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Abstract:

A correspondence between three-dimensional flat connections and constant curvature four-dimensional

simplices is used to give a novel quantization of geometry via complex SL(2,C) Chern-Simons theory. The

resulting quantum geometrical states are hence represented by the 3d blocks of analytically continued Chern-

Simons theory. In the semiclassical limit of this quantization the three-dimensional Chern-Simons action,

remarkably, becomes the discrete Einstein-Hilbert action of a 4-simplex, featuring the appropriate boundary

terms as well as the essential cosmological term proportional to the simplex’s curved 4-volume. Both signs

of the curvature and associated cosmological constant are present in the class of flat connections that give

rise to this correspondence. We provide a Wilson graph operator that picks out this class of connections. We

discuss how to promote these results to a model of Lorentzian covariant quantum gravity encompassing both

signs of the cosmological constant. This paper presents the details for the results reported in [1].

Keywords: Chern-Simons Theory, Models of Quantum Gravity

ar
X

iv
:1

5
1
2
.0

7
6
9
0
v
2
  
[h

ep
-t

h
] 

 8
 N

o
v
 2

0
1
7

mailto:hhaggard(AT)bard.edu
mailto:muxin.han(AT)gravity.fau.de
mailto:Wojciech.Kaminski(AT)fuw.edu.pl
mailto:ariello(AT)perimeterinstitute.ca


Contents

1 Introduction and Overview 1

1.1 Classical Correspondence 4

1.2 Quantum Correspondence 6

1.3 Wilson Graph Operator and Loop Quantum Gravity 9

1.4 Structure of the Paper 11

2 From Flat Connections on a 3-Manifold to 4d Simplicial Geometry 11

2.1 Flat Connections on a Graph-Complement 3-Manifold 11

2.2 The Boundary Conditions and their Geometrical Interpretation as Curved Tetrahedra 12

2.3 Flat Connections on 3-Manifold and Curved 4-Simplex Geometries 17

2.4 Parity Pairs 20

3 Complex Chern–Simons Theory: from Quantization of a 3d Flat Connection to 4d Quantum

Gravity 22

3.1 Complex Fenchel–Nielsen Coordinates onMflat(Σ6,SL(2,C)) 24

3.2 Holomorphic 3d Blocks and Quantum Flatness 26

3.3 Asymptotics of holomorphic 3d Block and Simplicial Quantum Gravity 29

4 Wilson Graph Operator and Boundary Conditions 33

5 Relation with Loop Quantum Gravity 40

6 Beyond A Single 4-Simplex 43

A K2-Lagrangian Subvariety 46

B Quantization of Coadjoint Orbit, Unitary Representations of SL(2,C), and a Path Integral

Formula for the Wilson Line 47

1 Introduction and Overview

Chern-Simons theory in 3-dimensions is the quintessential topological quantum field theory and has been

studied extensively since the 1980’s (see e.g. [2]). In addition to its importance in the formulation of

topological quantum field theory [3], Chern-Simons theory has applications in many branches of modern

mathematics and physics. The celebrated work of Witten [4], exposed the remarkable relation between

Chern-Simons theory with compact gauge group and knot theory. This exchange has continued to the present

day with, for example, Chern-Simons theory playing an important role in the formulation of the Volume

Conjecture, which relates knot polynomials to the hyperbolic geometry of 3-manifolds [5–8]. Many aspects

of String theory, M-theory and Supersymmetric Gauge Theory also have close ties to Chern-Simons theory

(e.g. [11–16]). Most importantly for the present work, Chern-Simons theory has furnished exact solutions

to quantum gravity in 3-dimensions [9, 10], and provided interesting insights into Loop Quantum Gravity

(LQG) in 4 dimensions, both in its covariant formulation and in black hole physics (e.g. [17–21]). Chern-

Simons theory and its relation to four-dimensional quantum gravity with a cosmological constant (of either

sign) will be the main focus of this paper.
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Chern-Simons theories with a compact gauge group and their quantization have become well understood

after the intensive investigations of the last 20 years. However, quantum Chern-Simons theory with complex

gauge group GC, with GC the complexification of a compact Lie group G, is still a rather open subject. These

Chern-Simons theories are noncompact and hence qualitatively different from those with compact group. In

general, the Hilbert spaces associated to the complex case are infinite-dimensional [8, 22–24], while the

Hilbert spaces in the compact cases are finite-dimensional. Recently, there has been substantial progress in

understanding the complex gauge group case [6–8, 24, 25]. This is an active area of research.

This paper focuses on Chern-Simons theory with a complex SL(2,C) gauge group on a compact oriented

3-manifold M3. The action for this theory is

CS
[
M3 | A, Ā

]
=

t

8π

∫

M3

tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
+

t̄

8π

∫

M3

tr

(
Ā ∧ dĀ +

2

3
Ā ∧ Ā ∧ Ā

)
, (1.1)

and might include boundary terms when M3 has a boundary. Here t = k + is is the Chern-Simons coupling

with k, s ∈ R, and t̄ is taken to be the complex conjugate of t. The connection 1-form is A = A jτ j, where

j ∈ {1, 2, 3}, τ j = −
i
2
σ j are generators that take values in the complex Lie algebra sl2C, and σ j are the

Pauli matrices. We will focus on a certain class of 3-manifolds M3, the simplest example of which is the

graph complement 3-manifold M3 = S 3 \ Γ5, where Γ5 is the graph with five 4-valent vertices and the

single essential crossing depicted in Fig. 1. For a graph embedded in S 3, the graph complement manifold is

obtained by removing the graph as well as the interior of its tubular neighborhood from S 3. The boundary

of S 3 \ Γ5 is a genus-6 closed 2-surface, which we denote Σ6.

1

23

4

5

Figure 1. The Γ5 graph can be drawn with five 4-valent vertices, ten edges `ab, and the curve `24 over-crossing `13. It can

also be drawn with all vertices being 3-valent by expanding each 4-valent vertex into two connected 3-valent vertices,

which results in 10 vertices and 15 edges. Both ways of drawing Γ5 lead to the same 3-manifold S 3 \ Γ5.

Chern-Simons theory with graph defects has been considered in [26] in the case of a compact gauge

group; and the volume conjecture has been generalized to quantum spin-networks with knotted graphs in

[27, 30]. From the mathematical point of view, the space of knotted graphs may be more interesting than the

space of knots—due to the fact that the space of trivalent knotted graphs is finitely generated. This means

that there is a finite (and small) set of trivalent knotted graphs that can generate all trivalent knotted graphs

via just a few algebraic operations, while the space of knots is a proper subset of the space of trivalent graphs

[28]. A recent study of trivalent knotted graphs, from the perspective of perturbative Vassiliev-Kontsevich

invariants, specifies these algebraic operations, [29].

Classically, the equations of motion for SL(2,C) Chern-Simons theory are

F = dA + A ∧ A = 0, and F̄ = dĀ + Ā ∧ Ā = 0, (1.2)

that is, the connections A and Ā are flat on the 3-manifold M3. The moduli space of flat connections

Mflat(M3,SL(2,C)) is the space of solutions. When M3 has boundary a closed 2-surface Σg = ∂M3, of
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genus-g, the space of boundary values of A ∈ Mflat(M3,SL(2,C)) is a subvariety insideMflat(Σg,SL(2,C)),

which is the moduli space of SL(2,C) flat connections on the two-dimensional manifold Σg. In general,

Mflat(Σg,SL(2,C)), known as the Hitchin moduli space, is a hyper-Kähler variety of dimC = 6g − 6, which

has 3 distinct complex structures I, J, and K [31].1 The three corresponding Kähler forms are denoted

ωI , ωJ , and ωK . When we think ofMflat(Σg,SL(2,C)) as the phase space of SL(2,C) Chern-Simons theory,

the holomorphic Chern-Simons (Atiyah-Bott-Goldman) symplectic structure ωCS is given by

ωCS =
t

4π

∫

Σg

tr [δ1A ∧ δ2A] =
t

π
[ωI − iωK] , (1.3)

which comes from the holomorphic part of CS
[
M3 | A, Ā

]
. The space of flat connections on M3 can be

embedded as a subvariety LA of complex dimension dimC = 3g − 3 in Mflat(Σg,SL(2,C)) by considering

the boundary values of these flat connections,

LA ' Mflat(M3,SL(2,C)). (1.4)

The subvariety LA is holomorphic with respect to the complex structure J, and is Lagrangian with respect

to I and K, i.e. ωI and ωK , and hence ωCS , vanish on LA [32, 33].

The fact that LA is Lagrangian has a clear physical meaning as well. Consider an analogy with particle

mechanics, which can be seen as a field theory over the time axis. The boundary values of a physical

trajectory are the phase space points at the initial and final times t0 and t. Introduce a boundary phase space,

which is just the Cartesian product of two copies of the phase space one at each of these times. This doubled

phase space has a symplectic form Ω = dp ∧ dq − dp0 ∧ dq0. The sign on the second term indicates that the

initial space is to the past. The statement that the dynamics is a canonical transformation, i.e. that dp∧ dq is

invariant under time evolution, is precisely the statement that the space of orbits of the equations of motion

corresponds to a Lagrangian manifold of the doubled boundary phase space. That is, Ω|LD
= 0, where

LD is the subset of points of the boundary phase space connected by a dynamical orbit. This mechanical

analogy was introduced by Tulcyjew precisely with the generalization to field theory in mind [34]. The

connections ofMflat(M3,SL(2,C)) provide dynamical interpolations of the boundary data. So, not only is

Mflat(Σg,SL(2,C)) of larger dimension, e.g. there are non-contractible loops in Σg that are contractible in

M3, butMflat(M3,SL(2,C)) is exactly half-dimensional and is Lagrangian.

The complex Fenchel-Nielsen (FN) coordinates xm, ym ∈ C, m = 1 · · · 3g − 3 can be used to locally

parametrize the connections ofMflat(Σg,SL(2,C)) [35, 36], using a trinion (or pants) decomposition of the

closed 2-surface Σg. Here the complex FN “length variable” xm is the eigenvalue of the holonomy along a

closed curve cm transverse to a tube of the trinion decomposition. The complex FN “twist variable” ym is the

conjugate variable such that ωCS is written as

ωCS =

(
−

t

2π

) 3g−3∑

m=1

dym

ym

∧
dxm

xm

. (1.5)

The explicit relation between ym and holonomies is given in e.g. [32, 36], and is briefly reviewed in Section 3.

In terms of {xm, ym}
3g−3

m=1
, the holomorphic Lagrangian subvarietyLA ' Mflat(M3,SL(2,C)) can be expressed

locally as a set of holomorphic polynomial equations

Am(x, y) = 0, m = 1, · · · , 3g − 3. (1.6)

When M3 is the complement of a knot, so that ∂M3 = T 2, we haveMflat(T
2,SL(2,C)) ' C∗ × C∗/Z2, and

LA is the zero-locus of a single holomorphic polynomial A(x, y), known as the A-polynomial [7, 37]. This

provides an interesting and quite different perspective on the quantum gravity quantizations discussed below.

1The complex structure I is induced from that of Σg, J is from the complex structure of the complex group SL(2,C), and K is

obtained through K = IJ.

– 3 –





Section 2.2, and can be summarized in the following way: Σ6 can be decomposed into five 4-holed spheres

Sa=1,··· ,5 by cutting through the 10 meridian closed curves on the right in Fig. 2. The boundary conditions

require that the boundary value of A ∈ Mflat(S
3 \ Γ5,SL(2,C)) reduces to an SU(2) flat connection, up to

gauge transformations, when it is restricted to each of the 4-holed spheres Sa. This does not imply that A is

an SU(2) flat connection on all of Σ6, since the different 4-holed spheres may correspond to different SU(2)

subgroups in SL(2,C).

These boundary conditions are motivated by a geometrical interpretation of the SU(2) flat connections

on a 4-holed sphere Sa. Each of these connections determines uniquely a convex tetrahedron in constant

curvature 3d space (spherical or hyperbolic). This holds for a dense subset of Mflat(Sa,SU(2)), and only

excludes the flat connections corresponding to degenerate geometries. If we consider PSU(2) flat connec-

tions instead of SU(2), the correspondence becomes 1-to-1 (see Theorem 2.1). This interpretation of SU(2)

flat connections on a 4-holed sphere was introduced in [20] and is reviewed in Section 2.2 (see [38] for a

thorough exploration).

A flat connection A ∈ Mflat(S
3 \ Γ5,SL(2,C)) on the Γ5 graph complement manifold that satisfies

the above boundary conditions on the full complement goes further and determines uniquely a convex 4-

simplex geometry in 4-dimensional Lorentzian spacetime with constant curvature Λ (see Theorem 2.3 and

the analysis of [20]). The closed boundary of the 4-simplex determined by A is formed by 5 constant

curvature tetrahedra, which are congruent to the tetrahedral geometries determined by the boundary data

of A on the 4-holed spheres Sa. Again the statement holds up to those flat connections that correspond

to degenerate 4-simplex geometries. If we consider PSL(2,C) flat connections instead of SL(2,C), the

correspondence once again becomes 1-to-1. In the following, we will refer to flat connections satisfying

the boundary conditions that put them into correspondence with a 4-simplex geometry as simplicial flat

connections.

A simple intuition lies behind the above correspondence between flat connections on a 3-manifold and

the geometry of a 4-manifold. The 1-skeleton of a 4-simplex gives a triangulation of the 3-sphere, thought of

as the boundary of the 4-simplex. The Γ5 graph can be viewed as a “dual” graph of the 4-simplex skeleton,

in the sense that the fundamental group of S 3 \ Γ5 is isomorphic to the fundamental group of the 4-simplex

skeleton π1(simplex). The isomorphism is unique under a few natural assumptions (see Lemma 2.2). On the

one hand, an SL(2,C) flat connection on S 3 \ Γ5 is a representation of the fundamental group π1(S 3 \ Γ5)

up to conjugation. On the other, if the 4-simplex is embedded in a geometrical 4d spacetime (M4, gαβ),

the spin connection on M4 gives a representation up to conjugation of π1(simplex) using holonomies. The

isomorphism between π1(S 3 \ Γ5) and π1(simplex) identifies the flat connection on S 3 \ Γ5 and the spin

connection on the 4-simplex. More precisely, it identifies the holonomies of the flat connection along the

loops in π1(S 3 \ Γ5) and the holonomies of the spin connection along the closed paths of π1(simplex). In

terms of a commutative diagram,

π1(S 3 \ Γ5)
X
←− π1(simplex)

ωflat ↘ ↙ ωspin

〈
{H̃ab ∈ SL(2,C)}a<b

∣∣∣ algebraic relations Eqs.(2.12a) − (2.6)
〉 /

conjugation, (1.8)

where X denotes the isomorphism between π1(S 3 \ Γ5) and π1(simplex) and ωflat and ωspin denote the rep-

resentations by the flat connection on S 3 \ Γ5 and the spin connection on M4, respectively. In this way,

the SL(2,C) flat connections on S 3 \ Γ5 relate to the spin connections on a spacetime (M4, gαβ). If we take

(M4, gαβ) to be a Lorentzian spacetime with constant curvature Λ, and all 10 triangles of the 4-simplex flatly

embedded in (M4, gαβ) (i.e. with vanishing extrinsic curvature), the holonomy of the spin connection along

a closed path in π1(simplex) enclosing a single triangle determines the area of the triangle, as well as the
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embedding property of the triangle, i.e. the 2 normal directions of the triangle embedded inM4. The above

relation between ωflat and ωspin, as well as the geometrical properties of the spin connections, result in the

correspondence between the SL(2,C) flat connections on S 3 \ Γ5 and the 4d geometry of constant curvature

4-simplices.

Each geometrical flat connection A ∈ Mflat(S
3 \ Γ5,SL(2,C)) is naturally accompanied by an Ã ∈

Mflat(S
3 \Γ5,SL(2,C)), which is the complex conjugate of A with respect to the complex structure J induced

from the complex group SL(2,C). The pair A and Ã determine the same 4-simplex geometry but result in 2

opposite 4d orientations for the 4-simplex. We call (A, Ã) a “parity pair,” because complex conjugation using

J naturally relates to a parity inversion in 4d spacetime [20]. This complex conjugation leaves the SU(2) flat

connections invariant, so A and Ã induce the same SU(2) flat connections on the 4-holed spheres Sa=1,··· ,5.

This is consistent with the fact that the 4-simplex geometries determined by A and Ã are the same, and give

the same set of geometrical tetrahedra on the boundary.

ConsiderMflat(S
3 \ Γ5,SL(2,C)) ' LA as a holomorphic Lagrangian subvariety inMflat(Σ6,SL(2,C)).

Given A ∈ Mflat(S
3 \ Γ5,SL(2,C)) corresponding to a constant curvature 4-simplex, the complex Fenchel-

Nielsen (FN) variables of A have direct interpretations in terms of the 4-simplex geometry (see Section 3).

The 10 length variables xab for the closed curves cab in Fig. 2 relate respectively to the 10 areas aab of the

triangles ∆ab in the 4-simplex. The 10 conjugate twist variables yab relate respectively to the 10 hyperdihedral

angles Θab of the 4-simplex. Each hyperdihedral angle Θab between a pair of boundary tetrahedra is hinged

by the triangle ∆ab shared by the tetrahedra. Interestingly the canonical conjugacy of aab and Θab that

follows from the correspondence between flat connections and their geometrical counterparts, relates to the

canonical structure induced by the 4-dimensional Einstein-Hilbert action in General Relativity (GR), see

[42] for a derivation in the GR case. This further motivates the relation between the flat connections on

3-manifolds and (simplicial) gravity on 4-dimensional manifolds.

