C)) with respect to the canonical Atiyah-Bott-Goldman symplectic structure induced by the
Chern-Simons theory.

As anticipated above, there is a precise correspondence between SU(2) flat connections on a four-holed
sphere and tetrahedral geometries flatly embedded in S* and H>. This result was proved and discussed in
detail in [20, 38], and hence in this paper we will limit ourselves to a brief account of this geometry before
connecting it with the boundary conditions just discussed.

Theorem 2.1. There is a bijection between flat connections in Mgy (S,, PSU(2)) and the convex constant
curvature tetrahedron geometries in 3d, excepting degenerate geometries. Non-degenerate tetrahedral ge-
ometries are dense in Mgy (S,, PSU(2)).

The correspondence applies to both spherical and hyperbolic tetrahedra. Both positive and negative
constant curvature geometries are included in Mgy (S,, PSU(2)).

The theorem is primarily built on two observations: (i) the fundamental group of the four-holed two-
sphere is isomorphic to that of a tetrahedron’s one-skeleton, and both are defined by a closure constraint;
and (ii) in the flat case, a tetrahedron’s geometry can be fully reconstructed from four vectors that add up to
zero, once these vectors’ directions are interpreted as the tetrahedron’s face normals and their magnitudes
as the respective face areas. Observations (i) and (if) are related: the spin-connection holonomy around the
boundary of a surface that is flatly-embedded in a homogeneous space contains information about both the
area and the orientation of the surface. This means that the curved-space closure constraint, e.g. any of the
Egs. (2.12), could be a sound generalization of (ii).

Observation (if) is a special case of a more general classic result due to H. Minkowski [62], known
as Minkowski’s theorem. This theorem states that an N-tuple of vectors that sum to zero corresponds to
the set of face vectors of a unique convex polyhedron with N faces. The convexity hypothesis, which
primarily guarantees the uniqueness in the case of flat tetrahedra, is particularly crucial in the curved-space
generalization of Minkowski’s theorem [38].

Before proceeding, let us further define what we mean by a flatly embedded simplicial geometry. Take
the case of a constant curvature tetrahedron flatly embedded in a unit S3. The zero-simplices (vertices) are
4 points on S®. The one-simplices are the shortest geodesic arcs connecting 2 zero-simplices. These are
given by arcs along great circles in S*. Notice that the restriction to the shorter geodesic arc is because
we are considering only convex simplices, which will turn out to be crucial for the uniqueness part of the
reconstruction theorem. Finally for faces, a triple of vertices identifies uniquely a great 2-sphere in S* and
the face is just the convex hull of the three vertices in this two-sphere. As portions of a great two-sphere
these surfaces are flatly embedded in S3. In particular this means that vectors normal to the surface remain
so under parallel transport. Finally, the tetrahedron itself is the convex hull defined by its four faces.

The simplest way to visualize this construction is to consider the unit three-sphere as embedded in one
more dimension. Then, the edges of the tetrahedron are defined by intersection of the three-sphere with the
unique plane passing through the origin and two of the tetrahedron’s vertices. Similarly, the tetrahedron’s
faces are given by the intersection of the three-sphere and the unique hyperplane passing through the origin
and three of the tetrahedron’s vertices. This construction makes it obvious how to generalize the definitions
to the hyperpolic, higher dimensional, and Lorentzian cases.

Now we would like to relate this geometry to the output of the boundary conditions from above. The
idea is to find a relation between the holonomies U, of the spacetime spin connection wspi, around the faces
of a flatly embedded, constant curvature tetrahedron and the Hy(a)’s of Eq. (2.12). To completely define the
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Figure 3. The paths py, ..., p, used to generate the fundamental group on a constant curvature tetrahedron. The edge
(2,4), which is arbitrarily singled out to base the path p, at vertex 4, we call the “special edge”.

U, label the vertices of a four-simplex flatly embedded in (A)dS by a, b, - - - € {1, ..., 5}, and the tetrahedron
opposite to vertex a by the same label. The triangle shared by tetrahedra a and b is thus labeled by (ab). Call
its boundary A,,. Make a partial gauge fixing at the base point O, such that the tetrad components ej = d;
are given by the unit time-like normal to A, i.e. fix to time gauge. Then it is not hard to show that

A
Uab = U3y (wspin) = €XPp [5 agp flap -?} € SU(2), 2.17)

where a, is the area of the triangle (ab), fi, is its spacelike normal (expressed within the frame ¢/, at 0), 7
is a basis for the Lie algebra su(2), and A = 0 is the cosmological constant associated with (A)dS.

A mapping between the U,, and the Hp(a) can now be made explicit. To do this we construct an
isomorphism between the fundamental group of the 4-holed sphere S, and that of the a-th tetrahedron’s
1-skeleton 7,. It is important to notice that there is no canonical isomorphism. We will come back to this
point when dealing with the reconstruction of the 4-simplex geometry. For the moment, we limit our study
to a single tetrahedron, say a = 5, and hence drop the relative label. This allows us to label triangles by their
opposite vertex within the tetrahedron.

Denote the to-be-constructed isomorphism between the fundamental groups by 7’5, so that I's : m;(75) —
71(Ss). To specify I's, consider the basis of 71(7s) formed by the set of four paths {p,} depicted in Figure
3. The paths p, go around each face of the tetrahedron once. Hence, we require these paths to be in 1-to-1
correspondence with the [, introduced at the beginning of this section, which circumnavigate each puncture
of S5 once:

I5(pa) = Lo (2.18)
This is possible thanks to the fact that both sets of paths satisfy the same defining constraints
pap3p2pr=e¢  and LGk =e. (2.19)

Following [20, 38], we call the paths {p,}, ‘simple paths’. The name comes from the fact that this is
arguably the shortest set of paths satisfying the defining constraint (up to relabeling of the vertices). It is
also clear that edge (42) is singled out by this choice of paths (see [20] for the explicit role it plays in the
reconstruction theorem). We call it the ‘special edge’.

Notice that the simple paths are such that the faces are traversed counterclockwise (as seen from the
outside of the tetrahedron). Adopting a right-handed convention, this means that the normals to the triangles
have to be understood as outgoing.

This isomorphism allows us to interpret the holonomies of a flat connection wg, on Ss as the parallel
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transports of a spin-connection wgpiy on Ts:

m1(Ss) — m1(7s)
Wfar N\ v Wspin
(Uy.+++ Uy € SUQ®* | U+ Uy = 1) Jeonjugation (2.20)

at least provided we find a canonical lift of H, € PSU(2) to SU(2). The prescription for the canonical lift is
actually provided by the convexity condition, as we now explain.

An element H € PSU(2) is given by the equivalence class formed by the following two elements of
SUQ2):

explain-7] ~ —explan-7] = exp[2r —a) (-7) - 7] (2.21)

for some a € [0,2x] and 72 € S%. This correspondence suggests that we interpret

IA

fi,or — i1, assgn(A)ft and a, or (27 — a) respecitvely, as %a. (2.22)

Using outward normal conventions set by the simple paths, and the tetrahedron’s convexity, one sees
that the triple products fi, - (i, X fi.), with the labels {a, b, c} properly ordered, must all be positive (e.g. at
vertex 4, fi; - (fi, X fiz) > 0).7 It is hence clear that the convexity conditions fully determine the lift from
PSU(2) to SU(2), at least up to a global sign, equal to sgn(A). Perhaps surprisingly, this final sign can also
be determined from the 71, that we have just calculated. To do so, use the 7, to calculate the scalar products
cos@,, = i, - .} Notice that these quantities are insensitive to the global sign ambiguity associated with
sgn(A) itself. These scalar products are nothing but the (external) dihedral angles of the tetrahedron. It is a
classical result in discrete geometry, that the Gram matrix

(Gram),;, = —cos b, (2.23)
contains all the information needed to reconstruct the tetrahedron’s geometry. In particular
sgn(det(Gram)) = sgn(A). (2.24)

To conclude the proof of the reconstruction theorem, one only needs to prove the consistency of the
geometry reconstructed from the Gram matrix and the areas implicitly contained in the original group ele-
ments. This can be done for example via a counting argument. Again, for all the details of the proof see
[20].

For future reference, we note here the formula interpreting the transverse holonomies Hj(a) as the spin-
connection holonomies around the face (ab) of the four-simplex:

A
Hy(a) = exp [Zaahﬁab -‘F’] . (2.25)

7Notice that parallel transport of one of the vectors might be needed to make sense of these vector products. This happens when
one has to compare the normal relative to face 4 to the others. However, since this is parallel transport of a 3-vector, it makes use of the
vector representation of the H,’s, and hence is immune to the ambiguity we are trying to solve here. See [20] for details.

8 Again, in some cases a parallel transport of the normals is needed before taking the scalar product. In this case, using the flat-
embedding condition, it is not hard to convince oneself that the only dihedral angle needing a ‘twisted’ formula is cos 624 = 14 - (H32).
Here, H3 € SO(3) is the vector representation of H3z. See [20].
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2.3 Flat Connections on 3-Manifold and Curved 4-Simplex Geometries

This subsection discusses the reconstruction of a full 4-simplex geometry from the flat connections on the
graph complement manifold subject to the boundary conditions of subsection 2.2. There is little conceptual
novelty with respect to the reconstruction of the tetrahedron, although some intriguing subtleties arise, and
this subsection can safely be skipped on a first reading after taking a look at Theorem 2.3 below.
Analogously to the discussion surrounding the commuting diagram (2.20), we consider the fundamental
group for the 1-skeleton of an abstract 4-simplex, see Figure 4, which we denote by 7 (c4), with o4 denoting
the 1-skeleton of the 4-simplex. Closed paths p,;, along the 1-skeleton and circling each triangle A, specify
a set of generators. A convenient choice of paths, either p,;, or p;bl, is specified by the sets of simple paths
for all 5 tetrahedra. All the paths p,, can be based at the same point, which we choose to be vertex 1 of the

4-simplex.
2
1%3
5 Pl
Figure 4. An abstract 4-simplex, whose vertices are labeled by 1,---,5. We denote 7, the tetrahedron that does not

have the vertex a. The symbol A, (resp. A,,) denotes the triangle belonging to 7, (resp. 7,) shared by 7, and 7,,. The
edges are denoted by (@, b) oriented from b to a.

Explicitly, we choose the paths as follows: Tetrahedron 7, has special edge (31), and its closure relation

is?

pill P24P23P2s = e. (2.26)
Tetrahedron 73 has special edge (51), and its closure relation is

P3) P31 Paabas = e. (2.27)
Tetrahedron 74 has special edge (31), and its closure relation is

Pa3 Paa Py Pas = ¢ (2.28)
Tetrahedron 75 has special edge (31), and its closure relation is

Py Ps3 Psa Pt = ¢ (2.29)

Tetrahedron 7, is the ‘special tetrahedron,” which is non-adjacent to the base vertex 1. All the paths asso-
ciated to 1 travel from 1 to 3 along (31), then circle around the relevant triangle of 7; as in Figure 3, and
finally go back from 3 to 1 along (13). When we draw the paths on 7, starting and ending at 3, the special
edge is (53). The closure relation is then

P14P13P12P15 = ¢ (2.30)

9Note that all the paths p;ll , P24, P23, and pps are closed paths circling around a single triangle in a counter-clockwise fashion when
viewed from the outside of the tetrahedron. The same holds for Egs. (2.27) - (2.30).
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The above list specifies all the (closed) paths p,;,. One can check the following properties: p,, = Pp, for
(a,b) # (1,3), and for p;3 this relation becomes [53][31]p;3[13][35] = [51]p31[15], where [ab] indicates the
path along the edge ab. Equivalently,

P13 = P24P31Pyy 2.31)

where py4 = [13][35][51].

The fundamental group m;(o4) is generated by the closed paths p,, subjected to the set of closure
relations Egs. (2.26) - (2.30) together with the relation (2.31). A quick comparison shows that m;(cy)
is isomorphic to m;(S 3\ Ts). In fact, the relations above for the p,,’s generating mj(04) are identical to
the relations associated to the generators I , of m;(S 3\ Ts) (see Section 2.1). The isomorphism maps the
generators of (S 3\ Ts) to the generators of 7 (simplex), which delivers the flat connection on S 3\Ts to
the spin connection as a representation of 7| (simplex).

If we require that the isomorphism 7 : m(04) — m1(S> \ T's) maps the counterclockwise simple paths
(the pyp) to the loop generators in 71 (S 3\ I's) oriented in a right-handed manner (the [ ;) according to the
orientation of the edges £, C I's, then the isomorphism 7 is unique in the following sense:

Lemma 2.2. Amap : a — 7, identifying a vertex in I's with a tetrahedron on the boundary of the 4-simplex,
induces an identification between the edges €, of I's and the triangles Ay, = T, N 1), of the 4-simplex. Given
an isomorphism I : mi(0s) — m(S3 \ Ts) such that T(py) = U, is a loop generator in 71(S3\ Ts)
transverse to the edge o, near the vertex a, requiring that U, cycles {4, in a right-handed manner according
to the orientation of L, 'O the isomorphism I is unique. Hence 1(py,) = U, = 1y is the generator for the
presentation in Section 2.1 associated to the projection of I's on a plane, Figure 2.

Proof: The set of loops I(p.;) = U, whose common base point could be anywhere in § 3\ Ts, can be
understood as the generators of a generalized Wirtinger presentation of 7;(S* \ I's) from a certain projection
of I's on a plane, which could be different from that of Figure 2. However, p,y = Py, implies I/, = T,
for (a, b) # (1,3) because of the isomorphism 7. This means that in this projection of I's, the loops I, for
(a,b) # (1, 3) can be continuously deformed along the whole edge ¢ ;, without meeting a crossing. Therefore
the crossing only occurs between €3 and 4. Then this new projection is either (a) as in Figure 2, with {4
over-crossing €13, or (b) as it would appear if Figure 2 was viewed from the back, i.e. with £,4 under-crossing
¢13. Without loss of generality, we assume the base point of U, is in front of the projected graph in both cases
(2) and (b). Furthermore the relations Egs. (2.26) - (2.30) imply the same relations for I/, up to cyclic per-
mutation. These relations for I/, imply that in the case (a), each loop U, circles £, in a right-handed manner
(as in Eq. (2.3)) with respect to the orientation of £, while in case (b) each loop I/, circles £, in a left-
handed manner. Both (a) and (b) imply 1}, = 1’241311'543. However, (b) is ruled out by the requirement that
U, cycles £, in aright-handed manner. Therefore we conclude that the case (a) is singled out, and I/, = ;5. O

The identification map ¢ : a — 7, produces the numbering of the tetrahedra (or vertices) of an abstract
4-simplex using the numbering of the I's vertices and the convention that 7, labels the tetrahedron not
containing vertex a, as in Figure 4. Given such an identification, we have the following diagram if the
4-simplex is embedded in a geometrical space with spin connection wgpiy:

x1(S3\ T's) - 71(04)
Wiat N\ N Wspin
({A.} | Egs.(2.12a) - (2.6) ) /conjugation (2.32)

10The orientation condition for l;b corresponds to the counter-clockwise choice for the paths py;, or p;b] in Eqgs. (2.26) - (2.30).
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where the isomorphism 7 is unique in the sense of the previous Lemma. The isomorphism 7 determines by
restriction the isomorphisms 7, associated to each of the five tetrahedra. This means that the isomorphisms
7, in the diagram (2.20) are unique if embedded in a 4-simplex context.

The connection wgyin associates to the set of paths p,;, the holonomies of an SL(2, C) spin connection:

wspin(pab) =Ugy. (2.33)

On the other hand, the flat connection representation on S3\ I's discussed in Section 2.1, gives

wia(lap) = Hap. (2.34)

The above diagram shows that +wgpin = wga © 7 and hence

+Uy = Hab- (235)
This relation allows us to interpret the holonomies of a flat connection H,, as the holonomies of a spin
connection along the paths p,, around the 1-skeleton of an embedded 4-simplex. The + sign comes from the
fact that Theorem 2.1 holds for PSU(2) flat connections, and H,, is identified with the spin connection U,
up to a sign, as discussed in Section 2.2.
Here we are relating the flat connection A on S* \ I's to the geometry of a 4-simplex embedded in
a constant curvature (Lorentzian) spacetime, whose boundary tetrahedra are constant curvature spacelike
tetrahedra with flatly embedded surfaces. The flat connection A on S3 \ T's is taken to satisfy the boundary
conditions of Section 2.2, which give us Hy(a) = g;'Huga € SU(2) . In turn, the reconstruction theorem
of that section grants us that the equation <ﬁbe(a) = 1 associates to 7, the geometry of a non-degenerate
convex spacelike tetrahedron with constant curvature A,.'! Hence the interpretation of the Hy(a) in terms of
face vectors ag iy, is

AV .
Hy(a) = exp [?aabnab : T], (2.36)

where A, = +,|A|. For future convenience we introduce
vy, =sgnA, and v =sgnA. (2.37)

The parameter A is a constant for all 7, and its sign will be determined shortly. This constant introduces
a length unit. Once again a,, are the areas of the convex constant curvature tetrahedron. Note that at this
stage we do not know whether the boundary data induce a sign v, that is constant throughout the 4-simplex.
However, we will prove that this follows from the requirement that the boundary data are given by the
boundary value of A.

If we let 411, be the outward-pointing normal to 7, and choose the time-like normal of tetrahedron a
to be gauge fixed to (1,0,0, 0)7, then fig, = vuiiy is the spatial normal 3-vector to the triangle A, parallel
transported to the base point of p,, i.e. to the vertex 1 of the 4-simplex. In fact, a parallel transport is only
needed when A, is not adjacent to 1 (depending on the pattern of p,p).

Up to this point we have studied only the geometry of the individual tetrahedra that make up a 4-simplex.
We turn now to assembling the full geometry of the 4-simplex from these pieces, and show how this can be
achieved using the holonomies Hy(a) and G, alone.

The group elements +g, € SL(2, C) that allow one to put each of the simplex’s five tetrahedra into the
time-gauge also specify the Lorentz frame of the four surfaces contained in each tetrahedron. As argued at
the end of the last subsection H,, = gaH;,(a)g;1 can be interpreted as

Hgp = exp [% aabaab(l)] (2.38)

""We only consider the boundary data corresponding to nondegenerate tetrahedral geometries. These data are dense in the space of
all boundary data.
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where &,4,(1) is the surface area bivector located at 1:
Eap = % eatp], (1) of A, (2.39)

here the + subscript indicates the self-dual part of the bivector viewed as an sl,C Lie algebra element. The
sl,C algebra is viewed as a 6-dimensional real Lie algebra with generators J:=2and K := —ir; the duality
is xJ = —K and xK = J, Note that Eap(1) is related to fi,, - 7 by

Ean(1) = —gufu - gy (2.40)

The set of &4(1) is defined up to a simultaneous adjoint action of SL(2, C), which is a local Lorentz trans-
formation in the base frame at 1.

Much like what happens for the fi,;,, a parallel transport (which depends on the specific pattern of the
Pap) relates &4 (1) to the actual bivector on A,p, whenever A,y is not adjacent to 1. For the A,;’s adjacent to
3, their bivectors are given by &,,(3) = Q31185 (DHQ[31]7! where Q[a, b] € SL(2,C) is the holonomy of
the spin connection wypi, along the edge (ab).

Finally note that the tetrahedral reconstructions do not automatically guarantee that the areas of the
triangles A, as seen from tetrahedra a and b coincide. This is because of the ambiguity between a,, and
2m—a,, mentioned above. This potential ambiguity does not arise as shown in the main reconstruction result
of [38]:

Theorem 2.3. The flat connections A drawn from a dense subset of the space MHBS(S 3\ T5,SL(2,0)),
i.e. such that their restriction to the boundary W € Mgy(Z6, SL(2,C)) satisfy the boundary conditions
corresponding to 5 non-degenerate convex constant curvature tetrahedra, each determine a unique non-
degenerate convex Lorentzian 4-simplex geometry with constant curvature A, whose boundary geometry is

consistent with the tetrahedral geometries determined by .

The proof of the theorem (see [38]) is analogous to that of the three-dimensional case, and also employs
the reconstruction of the 4-simplex’s Gram matrix

Gramy = cosh®,, 2.41)

where ®,, are the boost dihedral angles of the four-simplex. This matrix contains all the information needed
to reconstruct the 4-simplex geometry, and again this includes the sign of the reconstructed simplex’s curva-
ture. The Gram matrix is calculated via the equation

cosh @y = —ui(Gp) jut’, (2.42)

where u! = (1,0,0,0)7, and G, € SO*(1,3) is the vectorial representation of G, € SL(2,C). The non-
degeneracy condition corresponds to the requirement that the connection does not produce G such that
ur(Gap) ju’ = 1.

Notice that the theorem implies in particular that all five of the boundary tetrahedra share the same sign
of the curvature, hence

Vv, =V =sgnA (2.43)

is a global sign. The theorem also allows one to reconstruct the meaning of the rotation part of G,;,. This is
associated to the plane of the triangle A,;,, and corresponds to the relative rotation by an angle 6,, between
the frames of A, as seen from tetrahedra a and b.

2.4 Parity Pairs

In this final subsection we summarize the flat connection-geometry correspondence and indicate relations
between discrete symmetries of the reconstructed geometry and properties of the flat connections.
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The boundary conditions discussed in Section 2.2 require that the flat connections in MFS (S 3\ Ts, SL(2, C))
restrict to flat connections on the boundary of the graph complement manifold g = M3, i.e. to connections
in Mﬁa(f (Z6, SL(2,C)). In turn these boundary connections reduce to SU(2) flat connections on each of the
4-holed spheres around the vertices of I's. The boundary data on Z¢ are completely determined by specifying

at the same time:

i) the conjugacy class of the holonomies around a path ¢, transverse to each edge of I's. This is equiv-
alent to specifying (one of) the eigenvalues x,, of these holonomies. In particular, the boundary
conditions impose that x,, € U(1), instead of being a general complex number;

ii) the eigenvalues x, and x| of the products of two pairs of holonomies computed along the path pairs
(cap» car) and (cap, cap ), Which encircle three different edges adjacent to the same vertex a, see Figure
2. Name the paths associated to the above compositions ¢, and c;. Again, x, and x,, must be complex
numbers of unit norm, i.e. x,,x, € U(l). In the next section, we will discuss why it is far more
convenient to substitute x;, with a coordinate y,, which turns out to be canonically conjugated (in the
sense of symplectic geometry) to x,. In terms of these variables, known as the Fenchel-Nielsen length
and twist respectively, the boundary conditions reduce again to x,,y, € U(1).

The boundary data {x,; x,,v,} € U(1) fully specify the SU(2) flat connections on the five 4-punctured
spheres {Sa}izr The geometrical reconstruction theorems discussed above imply that these same data en-
code completely the geometry of five geometrical constant-curvature tetrahedra. These tetrahedra are char-
acterized by the fact that the value of their faces’ areas are shared by couples of tetrahedra. This is because,
geometrically, the {x,;}, encode the areas of the faces of tetrahedron a. On the other hand the {x,, y,} fix the
remaning two degrees of freedom (a tetrahedron is determined by 6 independent numbers; think of the edge
lengths). At this stage nothing is enforcing the fact that the shapes of the equi-area faces of two different
tetrahedra are the same, more on this below.

Note that at fixed areas, the space of tetrahedra parametrized by (x,,y,) turns out to carry a natural
symplectic structure [20], such that the logarithms of these variables are conjugated. We will come back to
this fact in the next section.

Denote a given value of the boundary data {x.; x4, ya} bY {Xup; X4, V4 }. The following questions and their
answers turn out to be interesting and useful in later analysis: Does a flat connection A € Mgﬁ (S 3\ Ts, SL(2, C))
that has boundary value consistent with a given set of the boundary data {x,,; X,, y,} always exist? Provided
such a consistent flat connection exists, is it uniquely determined by the {X,;; X4, V4}?

Both of the above questions have negative answers. Let us explain why: A generic flat connection
in /\/(gacl (S3 \I's, SL(2, C)) satisfies the hypothesis of Theorem 2.3 and hence corresponds to a geometric
4-simplex. However, as we discussed above, within the boundary data {X,;; X, y,} there is nothing that
guarantees the correspondence of the shapes of the triangular faces. Hence, not every set of boundary
conditions {£; %4, Ju} is the boundary of a flat connection in MES (53 \Ts, SL(2, C)).

Turning to uniqueness, consider a set of boundary data {X,;; X,, y,}, and a flat connection A € Mﬁ”; (S3 \I's, SL(2, C))
consistent with them. Theorem 2.3 states that A corresponds uniquely to a geometric 4-simplex o4. However,
as the next theorem shows, it is easy to produce from A another flat connection Ae Mgg (53 \I's, SL(2, C))
whose boundary value is also consistent with {X,; X,, ¥,}. Notice that this does not mean that A and A must
have the same boundary values when restricted to X¢, since the data {x,;; X, y,} do not contain information
about the longitudinal holonomies G,;. In fact, it turns out that A and A correspond to different constant
curvature 4-simplices o4 and & related by a parity inversion, and G, = G;bﬁ. In analogy with the pre-
vious discussion, we can introduce the variables y,;, conjugated to the x,,, which supply a complete set of
coordinates on Mg, (Z¢, SL(2,C)). In these coordinates, the parity pair is described by {X.p, Vap; X4 Yo} and
{)%ab, ﬂ,; Xa &a}, where ):;; =1 /%, with the bar indicating complex conjugation.
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Theorem 2.4. Given a set of boundary data [Xap; X4, a| corresponding geometrically to 5 constant curvature
tetrahedra forming the boundary of a constant curvature 4-simplex, there exists exactly 2 flat connections
A, A € Mgy (S 3\ Ts, SL(2, C)) on the graph complement 3-manifold, whose boundary values are consistent
with [Xaps X4, Va]- The connections A and A correspond to the constant curvature 4-simplices o and & which
have the same intrinsic geometry but different 4d orientations. The pair A & A are called a “parity pair”.

The proof can be found in [20]. The existence of the parity pair A & A is natural, because these
connections are complex conjugated to one another with respect to the complex structure on My, (S \
I's, SL(2, C)), which, in turn, is induced from the complex group SL(2, C).!? So the boundary values of A &
A give the same SU(2) flat connection on each 4-holed sphere S,; this implies that they give the same data

[)%ab;)%ua}o)a}

3 Complex Chern-Simons Theory: from Quantization of a 3d Flat Connection to
4d Quantum Gravity

In the previous sections we established a correspondence between a class of SL(2,C) flat connections on
M; = §3\ T's and homogeneously-curved 4d simplicial geometries. Since a natural way of quantizing
flat connections on M3 exists, and is given by Chern—Simons theory, such a correspondence provides us a
natural way to quantize 4d simplicial geometry. Somewhat surprisingly, the resulting quantum states are
related to discrete general relativity, in the sense of Regge. More precisely, one finds that the physical
Chern—Simons states induced by the boundary conditions discussed in previous sections reproduce semi-
classically the Hamilton—Jacobi functional of 4d Regge gravity with a cosmological constant, as discretized
on homogeneosuly curved 4-simplices.

In this section, we are going to prove the previous claims by means of a WKB approximation of the
3d holomorphic blocks of SL(2, C) Chern—Simons theory on M3, with the appropriate boundary conditions
imposed. The main technical tool to this end will be the Schlifli identities. Let us, however, proceed in
order.

The SL(2, C) Chern—Simons theory on M3 = § 3\ T’s is defined by the following action [22]:

CS [Ms]A,A] = éf

M

tr A/\dA+%A/\A/\A +if tr A/\dfi+%A/\A/\A
: 3 8 I, 3

t f o

+— tr(A; A Ay) + —f tr (A A Ay), (3.1
871' OM; 87'[ OM;

where A and A are the holomorphic and antiholomorphic parts of the SL(2,C) connection, respectively,

where holomorphicity is defined with respect to the natural complex structure of SL(2, C). We will assume

the Chern—Simons couplings

t=k+is and f=k-is (3.2)

are complex conjugates of one another, that is we will assume k, s € R. Notice that if k € Z, then exp [i CS]
is invariant under large gauge transformation. Nonetheless, in most of the following discussion, we will
avoid this requirement, and keep k an arbitrary real number [6].

The boundary terms of equation (3.1) are crucial for imposing the correct boundary conditions. Or, in
other words, they are crucial for the path integral on M3 to be a well-defined “wave-functional” on half of the
Atiyah-Bott-Goldman phase-space defined on Mg, (M3, SL(2, C)). For this, coordinates (s', s?) have been
chosen on Xg = 0M3, such that s; is the meridian direction of I's. Thus, in the boundary action, the A; with
i = 1,2, are the components of the SL(2, C) connection A along the directions defined by s'. The sign chosen
in front of the boundary terms implies that it is the values of (A, A), i.e. the meridian part of the connection

2Namely A = A/t and A = A/}
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form, which set the boundary conditions for the path integral [66]. Loosely speaking, the longitudinal part
of the connection provides then the conjugate variable. As is customary, all of this can be explicitly read
from the boundary part of the first variation of the action (3.1), that is from the presymplectic'® potential of
the theory:

t T _ _
oCS|s = —f tr(5A; A Ay) + —f tr(6A; A A»). (3.3)
47T OM; 47T OM;
This leads us to define
_ i 3 i
Zes (S3\Ts|ArAy) = f paniet O], (3.4)
ALA,

where (A}, A;) set up the boundary conditions on X4, whereas the values of (A,,A;) on the boundary are
implicitly integrated over in the functional integral.

The prefactor to the action, 1/7% € R, has to be viewed as a scaling parameter for the couplings (z,7). In
particular, the semiclassical limit # — 0O can be simply implemented by taking (¢,7) — oo uniformly.