The phase space of flat connections has complex dimension dimC[Mflat(Σ6,SL(2,C))] = 30. In addition

to the 20 coordinates {xab, yab}a<b, there are 5 pairs of variables {xa, ya}
5
a=1

that parametrize the SU(2) flat

connections on Sa=1··· ,5. Geometrically they correspond to the shapes of the 5 constant curvature tetrahedra

on the boundary of the 4-simplex.

1.2 Quantum Correspondence

Our correspondence between SL(2,C) flat connections on S 3 \ Γ5 and the constant curvature geometry

of 4-simplices inspires a new understanding of 4-dimensional quantum simplicial geometry in terms of the

quantization of flat connections on a 3-manifold. For any 3-manifold M3 with boundary Σg, the quantization

of Mflat(Σg,SL(2,C)) with the symplectic structure ωCS results in an operator algebra for the canonically

conjugate variables, e.g. the operators representing the complex FN variables x̂m and ŷm satisfy x̂mŷm =

e−
2πi~

t ŷm x̂m (~ ∈ R) and x̂mŷn = ŷn x̂m for n , m. The states are represented as the wave functions Z(u), where

u is the logarithmic coordinate um = ln xm. The reader is referred to, e.g [39, 40], for details of quantizing

Mflat(Σg,SL(2,C)). The quantization of the holomorphic Lagrangian subvarietyMflat(M3,SL(2,C)) ' LA

gives a set of operator constraint equations:

Âm(x̂, ŷ, ~) Z(u) = 0, m = 1, · · · , 3g − 3. (1.9)

The solutions Z(u) of the above operator constraint equations are the physical states of SL(2,C) Chern-

Simons theory on M3. A basis of solutions Z
(α)
CS

(u) can be found using semiclassical, WKB methods [6, 8,

25]:

Z
(α)
CS

(u) = exp

[
i

~

∫ u,v(α)

C⊂LA

ϑ + · · ·

]
. (1.10)

The leading term is completely determined by the classical phase space and a Lagrangian subvariety within

it. Here the Liouville 1-form ϑ satisfies dϑ = ωCS and is integrated along a contour C in the Lagrangian
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subvariety LA. The logarithmic coordinates um and vm are related to xm, ym by xm = eum and ym = e−
2π
t

vm .

The label α indexes the branches of LA. On each of these branches the defining equation of the subvariety

Am(x, y) = 0 can be solved to give a unique set of vm as functions of the um. The end point of the contour

C, which labels Z
(α)
CS

(u), is a flat connection determined by u, v(α) in Mflat(M3,SL(2,C)) ' LA (or more

precisely, in the cover space ofMflat(M3,SL(2,C)) ' LA). Thus each Z
(α)
CS

(u) is associated to a unique flat

connection A ∈ Mflat(M3,SL(2,C)). The starting point of C is conventional and corresponds to a choice

of overall phase for Z
(α)
CS

(u). The ellipsis “· · · ” in Eq. (1.10) stands for the quantum corrections, which

in principle can be obtained recursively from the operator constraint equations. The semiclassical wave

function Z
(α)
CS

(u), often called an holomorphic 3d block, can also be formulated nonperturbatively as a “state-

integral model,” see [8, 41].

The holomorphic 3d block Z
(α)
CS

(u) can also be defined by a functional integral of the holomorphic part

of CS
[
M3 | A, Ā

]
over a certain integration cycle, known as a Lefschetz thimble [6]. The Lefschetz thimble

is an integration cycle that only contains a single critical point of the action; this provides another way to

understand the association between Z
(α)
CS

(u) and a single flat connection on M3.

The holomorphic 3d block Z
(α)
CS

(u) plays a central role in the quantum part of this work. We again

specialize to the 3-manifold S 3 \ Γ5 with boundary Σ6 and impose boundary conditions on Σ6 to pick out

the flat connections inMflat(S
3 \ Γ5,SL(2,C)) corresponding to constant curvature 4-simplices. Given such

an A ∈ Mflat(S
3 \ Γ5,SL(2,C)), as well as its parity partner Ã, we can construct an holomorphic 3d block

Z
(α)
CS

(u) associated with A and using Ã as a reference. We simply let A be the end point of the contour C

and use Ã as its initial point. Our classical correspondence between flat connections on S 3 \ Γ5 and constant

curvature 4-simplex geometries suggests that the so constructed Z
(α)
CS

(u) is a wave function for the quantum

4d geometry of a constant curvature 4-simplex. Schematically,

Z
(α)
CS

(u) with boundary conditions = quantum constant curvature 4-simplex geometry. (1.11)

This quantum correspondence indicates that the asymptotic expansion of Z
(α)
CS

(u) in Eq.(1.10) should have the

classical action for the simplicial 4d geometry as its leading term. In particular, due to the relation between

the symplectic structures of flat connections and 4d simplicial gravity, it is natural to expect that the leading

term should give the action of 4d gravity in the simplicial context.

This expectation is confirmed by the analysis in Section 3.3. We show that the leading asymptotic

behavior of Z
(α)
CS

(u) is a simplicial discretization of the four-dimensional Einstein-Hilbert action on a constant

curvature 4-simplex

S ΛRegge =
∑

a<b

aabΘab − ΛVolΛ4 , (1.12)

we call this the curved Regge action, and it is expressed here up to an integration constant and a term

depending on the lift to the logarithmic variables (u, v). The coefficient Λ is the cosmological constant and

can also be identified as the constant curvature of the 4-simplex, while VolΛ4 is its 4-volume. We refer the

reader to, e.g. [43–46], for the derivation of the curved 4d Regge action through a discretization of the

Einstein-Hilbert action (see also [20] for a summary).

Because Z
(α)
CS

(u) is holomorphic, its leading asymptotic behavior is not necessarily an oscillatory phase.

In studying the full SL(2,C) Chern-Simons action CS
[
M3 | A, Ā

]
, including both holomorphic and anti-

holomorphic parts, we are interested in the 3d block Z
(α)
CS

(u)Z
(α)
CS

(ū), where Z
(α)
CS

(ū) is associated to Ā. For a

flat connection with corresponding 4-simplex geometry, the leading asymptotic behavior of Z
(α)
CS

(u)Z
(α)
CS

(ū) is

an oscillatory phase:

Z
(α)
CS

(u) Z
(α)
CS

(ū) = exp


i

~
2Re

(
Λt

12πi

)
S ΛRegge +

i

~
2Re

(
Λt

6

)∑

a<b

Nabaab + iCint + · · ·

 . (1.13)
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This is shown in section 3. Thus we see that Z
(α)
CS

(u)Z
(α)
CS

(ū) is an analog of the functional integral quantization

of the Einstein-Hilbert action in the simplicial context,

ZEH(M4) = exp


i

2`2
P

∫

M4

R − 2Λ + “Quantum Corrections”

 . (1.14)

With this analogy in mind, we identify the gravitational constant GN in terms of Chern-Simons coupling t

and cosmological constant Λ as

GN =

∣∣∣∣∣
3

2Im(t)Λ

∣∣∣∣∣ . (1.15)

The quantity Cint ∈ R in (1.13) is an (integration) constant that is independent of the 4-simplex geometry.

The additional term i
~
2Re

(
Λt
6

)∑
a<b Nabaab (Nab ∈ Z) in the leading asymptotics comes from the choice of

lift of the FN variables xm and ym to the logarithmic variables um and vm. This term disappears trivially when

t ∈ iR. However, for general complex t, the additional term can also be made to disappear by imposing a

quantization condition on the triangle areas aab:

2Re

(
Λt

6

)∑

a<b

Nabaab ∈ 2π~Z. (1.16)

Indeed, this quantization condition is natural: when the boundary conditions on A ∈ Mflat(S
3 \ Γ5,SL(2,C))

are imposed using a Wilson graph operator, the quantization condition is automatically satisfied (see Section

4). The quantization condition is also consistent with the discrete area spectrum in Loop Quantum Gravity

(LQG) [47, 94].

The bulk of this paper is devoted to the flat-connection-to-geometry correspondences at the single 4-

simplex level because this is the most crucial step in building models for more general situations. The

analysis is generalized, in Section 6, to a simplicial complex with an arbitrary number of 4-simplices. In the

resulting simplicial geometry, the 4-simplices are of constant curvature Λ, while the large simplicial geom-

etry built by many 4-simplices can approximate an arbitrary smooth geometry on a 4-manifold. However, a

generic A ∈ Mflat(M3,SL(2,C)) that corresponds to a 4d simplicial geometry may result in a non-uniform

4d orientation throughout the simplicial complex, that is, different 4-simplices may obtain different 4d ori-

entations. For an orientable simplicial complex K4, we find the class of flat connections on M3 that not

only determine all possible (nondegenerate) 4-dimensional simplicial geometries, but also induce consistent

global 4d orientations. Each flat connection A in the class is accompanied by its global parity partner Ã. We

construct the Chern-Simons 3d block Z
(α)
CS

(
M3

∣∣∣ u
)

Z
(α)
CS

(
M3

∣∣∣ ū
)

associated with A (and reference Ã) in the

same way as above. The asymptotic expansion in ~ of the resulting 3d block generalizes Eq. (1.13) to the

level of a simplicial complex:

Z
(α)
CS

(
M3

∣∣∣ u
)

Z
(α)
CS

(
M3

∣∣∣ ū
)
= exp


i

~
2Re

(
Λt

12πi

)
SΛRegge +

i

~
2Re

(
Λt

6

)∑

∆

N∆a∆ + iCint + · · ·

 , (1.17)

where SΛ
Regge

is the 4-dimensional Lorentzian Regge action on the entire simplicial complex K4:

SΛRegge =
∑

∆ internal

a(∆)ε(∆) +
∑

∆ boundary

a(∆)Θ(∆) − Λ
∑

σ

VolΛ4 (σ). (1.18)

Here ∆ denotes a triangle in K4 and σ denotes a 4-simplex. If we denote the hyperdihedral boost angle of

∆ in the 4-simplex σ by Θ∆(σ) (the same as Θab above), then ε(∆) is the Lorentzian deficit angle defined

by ε(∆) :=
∑
σ,∆⊂σ Θ∆(σ) for ∆ an internal triangle, and Θ(∆) is the Lorentzian boundary hyperdihedral

angle defined by Θ(∆) :=
∑
σ,∆⊂σ Θ∆(σ) for ∆ a boundary triangle. In Eq. (1.17) the additional term

i
~
2Re

(
Λt
12

)∑
∆ N∆a∆ (N∆ ∈ Z) again disappears when t ∈ iR, or when the quantization condition Eq. (1.16)

is satisfied, for general t.
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This asymptotic expansion in ~ suggests that the Chern-Simons 3d block Z
(α)
CS

(u) Z
(α)
CS

(ū), which asso-

ciates with a flat connection on M3 a corresponding 4d simplicial geometry on K4, is a wave function for

4-dimensional simplicial quantum gravity; its subleading terms in ~ should give the quantum corrections to

the classical Einstein-Hilbert action.

1.3 Wilson Graph Operator and Loop Quantum Gravity

The analysis in the present paper is a continuation of the work done in [20], where a class of Wilson graph

operators are studied in SL(2,C) Chern-Simons theory on S 3. The Wilson graph operators are defined by a

Γ5 graph embedded in S 3 colored by certain principle unitary irreducible representations of SL(2,C). The

definition is summarized in Section 4. In [20], we have studied the Chern-Simons expectation value A of

the Wilson graph operators on S 3, and in particular the asymptotic behavior of A in the “double-scaling

limit”, that is, when both the Chern-Simons coupling t and the Wilson-graph representation labels are scaled

to infinity, but their ratio is kept fixed. In this double-scaling limit, the Chern-Simons expectation value A

of the Wilson graph operator again yields the 4d Regge action S Λ
Regge

of a constant curvature 4-simplex as its

leading asymptotics,

A = e
i

`2
P

S Λ
Regge
+ ···
+ e
− i

`2
P

S Λ
Regge
+ ···

(1.19)

up to a possible overall phase factor. Here the ellipsis “· · · ” represent the subleading terms in the double-

scaling limit. These asymptotics and their relation with simplicial gravity suggest that A can be viewed as

a 4d gravity analog of the quantum 6 j-symbol in the Turaev-Viro model of 3d quantum gravity [57, 58].3

The Chern-Simons expectation value A has a close relationship with Loop Quantum Gravity (LQG).

LQG is an attempt to make a background independent, non-perturbative, quantization of 4-dimensional

gravity; for reviews, see [48–50]. The central objects in the covariant dynamics of LQG, which adapts

the idea of path integral quantization to the framework of LQG, are the spinfoam amplitudes. A spinfoam

amplitude is defined on a 4-dimensional simplicial complex K4 and encodes the transition amplitude for

a given boundary quantum 3-geometry. In LQG, the quantum 3-geometries are described by spin-network

states. A spinfoam amplitude sums over the history of spin-networks, and suggests a foam-like quantum

spacetime structure. An important building block for a general spinfoam amplitude is the Engle-Pereira-

Rovelli-Livine (EPRL) partial 4-simplex amplitude AEPRL associated to a 4-simplex σ in K4 [51].4 The

Chern-Simons expectation value A of the Wilson graph is a deformation of the EPRL 4-simplex amplitude,

in the sense that A approaches AEPRL asymptotically in the decoupling limit, that is, when the Chern-Simons

coupling t is scaled to infinity keeping the Wilson graph representation labels fixed (see [20] or Section 5).

This deformation is largely motivated by two streams of research: (1) studies of the relation between LQG

and Topological Quantum Field Theory [17, 18, 53] and (2) the quantum group deformation of spinfoam

amplitudes that include a cosmological constant [19, 54]. We have the following commutative diagram for

the relations among A , AEPRL, and the Regge action S Λ
Regge

(or S Regge) with (or without) a cosmological

constant term:

A
double-scaling limit

−→ e
i

`2
P

S Λ
Regge
+ e
− i

`2
P

S Λ
Regge

y decoupling
y Λ→0

AEPRL

large-j limit
−→ e

i

`2
P

S Regge

+ e
− i

`2
P

S Regge

(1.20)

The asymptotic behavior on the bottom line has been established for the EPRL 4-simplex amplitude AEPRL

in [55, 56]. The action S Regge that results from the asymptotic analysis of AEPRL is the Regge action without

3The double-scaling limit of quantum 6 j-symbol gives the 3d Regge action on a constant curvature tetrahedron [58].
4It is also called the EPRL/FK amplitude, including Freidel and Krasnov, when referring to the version for Euclidean gravity [52].
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cosmological constant for a flat 4-simplex, while the action S Λ
Regge

that comes out of the Chern-Simons

expectation value A is the Regge action with cosmological constant Λ for a constant curvature 4-simplex,

that of Eq. (1.12). In this sense A is a deformation of the spinfoam amplitude AEPRL that includes the

cosmological constant in the framework of LQG.

The 4-dimensional Lorentzian Regge action S Λ
Regge

appears in both the leading asymptotics of the Chern-

Simons expectation value A of the Wilson graph operator and in the Chern-Simons 3d block Z
(α)
CS

(u) Z
(α)
CS

(ū).

This is not a coincidence (see Section 4). Firstly it turns out that the double-scaling limit of Chern-Simons

theory on S 3 with a Wilson graph insertion is the same as the semiclassical limit ~ → 0 of Chern-Simons

theory on the graph complement, keeping the boundary data fixed. Secondly the Chern-Simons expectation

value A can be understood as an inner product

A =
〈
N(Γ5)

∣∣∣ S 3 \ Γ5

〉
, (1.21)

where |N(Γ5)〉 is the Chern-Simons state on the tubular neighborhood of Γ5 excited by the Wilson graph

operator, and |S 3 \ Γ5〉 is the Chern-Simons ground state on S 3 \ Γ5. In the double-scaling limit, the Wilson

graph operators in [20] that define A impose the right boundary conditions on the boundary Σ6 of S 3 \ Γ5

(including the quantization condition Eq. (1.16)). Right in the sense that these boundary conditions pick

out the parity pair of flat connections A & Ã on S 3 \ Γ5 and determine a constant curvature 4-simplex

geometry. In other words, the state |N(Γ5)〉 is a “semiclassical state” peaked at the right phase space point in

Mflat(Σ6,SL(2,C)). The state |S 3 \Γ5〉 is a linear combination of Chern-Simons 3d blocks Z
(α)
CS

(u) Z
(α)
CS

(ū) on

S 3 \ Γ5. The peakedness of |N(Γ5)〉 selects the pair of 3d blocks that associate to A and Ã respectively, and

which have respectively e
i

`2
P

S Λ
Regge

and e
− i

`2
P

S Λ
Regge

in their leading asymptotics.

Separate study of the Chern-Simons 3d block and the Wilson graph operator clarify the different roles

they play in the asymptotics of A . The Regge-action asymptotic behavior of A crucially depends on the

peakedness of |N(Γ5)〉 created by the Wilson graph operator. However, different Wilson graph operators can

produce the same peakedness in the phase space,5 and thus lead to the same asymptotics of A . The close

relationship with the EPRL 4-simplex amplitude motivates us to study the particular type of Wilson graph

operators in [20]. In principle other types of Wilson graph operators could work equally well, as long as they

produce the same peaking.6 However, independent of the choice of Wilson graph, the essential ingredient

leading to the Regge-action asymptotics of A is the Chern-Simons 3d block on S 3 \ Γ5 with the right

boundary conditions imposed. This means that the Chern-Simons 3d block Z
(α)
CS

(u) Z
(α)
CS

(ū) studied here plays

an important role in the covariant formulation of LQG. Both the classical and the quantum correspondences

between flat connections on 3-manifolds and simplicial geometries on 4-manifolds studied here may be

viewed as a re-formulation of covariant LQG that emphasizes its relationship with SL(2,C) Chern-Simons

theory.