In the formula above, Zcg (S 3\ Ts |A1 , Al) is viewed as a “wave-functional” of Chern—Simons theory,
i.e. it is viewed as a (possibly distributional) state in the Hilbert space H(X¢) defined on the boundary
Y. The Hilbert space H(Z¢) is a quantization of Mg, (e, SL(2, C)), the moduli space of SL(2,C) flat
connections on the closed genus-6 2-surface ¢ [7, 8, 24, 32, 67, 68]. In general, the moduli space of
SL(2, C) flat connections on a closed genus-g 2-surface X,, Mpa(Xe, SL(2, C)), is a hyper-Kihler variety of
dimc = 6g — 6, known as the Hitchin moduli space [31].

In order to study spaces of this type, it is convenient to decompose them into fundamental units. These
are given by “pair of pants”, or “trinions”, which are nothing but 3-holed spheres. A closed 2-surface X, can
be decomposed into pairs of pants by cutting through 3g — 3 closed meridian curves {cm}fng;f. A flat connec-
tion on X, hence defines, along the meridian cycles {c,}, a set of 3g — 3 holonomies {H,,} whose eigenvalues
{x,,} can be used as (a maximal commuting subset of the) canonical coordinates on Mg, (g, SL(2, C)).
These, together with their canonically conjugate variables {y,,}, constitute the Fenchel-Nielsen (FN) coor-
dinates on Mg, (26, SL(2,C)) [35]. They are commonly known as the length, {x,}, and twist, {y,}, FN
coordinates.

When written in terms of the FN coordinates, the Atiyah—Bott—-Goldman symplectic 2-form on Mja (2, SL(2, C)),
which can be obtained by symplectic reduction of the presymplectic form induced by the Chern—Simons ac-
tion (see footnote 13), reads simply:

3g-3
t OVm = Oxp
=——§—/\—+.. 3.5
wes = =5 25, " c.c (3.5

We have used here the notation dy,, and dx,, to emphasize that these are coordinates on the moduli space of
flat connections rather than on Z,. This space is finite dimensional and so the symbol ¢ does not indicate
here any functional variation, just a standard differential on Mg, (Z,, SL(2, C)).

The construction of the FN coordinates and their relation to the 4-simplex geometry is detailed in the
next section. The reader not interested in these details can safely skip it. For her, here is a very brief—
heuristic—account of this construction: from equation (3.3), one sees that the variable canonically conju-
gated to the meridian holonomy must be related to the longitudinal one; indeed, one can think of y,, as being
given by the eigenvalue of the longitudinal holonomies G,, transverse to H,,, once the source and target
frames of G,, have been appropriately fixed.

13 Presymplectic means that gauge transformations have yet to be modded out and hence that the ensuing presymplectic 2-form
011621CS |5 is degenerate.
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3.1 Complex Fenchel-Nielsen Coordinates on Mg, (Z¢, SL(2,C))

In this section, we review the construction of FN coordinates on Mg, (Zg, SL(2, C)). After choosing a pair
of pants (or trinion) decomposition of X, we focus on two such pairs of pants 7, and 7, and the cylinder
connecting them. At each pair of pants, we choose base points, o, and o,. Starting and ending at these base
points, we consider the holonomies H,, and H,,, respectively, which encircle once the tube connecting 7,
to Tp.

The holonomies H,, and Hp, can then be diagonalized by an appropriate choice of reference frame at
0,4 . In formulas:

Xab 0

0 x!

Hy = Mab(
ab

)Mabl . where  Map = (Eaps JEab) 5 (3.6)

for some normalized spinors &,, € C2. A spinor & is here said to be normalized, iff (¢,£) = 1, where
&m=E&n' +&n, 3.7)

and the spinor J¢ is orthogonal to ¢ and is defiened by the aaction of the antilinear map J:

1 )
(5)+(7)

For connections satisfying our boundary conditions, i.e. for SL(2,C) connections that reduce to SU(2)
connections in proximity of the graph vertices, the eigenvalue x,, must then satisfy x,;, € U(1). Also, for the
geometry to be non-degenerate, x,, # 1. The latter condition will be assumed in the following.

Now, the parallel transport G, is defined as the holonomy of the flat connection A between o, to o,
(holonomies compose from the right) along the tube connecting 7 to 7,. Notice that there is no canonical
choice of path along which to define G.

From the flatness of the connection A, it follows immediately that

Hy, = GapHpaGpa, 3.9
and Gy, = G;;. From this equation, and equation (3.6), one obtains
Xap O _ _ X O
( Sb )C_l) MablGabea = MablGabea ( Sh )C_l) ) (310)
ab ab

which in turn implies that M;bl GuyMp, is diagonal.'* This is readily proved by expressing this matrix in the
basis {1, 0} and commuting it with §(xe + x)) + 3(xa — x;})o3. Thus,

_ A O
M, 1GahMba=( . ) (3.11)
” 0 1
and so,
Gabfba = /labfab- (312)

The Fenchel-Nielsen twist coordinate y,;, is closely related to A,,, but the two are not precisely the
same. They differ by a particular cross-ratio of inner products between the {&,, &5}, Where b’ ranges over
the three links emanating from 7, and similarly for a’.

The cross ratios just guarantee scale invariance in the choice of a basis at o, ,, while the inner products
between the {£,, £} are crucial to “pick out the right components” of G, in the Poisson brackets. In other

140, is not the inverse of Mp,.
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words, whereas the H,;, start and end at the same point, and the trace is good enough to select the invariant
part of these holonomies, the G, must be sandwiched in between their starting and ending reference bases.

The construction proceeds as follows. Start by observing that the canonical Atiyah-Bott—-Goldman
brackets (the Lie algebra basis is chosen to be 7; = %o-i)

8 ..
- T’Tsﬂy(s"(s@)(x, v, (3.13)

{AL(x), AJ()} =

induce the following brackets between the parallel transports H,;, and Gp,:

{Gra @ Hap) = 27”(6[%, PloGlp, 0a1) @ (Hloa, plo;HIp, 04]) (3.14)

where p is the (by construction) unique intersection point between the paths defining G, and H,,."> The
point p, also splits these paths in two, and hence provides the decompositions G, = G[o,, plG|[p, 0,] and
Hup, = Hlva, p]H[p, v4].

Defining the SL(2, C) invariant bi-linear inner product

(EAmy = (JEn) = eopfr, (3.15)

we have, after a few lines of algebra,

2
(o A Graan) ()} = =G A ss) (0 Hap), (3.16)

where we used the identity Mo ;M™' ® o; = 0; ® M~'o;M, and the fact that the holonomy H.(p), repre-
senting H,;, with base point parallel transported to p, can be expressed in two equivalent ways (thanks to the
flatness of the connection A):

HIp, 0,1H[0,4, p] = Hup(p) = GIp, 0 JHuGIp, 017" (3.17)

Now, at o,, H,,(0,) = Hgp, is diagonal precisely in the basis {£,p, J€4p}, thus using equation (3.6) and the
identity Ma;,O']-M_1 ®oj=0;® M;bIO'jMah, we find

ab
{( & A Grakar) e} = (xap = X3 Evar A Grabin). (3.18)
Or, equivalently,
2r
{0 A Gaptian). In v} = == (3.19)

Thus, we see that the contraction above extracts the non-trivial part of the brackets (3.14).

To define the canonically conjugate FN coordinates we need to (i) symmetrize between the two choices
of @’ in the above formula, i.e. between the two punctures at 7, not touched by the parallel transport
along the tube connecting 77, to 7, and (ii) find a combination of the inner products that is invariant under
meaningless rescaling of the basis vectors. These two requirements are readily satisfied by the following
definition of the FN twist coordinate:

) Epa A Epar) Eap 1 Gav) Ear N Eab) (3.20)

 Epar A Grakap) Evar N Grabap) Ear N Earr)

150f course, according to our construction the paths defining G, and H,, intersect at the point o,, as well. However, it is not too hard
to convince oneself that the construction is invariant under homotopic deformations of the paths. This means that one can regularize
the paths for the H,;, by choosing them to first follow the path defining Gy, out of o, and up to the point p, and then to abruptly depart
transversally. The only contributions to the Atiyah—Bott—Goldman brackets then come from the loop leaving and arriving at p, while the
tail to o, plays no role. This trick can be used to regularize our expressions. Alternatively, one can consider a homotopically equivalent
loop to define H,j;, which does not starts at o, and only intersects the path defining G, at p. Since the result of the construction only
involves the eigenvalues of H,p, one can confidently extend this result to paths whose base point is arbitrarily close to o,.

Tab
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where a’, a” # a (respectively, b’ b”” # b) label the two other punctures at 7 (respectively, 7). From
this expression it is clear that only the two terms in the first denominator contribute to the Poisson bracket
{Tap»> Xap}, While the other factors just ensure the requirements above are satisfied.

Also, from the SL(2, C) invariance of the inner product (- A -), it readily follows that the various factors
entering 7,5, can be computed at any point of the surface, provided one defines the parallel transported
sections S, by (d—A)s. = 0 and s.,(po) = sgb, for s2b an eigenvector (determined up to complex rescaling)
of H,,(po) based at some point py on the tube connecting 7, and 7. Similar definitions are understood for
all the other choices of indices. We emphasize that both the complex normalization of 52}; and the point
at which it is defined are completely irrelevant at this point (cf. footnote 15). This shows that the the FN
coordinates can be ultimately defined in a completely geometrical way, without reference to any basis. For
our purposes, however, it is easiest to work in the basis provided above, since it allows for a direct translation
to the underlying simplicial geometry.

One last technical consideration is in order: being “quadratic” in G, the complex FN twist variable 7,
is actually a coordinate on the moduli space of PSL(2, C) flat connections, rather than on the moduli space
of SL(2, C) flact connections. A lift to the coordinate y,;, such that

Vi = Tas (3.21)

is then needed to complete the construction of the SL(2, C) FN twist coordinate.

To summarize, given the eigenvalues of x,;, and A, of H,, and G, respectively (the latter as expressed
in the proper frame at each o,, defined by {&,,, J€,»} as above), the SL(2, C) FN coordinates and their Poisson
brackets are

. 2n
Xap and  Yap = Agp Vxap(§)  with {IH Yab> In xcd} =~ Oab)(cd): (3.22)
where a branch of the square root has been arbitrarily chosen and y,;(£) stands for the cross ratio

<§ba’ A gba") (é:ab’ A é:ab> <§ab" A gab) )

Xav(§) = = (3.23)
<§ba’ A gha> <§ba" A fha> <§ab’ A g:;b")
3.2 Holomorphic 3d Blocks and Quantum Flatness
The previous analysis suggests the following definitions for Darboux coordinates (u,, V;):
2
Xy = e and Ym=e &', (3.24)

where an arbitrary branch of the logarithm has been chosen. Analogous equations are understood to define
the complex conjugate variables (i, ¥,,). Hence, the Atiyah—Bott—Goldman symplecitc form on Mga (X, SL(2, C)),
see equation (3.5), reads

3g-3
wes = Z SV A Sl + C.C., (3.25)
m=1
or, in terms of Poisson brackets,
(Ut Vi} = Opmn = {llm, V). (3.26)

The above relations lead one to introduce the quantum operators (i, v,,) and (ity, V) With canonical
commutation relations

|ttns 9| = 18, and [, V] = iR (3.27)
Equivalently, in terms of the operators (X,,, $,,), one finds

A 2w A A
Xpm =€ Yuxy, and X, 9, = X, when n #m, (3.28)
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with similar equations for (X, ).

The Hilbert space H(Z,) of “quantum flat-connections” can hence be constructed as the (Schrédinger)
L>-type representation of the above canonical commutation relations: a state in H (Z,) is a wave function of
(u, it), on which (#, it) act by multiplication and (¥, ) by derivation, e.g. ¥ = —ifid,. In particular, the path
integral of equation (3.4) should be written as Z¢s (M3|u, it).

The classical solutions to the Chern—Simons equations of motion F(A) = 0 = F(A) on M3 define
a holomorphic Lagrangian subvariety L5 (M3) in Mg (Z, = dM3,SL(2,C)) [32, 33]. At least locally in
Maa(Zg = OM3,SL(2,C)), this Lagrangian subvariety is described by a set of (Laurent) polynomial equa-
tions,

A,(x,y)=0 m=1,...,3g-3. (3.29)

In quantum Chern—Simons theory, the holomorphic part of L4 (M3) can then be quantized via the introduc-
tion of an operator version of the above equations,

A (3,9 1) (u) = 0. (3.30)

Here A, (%, $; 1) is the quantization of A,,(x, y) defined by a specific operator ordering [69], and consequently,
Y e H(OMs;) is the physical wave function of the holomorphic part of SL(2,C) Chern-Simons theory
associated with M3. It is a holomorphic function of u as a consequence of the holomorphicity of L, and
A, (x,y) =0.

The functional integral Z¢s (M3|u, 1) of equation (3.1) must satisfy at the same time the above operator
constraint and its complex conjugate,

A&, 9.10) Zes (M |u, @) = 0 = A(%,5.1) Zes (M3 | u. 7). (3.31)

It was shown in [6, 25] that Z¢g (M3 | u, ﬂ) can be in fact written as a sum over branches of factorized wave
functions

Zes (Ms|w,@t) = 3 o 280 (M3 | u) 28 (M5 | 7). (3.32)

a,a

This expression introduces the “holomorphic 3d blocks” Z(C”S) (M3 | u) which satisfy the holomorphic operator
constraints:

A, (3, 9.M) ZE (Msluy =0V a, (3.33)
and similarly for the antiholomorphic part

AR50 ZE8) (M) =0 V a. (3.34)

These are the central objects to be studied below. Each block, Z(C"S) (M3| u), can be understood using

Morse theory as a path integral of the holomorphic SL(2, C) Chern-Simons theory, heuristically identified
with the holomorphic part of equation (3.1), as defined along a certain integration cycle which encloses a sin-
gle saddle point «, i.e. a classical solution in the form of a flat connection on M3 [6]. Each of the integration
cycles defining a Zg’s) (M3] u) is known as a “Lefschetz thimble” of the Chern-Simons path integral.

Most interestingly for the purposes of this paper, the holomorphic 3d block, seen as an asymptotic
expansion in 7, can also be understood from the viewpoint of a systematic WKB analysis of the above
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operator constraint equations. At lowest order in 7, this reads'®

.~ (wy(@) . (@5@)
Z(C‘?(M3|u):exp % f Dt and Z(C(?(M3|ﬁ)=exp % f 9+l (3.35)
(o n0) (it,Vo)
CcLa Ccla

where  and 9 are the holomorphic and anti-holomorphic parts of the Liouville 1-form (symplectic potential)
on Mg (OM3,SL(2,C)). As discussed in the previous section, these can be written locally in terms of the
Fenchel-Nielsen coordinates (x,,, y,,) and (X, y,») as

1\ o P\ ok
- Iny,,—= d 9=-=— In y,,—=. 3.36
( 271')’; oy Xm an ( 277)2_: y X ( )

In these formulas, @ labels the branches of the Lagrangian subvariety L4 that arise from solving A,,,(x,y) = 0
and on which the v, (@) are single-valued functions of u,,.