In the quantum case, this correspondence suggests that the Chern-Simons 3d block Z
(α)
CS

(u) Z
(α)
CS

(ū) is the

wave function of simplicial quantum gravity in 4 dimensions. Given its relation with LQG, this 3d block may

be understood as the physical wave function for LQG in 4 dimensions, at least for simplicial geometries. In

future research it will be interesting to find the behavior of Z
(α)
CS

(u) Z
(α)
CS

(ū) under refinement of the simplicial

complex K4. This should shed light on the continuum limit in covariant LQG.

The physical wave function of LQG describes quantum transitions in a 4-dimensional region that go

between boundary quantum 3d geometries. In this logic, the boundary data of Z
(α)
CS

(u) Z
(α)
CS

(ū), namely the

flat connections on the 2d boundary of the graph complement 3-manifold, should describe the quantum 3d

geometry in LQG. Indeed, as discussed in Section 5, the boundary data of Z
(α)
CS

(u) Z
(α)
CS

(ū) relate naturally to

spin-network states, which quantize 3d geometry in the kinematical framework of LQG.

5For instance, for an harmonic oscillator, different squeezed coherent state can have the same peakedness.
6The different types of Wilson graphs having the same peakedness may relate to the spinfoam amplitudes defined in [59].
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1.4 Structure of the Paper

The structure of the paper is as follows: Section 2 explains the classical correspondence between the SL(2,C)

flat connections on S 3 \ Γ5 specified by certain boundary conditions and constant curvature 4-simplex ge-

ometries in 4 dimensions. Section 3 discusses the correspondence between quantum SL(2,C) Chern-Simons

theory on S 3 \ Γ5 and quantum 4-simplex geometry. After a brief review of quantum Chern-Simons theory,

Fenchel-Nielsen coordinates, and the holomorphic 3d block in Sections 3.1 and 3.2, we analyze, in Sec-

tion 3.3, the asymptotic expansion of the Chern-Simons 3d block. The leading order asymptotics of this

block gives the 4-dimensional Regge action on a constant curvature 4-simplex and includes a cosmological

constant. Section 4 discusses the relation with [20], in which Wilson graph operators were used to impose

the correct boundary conditions. Section 5 treats the relationship between SL(2,C) Chern-Simons theory

and Loop Quantum Gravity in 4 dimensions. In Section 6, the correspondence is generalized from a sin-

gle 4-simplex to a 4d simplicial complex. A particular class of Chern-Simons 3d block is defined and the

asymptotics of this block gives the 4d Regge action on a full simplicial complex. The two Appendices go

deeper into the mathematical structure of (A) K2-Lagrangian subvarieties, alluded to in Section 3, and ( B)

of the coadjoint orbit quantization used in Section 4.

2 From Flat Connections on a 3-Manifold to 4d Simplicial Geometry

In this section we explain the classical correspondence between SL(2,C) flat connections on S3 \ Γ5 subject

to a certain set of boundary conditions and constant curvature 4-simplices in four-dimensions. In order to

explain the boundary conditions that allow us to achieve this correspondence, we begin in subsection 2.1 by

explaining the Wirtinger algorithm for generating the fundamental group of a graph complement manifold.

The desired boundary conditions on the flat connection are most easily expressed in terms of the generators

of this fundamental group and are made explicit in subsection 2.2. This section concludes by connecting

these boundary conditions to our previous work on constant curvature tetrahedra [38] and hence establishes

that these boundary conditions allow the reconstruction of geometrical constant curvature tetrahedra around

each of the vertices of the graph. In subsection 2.3 these tetrahedral pieces are assembled into the full

geometry of a constant curvature 4-simplex. This section also provides a commutative diagrams that helps

explicate how such a correspondence is possible in abstract terms. Finally subsection 2.4 explains some

discrete symmetries of the reconstructed geometries that will be useful in what follows.

2.1 Flat Connections on a Graph-Complement 3-Manifold

Consider the embedding of the pentagon graph Γ5 in a 3-sphere S3, Figure 1, and let N(Γ5) be (the interior

of) its tubular neighborhood. Define the 3-manifold M3 := S3 \ N(Γ5), which has boundary ∂M3 = ∂N(Γ5).

With a slight abuse of notation we will often write

M3 = S3 \ Γ5. (2.1)

The moduli space of flat sl2C connections on M3 is defined as

Mflat (M3,SL(2,C)) = Hom (π1(M3),SL(2,C))
/
conjugation, (2.2)

i.e. as the space of representations ρ of the fundamental group of M3 in the group SL(2,C), up to conjugation.

As defined above, the moduli space of flat connections is often badly behaved, e.g. it is non-Hausdorff. It is

customary—and enough for our purposes—to make a further restriction to the so-called ‘character variety’,

which is an algebraic variety. For details see [60].

The fundamental group π1(M) of a graph complement M is easily characterized via a generalized

Wirtinger presentation [61]. This construction proceeds in four steps: (i) Project the graph onto a plane;

(ii) Take a point ∗ not lying in this plane as base point; (iii) Take as generators of π1(M) the independent
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loops starting and ending at ∗. These go around each edge once and cross the plane of the projected graph

twice; (iv) Every crossing of the initial graph breaks the original undergoing edge into two pieces in the

planar projection—the associated loops l(1) and l(2) should be considered as independent generators.

The generators obtained in this manner are required to satisfy the following two sets of relations:

• When n edges meet at a vertex (all oriented ingoing for the moment), we require

ln · · · l2 l1 = e,

*

1

2

n

, (2.3)

where e denotes the identity in π1(M), and we have supposed them to be numbered from 1 to n in a

clockwise fashion on the projection plane. To change the i-th edge from ingoing to outgoing, substitute

li with l−1
i

;

• Upon projection onto the plane, an edge with generator l̃ over-crosses another edge, the latter gets

associated with two independent generators l(1) and l(2) as in point (iv) above, see figure below. These

three generators l̃, l(1), and l(2) are required to satisfy

l(1) = l̃ l(2) l̃−1, . (2.4)

Using this algorithm, π1(M3 = S3 \Γ5) can be computed in a straightforward manner; this is the task we

take up now. To fix notation, label the vertices of Γ5 as in Figure 1 with an index a ∈ {1, . . . , 5}, and call its

(unoriented) edges `ab = `ba. The generators of π1(M3) are then the loops lab associated to every edge `ab of

Γ5 except `13, which is broken by a crossing, and hence is associated to two distinct generators l
(1)

13
and l

(2)

13
.

A representation ρ ∈ Hom (π1(M3),SL(2,C)) maps each of these generators to an element of SL(2,C), i.e.

ρ (lab) = H̃ab for every (ab) , (13) and ρ
(
l
(i)

13

)
= H̃

(i)

13
, for i ∈ {1, 2}. The requirements of Eqs. (2.3) and (2.4),

when expressed in terms of these group elements (holonomies) are:

vertex 1 : H̃14H̃
(1)

13
H̃12H̃15 = 1, (2.5a)

vertex 2 : H̃−1
12 H̃24H̃23H̃25 = 1, (2.5b)

vertex 3 : H̃−1
23 (H̃

(2)

13
)−1H̃34H̃35 = 1, (2.5c)

vertex 4 : H̃−1
34 H̃−1

24 H̃−1
14 H̃45 = 1, (2.5d)

vertex 5 : H̃−1
25 H̃−1

35 H̃−1
45 H̃−1

15 = 1, (2.5e)

crossing : H̃
(1)

13
= H̃24H̃

(2)

13
H̃−1

24 . (2.6)

Notice that all the above holonomies, collectively referred to as
{
H̃ab

}
, have the same base-point ∗ ∈ S3 \ Γ5.

The moduli space Mflat (M3,SL(2,C)) is defined as the group elements
{
H̃ab

}
modulo simultaneous

conjugation by a g ∈ SL(2,C), i.e.
{
H̃ab

}
∼

{
gH̃abg−1

}
.

2.2 The Boundary Conditions and their Geometrical Interpretation as Curved Tetrahedra

For our geometrical purposes, we are not interested in a generic connection inMflat (M3,SL(2,C)). Rather,

we want to restrict to connections satisfying a certain type of boundary conditions on the graph complement

manifold’s boundary

Σ6 := ∂M3 = ∂N(Γ5), (2.7)

– 12 –



which is a closed 2-surface of genus 6. The restriction of a connection A ∈ Mflat (M3,SL(2,C)) to the

boundary surface Σ6 gives an element ofMflat (Σ6,SL(2,C)). In this sense one can write

Mflat (M3,SL(2,C)) ⊂ Mflat (Σ6,SL(2,C)) . (2.8)

On Σ6, we specify 10 meridian curves {cab} each cutting one edge of Γ5 transversally. Hence,

Σ6 \ {cab} =
⋃

a=1,...,5

Sa (2.9)

where Sa � S2 \ {4pts} is a four-punctured sphere associated to the a-th vertex of Γ5. A representation

σ ∈ Hom (π1(Σ6),SL(2,C)) when restricted to Sa gives a representation σ|Sa
∈ Hom (π1(Sa),SL(2,C))

(defined up to global SL(2,C) conjugation). We think of these punctured spheres as (the boundaries of)

tetrahedra whose ‘quanta of area’ are ‘concentrated’ at the punctures in the form of defects. We want each

of these tetrahedra to define a three-dimensional space-like frame in (A)dS.

With this geometrical picture in mind we define the following boundary conditions: a representation

σ ∈ Hom (π1(Σ6),SL(2,C)) is said to satisfy geometric boundary conditions if there exists five elements

ga ∈ SL(2,C), such that

ga

(
σ|Sa

)
g−1

a ∈ Hom (π1(Sa),SU(2)) . (2.10)

In words, an SL(2,C) representation of the fundamental group of Σ6 is said to satisfy the geometric boundary

conditions if on each four-punctured sphere Sa it restricts to an SU(2) representation up to conjugation by

an element ga ∈ SL(2,C):

∀a ∃ga ∈ SL(2,C) such that gaH̃abg−1
a =: Hb(a) ∈ SU(2) ∀b, b , a. (2.11)

We call the gauge associated to such a set of {ga}, the ‘time gauge’.

An immediate consequence of the geometric boundary conditions is that Eqs. (2.5) can be written after

conjugation by ga ∈ SL(2,C) as equations in SU(2):

vertex 1 : H4(1)H3(1)H2(1)H5(1) = 1, (2.12a)

vertex 2 : H−1
1 (2)H4(2)H3(2)H5(2) = 1, (2.12b)

vertex 3 : H−1
2 (3)H−1

1 (3)H4(3)H5(3) = 1, (2.12c)

vertex 4 : H−1
3 (4)H−1

2 (4)H−1
1 (4)H5(4) = 1, (2.12d)

vertex 5 : H−1
1 (5)H−1

2 (5)H−1
3 (5)H−1

4 (5) = 1, (2.12e)

where again the argument of the parentheses indicates the vertex where the holonomy is based, see Eq.

(2.11). We will refer to these equations as the ‘closure equations’.

The missing information, with respect to Eqs. (2.5) and (2.6), can be encoded in terms of a Gab ∈

SL(2,C) defined by

Gba := g−1
b ga for all (ab), except G13 := g−1

1

[
g2H4(2)g−1

2

]
g3. (2.13)

This information can be interpreted as a set of ‘parallel transport equations’ encoding the relation H̃ab = H̃ba

through

GabHb(a)Gba = Ha(b), (2.14)

and as a set of ‘bulk equations’ encoding the position of the crossing

GacGcbGba = 1 (abc) ∈ {125, 235, 345, 124, 234}, (2.15a)

G13G32G21 = H4(2). (2.15b)
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Connections satisfying the geometric boundary conditions are denoted

MBC
flat(Σ6,SL(2,C)) ⊂ Mflat(Σ6,SL(2,C)). (2.16)

In section 3.3, we will come back to these boundary conditions and express them in terms of a set

of preferred coordinates, the complex Fenchel-Nielsen coordinates. These are Darboux coordinates on

Mflat(Σ6,SL(2,C)) with respect to the canonical Atiyah-Bott-Goldman symplectic structure induced by the

Chern-Simons theory.

As anticipated above, there is a precise correspondence between SU(2) flat connections on a four-holed

sphere and tetrahedral geometries flatly embedded in S3 and H3. This result was proved and discussed in

detail in [20, 38], and hence in this paper we will limit ourselves to a brief account of this geometry before

connecting it with the boundary conditions just discussed.

Theorem 2.1. There is a bijection between flat connections inMflat (Sa,PSU(2)) and the convex constant

curvature tetrahedron geometries in 3d, excepting degenerate geometries. Non-degenerate tetrahedral ge-

ometries are dense inMflat (Sa,PSU(2)).

The correspondence applies to both spherical and hyperbolic tetrahedra. Both positive and negative

constant curvature geometries are included inMflat (Sa,PSU(2)).

The theorem is primarily built on two observations: (i) the fundamental group of the four-holed two-

sphere is isomorphic to that of a tetrahedron’s one-skeleton, and both are defined by a closure constraint;

and (ii) in the flat case, a tetrahedron’s geometry can be fully reconstructed from four vectors that add up to

zero, once these vectors’ directions are interpreted as the tetrahedron’s face normals and their magnitudes

as the respective face areas. Observations (i) and (ii) are related: the spin-connection holonomy around the

boundary of a surface that is flatly-embedded in a homogeneous space contains information about both the

area and the orientation of the surface. This means that the curved-space closure constraint, e.g. any of the

Eqs. (2.12), could be a sound generalization of (ii).

Observation (ii) is a special case of a more general classic result due to H. Minkowski [62], known

as Minkowski’s theorem. This theorem states that an N-tuple of vectors that sum to zero corresponds to

the set of face vectors of a unique convex polyhedron with N faces. The convexity hypothesis, which

primarily guarantees the uniqueness in the case of flat tetrahedra, is particularly crucial in the curved-space

generalization of Minkowski’s theorem [38].

Before proceeding, let us further define what we mean by a flatly embedded simplicial geometry. Take

the case of a constant curvature tetrahedron flatly embedded in a unit S3. The zero-simplices (vertices) are

4 points on S3. The one-simplices are the shortest geodesic arcs connecting 2 zero-simplices. These are

given by arcs along great circles in S3. Notice that the restriction to the shorter geodesic arc is because

we are considering only convex simplices, which will turn out to be crucial for the uniqueness part of the

reconstruction theorem. Finally for faces, a triple of vertices identifies uniquely a great 2-sphere in S3 and

the face is just the convex hull of the three vertices in this two-sphere. As portions of a great two-sphere

these surfaces are flatly embedded in S3. In particular this means that vectors normal to the surface remain

so under parallel transport. Finally, the tetrahedron itself is the convex hull defined by its four faces.

The simplest way to visualize this construction is to consider the unit three-sphere as embedded in one

more dimension. Then, the edges of the tetrahedron are defined by intersection of the three-sphere with the

unique plane passing through the origin and two of the tetrahedron’s vertices. Similarly, the tetrahedron’s

faces are given by the intersection of the three-sphere and the unique hyperplane passing through the origin

and three of the tetrahedron’s vertices. This construction makes it obvious how to generalize the definitions

to the hyperpolic, higher dimensional, and Lorentzian cases.

Now we would like to relate this geometry to the output of the boundary conditions from above. The

idea is to find a relation between the holonomies Uab of the spacetime spin connection ωspin around the faces

of a flatly embedded, constant curvature tetrahedron and the Hb(a)’s of Eq. (2.12). To completely define the
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transports of a spin-connection ωspin on τ5:

π1(S5)
I5

←− π1(τ5)

ωflat ↘ ↙ ωspin

〈
U1, · · · ,U4 ∈ SU(2)⊗4

∣∣∣ U4 · · ·U1 = 1
〉 /

conjugation (2.20)

at least provided we find a canonical lift of Ha ∈ PSU(2) to SU(2). The prescription for the canonical lift is

actually provided by the convexity condition, as we now explain.

An element H ∈ PSU(2) is given by the equivalence class formed by the following two elements of

SU(2):

exp
[
a n̂ · ~τ

]
∼ − exp

[
a n̂ · ~τ

]
= exp

[
(2π − a) (−n̂) · ~τ

]
(2.21)

for some a ∈ [0, 2π] and n̂ ∈ S2. This correspondence suggests that we interpret

n̂, or − n̂, as sgn(Λ)n̂ and a, or (2π − a) respecitvely, as
|Λ|

3
a. (2.22)

Using outward normal conventions set by the simple paths, and the tetrahedron’s convexity, one sees

that the triple products n̂a · (n̂b × n̂c), with the labels {a, b, c} properly ordered, must all be positive (e.g. at

vertex 4, n̂1 · (n̂2 × n̂3) > 0).7 It is hence clear that the convexity conditions fully determine the lift from

PSU(2) to SU(2), at least up to a global sign, equal to sgn(Λ). Perhaps surprisingly, this final sign can also

be determined from the n̂a that we have just calculated. To do so, use the n̂a to calculate the scalar products

cos θab ≡ n̂a · n̂b.8 Notice that these quantities are insensitive to the global sign ambiguity associated with

sgn(Λ) itself. These scalar products are nothing but the (external) dihedral angles of the tetrahedron. It is a

classical result in discrete geometry, that the Gram matrix

(Gram)ab = − cos θab (2.23)

contains all the information needed to reconstruct the tetrahedron’s geometry. In particular

sgn(det(Gram)) = sgn(Λ). (2.24)

To conclude the proof of the reconstruction theorem, one only needs to prove the consistency of the

geometry reconstructed from the Gram matrix and the areas implicitly contained in the original group ele-

ments. This can be done for example via a counting argument. Again, for all the details of the proof see

[20].