The integral in equation (3.35) is performed along a contour € within the Lagrangian subvariety £
connecting the flat connection (u, v(«)) in the branch « to a reference flat connection (ug, vo). In our context,
both flat connections at the end points of € are covered by a single FN coordinate chart. The last two equa-

D

tions provide the starting point of our semiclassical analysis leading to 4d simplicial quantum gravity in the
next section.

For now, we conclude this discussion with a series of more technical remarks, which can be skipped on
a first reading.

Overall phase The freedom in fixing the overall phase of the wave function Z¢g (M3 | u, 12) is, of course,
related to the choice of a reference flat-connection (ug, vo), (i, Vo). Let (u, it) be the boundary values defin-
ing the path integral Zcg (M3, | u, 17{); we can choose the reference flat connection to be a pair of solutions
(u, v(ap)), (1, v(@p)) of A, (1, v) = 0, such that (@, @) denote reference branches. Then, the phase differ-
ence between another pair of flat connections (u, v(@)), (i, ¥(@)) in the branches «, @ and the reference pair
(u, v(ap)), (1, v(@p)) will be given by

) @@
2 (Ms|u) = exp| - f P+-f. 23 (Ma]7) = exp | 5 f SR (3.37)

(uv(ao)) (@,7(ao))
Ccla CcLy

Integerk  WhenRe(f) = k € Zand ™! € Z (once again, ™! is here understood solely as a scaling parameter
for the couplings (7, 7)), the Lagrangian subvariety £ becomes quantizable, which means that the integrals
of equation (3.35) do not depend on the choice of the contour since f ¥ € 2nhZ on L. This fact has a
beautiful algebraic K-theoretical interpretation: indeed, L, is Lagrangian in a stronger sense, i.e. it is a
K»>-Lagrangian subvariety [33, 69, 72]. A very brief explanation of this fact is given in Appendix A. In
the case of knot-complement 3-manifolds, the fact that L, is quantizable was understood very early on by
[73-76].

16 1n this equation, ““---” contains the subleading terms of log % and 2;’;0 Sfl")(u)h". If M5 is a knot complement [71], known tech-
niques related to topological recursion allow one to recursively [25] compute all the quantum corrections S, (u)®. The computation of
coeflicients 1,4 in equation (3.32) is described in [6]. Hence, the above discussion provides a perturbative definition of the holomorphic
3d block Z(C“S) (M3| u). A nonperturbative definition has also been proposed in terms of a “state-integral model” [8, 25, 41].
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Logarithmic variables Although the Lagrangian subvariety £, is defined by A,,(x,y) = 0 in terms of the
variables (X, y,), the holomorphic 3d block Zgg)(M 3|u) is rather a function of the logarithmic coordinates u,,,
satisfying equation (3.33). This means that Zg? (M3]u) need not, in general, be a periodic function of u under
u — u+2mni. Therefore, Z(C“S) (M3|u) and Z(CHS/) (M3|u) have to be considered two different 3d holomorphic blocks
even when v(a) and v(e’) give the same y,, = ¢~ V. The reason is essentially that Z(C“S)(M3|u) is defined by
the path integral of an analytic continuation of Chern—Simons theory with ¢ extended to an arbitrary complex
number (see [6], as well as the second reference in [8]): by relaxing the requirement that k € Z, one defines
Z(C”S)(M3|u) as a path integral on the covering space of gauge equivalent classes of connections, which means
that configurations related by large gauge transformations should not be identified.

The integration contour € appearing in the formulas above strictly speaking lies in the cover space
of L. In the analytic continued Chern—Simons theory, we have § v - ou = 0 on the cover space of Ly,
which is explained in Appendix A. Hence, fix u, and consider (u, v(a)) and (u, v(a”)) two different solutions
corresponding to the same flat connection (x,y) on M3, where v(@), v(a’) are different lifts of y = eV to
the cover space. Then, v(@) and v(e’) differ by an integer multiple of iz. Thus the classical terms in equation
(3.35), whichare [“" 9 and [“"”

that there is no difference in the quantum corrections between S f,“)(u) and S f,“l)(u) [25].

1}, must differ by an integer multiple of iz u. This can be used to show

3.3 Asymptotics of holomorphic 3d Block and Simplicial Quantum Gravity

After this general review on the quantization of flat connections on a three manifold, we turn our attention
back to those connections satisfying the “geometricity” boundary conditions that we introduced in the first
part of this paper. These boundary conditions allow a one-to-one mapping between flat connections and
homogeneously curved 4d simplicial geometries.

The content of the needed boundary conditions is the following: in the vicinity of each vertex of T's € S3,
the SL(2, C) flat connection reduces to an SU(2) flat connection. To express this conditions in terms of the
FN coordinates, we introduce an adapted pair of pants decomposition of Zg, the tubular neighborhood of
I's. Since ¢ is already naturally decomposed into five 4-holed spheres S,, a = 1,...,5, we just need to
split each of these into two pairs of pants (7,,7,). As a result, we obtain the following two sets of FN
coordinates: {xup, Yap}a>» Which are attached to the tubes connecting two 4-holed spheres S, and S, and
{X45 Ya}a» Which resolve the internal structure of each 4-holed sphere S,,.

As a consequence of the boundary conditions, the FN lengths coordinates must have unit norm, i.e.

Xab> Xa € U(1), (3.38)

and, in addition, the pairs {x,, y,} have to parametrize an SU(2) flat connection on S, with given conjugacy
classes {xap}pp2q associated to its holes.

Thanks to the geometric correspondence explained in Section 2.3, a holomorphic 3d block Z®(M3]u)
that solves the A-polynomial equation (3.33), and moreover, satisfies the above boundary conditions can
be readily interpreted as a quantum state of a 4d simplicial geometry peaked around a particular classical
geometry. This peakedness cannot be arbitrarily sharp, due to the Heisenberg relations between x, and y,.

In this section, we analyze the asymptotic behavior of such a Z®(Ms|u) as i — 0, and find evidence
that it corresponds to a physical state of simplicial 4d Quantum Gravity.

Consider a set of boundary data [x,; x4, y,] satisfying the geometricity (and non-degeneracy) condi-
tions. Theorem 2.4 states that there are then exactly two connections A and Ain ME:S(M3 = S3\I's, SL(2,©))
that are consistent with the boundary data, and which correspond precisely to the two orientations of a geo-
metric homogeneously curved 4-simplex.

These two bulk connections A and A in M5 = S3 \ ['s, induce on the boundary M3 = X two different
flat connections, which we call 2 and ¥, respectively. The two connections, U = [Xup, Yap; Xa» Yu]| and A =
[Xap» Yav; Xa» Ya], are covered by a single FN coordinate chart. The 10 twist variables y,;, differ from 3, by a
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parity transformation in the simplicial geometry, and must therefore be related by a simple transformation.
As the reconstruction theorem of Section 2.3 suggests x,, = €“*, y,» = e~ 7V and Vap = e~ 7V are related
to the areas and (hyper)dihedral angles of the 4-simplex in the following manner:

A
Ugp = —ianab + iﬂSab + 27TiMab, (339)
t it tln)(ab(f) . /
vap(@) = EV@m, + ngab — T - ltVNab, (3.40)
t it tiny, .
Fu(@ = v Ou + zl_nyg“b - nj—ﬂb@ — ivi,, (3.41)

where recall v € {+1} is a global sign, s,, € {0, 1}, and M, Ny, Nap € Z are arbitrary integers related to the
(necessitated) lift to logarithmic FN variables (u, v). The relation between u and the areas and between v and
the boost hyperdihedral angles are made more plausible by Eqs. (2.38) and (2.42), for further details and a
proof see [20].

A similar lift is presupposed to be chosen for the variables [x,, y,] which parametrize the shape of the
five tetrahedra of fixed areas {a,,}.'” In the following, an important role will be played by the difference
between v (@) and ¥,,(&). This is given by

Vap (@) = Tap(@) = 2iv(®ab + 2miN ) (3.42)
Vs
where N, = N;b — N/, € Z (note that the logarithm branches of @ and & need not be related).

As we have already discussed, there is an overall phase ambiguity in the 3d holomorphic blocks. Of
course, this ambiguity cannot be removed, since it is intrinsic to the quantum formalism. However, what
really matters in the WKB scheme discussed above, is the phase difference between the various contributions.
This quantity has an absolute meaning, and it is exactly what we are going to evaluate. A convenient way of
doing this is to fix the reference connection in the integrals of equation (3.35) (or (3.37)) to be e.g. (u, v(@)).
In this way, the phase we are interested in calculating is the leading order of

(uv(a))
Ig(u,v(a),v(a))+...] with  I9(u, v(@), (@) = f 9. (3.43)

(u,v(@))
Ccla

i

A (M3| u) = exp [h

For completeness, we recall here that the Liouville 1-form ¥ is given by

5
9= Z VOt + Z VaOily, (3.44)

a<b a=1

where ¢ is a finite dimensional differential in the (u, v) space (we adopted this notation to avoid confusion
with the differential on M3 or X).

To evaluate the integral above, it is useful to have a more geometric picture in mind. Recall that
the set of solutions to the operator constraint of equation (3.33) defines a Lagrangian subvariety £ =
Maa (M3, SL(2, C)) within Mg, (M3, SL(2,C)). Theorem 2.4 can be rephrased as stating that the plane
P[xah;xu,ya] of constant [x; X4, v ] intersects L in precisely two points, [Xup, Yap; Xa» Ya] and [Xaps Yabs Xa» Yal
corresponding to two 4-simplices differing only be their parities. This is schematically represented in Fig-
ure 5. The idea is that, instead of directly attempting the calculation of the integral I (u, v(@), v(@)), we
first evaluate its variation under a slight change of the planes #|,,, .y, x,j—0r more precisely of their lifts
Plugs:u.v,o—and then integrate this variation.

17A tetrahedron is completely fixed by its 6 edges, therefore to the 4 areas two more parameters have to be added. See [38] for a
detailed analysis of this fact in the homogeneously curved case.
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Vab ¢

Lu £u+5u

u

Figure 5. The Lagrangian subvariety £, and the plane P[xab;x“_ya] intersect at 2 different points. The bent (green) curve
is the integration contour € lying in £, and connects the pair of intersection points. The (orange) vertical line represents
the plane P[Xab;)%yu] and intersects € at 2 points. The dashed (orange) vertical line represents the variation P[Xub;xg'ya](n)
from P, ., »,]- The second plane .. () intersects L, at a different pair of points, which are also connected by
the extended integration contour €(n7). The 2 (green) segments in between the (orange) line and dashed (orange) line are
the curve extensions 6C€ = ¢ U ¢. In this figure we suppress the coordinates x,, y,.

To do this, we introduce a one-parameter family of boundary data [x,,(17); x.(17), ya(17)], with n € [0; 1],
all compatible with some 4-simplex geometry. This family can be readily lifted to [ua(17); ua(), va(7)]. The
variations involved in this family being smooth, they do not allow for changes in the lifts nor in the branches

a and @ in which the intersections vgz)(n) and vﬁ,&)(n) live. Hence, we define the variation

8,15 () = I5(n + 6m) — I3 () (3.45)

where I£ (1) is a shorthand notation for Ig(u(n), v(a)(®), v(&)(n)). Because £, is Lagrangian there is a freedom
in the contour of integration € entering the definition of /¢, we use this freedom to deform the contour so
that it contains the path parametrized by 7, thatis € > C,, where

Gy = U (£a O P ) (3.46)
n

Now, C, is composed by two portions, C;, = ¢ U ¢, contained in the branches @ and @, respectively
(see Figure 5). As a result, 0,15 can be expressed as the sum of two line integrals contained in ¢ and ¢.
Developing these integrals at first order in 67, we find

on on

8,18 = f - f [Z VapOthay + ) VaOlta | = Y (W@)qp = V(@ p) Sythap + -+ - (3.47)

0 0 a<b a<b
cCcLa TCLa

Here the dots stand for second order corrections in 6272, while 6,u,, is the first order development of (77 +
on) — ugp(n). Furthermore, we used the fact that the contributions coming from the two branches to the
integral of ), v,0u, cancel each other (exactly). This is because the integrations along each section have
opposite orientation and v, and u, are the same on each portion because they are fixed by the boundary
conditions.
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Now, using the geometric correspondence of equation (3.41), one finds that at first order
oyl = ( ) Z Oup0paap + ( ) Z NapSyagp. (3.48)
a<b

Since n was supposed to parametrize a continuous family of actual 4-simplex geometries, the above variation
can be integrated thanks to the Schléfli identities, which state that for a continuous family of homogeneously
curved 4-simplices,

SVl = A7 > 2446, 00, (3.49)

a<b

where Volf is the 4-volume of the homogeneously curved 4-simplex of curvature A. Hence,

A
Ig = (12:”) [Z aub®ub — AVO]Z\ + Cg] ( )Z Nabaab (350)

a<b a<b

Notice that in this expression the dependence of branches «, & is contained in the integration constant C%, a
well as in the terms ( ) Da<h Napagp. We will comment more about them in the later paragraphs. The proof
of Schlifli identity can be found in e.g. [43, 79], see also [80] for a symplectic and semiclassical perspective.

From the previous equations, we deduce the following leading order expression for the holomorphic 3d
block with our boundary condition imposed, Z C)(M3|u)

(@ _ i At A i [ At
ZBC(M3|M) = exXp |:h ( 127”) [Z aub®ab AVol ] h ( 1270 Z Nabaub +-

a<b a<b

(3.51)

To go further with our analysis, it is important to recall that—although the holomorphic 3d block stud-
ied above is the fundamental unit of the CS quantum state—the full quantum state is given by a sum of
products of holomorphic and antiholomorphic blocks, as in equation (3.32). In particular, the product of the
holomorphic block above and its antiholomorphic counterpart gives

Z? (M3 u) z% (M3| i) =

A
expl hZRe( )[Z 20O — AVolA]+ Z2Re (?CQ)+ Z2Re ( I)ZNabaab+

a<b

(3.52)

The anti-holomorphic block is defined by complex conjugation of (u,v(a)) with the reference being the
complex conjugate of (u, ¥(@)).

Given our phase convention, we find that at leading order in 7 the phase of the above product vanishes
for the branch given by @ — @. Therefore, assuming that the coefficient 11, 5 in equation (3.32) is the same
for @ and @ (which is more than reasonable given the symmetry which relates the two branches), we find
that the total wave function—up to an irrelevant global phase—is

. Alm(?) At
Zpc(Mslu, it) ~ cosl o [Z; a0 — AV014] + Im(mC ) (6h) Z Napag + -

a< a<b

(3.53)

This is our main result. A few comments are in order. First of all let us explain the notation: ~ highlights the
fact that an irrelevant overall phase has been neglected (and, conversely, the presence of a cosine highlights
the relevant interference between the two branches), whereas the ellipsis - - - indicates that, as usual, only
the leading order in 7 has been taken into account. Second, and most importantly, in the expression above

—32_



we recognize the appearance of the Hamilton—Jacobi functional for General Relativity on a homogeneously
curved 4-simplex. This is the on-shell Regge action for such a 4-simplex [43, 81]:

1
Sregse = g0 [Z 8,50 — AVolf). (3.54)

a<b

This observation allows us to identify the (inverse) Newton constant with the imaginary part of the CS
coupling #:

3
Gy =|——|. 3.55
N |2AIm(t)‘ (3.55)
Or, in terms of the (squared) Planck length t’f)l = 8nhGy,
'Im(t)‘ _ 127 (3.56)
h Al '

where dimensionless quantities are now being compared. This relation with the on-shell Regge action is
what allows us to claim a relation between the quantization of SL(2,C) flat connections on S3 \ I's with
appropriate boundary conditions and simplicial 4d Quantum Gravity with cosmological constant.

The Regge action, though, is not the only term appearing in the leading order expression of Zgc(M3|u, it).
This takes us back to the integration constant C§, which—as such—must be independent of the geometry.
This constant is actually expected to depend on the behavior of L4 at the singularity y,, = ¥, where the two
branches meet, and the geometry degenerates. These kinds of contributions have been studied extensively in
the literature on WKB and semiclassical approximations, where they are known as Maslov indices [82, 83].
This term is similar to the phase offset which appears in the asymptotics of the 3d Ponzano—Regge model
with respect to the standard 3d Regge action [84-86]. Finally, we are left with the ambiguity associated
with the logarithmic lifts, which is given by

At
Re (ﬁ) Z Nopaup. (3.57)

a<b

To start with, let us notice that this ambiguity does not affect the asymptotics if Re(¢) = 0. However, requiring
that this ambiguity is not present in the generic case is equivalent to asking that the areas a,;, of the 4-simplex
triangles be quantized:

12n7
ab € . 3.58
A4 € ARer) (3-58)
This corresponds to an equidistant spacing in the area spectrum given by
Im() ,
= . 3.59
27 Re) ™ (3.59)

This condition will be analyzed again in the next section, where it will acquire a special meaning in relation
to an explicit imposition of the desired boundary conditions inspired by Loop Quantum Gravity.

4 Wilson Graph Operator and Boundary Conditions

In the previous sections we studied complex Chern—Simons theory on the I's graph complement 3-manifold
M3, with certain boundary conditions. We also saw how our boundary conditions correspond to quantum
states of the Chern—Simons theory on M3 = X4 encoding quantum 4-simplicial geometries with a semiclas-
sical amplitude given by a discretized form of the Einstein—Hilbert functional.
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We now show how these precise boundary conditions can be imposed by introducing a specific Wilson
graph operator supported on I's within the complex Chern—Simons theory. In this section, we restrict our
analysis to the case where Re(f) = k € Z and hlez.

The idea is the following: a general feature of topological quantum field theory is that imposing specific
boundary conditions on the path integral (on M3) corresponds to evaluating the amplitude of a specific
quantum state in H(X¢), associated to the boundary M3 = X4 (see e.g. [8]). In formulas

i ¥yl = (W [ Zes O ) @.1)
where P! € H(Z¢) imposes the boundary conditions [x,; x4, y.]. More explicitly, the state phs

[Xap3Xa-Yal [Xab3%a-yal
can be defined via a path integral through the insertion of a Wilson graph operator at the center of the tubular

neighborhood of I's, N(I's). Indeed the boundary of N(I's) is 36, i.e. identical to M3, but with opposite
orientation—a fact that ensures the above contraction is natural.
Specifically, we consider SL(2, C) Chern—Simons theory on N(I's) and define a knotted Wilson graph

operator I' gj"” ] [A, A] located at the core of N(I's) [20], such that ‘I’fj yoxaye] €N be written as
T A)-— X 5 CS[NTs)|AA] liabas] i
P (AL A = fA . DADA ot CSINE)IAA] plisdull g F), 42)
1.1

The relation between the operator labels [ j,5, £,5] and the state or boundary condition labels [x,4; x4, ¥,] Will
be spelled out soon. With the above definitions, the properties of the inner product in H(Z¢) ensure that

A (X Xar Ya = f DADA ¢f 157144l Tl 4 A), 4.3)

We come now to the definition of the knotted Wilson graph operator I gj"” ] [A, A] (see also [20]), which
is conveniently presented as a list:

e Each edge ¢, connecting two 4-valent vertices of the graph I's is labeled by a unitary irreducible
representaiton (“irrep”’) of SL(2, C) in the principal series (such irreps are necessarily infinite dimen-
sional as a consequence of the non-compactness of SL(2,C)). These representations are required to
be of a specific form. Before specifying this form, let us recall that the unitary irreps of SL(2,C) in
the principle series depend on two parameters (j, o), with j € %Z* and p € R [87]. Moreover, these
irreps can be decomposed as an infinite tower of SU(2) irreps, i.e. their Hilbert spaces decompose as
ViP = @ Vi, where Vj is the SU(2) irrep with spin k € %N. Using this decomposition, a basis of V/#
is given by |(j, p); k, m). Coming back to our own Wilson graph operator I gj"b ) e require that the
specific irreps attached to the edges £, have the form (jup, Pap) = (ups ¥.jap) for some fixed y € R.'8

o Each of the two end points of an edge £,;, in I's is equipped with an SU(2) Perelemov coherent state,
|japs Eav) € V> and |jpa, Eva) € V), Tespectively. The state |, £) is defined via an SU(2) action on the
highest weight vector |j.p, ju) [88]. Specifically, denoting the Wigner matrix of g in the SU(2) irrep

V;as D/(g) : V; - V;, we have
. §1 _52
[j,€) := D/(go)lj, j) where ge = (52 E') e SUQ2), 4.4)

for some normalized 2-spinor &, (¢,&) = E'¢' + £2¢% = 1. The coherent states |j, &) form an over-
complete basis in V; and provide the resolution of the identify

1;=02j+ 1)[32 du(é) 1), €)1 (4.5)

181n the next section we will see that  corresponds to the Barbero—Immirzi parameter of Loop Quantum Gravity.
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Here, the integration domain is the coset space S2 = SU(2)/U(1), since |j, &) — €[], &) = |j, e®&)
leaves the integrand invariant. The phase convention for & needs to be fixed by convention in order to
define the coherent state basis. Once the phase information is fixed, we can think of |j, &) as labeled
by a unit 3-vector 71, rather than a spinor. Indeed, in its spin 1 representation, g; € SU(2) rotates the
3-vector Z = (0,0, 1) to the unit vector 7 = (£, 7€), where & is the vector of Pauli matrices.

Since the edges of l"gj“”’f"”] are labeled by irreps of SL(2,C), and thus naturally carry SL(2, C) group

elements, we need to produce states in 4’/ from the SU(2) coherent states just described. This is
achieved using the injection map

YV, VI 58 o YILE =Gy J ) (4.6)

which identifies the SU(2) irrep V; with the lowest subspace in the tower ViYi = @ V. At the end
of this construction, the two end points of the edges ¢, carry the two states |(jup, Y Jjab); Jabs Eap) and
|(jab’ 'yjab); jabs fba> in Vjah'yjah-

o Finally, the Wilson graph operator l"gj“”’f“”][A,A] is defined by a product over all edges £, of inner
products in each VJaYJar:19

5
sl A = T f dga}]_[<(jah,yjah);jab,§ab 2.'Gargp (jab,yjah);jab,gba>, 47
a=1 Y5120 |4
where
Gub:Pexpf A 4.8)
Lab

is the holonomy of A along ¢, oriented from b to a. Note that l"lsj“”’g”’)] [A, A] is gauge invariant thanks
to the Haar integrals HZZI fSL(z o dg, (in fact, one of these integrals is completely redundant for this
purpose, and has to be dropped to avoid meaningless divergences). Importantly, these inner products

are not holomorphic functions on the complex group SL(2, C), since they come from unitary irreps.

o In formulas (4.2) and (4.3), it is convenient to make a partial gauge fixing. Making use of the invariance
of 7 €S under large gauge transformation (when k € Z), we are allowed to fix the g, = 1 for all a,
while at the same time dropping all the associated integrals. In the following, we will abuse notation
and, despite fixing g, = 1, still denote the Wilson graph operator (4.7) by ng“”’g“”][A, Al

The knotted Wilson graph operator I gj“’“’g“b][A,A] can be split into contributions from the edges {{,}
and of those from the vertices {a}. To this purpose, we rewrite the inner products in (the gauge fixed)
l"[sjabvfah][A, A_] as

f(c e dzapdzpa <(jab, Yiab)s Javs €an| GE! |Zab> (Zab|G;b|Zba> <Zba|G(b(ab) (JabsYJab)s Jabs fba> , (4.9)
where the edge ¢, has been split into three pieces, and the holonomy G, is, accordingly, written as the
product G~ G be“”).

Let us further explain the notation used in Eq. (4.9). Here, we denote the representation of the vector
|f) € V# by a homogeneous function of two complex variables {z|f) =: f(z), i.e. f(z) = f(z',7%,7,7%),
such that for any @ € C,

V5 flaz) = o P (7). (4.10)

19This knotted Wilson graph operator is strictly related to the projected spin-network functions of SL(2, C) [51, 89].
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The inner product in V# is L2, i.e. {f|f’) = fCPI dz f(2) f'(z) with dz = (z'dz? - 22dz") A (7'dz? - 22dz') an
homogeneous measure on C2. For details, see e.g. [87] (or also [90], for a brief summary). These equations
spell out the meaning of the integrals and of the first and last term in the product. We are left with the factor
<Zab|G;b|Zba>-

This can be written as a path integral that implements the SL(2, C) coadjoint orbit quantization. The
idea is that the unitary irreps of a Lie group G can be obtained by geometric quantization of its coadjoint
orbits. For reviews see [91], or [24] for a nice summary, or the succinct account in Appendix B.

To be more explicit, let us recall that the SL(2, C) coadjoint orbit associated to a generic element A € sl,C
is the 4-dimensional manifold Q; = SL(2,C)/U(1)c = T*S2. The base space S? can be identified with
CP' = SL(2,C)/B, with B the Borel subgroup of invertible upper-triangular matrices, and the CP' here
is the same one that appeared above. Hence, the variable z € CP' is precisely the position variable of a
Schrodinger representation of Q, = T*S 2. This correspondence should clarify the meaning of <zab|G;b|zba>,
as well as its path integral representation

Za _
(calinle) = (zstPeli o) = [ DDy Sitis i, @11

Zba

where the first-order action functional (here A and A should be understood as external sources) is

S oy l0ab Gap A Al = =5 f [ + K5y (d + A)gap + v = )3 (d + AN |, (4.12)

’
[ab

and the choice of weight A is encoded in the matrices

V=—Yjuw ((]) _01) and k=1ijy ((1) _01) 4.13)

On a first encounter the bounds of integration of Eq. (4.11) may be obscure. To clarify these bounds
notice that although the path integral is carried out over maps g4 : £/, — SL(2,C), a gauge symmetry is
present that effectively reduces the integration space to maps with range the coadjoint orbit, i.e. £/, — Q; =
SL(2,C)/U(1)c = T*S2. In this sense, the above path integral can be consistently viewed as a quantum
particle moving on its “position space” CP'! 5 z, with boundary conditions at the two end points of t/, given
by zp, and zgp.

This rewriting of <za;,|G’ab|z,m> allows detailed study of the path integral defining the state \Plr;ah;xa,yal in
a tubular neighborhood N(£/,) ¢ N(I's) of €,. Topologically, N(¢/,) = [0,1] x D?, where D? is a 2-disk.
We parametrize this space with (¢, x!, x), where ¢ € [0, 1] and (x', x*) € D? so that (x', x*) = (0,0) is the
location of the Wilson line. Accordingly, the Chern—Simons connection in N(£/,) can be decomposed into a
time component A; along ¢/, and a spatial component A, . With this decomposition, and after an integration
by parts, the contribution of N(£,) to the action CS[N(I's)|A, A] becomes

- t
CS [Ng,)|A A] = — f tr(A, AdA,) +2tr(F, AA) +c.c., (4.14)
87 vy,
where F, =dA, + A, A A, is the curvature of A, .2° Here, the boundary term coming from the integration
by parts cancels exactly the boundary term present in the Chern—Simons action, i.e. g fa v T (A] A A).
ab

In the definition of W' the Chern—-Simons theory on N({/,) appears to be coupled to the coadjoint

[Xab3Xarya)” _
orbit path integral of equation (4.11). The total action is linear in A; and A,. Thus, integrating these out we

obtain two functional delta functions on the space of (A, A, ), which constrain F, and F'; to be given by

t 1
HFI = Eg v+ «) g("(S(z)()c)d)c1 Adx?, and
TT.
o1
ﬁFf = Eg(v — )3 6P x)dxt A da?, (4.15)
T,

200n the boundary ON (f;b) =[0,1]x S, the two components of the connection (A1, A) are the pullbacks of (A, A;), respectively.
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where 6 (x) is a delta function on D? such that for any 1-form f, fN( o) SPx)dx; Adxy A f = ff f. These

ab

constraints fix the conjugacy class of the meridian holonomies H,, and Hy, ie.

qjab

O 2nih .
- : — L7 (1+iy)
H,, ( 0 qjab) with g=e v, (4.16)

and similarly for H,,. Note that when the parameters ¢ and 7y satisfy

2rh

%(1 +iy) €R, (4.17)
the eigenvalues of H,, satisfy the boundary conditions of Section 2.2:

Xap = @/ € U(1). (4.18)

Reinserting the constrained value of F, in the first term of CS [N £ b)|A A] in equation (4.14) and using the
identity tr (A; AdA,) =tr (AL A F,), one finds that this term vanishes identically since F; is constrained to
be proportional to dx! A dx?.

As aresult, the contribution coming from N(¢),) to the wave function ‘P[x I gives a product of delta
functions:

[ 16 (xar @) 6 (%> a). (4.19)

a<b

Therefore, we see that the boundary data x,;, = g/« is imposed strongly by the Wilson graph operator.

In the previous section we studied the semiclassical behavior of the Chern—Simons path integral with the
geometric boundary conditions imposed. This was achieved in that context by simply sending 72 — 0. Here,
the boundary conditions are imposed through the insertion of a Wilson graph operator, and as a consequence
the relation between the operator’s labels and the boundary conditions is mediated by terms containing 7, as
in Egs. (4.15)—(4.18). Therefore, in order to reproduce the semiclassical behavior obtained in the previous
section in this context, together with 7 being sent to zero, the representation labels j,, must be sent uniformly
to infinity in such a way that the boundary data x,;, = q/® = exp (2rii(1 + iy) jup/1) stay fixed. Specifically,
we see that the right semiclassial limit is now the double-scaling limit

h—0 and j, — oo, whilekeeping 7j,, = const. (4.20)

We studied precisely this double scaling limit via stationary phase techniques in [20]. Here we quickly
review that analysis. Using the SL(2,C) irreps described above, the full (gauge-fixed) I's Wilson graph
operator can be written in the following integral form:

riedelig A f ndu(z ») e, 4.21)
a<b

where the measure is du(z) = dz/{z, z)%, and the “Wilson graph action” Ir, is

2 5 ; .
thabl f”zah’w G zar) + iy hjay IHM

a<b abzab, szzub> (Zabs Zab) (Zab» Zab)

4.22)

(by construction the choice of a branch for the logarithm is irrelevant). Using the Cauchy—Schwarz inequal-
ity, it is immediate to see that Re(Ir,) < 0.