For future reference, we note here the formula interpreting the transverse holonomies Hb(a) as the spin-

connection holonomies around the face (ab) of the four-simplex:

Hb(a) = exp

[
Λ

4
aabn̂ab · ~τ

]
. (2.25)

7Notice that parallel transport of one of the vectors might be needed to make sense of these vector products. This happens when

one has to compare the normal relative to face 4 to the others. However, since this is parallel transport of a 3-vector, it makes use of the

vector representation of the Ha’s, and hence is immune to the ambiguity we are trying to solve here. See [20] for details.
8Again, in some cases a parallel transport of the normals is needed before taking the scalar product. In this case, using the flat-

embedding condition, it is not hard to convince oneself that the only dihedral angle needing a ‘twisted’ formula is cos θ24 = n̂4 · (H3n̂2).

Here, H3 ∈ SO(3) is the vector representation of H3. See [20].
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2.3 Flat Connections on 3-Manifold and Curved 4-Simplex Geometries

This subsection discusses the reconstruction of a full 4-simplex geometry from the flat connections on the

graph complement manifold subject to the boundary conditions of subsection 2.2. There is little conceptual

novelty with respect to the reconstruction of the tetrahedron, although some intriguing subtleties arise, and

this subsection can safely be skipped on a first reading after taking a look at Theorem 2.3 below.

Analogously to the discussion surrounding the commuting diagram (2.20), we consider the fundamental

group for the 1-skeleton of an abstract 4-simplex, see Figure 4, which we denote by π1(σ4), with σ4 denoting

the 1-skeleton of the 4-simplex. Closed paths pab along the 1-skeleton and circling each triangle ∆ab specify

a set of generators. A convenient choice of paths, either pab or p−1
ab

, is specified by the sets of simple paths

for all 5 tetrahedra. All the paths pab can be based at the same point, which we choose to be vertex 1 of the

4-simplex.

Figure 4. An abstract 4-simplex, whose vertices are labeled by 1̄, · · · , 5̄. We denote τa the tetrahedron that does not

have the vertex ā. The symbol ∆ab (resp. ∆ba) denotes the triangle belonging to τa (resp. τb) shared by τa and τb. The

edges are denoted by (ā, b̄) oriented from b̄ to ā.

Explicitly, we choose the paths as follows: Tetrahedron τ2 has special edge (31), and its closure relation

is9

p−1
21p24p23p25 = e. (2.26)

Tetrahedron τ3 has special edge (51), and its closure relation is

p−1
32p
−1
31p34p35 = e. (2.27)

Tetrahedron τ4 has special edge (31), and its closure relation is

p−1
43p
−1
42p
−1
41p45 = e. (2.28)

Tetrahedron τ5 has special edge (31), and its closure relation is

p−1
52p
−1
53p
−1
54p
−1
51 = e. (2.29)

Tetrahedron τ1 is the ‘special tetrahedron,’ which is non-adjacent to the base vertex 1. All the paths asso-

ciated to τ1 travel from 1 to 3 along (31), then circle around the relevant triangle of τ1 as in Figure 3, and

finally go back from 3 to 1 along (13). When we draw the paths on τ1 starting and ending at 3, the special

edge is (53). The closure relation is then

p14p13p12p15 = e. (2.30)

9Note that all the paths p−1
21
, p24, p23, and p25 are closed paths circling around a single triangle in a counter-clockwise fashion when

viewed from the outside of the tetrahedron. The same holds for Eqs. (2.27) - (2.30).
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The above list specifies all the (closed) paths pab. One can check the following properties: pab = pba for

(a, b) , (1, 3), and for p13 this relation becomes [53][31]p13[13][35] = [51]p31[15], where [ab] indicates the

path along the edge ab. Equivalently,

p13 = p24p31p
−1
24 (2.31)

where p24 = [13][35][51].

The fundamental group π1(σ4) is generated by the closed paths pab subjected to the set of closure

relations Eqs. (2.26) - (2.30) together with the relation (2.31). A quick comparison shows that π1(σ4)

is isomorphic to π1(S 3 \ Γ5). In fact, the relations above for the pab’s generating π1(σ4) are identical to

the relations associated to the generators lab of π1(S 3 \ Γ5) (see Section 2.1). The isomorphism maps the

generators of π1(S 3 \ Γ5) to the generators of π1(simplex), which delivers the flat connection on S 3 \ Γ5 to

the spin connection as a representation of π1(simplex).

If we require that the isomorphism I : π1(σ4) → π1(S 3 \ Γ5) maps the counterclockwise simple paths

(the pab) to the loop generators in π1(S 3 \ Γ5) oriented in a right-handed manner (the lab) according to the

orientation of the edges `ab ⊂ Γ5, then the isomorphism I is unique in the following sense:

Lemma 2.2. A map ι : a 7→ τa identifying a vertex in Γ5 with a tetrahedron on the boundary of the 4-simplex,

induces an identification between the edges `ab of Γ5 and the triangles ∆ab = τa ∩ τb of the 4-simplex. Given

an isomorphism I : π1(σ4) → π1(S 3 \ Γ5) such that I(pab) = l′
ab

is a loop generator in π1(S 3 \ Γ5)

transverse to the edge `ab near the vertex a, requiring that l′
ab

cycles `ab in a right-handed manner according

to the orientation of `ab,10 the isomorphism I is unique. Hence I(pab) = l′
ab
= lab is the generator for the

presentation in Section 2.1 associated to the projection of Γ5 on a plane, Figure 2.

Proof: The set of loops I(pab) = l′
ab

, whose common base point could be anywhere in S 3 \ Γ5, can be

understood as the generators of a generalized Wirtinger presentation of π1(S 3 \ Γ5) from a certain projection

of Γ5 on a plane, which could be different from that of Figure 2. However, pab = pba implies l′
ab
= l′

ba

for (a, b) , (1, 3) because of the isomorphism I. This means that in this projection of Γ5, the loops l′
ab

for

(a, b) , (1, 3) can be continuously deformed along the whole edge `ab without meeting a crossing. Therefore

the crossing only occurs between `13 and `24. Then this new projection is either (a) as in Figure 2, with `24

over-crossing `13, or (b) as it would appear if Figure 2 was viewed from the back, i.e. with `24 under-crossing

`13. Without loss of generality, we assume the base point of l′
ab

is in front of the projected graph in both cases

(a) and (b). Furthermore the relations Eqs. (2.26) - (2.30) imply the same relations for l′
ab

up to cyclic per-

mutation. These relations for l′
ab

imply that in the case (a), each loop l′
ab

circles `ab in a right-handed manner

(as in Eq. (2.3)) with respect to the orientation of `ab, while in case (b) each loop l′
ab

circles `ab in a left-

handed manner. Both (a) and (b) imply l′
13
= l′

24
l′
31
l′
−1
24 . However, (b) is ruled out by the requirement that

l′
ab

cycles `ab in a right-handed manner. Therefore we conclude that the case (a) is singled out, and l′
ab
= lab. �

The identification map ι : a 7→ τa produces the numbering of the tetrahedra (or vertices) of an abstract

4-simplex using the numbering of the Γ5 vertices and the convention that τa labels the tetrahedron not

containing vertex ā, as in Figure 4. Given such an identification, we have the following diagram if the

4-simplex is embedded in a geometrical space with spin connection ωspin:

π1(S 3 \ Γ5)
I
←− π1(σ4)

ωflat ↘ ↙ ωspin

〈
{H̃ab}

∣∣∣ Eqs.(2.12a) − (2.6)
〉 /

conjugation (2.32)

10The orientation condition for l′
ab

corresponds to the counter-clockwise choice for the paths pab or p−1
ab

in Eqs. (2.26) - (2.30).
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where the isomorphism I is unique in the sense of the previous Lemma. The isomorphism I determines by

restriction the isomorphisms Ia associated to each of the five tetrahedra. This means that the isomorphisms

Ia in the diagram (2.20) are unique if embedded in a 4-simplex context.

The connection ωspin associates to the set of paths pab the holonomies of an SL(2,C) spin connection:

ωspin(pab) = Uab. (2.33)

On the other hand, the flat connection representation on S3 \ Γ5 discussed in Section 2.1, gives

ωflat(lab) = H̃ab. (2.34)

The above diagram shows that ±ωspin = ωflat ◦ I and hence

±Uab = H̃ab. (2.35)

This relation allows us to interpret the holonomies of a flat connection H̃ab as the holonomies of a spin

connection along the paths pab around the 1-skeleton of an embedded 4-simplex. The ± sign comes from the

fact that Theorem 2.1 holds for PSU(2) flat connections, and Hab is identified with the spin connection Uab

up to a sign, as discussed in Section 2.2.

Here we are relating the flat connection A on S3 \ Γ5 to the geometry of a 4-simplex embedded in

a constant curvature (Lorentzian) spacetime, whose boundary tetrahedra are constant curvature spacelike

tetrahedra with flatly embedded surfaces. The flat connection A on S3 \ Γ5 is taken to satisfy the boundary

conditions of Section 2.2, which give us Hb(a) = g−1
a H̃abga ∈ SU(2) . In turn, the reconstruction theorem

of that section grants us that the equation
←−∏

bHb(a) = 1 associates to τa the geometry of a non-degenerate

convex spacelike tetrahedron with constant curvature Λa.11 Hence the interpretation of the Hb(a) in terms of

face vectors aabn̂ab is

Hb(a) = exp

[
Λa

3
aabn̂ab · ~τ

]
, (2.36)

where Λa = ±a|Λ|. For future convenience we introduce

νa = sgnΛa and ν = sgnΛ. (2.37)

The parameter Λ is a constant for all τa and its sign will be determined shortly. This constant introduces

a length unit. Once again aab are the areas of the convex constant curvature tetrahedron. Note that at this

stage we do not know whether the boundary data induce a sign νa that is constant throughout the 4-simplex.

However, we will prove that this follows from the requirement that the boundary data are given by the

boundary value of A.

If we let εabn̂ab be the outward-pointing normal to τa and choose the time-like normal of tetrahedron a

to be gauge fixed to (1, 0, 0, 0)T , then n̂ab = νan̂ab is the spatial normal 3-vector to the triangle ∆ab, parallel

transported to the base point of pab, i.e. to the vertex 1 of the 4-simplex. In fact, a parallel transport is only

needed when ∆ab is not adjacent to 1 (depending on the pattern of pab).

Up to this point we have studied only the geometry of the individual tetrahedra that make up a 4-simplex.

We turn now to assembling the full geometry of the 4-simplex from these pieces, and show how this can be

achieved using the holonomies Hb(a) and Gab alone.

The group elements ±ga ∈ SL(2,C) that allow one to put each of the simplex’s five tetrahedra into the

time-gauge also specify the Lorentz frame of the four surfaces contained in each tetrahedron. As argued at

the end of the last subsection H̃ab = gaHb(a)g−1
a can be interpreted as

H̃ab = exp

[
Λa

3
aabEab(1)

]
(2.38)

11We only consider the boundary data corresponding to nondegenerate tetrahedral geometries. These data are dense in the space of

all boundary data.
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where Eab(1̄) is the surface area bivector located at 1̄:

Eab =
[
εαβeαeβ

]
+

(1) of ∆ab, (2.39)

here the + subscript indicates the self-dual part of the bivector viewed as an sl2C Lie algebra element. The

sl2C algebra is viewed as a 6-dimensional real Lie algebra with generators ~J := ~τ and ~K := −iτ; the duality

is ?~J = −~K and ?~K = ~J. Note that Eab(1) is related to n̂ab · ~τ by

Eab(1) = −ga(n̂ab · ~τ)g−1
a . (2.40)

The set of Eab(1) is defined up to a simultaneous adjoint action of SL(2,C), which is a local Lorentz trans-

formation in the base frame at 1.

Much like what happens for the n̂ab, a parallel transport (which depends on the specific pattern of the

pab) relates Eab(1) to the actual bivector on ∆ab, whenever ∆ab is not adjacent to 1. For the ∆ab’s adjacent to

3, their bivectors are given by Eab(3) = Ω[31]Eab(1)Ω[31]−1 where Ω[ā, b̄] ∈ SL(2,C) is the holonomy of

the spin connection ωspin along the edge (ab).

Finally note that the tetrahedral reconstructions do not automatically guarantee that the areas of the

triangles ∆ab as seen from tetrahedra a and b coincide. This is because of the ambiguity between aab and

2π−aab mentioned above. This potential ambiguity does not arise as shown in the main reconstruction result

of [38]:

Theorem 2.3. The flat connections A drawn from a dense subset of the space MBC
flat

(S 3 \ Γ5,SL(2,C)),

i.e. such that their restriction to the boundary A ∈ Mflat(Σ6,SL(2,C)) satisfy the boundary conditions

corresponding to 5 non-degenerate convex constant curvature tetrahedra, each determine a unique non-

degenerate convex Lorentzian 4-simplex geometry with constant curvature Λ, whose boundary geometry is

consistent with the tetrahedral geometries determined by A.

The proof of the theorem (see [38]) is analogous to that of the three-dimensional case, and also employs

the reconstruction of the 4-simplex’s Gram matrix

Gram4 ≡ coshΘab, (2.41)

where Θab are the boost dihedral angles of the four-simplex. This matrix contains all the information needed

to reconstruct the 4-simplex geometry, and again this includes the sign of the reconstructed simplex’s curva-

ture. The Gram matrix is calculated via the equation

coshΘab = −uI(Ĝab)I
JuJ , (2.42)

where uI = (1, 0, 0, 0)T , and Ĝab ∈ SO+(1, 3) is the vectorial representation of Gab ∈ SL(2,C). The non-

degeneracy condition corresponds to the requirement that the connection does not produce Gab such that

uI(Ĝab)I
J
uJ = 1.

Notice that the theorem implies in particular that all five of the boundary tetrahedra share the same sign

of the curvature, hence

νa = ν = sgnΛ (2.43)

is a global sign. The theorem also allows one to reconstruct the meaning of the rotation part of Gab. This is

associated to the plane of the triangle ∆ab, and corresponds to the relative rotation by an angle θab between

the frames of ∆ab as seen from tetrahedra a and b.

2.4 Parity Pairs

In this final subsection we summarize the flat connection-geometry correspondence and indicate relations

between discrete symmetries of the reconstructed geometry and properties of the flat connections.
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The boundary conditions discussed in Section 2.2 require that the flat connections inMBC
flat

(
S 3 \ Γ5, SL(2,C)

)

restrict to flat connections on the boundary of the graph complement manifold Σ6 = ∂M3, i.e. to connections

inMBC
flat

(Σ6, SL(2,C)). In turn these boundary connections reduce to SU(2) flat connections on each of the

4-holed spheres around the vertices of Γ5. The boundary data on Σ6 are completely determined by specifying

at the same time:

i) the conjugacy class of the holonomies around a path `ab transverse to each edge of Γ5. This is equiv-

alent to specifying (one of) the eigenvalues xab of these holonomies. In particular, the boundary

conditions impose that xab ∈ U(1), instead of being a general complex number;

ii) the eigenvalues xa and x′′a of the products of two pairs of holonomies computed along the path pairs

(cab, cab′ ) and (cab, cab′′ ), which encircle three different edges adjacent to the same vertex a, see Figure

2. Name the paths associated to the above compositions ca and c′′a . Again, xa and x′′a must be complex

numbers of unit norm, i.e. xa, x
′′
a ∈ U(1). In the next section, we will discuss why it is far more

convenient to substitute x′′a with a coordinate ya, which turns out to be canonically conjugated (in the

sense of symplectic geometry) to xa. In terms of these variables, known as the Fenchel-Nielsen length

and twist respectively, the boundary conditions reduce again to xa, ya ∈ U(1).

The boundary data {xab; xa, ya} ⊂ U(1) fully specify the SU(2) flat connections on the five 4-punctured

spheres {Sa}
5
a=1

. The geometrical reconstruction theorems discussed above imply that these same data en-

code completely the geometry of five geometrical constant-curvature tetrahedra. These tetrahedra are char-

acterized by the fact that the value of their faces’ areas are shared by couples of tetrahedra. This is because,

geometrically, the {xab}b encode the areas of the faces of tetrahedron a. On the other hand the {xa, ya} fix the

remaning two degrees of freedom (a tetrahedron is determined by 6 independent numbers; think of the edge

lengths). At this stage nothing is enforcing the fact that the shapes of the equi-area faces of two different

tetrahedra are the same, more on this below.

Note that at fixed areas, the space of tetrahedra parametrized by (xa, ya) turns out to carry a natural

symplectic structure [20], such that the logarithms of these variables are conjugated. We will come back to

this fact in the next section.

Denote a given value of the boundary data {xab; xa, ya} by {x̊ab; x̊a, ẙa}. The following questions and their

answers turn out to be interesting and useful in later analysis: Does a flat connection A ∈ MBC
flat

(
S 3 \ Γ5, SL(2,C)

)

that has boundary value consistent with a given set of the boundary data {x̊ab; x̊a, ẙa} always exist? Provided

such a consistent flat connection exists, is it uniquely determined by the {x̊ab; x̊a, ẙa}?

Both of the above questions have negative answers. Let us explain why: A generic flat connection

in MBC
flat

(
S3 \ Γ5, SL(2,C)

)
satisfies the hypothesis of Theorem 2.3 and hence corresponds to a geometric

4-simplex. However, as we discussed above, within the boundary data {x̊ab; x̊a, ẙa} there is nothing that

guarantees the correspondence of the shapes of the triangular faces. Hence, not every set of boundary

conditions {x̊ab; x̊a, ẙa} is the boundary of a flat connection inMBC
flat

(
S3 \ Γ5, SL(2,C)

)
.