This leads to study of the stationary points of I, coupled to Chern-Simons theory on S in the double
scaling limit, as in Eq. (4.3). Doing so, one finds the following stationarity equations
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Parallel Transport: From o,,/r, = 0 and Re(/r;) = maxRe(Ir,) = 0, one obtains the following parallel
transport relations for the coherent state labels &,,:
G zall

llzanll
fab = ”GT—bHEH"bGabfba’ and ]é:ab = We ”bGabeba’ (423)
abZab “

which relate the 2-spinors &, and &, at the two end-points of the edge £,,.

Monodromies: Variation with respect to the Chern-Simons connections A & A gives the distributional
curvature on S 3,

o i 8l +iy) O . /i $
07 Fho (1) = = 3 (Gl TG s E0) O (). (4.24)
a<b
As expected, F' satisfies the complex conjugate equation. Here, again o; are the Pauli matrices, and
65,2)” (x) = fol 6 (x — €(s)) 9L ds. With a slight abuse of notation, we use the parameter s € [0, 1] to
label intermediate points on the edge ¢,5, so that

X dgﬂb
Gy = Pexpf A,l(f(s’))d—s”,és’, 4.25)
0

with the reasonable requirements ¢,,(s = 0) = b and {,,(s = 1) = a. As expected, the curvature is
only supported distributionally on the graph I's, while F = F = 0 on the graph complement S3 \ T's.

Integrating equation (4.24) over a disk using the non-Abelian Stokes theorem, one obtains nontrivial
holonomies along the non-contractible cycles c,;(s) transverse to ¢, in the vicinity of the point £, (s):

4rh(l + iy) |
t

Hay(s) = exp[ Jar (Gl (G Epar Ena) %] (a <b). (4.26)

These holonomies should be thought of as being based at the vertex b. Notice that the parallel transport
equations for the £,, guarantee consistency if one were to choose instead vertex a as the base point.
Notice also that the conjugacy class of H,;(s) is consistent with the delta function equation (4.19).

So far, our analysis has focused mostly on the edges {,,. Let us now focus on the neighborhood of a
vertex a. Start by considering a 2-sphere with radius s enclosing the vertex a, and denote H;(s) = Hg,(s)
(I=1,---,4). As a consequence of the flatness on the graph complement 3 \ I's, we obtain

34(8)Ha(5)84(5) " 33 ()H3(5)33(8) ™' 92() Ha(5)32(5) a1 () H1 ($)a1(5) ™" = 1, (4.27)

where g; € SL(2, C) stands for the holonomy connecting the base point of each H;(s) to a common base point
on the sphere (for details on a convenient choice of paths and their relation to the framing of I's, see [20] ).
Again because of the flatness in S> \ I's, one finds

01(5)”'81-1(5) = Gg,Gasy., - (4.28)

On the other hand, using Egs. (4.23) and (4.26), each H,(s) can be brought to an element of SU(2) using the
adjoint action of Ga‘xll. Of course, this holds under the condition that the parameters # and y satisfy equation

4.17), Z4(1 + iy) € R, i.e.

drh(1 +iy) . ia'j] 4.29)

GusHab(s)G;; = Hb(a) = exp [f]“bnfabT

where 7z = (£, P£) is the R? unit vector encoded in the spinor £. Then, equation (4.27) reduces to a product
of four SU(2) matrices

7 b Anhi(l + iy) . . Qo
[TEs@ =] exp[% Javhar | = 1. (4.30)
b:b#a b:b#a
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Recall from Section 2.2 that this equation is the starting point of the tetrahedral reconstruction.

Moreover, this equation shows that, after removing the intersection points with the graph I's (as well as
a tubular neighborhood thereof), the pull-back of the connection to the resulting 4-holed sphere is essentially
an SU(2) flat connection. These 4-holed spheres are essentially the {Sy=1... 5} = Z¢ \ {Cap}a<p. Thus, we see
that the full set of geometricity boundary conditions in Section 2.2 derive naturally from the insertion of the
I's Wilson graph operator, albeit part of it only in the semiclassical limit (i.e. in the double-scaling limit).
This fact was already expected: while the {x,;} are strongly fixed to be in U(1) (see Eq. (4.19)), due to the
Heisenberg uncertainty principle, the pairs of conjugated variables {x,, y,} cannot be rigidly restricted at the
same time. The latter restriction is the one ensuring that on each S, the SL(2, C) flat connection effectively
restricts to an SU(2) one. This restriction emerges strictly speaking only in the double scaling limit. In this
sense, the state T[r;“b;xmva] can be viewed as the “semiclassical” state that is on the one hand sharply peaked
on the configuration variables x,, = g/# € U(1), and on the other “coherently” peaked at some phase space
point (x,,y,) fully determined by the graph data [ j, £qp]-

Summarizing, the stationary point equations deduced in the semiclassical (i.e. double scaling) limit
are found to define an SL(2,C) connection on the graph complement M3 = S3 \ I's, which satisfies—in
the limit—the geometricity boundary conditions. According to Theorem 2.4 there are exactly two such
connections A and A, which correspond to a parity related pair of convex, Lorentzian, constant curvature
4-simplices. In particular, the network of relations between j,, and x,, = ", and between u,, and the
triangle areas a,;, implies that

véaab = —Zih (l + i)yjab + 5., mod 27 7. 4.31)

6 t \y

Although this relation seems to give a non-unique value for a,;,, the theorem ensures that there is only one
geometrically viable choice. Also, as we have shown in the last section, the ambiguities above play no
role in the evaluation of the semiclassical action provided a specific quantization condition for the areas is
introduced (and k£ = Re(?) € Z). It is, however, straightforward to check that this quantization condition, Eq.
(3.58), is automatically satisfied when the boundary conditions are imposed by the Wilson graph insertion
studied in this section:

At
2nhZ 5 2Re (?) agp = 2h (2jap + 27t ks + dnhi 'k Z). (4.32)

All these results, together with those established in the previous section, imply that inserting the solution
of the equations of motion (i.e. a flat connection corresponding to a geometrical 4-simplex) back into the
total action Ir, + %CS , we find that the leading behavior of .7 [x,; x4, ¥,] in the semiclassical limit is the same
as that of the 3d block of equation (3.52), which in turn reproduces the 4-dimensional Regge action of the
constant curvature 4-simplex with a cosmological constant term. In this way, we see that, while the Wilson
graph operator imposes the geometricity boundary condition, the asymptotic behavior of @7 [x4; X4, V4] 18
basically determined by that of the Chern-Simons 3d block. A heuristic reason why Chern—Simons theory
on S3\ I's should “know” about 4-dimensional geometry is given in [20, Sect. 3].

In [20], the following result is also shown: Under the double-scaling limit 7 — 0, j,;, — oo with j A
fixed, the Chern-Simons expectation value .<7[x,; X4, 4] of I's graph operator in Eq. (4.3) has the following
asymptotic behavior

i gA . A
7S Regge ™

. _ig ecet
A [Xap Xar Yol ~ € +e i R (4.33)

up to an overall phase factor. The two exponentials come from the two solutions A and A respectively. The
ellipsis - - - stand for quantum corrections. The constant curvature Regge action of simplicial gravity S 1’36 cge
reads

S Regge = 2, Aab@a — AVOI (4.34)

a<b
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and 5;2 = Re < lé\ﬂtih). We have assumed here the Chern-Simons couplings ¢t = k + is and 7 = k — is satisfy
k € Z and s € R. The parameter #~! is an integer and just scales the parameters ¢ and 7.
In the semiclassical limit, .27 [x4p; X4, V4] has the same asymptotic behavior as the sum of a pair of Chern-

Simons 3d blocks (up to an overall phase):
A DXa’ Xas Yal ~ ZEgZE @) + ZE W) ZE @) (4.35)

here ZZ, (1) and ng (u) correspond to the pair of flat connection A and A € Mg, (S> \ I's, SL(2, C)) with
2 arbitrary lifts @ and &, respectively. Note that the analysis in Section 3.3 has only a single exponential
because we computed the phase difference (or ratio) between two 3d blocks Z(C"S) (u)Z(CES)(ﬁ) and Z?S) (u)ZgIS) ().

In addition, it is interesting that the cosmological constant term in Eq. (4.33) comes from the evaluation
of the Chern-Simons functional on S at the connection A that satisfies the critical equations. This connection
is now viewed as a distributional connection on S* (with a distributional curvature supported on the graph)
instead of being a flat connection on S 3\ Ts. The following difference between the evaluations at A and A

gives the constant curvature 4-volume of the 4-simplex:

_ = 2A
CS[S°|A,A] - CS[S3|A,A] = €—2Vol;‘ + 27iZ. (4.36)
P

5 Relation with Loop Quantum Gravity

If we take the asymptotic “decoupling limit” by turning off the Chern-Simons coupling in o7 [up; uy, V4]
via t,f — oo while keeping j,, fixed, the path integral Eq. (4.3) is localized on the solution of Chern-
Simons equations of motion F = F = 0 on S?; this gives a trivial connection on S*. The Wilson graph
I's [ Jabs Eab |A,A] evaluated at trivial connection gives the Engle-Pereira-Rovelli-Livine (EPRL) spinfoam 4-
simplex amplitude 2/gpgrr[jaup, £ap] in LQG. This relation was the original motivation for the definition of the
I's Wilson graph operator.

The relations among Chern-Simons theory, 4-dimensional LQG and 4-dimensional simplicial gravity

can be summarized in the following diagram:

A

£ L gA
2~ Regge
e(‘P 88

. . _ L
h—0, jooo, jh fixed te 3 ° Regge

%[uah; Ug, Va]

l t—o0 l A—0

; i i
J—eo e 2 S Regge + e‘ 2 S Regge
P P

epriljabs Eab] — 5.1

where @ [uyy; uy, v,], defined in Eq. (4.3), is the SL(2, C) Chern-Simons evaluation of the I's Wilson graph
operator. The relation along the lower line states that the large-j asymptotics of the EPRL spinfoam am-
plitude reproduces the flat simplicial geometry and Regge action without cosmological constant A and was
proved in [55, 56]. This diagram suggests that the Chern-Simons expectation value .o [ug; ug, v4] can be
viewed as a deformation of the EPRL spinfoam amplitude, which includes a cosmological constant into the
framework of LQG.

The 4-dimensional spinfoam amplitude of LQG, which defines a quantum 4d geometry, describes
the quantum transition between boundary states for quantum 3d geometries. The boundary states of a
4-dimensional spinfoam amplitude are SU(2) spin-network states. The latter states form the kinematical
framework of LQG (see [48, 49]) and describe quantum 3d geometries. A spin-network state is a triple
T, f ) consisting of: an oriented graph I'; a map f: {Jje}eeea from the set of graph edges E(I') to the space
of unitary irreps of SU(2) labeled by j,; and = {iv}vev(r), a map from the set of graph vertices V(I') to the
invariant tensors (intertwiners) v — 1, € Invsyp)(V;, ® --- ® V), where ji,-- -, j, are the spin labels on
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the edges incident to v. The spin-network states are a basis for the LQG Hilbert space and diagonalize the
geometrical operators, e.g2. quantum area and volume operators. The discrete spectrum of the area operator
is parametrized by the spins j, (and is linear in j, when j, > 1), and the discrete spectrum of volume is
parametrized by both the spins j, and the invariant tensors #, [47, 94]. The invariant tensor i, carries even
more information, it parametrizes the space of quantum (zero curvature) polyhedra with face areas being
proportional to the incident j, [93, 95].

The spin-network data (T, f, i) is well adapted to the framework in the present paper and can be identified
with the boundary data of the flat connections we have been discussing. The identification of the spin-
network graph with I's is immediate since it appears in the definition of the Wilson graph operator and its
Chern-Simons evaluation .7 [u; U4, v,]. The spin j, is mapped by Y to an SL(2,C) principle series irrep
(je,vje) for each edge, where vy is the Barbero-Immirzi parameter of LQG. At each vertex, we employ the
SU(2) coherent state basis and consider i, to be a coherent intertwiner, which is mapped by Y to an SL(2, C)
invariant tensor in the Wilson graph operator.

Given a graph, e.g. I's in our context, and its tubular neighborhood N(I's), let us consider the quan-
tization of SU(2) flat connections on the closed 2-surface X5 = ON(I's). By specifying the meridian
closed curves ¢, as in Section 2.2, we arrive at a set of local symplectic coordinates for Mga(Zg, SU(2)):
Xap = €', ygp = et e U(1) with {ugp, v} = 1. Quantizing these coordinates, as well as the flat con-
nections Mgy (S,, SU(2)) of the 4-holed spheres with fixed conjugacy class x,;, at each hole will provide a
quantization for the full space My, (X6, SU(2)). The quantization of x,p, v, is a quantization of S IxS!. The
prequantum line bundle over S' x S! has a curvature w = —fd In x4 A dIny,,. Weyl’s integrality criterion
then implies that k € Z. We choose the polarization such that the wave function is written as f(u,,) and
satisfies both periodicity and Weyl invariance f(u.,) = f(—uap) = f(uqp + 27i). Periodicity in both u,, and

in 2ix

vap directions implies that u,;, can only take k + 1 discrete values uy, = 0, 7, 5%, - -+, im, i.e.
2ni . . 1 k
Xgp =€k with  j,, =0, 3y 5.2)

The quantization of the flat connections Mg, (S,, SU(2)) with fixed conjugacy classes x,, results in the
Hilbert space H(S,) spanned by Wess-Zumino-Witten (WZW) conformal blocks ¥ (i,) of level k € Z on
a 4-holed sphere [66]. Each conformal block ¥ (i,) is associated with a 4-valent SU(2) intertwiner i, with
the above spins j,,. A restricted subclass of SU(2) intertwiners is allowed because of the restrictions on
the ranges of the spins j,; and the spin in the recoupling channel. The dimension of the intertwiner space,
H(S,), consequently is given by the famous Verlinde formula [96]. As a result, we obtain the Hilbert space
for the full quantization of Mg, (X6, SU(2)); it is spanned by the basis

5

Vaozs = | |G e T [ | F ). (5.3)

a<b a=1

The above discussion can be straightforwardly generalized to arbitrary graphs I. Now we see that the
quantization of SU(2) flat connections on X, = dN(I') for any graph I naturally gives the spin-network data
{, f, 7) with Jj < k/2 and a restricted subclass of intertwiners. The restricted class of spin-network data is
likely to be the right subclass for LQG when a cosmological constant is included.