Turning to uniqueness, consider a set of boundary data {x̊ab; x̊a, ẙa}, and a flat connection A ∈ MBC
flat

(
S3 \ Γ5, SL(2,C)

)

consistent with them. Theorem 2.3 states that A corresponds uniquely to a geometric 4-simplexσ4. However,

as the next theorem shows, it is easy to produce from A another flat connection Ã ∈ MBC
flat

(
S3 \ Γ5, SL(2,C)

)

whose boundary value is also consistent with {x̊ab; x̊a, ẙa}. Notice that this does not mean that A and Ã must

have the same boundary values when restricted to Σ6, since the data {x̊ab; x̊a, ẙa} do not contain information

about the longitudinal holonomies Gab. In fact, it turns out that A and Ã correspond to different constant

curvature 4-simplices σ4 and σ̃4 related by a parity inversion, and G̃ab = G−1
ab

†
. In analogy with the pre-

vious discussion, we can introduce the variables yab, conjugated to the xab, which supply a complete set of

coordinates onMflat (Σ6, SL(2,C)). In these coordinates, the parity pair is described by {x̊ab, ẙab; x̊a, ẙa} and{
x̊ab, ˜̊yab; x̊a, ẙa

}
, where ˜̊yab = 1/ẙab, with the bar indicating complex conjugation.
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Theorem 2.4. Given a set of boundary data
[
x̊ab; x̊a, ẙa

]
corresponding geometrically to 5 constant curvature

tetrahedra forming the boundary of a constant curvature 4-simplex, there exists exactly 2 flat connections

A, Ã ∈ Mflat

(
S 3 \ Γ5, SL(2,C)

)
on the graph complement 3-manifold, whose boundary values are consistent

with
[
x̊ab; x̊a, ẙa

]
. The connections A and Ã correspond to the constant curvature 4-simplices σ and σ̃ which

have the same intrinsic geometry but different 4d orientations. The pair A & Ã are called a “parity pair”.

The proof can be found in [20]. The existence of the parity pair A & Ã is natural, because these

connections are complex conjugated to one another with respect to the complex structure on Mflat(S
3 \

Γ5,SL(2,C)), which, in turn, is induced from the complex group SL(2,C).12 So the boundary values of A &

Ã give the same SU(2) flat connection on each 4-holed sphere Sa; this implies that they give the same data[
x̊ab; x̊a, ẙa

]
.

3 Complex Chern–Simons Theory: from Quantization of a 3d Flat Connection to

4d Quantum Gravity

In the previous sections we established a correspondence between a class of SL(2,C) flat connections on

M3 = S 3 \ Γ5 and homogeneously-curved 4d simplicial geometries. Since a natural way of quantizing

flat connections on M3 exists, and is given by Chern–Simons theory, such a correspondence provides us a

natural way to quantize 4d simplicial geometry. Somewhat surprisingly, the resulting quantum states are

related to discrete general relativity, in the sense of Regge. More precisely, one finds that the physical

Chern–Simons states induced by the boundary conditions discussed in previous sections reproduce semi-

classically the Hamilton–Jacobi functional of 4d Regge gravity with a cosmological constant, as discretized

on homogeneosuly curved 4-simplices.

In this section, we are going to prove the previous claims by means of a WKB approximation of the

3d holomorphic blocks of SL(2,C) Chern–Simons theory on M3, with the appropriate boundary conditions

imposed. The main technical tool to this end will be the Schläfli identities. Let us, however, proceed in

order.

The SL(2,C) Chern–Simons theory on M3 = S 3 \ Γ5 is defined by the following action [22]:

CS
[
M3

∣∣∣ A, Ā
]
=

t

8π

∫

M3

tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
+

t̄

8π

∫

M3

tr

(
Ā ∧ dĀ +

2

3
Ā ∧ Ā ∧ Ā

)

+
t

8π

∫

∂M3

tr (A1 ∧ A2) +
t̄

8π

∫

∂M3

tr
(
Ā1 ∧ Ā2

)
, (3.1)

where A and Ā are the holomorphic and antiholomorphic parts of the SL(2,C) connection, respectively,

where holomorphicity is defined with respect to the natural complex structure of SL(2,C). We will assume

the Chern–Simons couplings

t = k + is and t̄ = k − is (3.2)

are complex conjugates of one another, that is we will assume k, s ∈ R. Notice that if k ∈ Z, then exp [i CS ]

is invariant under large gauge transformation. Nonetheless, in most of the following discussion, we will

avoid this requirement, and keep k an arbitrary real number [6].

The boundary terms of equation (3.1) are crucial for imposing the correct boundary conditions. Or, in

other words, they are crucial for the path integral on M3 to be a well-defined “wave-functional” on half of the

Atiyah–Bott–Goldman phase-space defined onMflat(M3,SL(2,C)). For this, coordinates (s1, s2) have been

chosen on Σ6 = ∂M3, such that s1 is the meridian direction of Γ5. Thus, in the boundary action, the Ai with

i = 1, 2, are the components of the SL(2,C) connection A along the directions defined by si. The sign chosen

in front of the boundary terms implies that it is the values of (A1, Ā1), i.e. the meridian part of the connection

12Namely A = A jτ j and Ã = Ā jτ j.
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form, which set the boundary conditions for the path integral [66]. Loosely speaking, the longitudinal part

of the connection provides then the conjugate variable. As is customary, all of this can be explicitly read

from the boundary part of the first variation of the action (3.1), that is from the presymplectic13 potential of

the theory:

δCS |∂ =
t

4π

∫

∂M3

tr(δA1 ∧ A2) +
t̄

4π

∫

∂M3

tr(δĀ1 ∧ Ā2). (3.3)

This leads us to define

ZCS

(
S 3 \ Γ5

∣∣∣ A1, Ā1

)
=

∫

A1,Ā1

DADĀ e
i
~

CS

[
S 3\Γ5

∣∣∣ A,Ā
]

, (3.4)

where (A1, Ā1) set up the boundary conditions on Σ6, whereas the values of (A2, Ā2) on the boundary are

implicitly integrated over in the functional integral.

The prefactor to the action, 1/~ ∈ R, has to be viewed as a scaling parameter for the couplings (t, t̄). In

particular, the semiclassical limit ~→ 0 can be simply implemented by taking (t, t̄)→ ∞ uniformly.

In the formula above, ZCS

(
S 3 \ Γ5

∣∣∣ A1, Ā1

)
is viewed as a “wave-functional” of Chern–Simons theory,

i.e. it is viewed as a (possibly distributional) state in the Hilbert space H(Σ6) defined on the boundary

Σ6. The Hilbert space H(Σ6) is a quantization of Mflat(Σ6,SL(2,C)), the moduli space of SL(2,C) flat

connections on the closed genus-6 2-surface Σ6 [7, 8, 24, 32, 67, 68]. In general, the moduli space of

SL(2,C) flat connections on a closed genus-g 2-surface Σg,Mflat(Σg,SL(2,C)), is a hyper-Kähler variety of

dimC = 6g − 6, known as the Hitchin moduli space [31].

In order to study spaces of this type, it is convenient to decompose them into fundamental units. These

are given by “pair of pants”, or “trinions”, which are nothing but 3-holed spheres. A closed 2-surface Σg can

be decomposed into pairs of pants by cutting through 3g− 3 closed meridian curves {cm}
3g−3

m=1
. A flat connec-

tion on Σg hence defines, along the meridian cycles {cm}, a set of 3g− 3 holonomies {Hm} whose eigenvalues

{xm} can be used as (a maximal commuting subset of the) canonical coordinates on Mflat(Σ6,SL(2,C)).

These, together with their canonically conjugate variables {ym}, constitute the Fenchel–Nielsen (FN) coor-

dinates on Mflat(Σ6,SL(2,C)) [35]. They are commonly known as the length, {xm}, and twist, {ym}, FN

coordinates.

When written in terms of the FN coordinates, the Atiyah–Bott–Goldman symplectic 2-form onMflat(Σg,SL(2,C)),

which can be obtained by symplectic reduction of the presymplectic form induced by the Chern–Simons ac-

tion (see footnote 13), reads simply:

ωCS = −
t

2π

3g−3∑

m=1

δym

ym

∧
δxm

xm

+ c.c. (3.5)

We have used here the notation δym and δxm to emphasize that these are coordinates on the moduli space of

flat connections rather than on Σg. This space is finite dimensional and so the symbol δ does not indicate

here any functional variation, just a standard differential onMflat(Σg,SL(2,C)).

The construction of the FN coordinates and their relation to the 4-simplex geometry is detailed in the

next section. The reader not interested in these details can safely skip it. For her, here is a very brief—

heuristic—account of this construction: from equation (3.3), one sees that the variable canonically conju-

gated to the meridian holonomy must be related to the longitudinal one; indeed, one can think of ym as being

given by the eigenvalue of the longitudinal holonomies Gm transverse to Hm, once the source and target

frames of Gm have been appropriately fixed.

13 Presymplectic means that gauge transformations have yet to be modded out and hence that the ensuing presymplectic 2-form

δ[1δ2]CS |∂ is degenerate.
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3.1 Complex Fenchel–Nielsen Coordinates onMflat(Σ6,SL(2,C))

In this section, we review the construction of FN coordinates onMflat(Σ6,SL(2,C)). After choosing a pair

of pants (or trinion) decomposition of Σ, we focus on two such pairs of pants Ta and Tb, and the cylinder

connecting them. At each pair of pants, we choose base points, oa and ob. Starting and ending at these base

points, we consider the holonomies Hab and Hba, respectively, which encircle once the tube connecting Ta

to Tb.

The holonomies Hab and Hba can then be diagonalized by an appropriate choice of reference frame at

oa,b. In formulas:

Hab = Mab

(
xab 0

0 x−1
ab

)
M−1

ab , where Mab = (ξab, Jξab) , (3.6)

for some normalized spinors ξab ∈ C
2. A spinor ξ is here said to be normalized, iff 〈ξ, ξ〉 = 1, where

〈ξ, η〉 = ξ̄1η1 + ξ̄2η2, (3.7)

and the spinor Jξ is orthogonal to ξ and is defiened by the aaction of the antilinear map J:

J

(
ξ1

ξ2

)
≡

(
−ξ̄2

ξ̄1

)
. (3.8)

For connections satisfying our boundary conditions, i.e. for SL(2,C) connections that reduce to SU(2)

connections in proximity of the graph vertices, the eigenvalue xab must then satisfy xab ∈ U(1). Also, for the

geometry to be non-degenerate, xab , 1. The latter condition will be assumed in the following.

Now, the parallel transport Gab is defined as the holonomy of the flat connection A between ob to oa

(holonomies compose from the right) along the tube connecting Tb to Ta. Notice that there is no canonical

choice of path along which to define Gab.

From the flatness of the connection A, it follows immediately that

Hab = GabHbaGba, (3.9)

and Gba ≡ G−1
ab

. From this equation, and equation (3.6), one obtains

(
xab 0

0 x−1
ab

)
M−1

ab GabMba = M−1
ab GabMba

(
xab 0

0 x−1
ab

)
, (3.10)

which in turn implies that M−1
ab

GabMba is diagonal.14 This is readily proved by expressing this matrix in the

basis {1, σi} and commuting it with 1
2
(xab + x−1

ab
) + 1

2
(xab − x−1

ab
)σ3. Thus,

M−1
ab GabMba =

(
λab 0

0 λ−1
ab

)
, (3.11)

and so,

Gabξba = λabξab. (3.12)

The Fenchel–Nielsen twist coordinate yab is closely related to λab, but the two are not precisely the

same. They differ by a particular cross-ratio of inner products between the {ξab′ , ξa′b}, where b′ ranges over

the three links emanating from Ta, and similarly for a′.

The cross ratios just guarantee scale invariance in the choice of a basis at oa,b, while the inner products

between the {ξab′ , ξa′b} are crucial to “pick out the right components” of Gab in the Poisson brackets. In other

14 Mab is not the inverse of Mba.
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words, whereas the Hab start and end at the same point, and the trace is good enough to select the invariant

part of these holonomies, the Gab must be sandwiched in between their starting and ending reference bases.

The construction proceeds as follows. Start by observing that the canonical Atiyah–Bott–Goldman

brackets (the Lie algebra basis is chosen to be τi ≡
i
2
σi)

{Ai
µ(x), A

j
ν(y)} = −

8π

t
εµνδ

i jδ(2)(x, y), (3.13)

induce the following brackets between the parallel transports Hab and Gba:

{
Gba

⊗, Hab

}
=

2π

t

(
G[ob, p]σ jG[p, oa]

)
⊗

(
H[oa, p]σ jH[p, oa]

)
(3.14)

where p is the (by construction) unique intersection point between the paths defining Gba and Hab.15 The

point p, also splits these paths in two, and hence provides the decompositions Gba = G[ob, p]G[p, oa] and

Hab = H[oa, p]H[p, oa].

Defining the SL(2,C) invariant bi-linear inner product

〈ξ ∧ η〉 ≡ 〈Jξ, η〉 = εαβξ
αηβ, (3.15)

we have, after a few lines of algebra,

{
〈ξba′ ∧Gbaξab〉, tr(H)

}
=

2π

t
〈Gabξba′ ∧ σ jξab〉 tr(σ jHab), (3.16)

where we used the identity Mσ jM
−1 ⊗ σ j = σ j ⊗ M−1σ jM, and the fact that the holonomy Hab(p), repre-

senting Hab with base point parallel transported to p, can be expressed in two equivalent ways (thanks to the

flatness of the connection A):

H[p, oa]H[oa, p] = Hab(p) = G[p, oa]HabG[p, oa]−1. (3.17)

Now, at oa, Hab(oa) ≡ Hab, is diagonal precisely in the basis {ξab, Jξab}, thus using equation (3.6) and the

identity Mabσ jM
−1
ab
⊗ σ j = σ j ⊗ M−1

ab
σ jMab, we find

{
〈ξba′ ∧Gbaξab〉, tr(H)

}
= (xab − x−1

ab ) 〈ξba′ ∧Gbaξab〉. (3.18)

Or, equivalently,

{
ln〈ξba′ ∧Gabξab〉, ln xab

}
= −

2π

t
. (3.19)

Thus, we see that the contraction above extracts the non-trivial part of the brackets (3.14).

To define the canonically conjugate FN coordinates we need to (i) symmetrize between the two choices

of a′ in the above formula, i.e. between the two punctures at Tb not touched by the parallel transport

along the tube connecting Tb to Ta, and (ii) find a combination of the inner products that is invariant under

meaningless rescaling of the basis vectors. These two requirements are readily satisfied by the following

definition of the FN twist coordinate:

τab = −
〈ξba′ ∧ ξba′′〉

〈ξba′ ∧Gbaξab〉 〈ξba′′ ∧Gbaξab〉

〈ξab′ ∧ ξab〉 〈ξab′′ ∧ ξab〉

〈ξab′ ∧ ξab′′〉
, (3.20)

15Of course, according to our construction the paths defining Gba and Hab intersect at the point oa, as well. However, it is not too hard

to convince oneself that the construction is invariant under homotopic deformations of the paths. This means that one can regularize

the paths for the Hab by choosing them to first follow the path defining Gba out of oa and up to the point p, and then to abruptly depart

transversally. The only contributions to the Atiyah–Bott–Goldman brackets then come from the loop leaving and arriving at p, while the

tail to oa plays no role. This trick can be used to regularize our expressions. Alternatively, one can consider a homotopically equivalent

loop to define Hab, which does not starts at oa and only intersects the path defining Gba at p. Since the result of the construction only

involves the eigenvalues of Hab, one can confidently extend this result to paths whose base point is arbitrarily close to oa.
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where a′, a′′ , a (respectively, b′ b′′ , b) label the two other punctures at Tb (respectively, Ta). From

this expression it is clear that only the two terms in the first denominator contribute to the Poisson bracket

{τab, xab}, while the other factors just ensure the requirements above are satisfied.

Also, from the SL(2,C) invariance of the inner product 〈· ∧ ·〉, it readily follows that the various factors

entering τab can be computed at any point of the surface, provided one defines the parallel transported

sections sab, by (d−A)sab = 0 and sab(p0) = s0
ab

, for s0
ab

an eigenvector (determined up to complex rescaling)

of Hab(p0) based at some point p0 on the tube connecting Ta and Tb. Similar definitions are understood for

all the other choices of indices. We emphasize that both the complex normalization of s0
ab

and the point

at which it is defined are completely irrelevant at this point (cf. footnote 15). This shows that the the FN

coordinates can be ultimately defined in a completely geometrical way, without reference to any basis. For

our purposes, however, it is easiest to work in the basis provided above, since it allows for a direct translation

to the underlying simplicial geometry.

One last technical consideration is in order: being “quadratic” in Gab, the complex FN twist variable τab

is actually a coordinate on the moduli space of PSL(2,C) flat connections, rather than on the moduli space

of SL(2,C) flact connections. A lift to the coordinate yab, such that

y2
ab = τab, (3.21)

is then needed to complete the construction of the SL(2,C) FN twist coordinate.

To summarize, given the eigenvalues of xab and λab of Hab and Gab, respectively (the latter as expressed

in the proper frame at each oa, defined by {ξab, Jξab} as above), the SL(2,C) FN coordinates and their Poisson

brackets are

xab and yab = λab

√
χab(ξ) with

{
ln yab, ln xcd

}
=

2π

t
δ(ab),(cd), (3.22)

where a branch of the square root has been arbitrarily chosen and χab(ξ) stands for the cross ratio

χab(ξ) = −
〈ξba′ ∧ ξba′′〉

〈ξba′ ∧ ξba〉 〈ξba′′ ∧ ξba〉

〈ξab′ ∧ ξab〉 〈ξab′′ ∧ ξab〉

〈ξab′ ∧ ξab′′〉
. (3.23)

3.2 Holomorphic 3d Blocks and Quantum Flatness

The previous analysis suggests the following definitions for Darboux coordinates (um, vm):

xm = eum and ym = e
−

2π
t

vm , (3.24)

where an arbitrary branch of the logarithm has been chosen. Analogous equations are understood to define

the complex conjugate variables (ūm, v̄m). Hence, the Atiyah–Bott–Goldman symplecitc form onMflat(Σg,SL(2,C)),

see equation (3.5), reads

ωCS =

3g−3∑

m=1

δvm ∧ δum + c.c., (3.25)

or, in terms of Poisson brackets,

{um, vn} = δmn = {ūm, v̄n}. (3.26)

The above relations lead one to introduce the quantum operators (ûm, v̂m) and ( ˆ̄um, ˆ̄vm) with canonical

commutation relations

[
ûm, v̂n

]
= i~δmn, and

[
ˆ̄um, ˆ̄vm

]
= i~δmn. (3.27)

Equivalently, in terms of the operators (x̂m, ŷm), one finds

x̂mŷm = e−
2πi~

t ŷm x̂m, and x̂nŷm = ŷm x̂n, when n , m, (3.28)
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with similar equations for ( ˆ̄xm, ˆ̄ym).

The Hilbert space H(Σg) of “quantum flat-connections” can hence be constructed as the (Schrödinger)

L2-type representation of the above canonical commutation relations: a state inH(Σg) is a wave function of

(u, ū), on which (û, ˆ̄u) act by multiplication and (v̂, ˆ̄v) by derivation, e.g. v̂ = −i~∂u. In particular, the path

integral of equation (3.4) should be written as ZCS (M3|u, ū).

The classical solutions to the Chern–Simons equations of motion F(A) = 0 = F(Ā) on M3 define

a holomorphic Lagrangian subvariety LA(M3) in Mflat(Σg = ∂M3,SL(2,C)) [32, 33]. At least locally in

Mflat(Σg = ∂M3,SL(2,C)), this Lagrangian subvariety is described by a set of (Laurent) polynomial equa-

tions,

Am(x, y) = 0 m = 1, . . . , 3g − 3. (3.29)

In quantum Chern–Simons theory, the holomorphic part of LA(M3) can then be quantized via the introduc-

tion of an operator version of the above equations,

Âm(x̂, ŷ; ~)Ψ(u) = 0. (3.30)

Here Âm(x̂, ŷ; ~) is the quantization of Am(x, y) defined by a specific operator ordering [69], and consequently,

Ψ ∈ H(∂M3) is the physical wave function of the holomorphic part of SL(2,C) Chern-Simons theory

associated with M3. It is a holomorphic function of u as a consequence of the holomorphicity of LA and

Am(x, y) = 0.

The functional integral ZCS (M3|u, ū) of equation (3.1) must satisfy at the same time the above operator

constraint and its complex conjugate,

Âm(x̂, ŷ, ~) ZCS

(
M3

∣∣∣ u, ū
)
= 0 = Âm( ˆ̄x, ˆ̄y, ~) ZCS

(
M3

∣∣∣ u, ū
)
. (3.31)

It was shown in [6, 25] that ZCS

(
M3

∣∣∣ u, ū
)

can be in fact written as a sum over branches of factorized wave

functions

ZCS

(
M3

∣∣∣ u, ū
)
=

∑

α,ᾱ

nα,ᾱ Z
(α)
CS

(
M3

∣∣∣ u
)

Z
(ᾱ)
CS

(
M3

∣∣∣ ū
)
. (3.32)

This expression introduces the “holomorphic 3d blocks” Z
(α)
CS

(
M3

∣∣∣ u
)

which satisfy the holomorphic operator

constraints:

Âm (x̂, ŷ, ~) Z
(α)
CS

(M3| u) = 0 ∀ α, (3.33)

and similarly for the antiholomorphic part

Âm( ˆ̄x, ˆ̄y, ~) Z
(ᾱ)
CS

(M3 | ū) = 0 ∀ ᾱ. (3.34)

These are the central objects to be studied below. Each block, Z
(α)
CS

(M3| u), can be understood using

Morse theory as a path integral of the holomorphic SL(2,C) Chern-Simons theory, heuristically identified

with the holomorphic part of equation (3.1), as defined along a certain integration cycle which encloses a sin-

gle saddle point α, i.e. a classical solution in the form of a flat connection on M3 [6]. Each of the integration

cycles defining a Z
(α)
CS

(M3| u) is known as a “Lefschetz thimble” of the Chern-Simons path integral.

Most interestingly for the purposes of this paper, the holomorphic 3d block, seen as an asymptotic

expansion in ~, can also be understood from the viewpoint of a systematic WKB analysis of the above
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operator constraint equations. At lowest order in ~, this reads16

Z
(α)
CS

(
M3

∣∣∣ u
)
= exp



i

~

(u,v(α))∫

(u0,v0)
C⊂LA

ϑ + · · ·


and Z

(ᾱ)
CS

(
M3

∣∣∣ ū
)
= exp



i

~

(ū,v̄(ᾱ))∫

(ū0,v̄0)
C⊂LA

ϑ̄ + · · ·


. (3.35)

where ϑ and ϑ̄ are the holomorphic and anti-holomorphic parts of the Liouville 1-form (symplectic potential)

onMflat(∂M3,SL(2,C)). As discussed in the previous section, these can be written locally in terms of the

Fenchel–Nielsen coordinates (xm, ym) and (x̄m, ȳm) as

ϑ =
(
−

t

2π

) 3g−3∑

m=1

ln ym

δxm

xm

and ϑ̄ =

(
−

t̄

2π

) 3g−3∑

m=1

ln ȳm

δx̄m

x̄m

. (3.36)

In these formulas, α labels the branches of the Lagrangian subvarietyLA that arise from solving Am(x, y) = 0

and on which the vm(α) are single-valued functions of um.

The integral in equation (3.35) is performed along a contour C within the Lagrangian subvariety LA

connecting the flat connection (u, v(α)) in the branch α to a reference flat connection (u0, v0). In our context,

both flat connections at the end points of C are covered by a single FN coordinate chart. The last two equa-

tions provide the starting point of our semiclassical analysis leading to 4d simplicial quantum gravity in the

next section.

For now, we conclude this discussion with a series of more technical remarks, which can be skipped on

a first reading.

Overall phase The freedom in fixing the overall phase of the wave function ZCS

(
M3

∣∣∣ u, ū
)

is, of course,

related to the choice of a reference flat-connection (u0, v0), (ū0, v̄0). Let (u, ū) be the boundary values defin-

ing the path integral ZCS

(
M3,

∣∣∣ u, ū
)
; we can choose the reference flat connection to be a pair of solutions

(u, v(α0)) , (ū, v̄(ᾱ0)) of Am(u, v) = 0, such that (α0, ᾱ0) denote reference branches. Then, the phase differ-

ence between another pair of flat connections (u, v(α)) , (ū, v̄(ᾱ)) in the branches α, ᾱ and the reference pair

(u, v(α0)) , (ū, v̄(ᾱ0)) will be given by

Z
(α)
CS

(
M3

∣∣∣ u
)
= exp



i

~

(u,v(α))∫

(u,v(α0))
C⊂LA

ϑ + · · ·


, Z

(α)
CS

(
M3

∣∣∣ ū
)
= exp



i

~

(ū,v̄(α))∫

(ū,v̄(α0))
C⊂LA

ϑ̄ + · · ·


. (3.37)

Integer k When Re(t) = k ∈ Z and ~−1 ∈ Z (once again, ~−1 is here understood solely as a scaling parameter

for the couplings (t, t̄)), the Lagrangian subvariety LA becomes quantizable, which means that the integrals

of equation (3.35) do not depend on the choice of the contour since
∮
ϑ ∈ 2π~Z on LA. This fact has a

beautiful algebraic K-theoretical interpretation: indeed, LA is Lagrangian in a stronger sense, i.e. it is a

K2-Lagrangian subvariety [33, 69, 72]. A very brief explanation of this fact is given in Appendix A. In

the case of knot-complement 3-manifolds, the fact that LA is quantizable was understood very early on by

[73–76].

16 In this equation, “· · · ” contains the subleading terms of log ~ and
∑∞

n=0 S
(α)
n (u)~n. If M3 is a knot complement [71], known tech-

niques related to topological recursion allow one to recursively [25] compute all the quantum corrections S n(u)(α). The computation of

coefficients nαᾱ in equation (3.32) is described in [6]. Hence, the above discussion provides a perturbative definition of the holomorphic

3d block Z
(α)
CS

(
M3

∣∣∣ u
)
. A nonperturbative definition has also been proposed in terms of a “state-integral model” [8, 25, 41].
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Logarithmic variables Although the Lagrangian subvariety LA is defined by Am(x, y) = 0 in terms of the

variables (xm, ym), the holomorphic 3d block Z
(α)
CS

(M3|u) is rather a function of the logarithmic coordinates um,

satisfying equation (3.33). This means that Z
(α)
CS

(M3|u) need not, in general, be a periodic function of u under

u→ u+2πi. Therefore, Z
(α)
CS

(M3|u) and Z
(α′)
CS

(M3|u) have to be considered two different 3d holomorphic blocks

even when v(α) and v(α′) give the same ym = e−
2π
t

vm . The reason is essentially that Z
(α)
CS

(M3|u) is defined by

the path integral of an analytic continuation of Chern–Simons theory with t extended to an arbitrary complex

number (see [6], as well as the second reference in [8]): by relaxing the requirement that k ∈ Z, one defines

Z
(α)
CS

(M3|u) as a path integral on the covering space of gauge equivalent classes of connections, which means

that configurations related by large gauge transformations should not be identified.

The integration contour C appearing in the formulas above strictly speaking lies in the cover space

of LA. In the analytic continued Chern–Simons theory, we have
∮

v · δu = 0 on the cover space of LA,

which is explained in Appendix A. Hence, fix u, and consider (u, v(α)) and (u, v(α′)) two different solutions

corresponding to the same flat connection (x, y) on M3, where v(α), v(α′) are different lifts of y = e−
2π
t

v to

the cover space. Then, v(α) and v(α′) differ by an integer multiple of it. Thus the classical terms in equation

(3.35), which are
∫ (u,v(α))

ϑ and
∫ (u,v(α′))

ϑ, must differ by an integer multiple of it u. This can be used to show

that there is no difference in the quantum corrections between S
(α)
n (u) and S

(α′)
n (u) [25].

3.3 Asymptotics of holomorphic 3d Block and Simplicial Quantum Gravity

After this general review on the quantization of flat connections on a three manifold, we turn our attention

back to those connections satisfying the “geometricity” boundary conditions that we introduced in the first

part of this paper. These boundary conditions allow a one-to-one mapping between flat connections and

homogeneously curved 4d simplicial geometries.

The content of the needed boundary conditions is the following: in the vicinity of each vertex of Γ5 ∈ S
3,

the SL(2,C) flat connection reduces to an SU(2) flat connection. To express this conditions in terms of the

FN coordinates, we introduce an adapted pair of pants decomposition of Σ6, the tubular neighborhood of

Γ5. Since Σ6 is already naturally decomposed into five 4-holed spheres Sa, a = 1, . . . , 5, we just need to

split each of these into two pairs of pants (Ta,T
′
a). As a result, we obtain the following two sets of FN

coordinates: {xab, yab}a>b which are attached to the tubes connecting two 4-holed spheres Sa and Sb, and

{xa, ya}a, which resolve the internal structure of each 4-holed sphere Sa.

As a consequence of the boundary conditions, the FN lengths coordinates must have unit norm, i.e.

xab, xa ∈ U(1), (3.38)

and, in addition, the pairs {xa, ya} have to parametrize an SU(2) flat connection on Sa with given conjugacy

classes {xab}b,b,a associated to its holes.

Thanks to the geometric correspondence explained in Section 2.3, a holomorphic 3d block Z(α)(M3|u)

that solves the A-polynomial equation (3.33), and moreover, satisfies the above boundary conditions can

be readily interpreted as a quantum state of a 4d simplicial geometry peaked around a particular classical

geometry. This peakedness cannot be arbitrarily sharp, due to the Heisenberg relations between xa and ya.

In this section, we analyze the asymptotic behavior of such a Z(α)(M3|u) as ~ → 0, and find evidence

that it corresponds to a physical state of simplicial 4d Quantum Gravity.

Consider a set of boundary data
[
xab; xa, ya

]
satisfying the geometricity (and non-degeneracy) condi-

tions. Theorem 2.4 states that there are then exactly two connections A and Ã inMBC
flat

(M3 = S 3\Γ5,SL(2,C))

that are consistent with the boundary data, and which correspond precisely to the two orientations of a geo-

metric homogeneously curved 4-simplex.

These two bulk connections A and Ã in M3 = S3 \ Γ5, induce on the boundary ∂M3 = Σ6 two different

flat connections, which we call A and Ã, respectively. The two connections, A =
[
xab, yab; xa, ya

]
and Ã =[

xab, ỹab; xa, ya

]
, are covered by a single FN coordinate chart. The 10 twist variables yab differ from ỹab by a
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parity transformation in the simplicial geometry, and must therefore be related by a simple transformation.

As the reconstruction theorem of Section 2.3 suggests xab = euab , yab = e−
2π
t

vab and ỹab = e−
2π
t

ṽab are related

to the areas and (hyper)dihedral angles of the 4-simplex in the following manner:

uab = −iν
Λ

6
aab + iπsab + 2πiMab, (3.39)

vab(α) =
t

4π
νΘab +

it

2π
ν θab −

t ln χab(ξ)

4π
− itνN′ab, (3.40)

ṽab(α̃) = −
t

4π
νΘab +

it

2π
ν θab −

t ln χab(ξ)

4π
− itνÑ′ab, (3.41)

where recall v ∈ {±1} is a global sign, sab ∈ {0, 1}, and Mab, Nab, Ñab ∈ Z are arbitrary integers related to the

(necessitated) lift to logarithmic FN variables (u, v). The relation between u and the areas and between v and

the boost hyperdihedral angles are made more plausible by Eqs. (2.38) and (2.42), for further details and a

proof see [20].

A similar lift is presupposed to be chosen for the variables
[
xa, ya

]
which parametrize the shape of the

five tetrahedra of fixed areas {aab}.
17 In the following, an important role will be played by the difference

between vab(α) and ṽab(α̃). This is given by

vab(α) − ṽab(α̃) =
t

2π
ν
(
Θab + 2πiNab

)
, (3.42)

where Nab = Ñ′
ab
− N′

ab
∈ Z (note that the logarithm branches of α and α̃ need not be related).

As we have already discussed, there is an overall phase ambiguity in the 3d holomorphic blocks. Of

course, this ambiguity cannot be removed, since it is intrinsic to the quantum formalism. However, what

really matters in the WKB scheme discussed above, is the phase difference between the various contributions.

This quantity has an absolute meaning, and it is exactly what we are going to evaluate. A convenient way of

doing this is to fix the reference connection in the integrals of equation (3.35) (or (3.37)) to be e.g. (u, v(α̃)).

In this way, the phase we are interested in calculating is the leading order of

Z(α)
(
M3

∣∣∣ u
)
= exp

[
i

~
Iαα̃

(
u, v(α), v(α̃)

)
+ · · ·

]
with Iαα̃

(
u, v(α), v(α̃)

)
=

(u,v(α))∫

(u,v(α̃))
C⊂LA

ϑ. (3.43)

For completeness, we recall here that the Liouville 1-form ϑ is given by

ϑ =
∑

a<b

vabδuab +

5∑

a=1

vaδua, (3.44)

where δ is a finite dimensional differential in the (u, v) space (we adopted this notation to avoid confusion

with the differential on M3 or Σ6).

To evaluate the integral above, it is useful to have a more geometric picture in mind. Recall that

the set of solutions to the operator constraint of equation (3.33) defines a Lagrangian subvariety LA =

Mflat(M3,SL(2,C)) within Mflat(∂M3,SL(2,C)). Theorem 2.4 can be rephrased as stating that the plane

P[xab;xa,ya] of constant
[
xab; xa, ya

]
intersects LA in precisely two points,

[
xab, yab; xa, ya

]
and

[
xab, ỹab; xa, ya

]
,

corresponding to two 4-simplices differing only be their parities. This is schematically represented in Fig-

ure 5. The idea is that, instead of directly attempting the calculation of the integral Iαα̃ (u, v(α), v(α̃)), we

first evaluate its variation under a slight change of the planes P[xab;xa,xa]—or more precisely of their lifts

P[uab;ua,va]—and then integrate this variation.

17A tetrahedron is completely fixed by its 6 edges, therefore to the 4 areas two more parameters have to be added. See [38] for a

detailed analysis of this fact in the homogeneously curved case.
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Figure 5. The Lagrangian subvariety LA and the plane P[xab;xa ,ya] intersect at 2 different points. The bent (green) curve

is the integration contour C lying inLA, and connects the pair of intersection points. The (orange) vertical line represents

the plane P[xab;xa ,ya] and intersects C at 2 points. The dashed (orange) vertical line represents the variation P[xab ;xa ,ya](η)

from P[xab ;xa ,ya]. The second plane P[xab ;xa ,ya](η) intersects LA at a different pair of points, which are also connected by

the extended integration contour C(η). The 2 (green) segments in between the (orange) line and dashed (orange) line are

the curve extensions δC = c ∪ c̃. In this figure we suppress the coordinates xa, ya.