By the analysis in Section 2.2, the SU(2) flat connections on a 4-holed sphere with fixed conjugacy
classes x,, correspond to constant curvature tetrahedral geometries with fixed face areas. Therefore the
Hilbert space H(S,) of conformal blocks is the space of “quantum constant curvature tetrahedra” with
“quantum areas” proportional to j,,. We may consider an overcomplete coherent state basis (//’;} peaked
at the phase space point with conjugate coordinates (x,, y,). For these coherent states and I = I's the spin-
network data (T, f, ?) can be mapped to the SL(2, C) flat connection data (x,; X4, ¥,) on X¢ = S 3\Ts subject
to the restriction of spins and intertwiners just discussed.
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In order to be the boundary data of an SL(2, C) Chern-Simons theory, we make the following identifi-
cation:

Xap = € k0 = ¢7 (A+iy) jab (5.4)

where Eq. (4.19) has been used (and we have set » = 1). Here k € Z has been identified with Re(f), and
both y and } (1 + iy) have been assumed to be real numbers, so that y = s/k. Given that (x; X4, y,) comes
from spin-network data, the boundary condition in Section 2.2 and the quantization condition Eq. (3.58)
are satisfied following the same argument as given in Section 4. It is interesting to notice that when ¢ is
purely imaginary (k = 0 or y — o0), the spectrum of x,;, is not discrete anymore, while the quantization
condition Eq. (3.58) is satisfied trivially. This possibility is beyond the regime of spin-network data, but still
well-controlled by the 3d blocks of Chern-Simons theory discussed in Section 3.3.2!

The discussion above provides a map from spin-network data to the boundary data (x.; X4, y,) of
SL(2,C) Chern-Simons theory satisfying the boundary condition in Section 2.2. When there exists an
SL(2,C) flat connection A on S>3\ TI's whose boundary value is consistent with the boundary data (x,p; X4, Y4),
we may use these data to construct a Chern-Simons 3d block Z(C"S)(u)ZC@S) (). The Chern-Simons 3d block
Z(C”S) (u)Z(CHS) (1) studied in Section 3.3 may play an interesting role in LQG as could the amplitude <7 [u; Uy, V4]
(compare Zgprel jabs Eav])-

As we have seen in Section 4, the Regge-action asymptotic behavior of <7 [u; u,, v,] crucially depends
on the peakedness of the Chern-Simons state created by the Wilson graph operator. However, different
Wilson graph operators may produce the same peakedness in the boundary data, and thus lead to the same
asymptotics of o [ugp; U, v,]. The close relationship with the EPRL 4-simplex amplitude has led us to
study the particular type of Wilson graph operators I's[ju, €44, A]. Independent of the choice of Wilson
graphs, the Chern-Simons 3d block Zg? (u)Z(CES) (i) on §3\I's with the right boundary condition imposed is the
essential ingredient behind the Regge-action asymptotics of .o [uyp; ty, v,]. Although we have defined Z(gs)(u)
perturbatively on the cover space parametrized by the logarithmic data u instead of x, it can be defined non-
perturbatively, as in [77, 78]. These references show that the non-perturbative Z(C‘? (1) manifestly depends on
x = exp(u). Therefore Zg's) (u)Z(CES) (1) depends on the boundary or spin-network data in the desired manner.

When we generalize our framework from a 4-simplex to a generic simplicial manifold, the class of 3d
blocks Z(C“;(u)Z(CE;(ﬁ) that asymptotically reproduce classical gravity may ultimately span the physical Hilbert
space Hppy, in LQG. The operator constraint equation that quantizes the Lagrangian subvariety L4,

A3, WZE) ) = 0, (5.5)

may relate to the quantization of the Hamiltonian constraint equation in LQG [97-99], provided the proper
boundary conditions are implemented.

There is a perspective that we would like to point out before we conclude this section. In [101], it is
suggested that the simplicial 4d geometries correspond to the dynamical vacua of LQG, namely, to solu-
tions of the critical equations of the spinfoam amplitude. In the present work and in [20], we have made
the correspondence between simplicial 4d geometry and SL(2,C) flat connections on the graph comple-
ment 3-manifold S* \ I's explicit, and shown that the solutions of the critical point equations arising from
o [tap; Ua, V4] give the SL(2, C) flat connections on S3 \ T's. Therefore we suggest that the moduli space of
LQG dynamical vacua can be embedded into the moduli space M, (S 3\ I's, SL(2,C)), where the image
of the embedding map is specified by the boundary condition in Section 2.2. We expect that the dynamical
properties of the LQG vacua, including the perturbative behavior of LQG, should be largely controlled by
SL(2,C) Chern-Simons theory.

21S1(2, C) Chern-Simons theory with purely imaginary  relates to the quantum Lorentz group with real ¢ [23]. The 3d blocks of
Chern-Simons theory with our boundary conditions implemented may relate to the spinfoam model defined in [54].
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6 Beyond A Single 4-Simplex

The above analysis is primarily about the geometry of a single 4-simplex and its correspondence with flat
connections on S3 \ T's. This analysis can be generalized to an arbitrary simplicial decomposition of a
4-dimensional manifold into an arbitrary number of simplices. In this section we give the idea of the con-
struction and results, more details appear in [78].

A 4-dimensional simplicial complex K is built by gluing 4-simplices 0. The simplicial geometry
of K, is made up of the constant curvature geometry of each 4-simplex together with the distributional
curvature located at the 2d hinges at the 4-simplex-gluing interfaces. The simplicial geometries on K, again
correspond to a class of SL(2, C) flat connections on a 3-manifold .#5. The 3-manifold .#; is obtained by
gluing N copies of S3 \ I's, where N is the number of 4-simplices in K, as in Fig. 6.

4-holed sphere

|

M =S83\Ts Mz =S3\T;
3 \T's My =S"\T;5 My = 83\ (Ts#T's)

Figure 6. Left: Two copies of the graph complement 3-manifold S* \ T's viewed from 4 dimensions. Each 3 \ I's
is drawn by suppressing 1 dimension. The 3-manifold S3 \ I's has five “big boundary” components, which are 4-holed
spheres and correspond to the five vertices of I's. The manifold S3\T’s also has ten “small boundary” components, which
are ten cylinders and correspond to the ten edges of I's. Removing the tubular neighborhoods of the 10 edges results in
the red ‘tunnel’ curves that connect the holes in the big boundary components. The tunnels give the 10 small boundary
components. The union of big and small boundary components gives the closed 2-surface £5 = d(S3 \ I's). Right: The
graph complement 3-manifolds can be glued through a pair of big boundary components, i.e. a pair of 4-holed spheres,
via an identification of the holes. After gluing, some of the tunnels are continued from one S* \ T's to the other. Note that
in this figure, the properties of crossings are not shown.

The 3-manifold .#; can be constructed in the following way (see Fig. 6): Corresponding to gluing
a pair of 4-simplices in 4d through a pair of tetrahedra, a 3-manifold is constructed by gluing a pair of
S3\Ts through a pair of 4-holed spheres. The boundary X5 of S 3\ I's can be decomposed into 2 types of
components: the “big boundaries”, which here consist of five 4-holed spheres that resulted upon removing
the neighborhood of the five vertices in I's, and the “‘small boundaries”, which here consist of the 10 cylinders
that resulted upon removing the tubular neighborhood of the 10 edges of I's.>> When a pair of S° \ T's are
glued through a pair of 4-holed spheres via a certain identification of holes, the resulting 3-manifold is a
graph complement S3 \ (I's#I's) of a bigger graph. The graph sum I's#T's is obtained by removing a vertex in
each I's, and connecting the resulting 4 pairs of open edges. Using this procedure repeatedly, we can obtain

My = (SP\Ts5)U--- U (S \Ts) = X3\ TV (6.1)

N copies

Here N is the number of 4-simplices in the 4-manifold and X3 is, in general, a more complicated closed
3-manifold than §3. For example, r;(¥3) may be nontrivial, as can be seen when we glue 2 pairs of 4-holed
spheres between 2 copies of S3 \ I's.

22The two types of boundary components are also called “geodesic boundaries” and “generalized cusps”.
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We impose the boundary conditions of Section 2.2 to specify the SL(2, C) flat connection on .3, i.e.
the flat connections restricted to the big boundary components of .#3 become SU(2) flat connections on
4-holed spheres. However, in addition to the boundary condition, we have to require that on the 4-holed
sphere that serves as the interface for the gluing of the (S3 \ I's)’s, the SL(2, C) flat connection has to reduce
to SU(2) as well. This is required so that the flat connection in each copy of (S 3\ I's) determines a constant
curvature 4-simplex geometry. Given an SL(2, C) flat connection on .#; satisfying the above requirements,
it determines a convex constant curvature 4-simplex geometry for each copy of §3 \ I's by Theorem 2.3.

The fundamental group of .#; is obtained simply by forming the product of m;(S3 \ I's)’s and iden-
tifying the generators corresponding to the 4-holed spheres that serve as the gluing interface. In terms of
holonomies, there may be need for a parallel transport between the base points of loops 1, in different copies
of §3\ I's. Given a pair of glued S3 \ T's, the uniqueness Lemma 2.2 guarantees that the isomorphisms Eq.
(2.32) gives identifications between the loops in the two copies of S* \ I's and the simple paths in the two
4-simplices. These isomorphisms induce 2 isomorphisms S; and S5, as in Eq. (2.20), between the identified
loops and the simple paths in the two tetrahedra from the two 4-simplices. Since the loops are identified,
the composed map §; 0 S5 !identifies the simple paths in the two tetrahedra. This SL(2, C) flat connection
in .5 gives an SU(2) flat connection on the interface 4-holed sphere, which determines uniquely a convex
constant curvature tetrahedron by Theorem 2.1. This tetrahedron is shared by the 2 geometrical 4-simplices,
since the simple paths of the tetrahedra seen from each side of the gluing have been identified. Therefore the
geometrical 4-simplices determined by each copy of S3 \ T's glue geometrically and form a large simplicial
geometry. All 4-simplices and tetrahedra have the same constant curvature A.

Note that the large simplicial geometry on the simplicial complex is not necessarily constant curvature.
It can approximate arbitrary Lorentzian geometry on a 4-dimensional manifold because of the hinging at
4-simplex interfaces; this is just as in Regge calculus [44].

In a single copy of §3\T's, an SL(2, C) flat connection A corresponding to 4-simplex geometry is always
accompanied by its parity partner A, which determines the same geometry but with different 4d orientation
by Theorem 2.4. The pair A & A are related by complex conjugation with respective to the complex structure
of SL(2, C) and therefore A & A give the same SU(2) flat connection on 4-holed spheres. On an .3 formed
by gluing N copies of S *\TI's there are 2V parity-related flat connections, which determine the same geometry
on the simplicial complex. Each of the 2V flat connections associates with a choice of 2 possible orientations
in each individual 4-simplex.”? All of the parity-related flat connections give the same set of SU(2) flat
connections on all 4-holed spheres, including the big boundary components and gluing interfaces. Among
the 2V parity-related flat connections, there are only 2 flat connections associated with the 2 possible uniform
4d orientations on the entire simplicial complex, which we call the global parity pair and denote again by A
& A.

In terms of complex FN coordinate on My, (0.5, SL(2, C)), the global parity pair A, A € Mg (.43, SL(2,C))
can be written as

A= [xf,y{QstYB]s and A~ = [xfsyf; xB»)’B], (62)

where x; and y, are the complex length and twist variables of a small boundary component £.>* Here xp
and yp are the canonical coordinates of Mg, (4-holed sphere, SU(2)) at a big boundary component and the
variables [x,; xp, yp] are treated as the boundary data.

A small boundary component ¢ corresponds to a unique triangle A, in the simplicial complex K.>> The
coordinate x, relates to the triangle area a,; of A; in the same way as before, e.g. in Eq. (3.41). The relation

23The same phenomena happens in the asymptotics of LQG spinfoam models [56].

24When the small boundary component £ is a torus cusp, x, y, are simply the eignvalues of meridian and longitude loop holonomies.

25The triangle A¢ is an internal triangle when £ is a torus cusp and a boundary triangle when £ is a cylinder connecting 2 big boundary
components. If the 4-manifold is closed and the simplicial complex does not have boundary, the corresponding .73 has only torus cusps.
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between y, and the hyperdihedral angles is given by a sum over all the 4-simplices sharing A,, i.e.

1

Iny, = —=vsgn(Vs) Z Ouor) — ive, +

— Inx (&)
)

5 mod 27iN;, N, € Z, (6.3)

o, A¢Co

where (o) is the hyperdihedral (boost) angle in the 4-simplex o hinged by A,. The sign sgn(V,) is a global
sign determined by the uniform 4d orientation and y, and y, relate to two different signs, sgn(Vy) = +1
respectively.

We define the logarithmic variables u, v in the same way as before, and choose a canonical lift to the
cover space for the boundary data [x;; xg, yg] — [uc;up,vg]. We also choose two arbitrary lifts a, @ for
Ye > vy and yo \7‘;. The holomorphic 3d block Zg? (///g|u) of SL(2, C) Chern-Simons theory on .3 can
be constructed in the same way as Eq.(3.35), for (A, @) with the reference (A, @). The Liouville 1-form is
now given by

9= Z vedug + Z vgdug. (6.4)
B

4

The integration contour of f(g P is in L = Mgy (43, SL(2,C)), which is a holomorphic Lagrangian subva-
riety in Mg, (0.3, SL(2, C)).

The semiclassical asymptotic behavior of Zg’s) (///glu) can be analyzed in the same way as in Section
3.3, which leads to the following generalization of Eq.(3.52)

’ At
%ZRe (ﬁ) [Z a > Ouc) - A ; Volf“(a)]]

2 (6] )25 (46]7) = exo

4 o,A¢Co
i At L\ i (At
X exp [%ZRC(EC@)-F £2Re(€)z[:ANgag+ e, (6.5)
where the lift-independent term
S;!}egge = Z a Z Qo) - A Z VOIQ(O—) (6.6)
4 o, ArCo o

is the Lorentzian Regge action of Einstein gravity on the simplicial complex Ky [44—46]. The sum }’; A, O¢(0)
is the Lorentzian deficit angle when A{ is an internal triangle in K4, while it is a hyperdihedral boost angle
when A, is a boundary triangle of %K. The gravitational constant Gy is given by Eq. (3.55) and C{ is again
an integration constant. The term %ZRe (%) ¢ ANray is lift-dependent and takes discrete values. This term

disappears when the quantization condition 2Re (%) > ANeay € 2nhiZ or t € iR is satisfied.
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A K,-Lagrangian Subvariety

In this appendix, we provide a very brief introduction to the notion of K,-Lagrangian subvariety, and ex-
plain its relation to quantizability. The discussion here follows [67]. See also [33, 72] for more detailed
discussions.