To do this, we introduce a one-parameter family of boundary data
[
xab(η); xa(η), ya(η)

]
, with η ∈ [0; 1],

all compatible with some 4-simplex geometry. This family can be readily lifted to
[
uab(η); ua(η), va(η)

]
. The

variations involved in this family being smooth, they do not allow for changes in the lifts nor in the branches

α and α̃ in which the intersections v
(α)

ab
(η) and v

(α̃)
a (η) live. Hence, we define the variation

δηIαα̃ (η) = Iαα̃ (η + δη) − Iαα̃ (η) (3.45)

where Iαα̃ (η) is a shorthand notation for Iαα̃

(
u(η), v(α)(η), v(α̃)(η)

)
. BecauseLA is Lagrangian there is a freedom

in the contour of integration C entering the definition of Iαα̃ , we use this freedom to deform the contour so

that it contains the path parametrized by η, that is C ⊃ Cη where

Cη =
⋃

η

(
LA ∩ P[uab(η);ua(η),va(η)]

)
. (3.46)

Now, Cη is composed by two portions, Cη = c ∪ c̃, contained in the branches α and α̃, respectively

(see Figure 5). As a result, δηIαα̃ can be expressed as the sum of two line integrals contained in c and c̃.

Developing these integrals at first order in δη, we find

δηIαα̃ =



δη∫

0
c⊂LA

−

δη∫

0
c̃⊂LA




∑

a<b

vabδuab +
∑

a

vaδua

 =
∑

a<b

(
v(α)ab − v(ã)ab

)
δηuab + · · · . (3.47)

Here the dots stand for second order corrections in δη2, while δηuab is the first order development of uab(η +

δη) − uab(η). Furthermore, we used the fact that the contributions coming from the two branches to the

integral of
∑

a vaδua cancel each other (exactly). This is because the integrations along each section have

opposite orientation and va and ua are the same on each portion because they are fixed by the boundary

conditions.
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Now, using the geometric correspondence of equation (3.41), one finds that at first order

δηIαα̃ =

(
Λt

12πi

)∑

a<b

Θabδηaab +

(
Λt

6

)∑

a<b

Nabδηaab. (3.48)

Since ηwas supposed to parametrize a continuous family of actual 4-simplex geometries, the above variation

can be integrated thanks to the Schläfli identities, which state that for a continuous family of homogeneously

curved 4-simplices,

δηVolΛ4 = Λ
−1

∑

a<b

aabδηΘab, (3.49)

where VolΛ4 is the 4-volume of the homogeneously curved 4-simplex of curvature Λ. Hence,

Iαα̃ =

(
Λt

12πi

) 
∑

a<b

aabΘab − ΛVolΛ4 +Cα
α̃

 +
(
Λt

6

)∑

a<b

Nabaab. (3.50)

Notice that in this expression the dependence of branches α, α̃ is contained in the integration constant Cα
α̃, as

well as in the terms
(
Λt
6

)∑
a<b Nabaab. We will comment more about them in the later paragraphs. The proof

of Schläfli identity can be found in e.g. [43, 79], see also [80] for a symplectic and semiclassical perspective.

From the previous equations, we deduce the following leading order expression for the holomorphic 3d

block with our boundary condition imposed, Z
(α)
BC

(M3|u):

Z
(α)
BC

(M3|u) = exp


i

~

(
Λt

12πi

) 
∑

a<b

aabΘab − ΛVolΛ4

 +
i

~

(
Λt

12πi

)
Cα
α̃ +

i

~

(
Λt

6

)∑

a<b

Nabaab + · · ·

 . (3.51)

To go further with our analysis, it is important to recall that—although the holomorphic 3d block stud-

ied above is the fundamental unit of the CS quantum state—the full quantum state is given by a sum of

products of holomorphic and antiholomorphic blocks, as in equation (3.32). In particular, the product of the

holomorphic block above and its antiholomorphic counterpart gives

Z
(α)
BC

(
M3

∣∣∣ u
)

Z
(ᾱ)
BC

(
M3

∣∣∣ ū
)
=

exp


i

~
2Re

(
Λt

12πi

) 
∑

a<b

aabΘab − ΛVolΛ4

 +
i

~
2Re

(
Λt

12πi
Cα
α̃

)
+

i

~
2Re

(
Λt

6

)∑

a<b

Nabaab + · · ·

 .

(3.52)

The anti-holomorphic block is defined by complex conjugation of (u, v(α)) with the reference being the

complex conjugate of (u, ṽ(α̃)).

Given our phase convention, we find that at leading order in ~ the phase of the above product vanishes

for the branch given by α → α̃. Therefore, assuming that the coefficient nα,ᾱ in equation (3.32) is the same

for α and α̃ (which is more than reasonable given the symmetry which relates the two branches), we find

that the total wave function—up to an irrelevant global phase—is

ZBC(M3|u, ū) ∼ cos


ΛIm(t)

12π~


∑

a<b

aabΘab − ΛVolΛ4

 + Im

(
Λt

12π~
Cα
α̃

)
+ Re

(
Λt

6~

)∑

a<b

Nabaab + · · ·

 .

(3.53)

This is our main result. A few comments are in order. First of all let us explain the notation: ∼ highlights the

fact that an irrelevant overall phase has been neglected (and, conversely, the presence of a cosine highlights

the relevant interference between the two branches), whereas the ellipsis · · · indicates that, as usual, only

the leading order in ~ has been taken into account. Second, and most importantly, in the expression above
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we recognize the appearance of the Hamilton–Jacobi functional for General Relativity on a homogeneously

curved 4-simplex. This is the on-shell Regge action for such a 4-simplex [43, 81]:

S Regge =
1

8πGN


∑

a<b

aabΘab − ΛVolΛ4

 . (3.54)

This observation allows us to identify the (inverse) Newton constant with the imaginary part of the CS

coupling t:

GN =

∣∣∣∣∣
3

2ΛIm(t)

∣∣∣∣∣ . (3.55)

Or, in terms of the (squared) Planck length `2
Pl
= 8π~GN,

∣∣∣∣∣
Im(t)

~

∣∣∣∣∣ =
∣∣∣∣∣∣
12π

Λ`2
Pl

∣∣∣∣∣∣ , (3.56)

where dimensionless quantities are now being compared. This relation with the on-shell Regge action is

what allows us to claim a relation between the quantization of SL(2,C) flat connections on S 3 \ Γ5 with

appropriate boundary conditions and simplicial 4d Quantum Gravity with cosmological constant.

The Regge action, though, is not the only term appearing in the leading order expression of ZBC(M3|u, ū).

This takes us back to the integration constant Cα
α̃, which—as such—must be independent of the geometry.

This constant is actually expected to depend on the behavior of LA at the singularity yab = ỹab where the two

branches meet, and the geometry degenerates. These kinds of contributions have been studied extensively in

the literature on WKB and semiclassical approximations, where they are known as Maslov indices [82, 83].

This term is similar to the phase offset which appears in the asymptotics of the 3d Ponzano–Regge model

with respect to the standard 3d Regge action [84–86]. Finally, we are left with the ambiguity associated

with the logarithmic lifts, which is given by

Re

(
Λt

6~

)∑

a<b

Nabaab. (3.57)

To start with, let us notice that this ambiguity does not affect the asymptotics if Re(t) = 0. However, requiring

that this ambiguity is not present in the generic case is equivalent to asking that the areas aab of the 4-simplex

triangles be quantized:

aab ∈
12π~

ΛRe(t)
Z. (3.58)

This corresponds to an equidistant spacing in the area spectrum given by

∆a =
Im(t)

Re(t)
`2

Pl. (3.59)

This condition will be analyzed again in the next section, where it will acquire a special meaning in relation

to an explicit imposition of the desired boundary conditions inspired by Loop Quantum Gravity.

4 Wilson Graph Operator and Boundary Conditions

In the previous sections we studied complex Chern–Simons theory on the Γ5 graph complement 3-manifold

M3, with certain boundary conditions. We also saw how our boundary conditions correspond to quantum

states of the Chern–Simons theory on ∂M3 = Σ6 encoding quantum 4-simplicial geometries with a semiclas-

sical amplitude given by a discretized form of the Einstein–Hilbert functional.
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We now show how these precise boundary conditions can be imposed by introducing a specific Wilson

graph operator supported on Γ5 within the complex Chern–Simons theory. In this section, we restrict our

analysis to the case where Re(t) = k ∈ Z and ~−1 ∈ Z.

The idea is the following: a general feature of topological quantum field theory is that imposing specific

boundary conditions on the path integral (on M3) corresponds to evaluating the amplitude of a specific

quantum state inH(Σ6), associated to the boundary ∂M3 = Σ6 (see e.g. [8]). In formulas

A [xab; xa, ya] :=

〈
Ψ
Γ5

[xab;xa,ya]

∣∣∣∣ ZCS (M3)

〉

H(Σ6)
, (4.1)

where Ψ
Γ5

[xab;xa,ya]
∈ H(Σ6) imposes the boundary conditions [xab; xa, ya]. More explicitly, the state Ψ

Γ5

[xab;xa,ya]

can be defined via a path integral through the insertion of a Wilson graph operator at the center of the tubular

neighborhood of Γ5, N(Γ5). Indeed the boundary of N(Γ5) is Σ̄6, i.e. identical to ∂M3, but with opposite

orientation—a fact that ensures the above contraction is natural.

Specifically, we consider SL(2,C) Chern–Simons theory on N(Γ5) and define a knotted Wilson graph

operator Γ
[ jab,ξab]

5
[A, Ā] located at the core of N(Γ5) [20], such that Ψ

Γ5

[xab;xa,ya]
can be written as

Ψ
Γ5

[xab;xa,ya]

(
A1, Ā1

)
:=

∫

A1,Ā1

DADĀ e
i
~

CS [N(Γ5) | A,Ā] Γ
[ jab,ξab]

5
[A, Ā]. (4.2)

The relation between the operator labels [ jab, ξab] and the state or boundary condition labels [xab; xa, ya] will

be spelled out soon. With the above definitions, the properties of the inner product inH(Σ6) ensure that

A [xab; xa, ya] =

∫
DADĀ e

i
~

CS [S 3 | A,Ā] Γ
[ jab,ξab]

5
[A, Ā]. (4.3)

We come now to the definition of the knotted Wilson graph operator Γ
[ jab,ξab]

5
[A, Ā] (see also [20]), which

is conveniently presented as a list:

• Each edge `ab connecting two 4-valent vertices of the graph Γ5 is labeled by a unitary irreducible

representaiton (“irrep”) of SL(2,C) in the principal series (such irreps are necessarily infinite dimen-

sional as a consequence of the non-compactness of SL(2,C)). These representations are required to

be of a specific form. Before specifying this form, let us recall that the unitary irreps of SL(2,C) in

the principle series depend on two parameters ( j, ρ), with j ∈ 1
2
Z+ and ρ ∈ R [87]. Moreover, these

irreps can be decomposed as an infinite tower of SU(2) irreps, i.e. their Hilbert spaces decompose as

V j,ρ = ⊕k≥ jVk, where Vk is the SU(2) irrep with spin k ∈ 1
2
N. Using this decomposition, a basis of V j,ρ

is given by |( j, ρ); k,m〉. Coming back to our own Wilson graph operator Γ
[ jab,ξab]

5
, we require that the

specific irreps attached to the edges `ab have the form ( jab, ρab) = ( jab, γ jab), for some fixed γ ∈ R.18

• Each of the two end points of an edge `ab in Γ5 is equipped with an SU(2) Perelemov coherent state,

| jab, ξab〉 ∈ V jab
, and | jba, ξba〉 ∈ V jab

, respectively. The state | j, ξ〉 is defined via an SU(2) action on the

highest weight vector | jab, jab〉 [88]. Specifically, denoting the Wigner matrix of g in the SU(2) irrep

V j as D j(g) : V j → V j, we have

| j, ξ〉 := D j(gξ)| j, j〉 where gξ ≡

(
ξ1 −ξ̄2

ξ2 ξ̄1

)
∈ SU(2), (4.4)

for some normalized 2-spinor ξ, 〈ξ, ξ〉 = ξ̄1ξ1 + ξ̄2ξ2 = 1. The coherent states | j, ξ〉 form an over-

complete basis in V j and provide the resolution of the identify

1 j = (2 j + 1)

∫

S 2

dµ(ξ) | j, ξ〉〈 j, ξ|. (4.5)

18In the next section we will see that γ corresponds to the Barbero–Immirzi parameter of Loop Quantum Gravity.
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Here, the integration domain is the coset space S 2 = SU(2)/U(1), since | j, ξ〉 7→ eiφ| j, ξ〉 = | j, eiφξ〉

leaves the integrand invariant. The phase convention for ξ needs to be fixed by convention in order to

define the coherent state basis. Once the phase information is fixed, we can think of | j, ξ〉 as labeled

by a unit 3-vector n̂, rather than a spinor. Indeed, in its spin 1 representation, gξ ∈ SU(2) rotates the

3-vector ẑ = (0, 0, 1)t to the unit vector n̂ξ =
〈
ξ, ~σξ

〉
, where ~σ is the vector of Pauli matrices.

Since the edges of Γ
[ jab,ξab]

5
are labeled by irreps of SL(2,C), and thus naturally carry SL(2,C) group

elements, we need to produce states in H j,γ j from the SU(2) coherent states just described. This is

achieved using the injection map

Y : V j ↪→ V j,γ j, | j, ξ〉 7→ Y | j, ξ〉 := |( j, γ j); j, ξ〉, (4.6)

which identifies the SU(2) irrep V j with the lowest subspace in the tower V j,γ j = ⊕k≥ jVk. At the end

of this construction, the two end points of the edges `ab carry the two states |( jab, γ jab); jab, ξab〉 and

|( jab, γ jab); jab, ξba〉 in V jab,γ jab .

• Finally, the Wilson graph operator Γ
[ jab,ξab]

5
[A, Ā] is defined by a product over all edges `ab of inner

products in each V jab,γ jab :19

Γ
[ jab,ξab]

5
[A, Ā] :=


5∏

a=1

∫

SL(2,C)

dga


∏

a<b

〈
( jab, γ jab); jab, ξab

∣∣∣∣ g−1
a Gabgb

∣∣∣∣( jab, γ jab); jab, ξba

〉
, (4.7)

where

Gab = P exp

∫

`ab

A (4.8)

is the holonomy of A along `ab oriented from b to a. Note that Γ
[ jab,ξab]

5
[A, Ā] is gauge invariant thanks

to the Haar integrals
∏5

a=1

∫
SL(2,C)

dga (in fact, one of these integrals is completely redundant for this

purpose, and has to be dropped to avoid meaningless divergences). Importantly, these inner products

are not holomorphic functions on the complex group SL(2,C), since they come from unitary irreps.

• In formulas (4.2) and (4.3), it is convenient to make a partial gauge fixing. Making use of the invariance

of e
i
~

CS under large gauge transformation (when k ∈ Z), we are allowed to fix the ga = 1 for all a,

while at the same time dropping all the associated integrals. In the following, we will abuse notation

and, despite fixing ga ≡ 1, still denote the Wilson graph operator (4.7) by Γ
[ jab,ξab]

5
[A, Ā].

The knotted Wilson graph operator Γ
[ jab,ξab]

5
[A, Ā] can be split into contributions from the edges {`ab}

and of those from the vertices {a}. To this purpose, we rewrite the inner products in (the gauge fixed)

Γ
[ jab,ξab]

5
[A, Ā] as

∫

(CP1)×2

dzabdzba

〈
( jab, γ jab); jab, ξab

∣∣∣G(`ab)−1
a

∣∣∣zab

〉 〈
zab

∣∣∣G′ab

∣∣∣zba

〉 〈
zba

∣∣∣G(`ab)

b

∣∣∣( jab, γ jab); jab, ξba

〉
, (4.9)

where the edge `ab has been split into three pieces, and the holonomy Gab is, accordingly, written as the

product G
(`ab)−1
a G′

ab
G

(`ab)

b
.

Let us further explain the notation used in Eq. (4.9). Here, we denote the representation of the vector

| f 〉 ∈ V j,ρ by a homogeneous function of two complex variables 〈z| f 〉 =: f (z), i.e. f (z) ≡ f (z1, z2, z̄1, z̄2),

such that for any α ∈ C,

V j,ρ 3 f (αz) = α−1+iρ+ jᾱ−1+iρ− j f (z). (4.10)

19This knotted Wilson graph operator is strictly related to the projected spin-network functions of SL(2,C) [51, 89].
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The inner product in V j,ρ is L2, i.e. 〈 f | f ′〉 =
∫
CP1 dz f̄ (z) f ′(z) with dz = i

2
(z1dz2 − z2dz1)∧ (z̄1dz̄2 − z̄2dz̄1) an

homogeneous measure on C2. For details, see e.g. [87] (or also [90], for a brief summary). These equations

spell out the meaning of the integrals and of the first and last term in the product. We are left with the factor〈
zab

∣∣∣G′
ab

∣∣∣zba

〉
.

This can be written as a path integral that implements the SL(2,C) coadjoint orbit quantization. The

idea is that the unitary irreps of a Lie group G can be obtained by geometric quantization of its coadjoint

orbits. For reviews see [91], or [24] for a nice summary, or the succinct account in Appendix B.

To be more explicit, let us recall that the SL(2,C) coadjoint orbit associated to a generic element λ ∈ sl2C

is the 4-dimensional manifold Ωλ = SL(2,C)/U(1)C = T∗S 2. The base space S 2 can be identified with

CP1 = SL(2,C)/B, with B the Borel subgroup of invertible upper-triangular matrices, and the CP1 here

is the same one that appeared above. Hence, the variable z ∈ CP1 is precisely the position variable of a

Schrödinger representation of Ωλ = T∗S 2. This correspondence should clarify the meaning of
〈
zab

∣∣∣G′
ab

∣∣∣zba

〉
,

as well as its path integral representation

〈
zab

∣∣∣G′ab

∣∣∣zba

〉
≡

〈
zab

∣∣∣Pe

∫
`′
ab

A∣∣∣zba

〉
=

∫ zab

zba

DgabDḡab eiS ′
ab

[gab,ḡab;A,Ā], (4.11)

where the first-order action functional (here A and Ā should be understood as external sources) is

S ′ab[gab, ḡab; A, Ā] = −
1

2

∫

`′
ab

tr
[
(ν + κ)g−1

ab (d + AT )gab + (ν − κ)ḡ−1
ab (d + ĀT )ḡab

]
, (4.12)

and the choice of weight λ is encoded in the matrices

ν = −γ jab

(
1 0

0 −1

)
and κ = i jab

(
1 0

0 −1

)
. (4.13)

On a first encounter the bounds of integration of Eq. (4.11) may be obscure. To clarify these bounds

notice that although the path integral is carried out over maps gab : `′
ab
→ SL(2,C), a gauge symmetry is

present that effectively reduces the integration space to maps with range the coadjoint orbit, i.e. `′
ab
→ Ωλ =

SL(2,C)/U(1)C = T∗S 2. In this sense, the above path integral can be consistently viewed as a quantum

particle moving on its “position space” CP1 3 z, with boundary conditions at the two end points of `′
ab

given

by zba and zab.