Let C* = C )\ {0}, we define the Abelian group C* A C* = A%C generated by a A b, with a, b € C* and the
relations

aNb=-bAa, (@)ANc=aANc+bAec. (A1)

Let M be a complex variety, and denote the set of holomorphic functions U, — C* on the chart U, as
C*(Uy,) . A Ky-symplectic structure on M is an element wX € C*(U,) A C*(U,) on every coordinate chart
U,, such that on U, N Ug, wk - wg = Yyzu A (1 =z for some z; € C*'(U, N Up). In other words, A
K>-symplectic structure on M belongs to the group K>(C), which is the quotient of C* A C* by the subgroup
generated by z A (1 - 2).

We define a map dIn AdIn from C* A C* to the space of holomorphic 2-forms Q?(C) by

dlnAdln: xAy— dlnxAdlny. (A.2)

It is easy to see that dIn AdIn is essentially a map from K>(C) — Q>(C), since dlnz A dIn(1 — z) = 0.
Moreover, given a K»-symplectic structure w® = ¥, X, Ay, themapdInAdIn: ¥, Xxu Ay, = 3, dInx, A
dIny,, is a closed 2-form (pre-symplectic form) on the complex variety M.

Let M be a complex variety with a K,-symplectic form wX € K,(C) such that [dIn AdIn] (wX) = wis a
symplectic structure. A K,-Lagrangian subvariety £X € M is a subvariety with dim £X = % dim M and

WSk = Zz; A =2z, (A3)
1

for some holomorphic functions z; on M. References [33, 68, 72] show that, at least on the generic part of
Miai(Zg, SL(2, C)) that is of interest, the symplectic structure w = 3}, dx’” A= d‘”’ has a K;-avatar wX € K>(C)
such that [dIn AdIn] (wX) = w. The moduli space Mga (M3, SL(2, C)) = .[ZA with OM3 = X, is a K»-
Lagrangian subvariety in Mgy (Z,, SL(2,C)), i.e. WXz, = Y121 A (1 = zp) for some holomorphic functions
2.
Define two homomorphisms 9 and 9, from K,(C(L4)) to H'(La,R) (up to a 4n%Z covering for ) by
9y : x Ay 9o(x Ay) := Inly|d(arg x) — In|x| d(argy), and
P x Ay Hh(x Ay) := Inly|d(In|x]) + arg x d(arg y). (A4)

Having chosen a polarization, the Lagrangian subvariety £, is quantizable when the following conditions
are satisfied for all closed path @ € L4 (when the real part of Chern-Simons coupling Re(?) = k € Z) [7]:

9§ I(w|z,) =0, and 56 (wf|z,) € 47°Q. (A.5)

[e3 a

Since £ is a K>-Lagrangian subvariety with respect to wX, then 9,(w®) is given by

do(wlg,) = Z In|l - z/|d(arg z;) — In|z;| d(arg(l - z7)) = — Z dD(zp), (A.6)
1 1

where D(z;) is the Bloch-Wigner dilogarithm function

D(z) = In|z]arg(1 — z) + Im (Liz(2)) . (A7)
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Then 43; P (WX £,) = 01is satisfied since D(z) is a continuous function on C. Similarly,

(" z,)

Z In{l —z|d(In |z;]) + arg z; d(arg(1 - z;))
1

- Z d[Re (Lix(z))) — argz; arg(1 — z7)] . (A.8)
1

The real part of the dilogarithm Re (Li»(z;)) is also a continuous function on C, while }; f@ d[argz; arg(l —z;)] €
47*Z. Thus fiz (wk|z,) € 47°Q indeed holds. We conclude that £, being K>-Lagrangian implies that £,
is quantizable. In addition, the fact that the 1-forms 9(z A (1 — z)) and ¥ (z A (1 — z)) are exact up to 47°Z
shows that they are indeed homomorphisms from K»(C(L,)) to H' (L, R) up to a 47%Z covering for .

When we consider the analytic continuation of Chern-Simons theory with generic non-integer k, the
Lagrangian subvariety £, has to be replaced by its cover space L4, on which Inz; is single-valued. This
is because we do not quotient out large gauge transformation for the analytically continued Chern-Simons
theory. So, the 1-forms J;(z A (1 — 2)) and ¥,(z A (1 — z)) are indeed exact on the cover space ZA, i.e.
$ 95 = ¢ 9 =0o0n Ly.

B Quantization of Coadjoint Orbit, Unitary Representations of SL(2, C), and a Path
Integral Formula for the Wilson Line

In this appendix, we give a brief review of the geometric quantization of the coadjoint orbits of SL(2,C),
which gives the unitary irreducible representations of SL(2,C). We also give a quick review of the path
integral formula for unitary Wilson line, which is a consequence of the coadjoint orbit quantization. More
extensive reviews of these topics can be found in [91] (see also [24] for a nice summary).

As a complex Lie algebra, sl,C is generated by the basis

10 01 00
we(} ) =) war=("0) &

If s, C is viewed as a real Lie algebra, it is generated by {E, F, H,E = iE, F = iF, H = iH}. Given s,C
(viewed as a real Lie algebra) and its complexification (s[,C)c =~ s,C X sl,C, a nondegenerate trace form
(, ) :(hC)¢ xslL,C — Cis given by

1 1 -
(X, XR),Y) = Etr(XLY) + Etr(XRY), (B.2)

where X;, Xg, and Y are 2 X 2 matrices. The trace form is a complexification of the invariant bilinear form
of sI,C. Using the trace form, a weight 4 € (s[,C")c can be identified as a pair of 2 X 2 matrices (A, Ag) in
(s[,C)¢c. The coadjoint orbit is defined by

(Q)c = {81, AR)g NeesLa0p. = SL(2,C)/HE x SL(2,C)/HK (B.3)

where $% is the stabilizer $* = {h € SL(2,C)|hd gh™" = Az ). Here the stabilizer is precisely the
Cartan subgroup (or maximal torus) $, = T, thus the coadjoint orbit is given by

(Q)c = SL(2,C)/Te x SL(2,C)/Tec =~ T*S? x T*S?, with Q) =SL(Q2,C)/Tc=T"S%.  (B.4)

For our present purposes it is sufficient to consider the real form Q, of the coadjoint orbit; this is achieved
by viewing the second copy of T7*S? as the complex conjugate of the first copy.

Let v,k € (sLC*)c be the linear functionals defined by v(H) = —iw, x(H) = m (w,n € C), and v(H) =
k(H) = 0, while both v and « annihilate E, F, E, F. The above trace form results in the identification Ve
(v,v) and k «— (k, —«) with v and « the 2 X 2 matrices

iw(l O im(l O
v——?(o _1), andK——?(O _1). (B.5)
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The weight A satisfies 4 = y ® k «— (A1, Ag) = (v + k, v — k). The coadjoint orbit 2, has a natural SL(2, C)
invariant symplectic structure:

1 1 _
Wyy = Etr [(v +x)g 'dg A g_ldg] + Etr [(v —x)g-ldg A g"dg] . (B.6)

To proceed with geometric quantization, a line-bundle £ — Q, must be defined over the phase space
Q,, with w,, the curvature of £. Due to the compact cycle S C Q,, Weyl’s integrality criterion requires w,,,
to have m € Z in order that £ is prequantizable. Reality of the curvature w, , implies w € iR. The prequantum
line-bundle £ can be obtained by taking the quotient of C x SL(2, C) by the representation $, = T¢ acting
on C. The representation is given by (f, x) — (o (h)f, xh), so that the quotient is given by the identification:

(f,xh) = (W Yf,x) or f(xh) =™ H)f(x), with feC, xeSL2,C), he Te. (B.7)

The representation o(h™") is given by W¥K(p=1)  Here p € slhC* is the restricted positive root p(H) =
2, p(H) = 0 (p annihilates E, F, E, F). The above quotient gives the prequantum line-bundle £ — Q; where
SL(2,C) acts on the sections f by

g f(0) = f(g" ). (B.8)
An element of SL(2, C) can be written as
2 —x2

g= (Z2 u ) with z'x' + 228 = 1. (B.9)

In the coadjoint orbit SL(2, C)/T¢ there is an equivalence (z', 72, x', x?) ~ (2!, az?, " 'x', o' x?) for a €

C*. We use a polarization such that the resulting sections of £ depend only on the projective coordinate
z!/z%. Because of the above quotient procedure Eq. (B.7), the sections transform in the following way:2°

10, 1 o) — — _ %
f(azl,az2, @ZI,C_UZZ) — CV_E(W-HH) 1(}’ 2(W m) lf(zl,z2’zl’z2)’ a e C . (BlO)

This transformation is precisely the scaling property of the homogeneous function/section in the principle
series representation when w € iR and m € Z. In our analysis of knotted graph operators, the parameters
w, m are given by

W= —=2iYjw m=—-2jup, and ju € Z/2. (B.11)

The group action of Eq. (B.8) gives the representation:

ab _ — 3 wm)—1 - w-m)-1 az+c¢
(C d)>f(z,z)=(bz+d) (bz+d) f(bz+d)’ (B.12)

where z = z;/z, is a projective coordinate on CP'. The space of these sections on CP!, completed using the
L? inner product with measure dz = é(zldz2 — 72dz") A (2'dz? — 72dzY), carries the principle series unitary
irreducible representation of SL(2, C) labeled by (m, w). The carrier space is denoted by H™" or H’/* with
m = —2j and w = —2ip. There is an isomorphism between the representations with labels (m, w) and
(=m, —w).

In the above representation, expressed in terms of sections on CP', the variables z' and 72 are “position
variables” and correspond to multiplication operators on (a dense domain of) ™", The variable x' and x*
are “momentum variables” and correspond to the derivative operators:

2 0 2 0 2 0 2 0
1 o a2_ o a_(_f )2 2_[(_£ |9
* _(w+m) o (w+m)612’ * (w—m)azl’ * (w—m)azz' ®.13)

2Let h = '™ with 1 € C, we have [(iz +p)® if] (tH) = Ltr [y + ik + p)tH] + Lte [y — ik + p)H] = S(w+ k +2) + L(w -k +2),
where the 2 X 2 matrix p equals v when w = 2i.
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The scaling property of Eq. (B.10) implies

19 +z2i=—1(w—m)—1. (B.14)

10,0 9
07! 072 2

1
(9_Z1+Z622:_§(W+m)_1, Z

z

Note that the unitary irrep constructed above is an induced representation indZL(z’C)(O') on the sections

of a line-bundle over the coset SL(2, C)/B ~ CP'. Here B is the Borel subgroup of upper-triangular matrices,

whose Lie algebra is generated by H, H,E, E. The sections are obtained from the functions f on SL(2,C)
that satisfy

f@&xb) = o(b™) f(x), (B.15)

where b € B, x € SL(2,C), and o is given by o~ = ¢"®X viewed as a representation of B.
The Wilson line in the unitary irrep (2, w) can be written as a path integral. When we consider its matrix

element in the z-space representation (z is the projective coordinate of CP'):

z _
<Z| PelA z')(Hw = f DgDg eS185AA] (B.16)
p
where the action S [g, g; A, A] is given by:
N R -1 T -l iTy =
Slg.3:A.Al = —5 [ w0+ g7 d+ADg + (v -0z @+ ANg|. (B.17)
¢

The path integral has a first-order Lagrangian depending on the SL(2, C)-valued functions g : £ — SL(2,C).
The boundary condition for the path integral is that the “position variables” g at the source and target of ¢ are
equal to 7’ and z. The above path integral can be viewed as a quantum particle moving through the “position
space” CP!.

However there is a gauge symmetry of the action, i.e. S[g, 2;A,A] is invariant under g — gh with
h € 9, = Tc when £ is trivial on the boundary. Therefore the path integral is essentially defined over the
maps g : £ = SL(2,C)/Tc = Q,, where Q, is the coadjoint orbit, except for the integral at the boundary
of £. If we consider the gauge transformation g +— gh with 2 € $,; = T¢ non-trivial on the boundary,
the path integral Eq. (B.16) transforms non-trivially. Evaluation of the path integral defines a section in
the line-bundle over CP! x CP'. Indeed, let us consider an arbitrary gauge transformation g +— gh with
h=e™ 1 eC. The action S transforms as

Slg,2;A,Al - S[g,8;A, Al + %(w+m)fd‘r+ %(w—m)fd?. (B.18)
¢ ¢

Under the transformation g +— gh the coordinates 7!, 72, x!, x% for the quotient SL(2, C)/T¢ scale as

1 _,2 1 _, 1,2
z —x"\[a O az —a X .
(Z2 4 )(0 a‘l) = (a/Z2 R ), where a =e¢€". (B.19)

Eq. (B.18) implies that the path integral transforms in the same way as Eq.(B.10), which has to be the case
in order that Eq.(B.16) is correct and the L? inner product with dz is scale invariant, i.e.

Az _ Z . o
f DgDi S18TAAl a—%(w+m)—lc—y—%(w—m)—l f DgD3 oS 18:5AA]
Z 7

Z _ Z oz
and Dgl)g elS [8.8:A,A] — a,%(w+m)—1(—1%(w—m)—1 f Dng etS [g,g,A,A]. (BZO)
Az 4

Note that a factor o~ '@ ™! above comes from the path integral measure at the boundary.

Using the boundary conditions on z and 7, the variational equations of motion can be derived from S

[v+x g7l d+ANg| =0, and [v-«k g'@d+AT)g|=0, (B.21)
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which implies that g is the gauge transformation diagonalizing the component of A, along the curve ¢, or,

d d_ .
Eg+AtTgocCgH, and d—tg+A,Tgocch. (B.22)

Again expressing g using the coordinates z', 7%, x', x?, we find that %z + ATz ¢ 7z (and similarly for 7) where
z=(z",7%)7". Then the on-shell relation for the boundary data z, 7’ of the path integral is:

zoce Pe hA (B.23)
Hamiltonian analysis of S [g] reproduces the symplectic structure w,, of Eq. (B.6), and gives the Hamil-
tonian H = p - d,q — L:
1 _
H=su [+ 087'Al g+ (v-r)g'Alg]. (B.24)

where A, is the component of A along the curve £. We replace the variables in g by the corresponding
operators in the z-space representation to define the Hamiltonian operator H. Here A, is treated as an external
variable, so its components in an sl,C basis are treated as c-numbers. Consequently, it can be shown that,
the resulting Hamiltonian operator —iH is precisely the representation of A, : £ — sl,C in the unitary irrep
as an operator on ", In other words, if we expand the 2 matrix A, = aH + bE + cF, then

—iH = aH + bE + cF, (B.25)

where A, E and F are the differential operators representing H, E, and F € sl,C and generating infinitesi-
mally the representation Eq. (B.12). As a result, the path integral of Eq. (B.16) for Wilson line follows from
the quantum mechanical relation:

<Z| Te—iflfldt

7) = f | DgDg SleFAA] (B.26)

where T denotes the time-ordering corresponding to the path ordering # of the Wilson line.
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