This rewriting of
〈
zab

∣∣∣G′
ab

∣∣∣zba

〉
allows detailed study of the path integral defining the state Ψ

Γ5

[xab;xa,ya]
in

a tubular neighborhood N(`′
ab

) ⊂ N(Γ5) of `′
ab

. Topologically, N(`′
ab

) � [0, 1] × D2, where D2 is a 2-disk.

We parametrize this space with (t, x1, x2), where t ∈ [0, 1] and (x1, x2) ∈ D2 so that (x1, x2) = (0, 0) is the

location of the Wilson line. Accordingly, the Chern–Simons connection in N(`′
ab

) can be decomposed into a

time component At along `′
ab

and a spatial component A⊥. With this decomposition, and after an integration

by parts, the contribution of N(`′
ab

) to the action CS [N(Γ5)|A, Ā] becomes

CS
[
N(`′ab)

∣∣∣A, Ā
]
=

t

8π

∫

N(`′
ab

)

tr (A⊥ ∧ dA⊥) + 2tr (F⊥ ∧ At) + c.c., (4.14)

where F⊥ = dA⊥ + A⊥ ∧ A⊥ is the curvature of A⊥.20 Here, the boundary term coming from the integration

by parts cancels exactly the boundary term present in the Chern–Simons action, i.e. t
8π

∫
∂N(`′

ab
)
tr (A1 ∧ A2).

In the definition ofΨ
Γ5

[xab;xa,ya]
, the Chern–Simons theory on N(`′

ab
) appears to be coupled to the coadjoint

orbit path integral of equation (4.11). The total action is linear in At and Āt. Thus, integrating these out we

obtain two functional delta functions on the space of (A⊥, Ā⊥), which constrain F⊥ and F̄⊥ to be given by

t

4π~
FT
⊥ =

1

2
g (ν + κ) g−1δ(2)(x)dx1 ∧ dx2, and

t̄

4π~
F̄T
⊥ =

1

2
ḡ (ν − κ) ḡ−1δ(2)(x)dx1 ∧ dx2, (4.15)

20On the boundary ∂N(`′
ab

) � [0, 1] × S 1, the two components of the connection (A1, A2) are the pullbacks of (A⊥, At), respectively.
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where δ(2)(x) is a delta function on D2 such that for any 1-form f ,
∫

N(`′
ab

)
δ(2)(x)dx1 ∧ dx2 ∧ f =

∫
`′

ab

f . These

constraints fix the conjugacy class of the meridian holonomies Hab and H̄ab, i.e.

Hab ∼

(
q jab 0

0 q− jab

)
with q = e

2πi~
t

(1+iγ), (4.16)

and similarly for H̄ab. Note that when the parameters t and γ satisfy

2π~

t
(1 + iγ) ∈ R, (4.17)

the eigenvalues of Hab satisfy the boundary conditions of Section 2.2:

xab = q jab ∈ U(1). (4.18)

Reinserting the constrained value of F⊥ in the first term of CS
[
N(`′

ab
)
∣∣∣A, Ā

]
in equation (4.14) and using the

identity tr (A⊥ ∧ dA⊥) = tr (A⊥ ∧ F⊥), one finds that this term vanishes identically since F⊥ is constrained to

be proportional to dx1 ∧ dx2.

As a result, the contribution coming from N(`′
ab

) to the wave function Ψ
Γ5

[xab;xa,ya]
gives a product of delta

functions:

∏

a<b

δ
(
xab , q jab

)
δ
(
x̄ab , q̄ jab

)
. (4.19)

Therefore, we see that the boundary data xab = q jab is imposed strongly by the Wilson graph operator.

In the previous section we studied the semiclassical behavior of the Chern–Simons path integral with the

geometric boundary conditions imposed. This was achieved in that context by simply sending ~→ 0. Here,

the boundary conditions are imposed through the insertion of a Wilson graph operator, and as a consequence

the relation between the operator’s labels and the boundary conditions is mediated by terms containing ~, as

in Eqs. (4.15)–(4.18). Therefore, in order to reproduce the semiclassical behavior obtained in the previous

section in this context, together with ~ being sent to zero, the representation labels jab must be sent uniformly

to infinity in such a way that the boundary data xab = q jab = exp (2πi~(1 + iγ) jab/t) stay fixed. Specifically,

we see that the right semiclassial limit is now the double-scaling limit

~→ 0 and jab → ∞, while keeping ~ jab = const. (4.20)

We studied precisely this double scaling limit via stationary phase techniques in [20]. Here we quickly

review that analysis. Using the SL(2,C) irreps described above, the full (gauge-fixed) Γ5 Wilson graph

operator can be written in the following integral form:

Γ
[ jab,ξab]

5
[A, Ā] =

∫

CP1

∏

a<b

dµ(zab) eIΓ5 , (4.21)

where the measure is dµ(z) = dz/〈z, z〉2, and the “Wilson graph action” IΓ5
is

IΓ5
=

1

~

∑

a<b

~ jab ln

〈
G
†

ab
zab, ξba

〉2
〈ξab, zab〉

2

〈
G
†

ab
zab,G

†

ab
zab

〉
〈zab, zab〉

+ iγ~ jab ln

〈
G
†

ab
zab,G

†

ab
zab

〉

〈zab, zab〉
(4.22)

(by construction the choice of a branch for the logarithm is irrelevant). Using the Cauchy–Schwarz inequal-

ity, it is immediate to see that Re(IΓ5
) ≤ 0.

This leads to study of the stationary points of IΓ5
coupled to Chern-Simons theory on S 3 in the double

scaling limit, as in Eq. (4.3). Doing so, one finds the following stationarity equations
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Parallel Transport: From δzab
IΓ5
= 0 and Re(IΓ5

) = max Re(IΓ5
) = 0, one obtains the following parallel

transport relations for the coherent state labels ξab:

ξab =
||zab||

||G
†

ab
zab||

eiθabGabξba, and Jξab =
||G
†

ab
zab||

||zab||
e−iθabGabJξba, (4.23)

which relate the 2-spinors ξab and ξba at the two end-points of the edge `ab.

Monodromies: Variation with respect to the Chern-Simons connections A & Ā gives the distributional

curvature on S 3,

εµρσF i
ρσ(x) =

8π~(1 + iγ)

t

∑

a<b

jab

〈
G
†

sb
σi(G

†

sb
)−1ξba, ξba

〉
δ

(2) µ

`ab
(x). (4.24)

As expected, F̄ satisfies the complex conjugate equation. Here, again σi are the Pauli matrices, and

δ
(2) µ

`
(x) :=

∫ 1

0
δ(3)(x − `(s)) d`µ

ds
ds. With a slight abuse of notation, we use the parameter s ∈ [0, 1] to

label intermediate points on the edge `ab, so that

Gsb = P exp

∫ s

0

Aµ(`(s′))
d`

µ

ab

ds′
δs′, (4.25)

with the reasonable requirements `ab(s = 0) = b and `ab(s = 1) = a. As expected, the curvature is

only supported distributionally on the graph Γ5, while F = F̄ = 0 on the graph complement S 3 \ Γ5.

Integrating equation (4.24) over a disk using the non-Abelian Stokes theorem, one obtains nontrivial

holonomies along the non-contractible cycles cab(s) transverse to `ab in the vicinity of the point `ab(s):

Hab(s) = exp

[
4π~(1 + iγ)

t
jab

〈
G
†

sb
σ j(G

†

sb
)−1ξba, ξba

〉 iσ j

2

]
, (a < b). (4.26)

These holonomies should be thought of as being based at the vertex b. Notice that the parallel transport

equations for the ξab guarantee consistency if one were to choose instead vertex a as the base point.

Notice also that the conjugacy class of Hab(s) is consistent with the delta function equation (4.19).

So far, our analysis has focused mostly on the edges `ab. Let us now focus on the neighborhood of a

vertex a. Start by considering a 2-sphere with radius s enclosing the vertex a, and denote Hl(s) = Habl
(s)

(l = 1, · · · , 4). As a consequence of the flatness on the graph complement S 3 \ Γ5, we obtain

g4(s)H4(s)g4(s)−1g3(s)H3(s)g3(s)−1g2(s)H2(s)g2(s)−1g1(s)H1(s)g1(s)−1 = 1, (4.27)

where gl ∈ SL(2,C) stands for the holonomy connecting the base point of each Hl(s) to a common base point

on the sphere (for details on a convenient choice of paths and their relation to the framing of Γ5, see [20] ).

Again because of the flatness in S 3 \ Γ5, one finds

gl(s)−1gl−1(s) = G−1
asl

Gasl−1
. (4.28)

On the other hand, using Eqs. (4.23) and (4.26), each Hl(s) can be brought to an element of SU(2) using the

adjoint action of G−1
asl

. Of course, this holds under the condition that the parameters t and γ satisfy equation

(4.17), 2π~
t

(1 + iγ) ∈ R, i.e.

GasHab(s)G−1
as = Hb(a) = exp

[
4π~(1 + iγ)

t
jabn̂ξab

iσ j

2

]
, (4.29)

where n̂ξ =
〈
ξ, ~σξ

〉
is the R3 unit vector encoded in the spinor ξ. Then, equation (4.27) reduces to a product

of four SU(2) matrices

←−−−∏

b:b,a

Hb(a) =
←−−−∏

b:b,a

exp

[
4π~(1 + iγ)

t
jabn̂ab

iσ j

2

]
= 1. (4.30)
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Recall from Section 2.2 that this equation is the starting point of the tetrahedral reconstruction.

Moreover, this equation shows that, after removing the intersection points with the graph Γ5 (as well as

a tubular neighborhood thereof), the pull-back of the connection to the resulting 4-holed sphere is essentially

an SU(2) flat connection. These 4-holed spheres are essentially the {Sa=1,··· ,5} = Σ6 \ {cab}a<b. Thus, we see

that the full set of geometricity boundary conditions in Section 2.2 derive naturally from the insertion of the

Γ5 Wilson graph operator, albeit part of it only in the semiclassical limit (i.e. in the double-scaling limit).

This fact was already expected: while the {xab} are strongly fixed to be in U(1) (see Eq. (4.19)), due to the

Heisenberg uncertainty principle, the pairs of conjugated variables {xa, ya} cannot be rigidly restricted at the

same time. The latter restriction is the one ensuring that on each Sa the SL(2,C) flat connection effectively

restricts to an SU(2) one. This restriction emerges strictly speaking only in the double scaling limit. In this

sense, the state Ψ
Γ5

[xab;xa,ya]
can be viewed as the “semiclassical” state that is on the one hand sharply peaked

on the configuration variables xab = q jab ∈ U(1), and on the other “coherently” peaked at some phase space

point (xa, ya) fully determined by the graph data [ jab, ξab].

Summarizing, the stationary point equations deduced in the semiclassical (i.e. double scaling) limit

are found to define an SL(2,C) connection on the graph complement M3 = S 3 \ Γ5, which satisfies—in

the limit—the geometricity boundary conditions. According to Theorem 2.4 there are exactly two such

connections A and Ã, which correspond to a parity related pair of convex, Lorentzian, constant curvature

4-simplices. In particular, the network of relations between jab and xab = euab , and between uab and the

triangle areas aab, implies that

ν
Λ

6
aab = −

2π~

t

(
1

γ
+ i

)
γ jab + πsab mod 2πZ. (4.31)

Although this relation seems to give a non-unique value for aab, the theorem ensures that there is only one

geometrically viable choice. Also, as we have shown in the last section, the ambiguities above play no

role in the evaluation of the semiclassical action provided a specific quantization condition for the areas is

introduced (and k = Re(t) ∈ Z). It is, however, straightforward to check that this quantization condition, Eq.

(3.58), is automatically satisfied when the boundary conditions are imposed by the Wilson graph insertion

studied in this section:

2π~ Z 3 2Re

(
Λt

6

)
aab = 2π~

(
2 jab + 2π~−1ksab + 4π~−1k Z

)
. (4.32)

All these results, together with those established in the previous section, imply that inserting the solution

of the equations of motion (i.e. a flat connection corresponding to a geometrical 4-simplex) back into the

total action IΓ5
+ i
~
CS , we find that the leading behavior of A [xab; xa, ya] in the semiclassical limit is the same

as that of the 3d block of equation (3.52), which in turn reproduces the 4-dimensional Regge action of the

constant curvature 4-simplex with a cosmological constant term. In this way, we see that, while the Wilson

graph operator imposes the geometricity boundary condition, the asymptotic behavior of A [xab; xa, ya] is

basically determined by that of the Chern-Simons 3d block. A heuristic reason why Chern–Simons theory

on S 3 \ Γ5 should “know” about 4-dimensional geometry is given in [20, Sect. 3].

In [20], the following result is also shown: Under the double-scaling limit ~ → 0, jab → ∞ with jab~

fixed, the Chern-Simons expectation value A [xab; xa, ya] of Γ5 graph operator in Eq. (4.3) has the following

asymptotic behavior

A [xab; xa, ya] ∼ e
i

`2
P

S Λ
Regge
+···
+ e
− i

`2
P

S Λ
Regge
+···

(4.33)

up to an overall phase factor. The two exponentials come from the two solutions A and Ã respectively. The

ellipsis · · · stand for quantum corrections. The constant curvature Regge action of simplicial gravity S Λ
Regge

reads

S ΛRegge =
∑

a<b

aabΘab − ΛVolΛ4 (4.34)
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and `−2
P
= Re

(
Λt

12πi~

)
. We have assumed here the Chern-Simons couplings t = k + is and t̄ = k − is satisfy

k ∈ Z and s ∈ R. The parameter ~−1 is an integer and just scales the parameters t and t̄.

In the semiclassical limit, A [xab; xa, ya] has the same asymptotic behavior as the sum of a pair of Chern-

Simons 3d blocks (up to an overall phase):

A [xab; xa, ya] ∼ Z
(α)
CS

(u)Z
(α)
CS

(ū) + Z
(α̃)
CS

(u)Z
(α̃)
CS

(ū) (4.35)

here Zα
CS

(u) and Zα̃
CS

(u) correspond to the pair of flat connection A and Ã ∈ Mflat(S
3 \ Γ5,SL(2,C)) with

2 arbitrary lifts α and α̃, respectively. Note that the analysis in Section 3.3 has only a single exponential

because we computed the phase difference (or ratio) between two 3d blocks Z
(α)
CS

(u)Z
(α)
CS

(ū) and Z
(α̃)
CS

(u)Z
(α̃)
CS

(ū).

In addition, it is interesting that the cosmological constant term in Eq. (4.33) comes from the evaluation

of the Chern-Simons functional on S 3 at the connection A that satisfies the critical equations. This connection

is now viewed as a distributional connection on S 3 (with a distributional curvature supported on the graph)

instead of being a flat connection on S 3 \ Γ5. The following difference between the evaluations at A and Ã

gives the constant curvature 4-volume of the 4-simplex:

CS
[
S 3

∣∣∣A, A]
−CS

[
S 3

∣∣∣Ã, Ã]
=

2Λ

`2
P

VolΛ4 + 2πiZ. (4.36)

5 Relation with Loop Quantum Gravity

If we take the asymptotic “decoupling limit” by turning off the Chern-Simons coupling in A [uab; ua, va]

via t, t̄ → ∞ while keeping jab fixed, the path integral Eq. (4.3) is localized on the solution of Chern-

Simons equations of motion F = F̄ = 0 on S 3; this gives a trivial connection on S 3. The Wilson graph

Γ5

[
jab, ξab

∣∣∣A, Ā
]

evaluated at trivial connection gives the Engle-Pereira-Rovelli-Livine (EPRL) spinfoam 4-

simplex amplitude AEPRL[ jab, ξab] in LQG. This relation was the original motivation for the definition of the

Γ5 Wilson graph operator.

The relations among Chern-Simons theory, 4-dimensional LQG and 4-dimensional simplicial gravity

can be summarized in the following diagram:

A [uab; ua, va]
~→0, j→∞, j~ fixed

−→ e
i

`2
P

S Λ
Regge
+ e
− i

`2
P

S Λ
Regge

y t→∞

y Λ→0

AEPRL[ jab, ξab]
j→∞
−→ e

i

`2
P

S Regge

+ e
− i

`2
P

S Regge

(5.1)

where A [uab; ua, va], defined in Eq. (4.3), is the SL(2,C) Chern-Simons evaluation of the Γ5 Wilson graph

operator. The relation along the lower line states that the large- j asymptotics of the EPRL spinfoam am-

plitude reproduces the flat simplicial geometry and Regge action without cosmological constant Λ and was

proved in [55, 56]. This diagram suggests that the Chern-Simons expectation value A [uab; ua, va] can be

viewed as a deformation of the EPRL spinfoam amplitude, which includes a cosmological constant into the

framework of LQG.

The 4-dimensional spinfoam amplitude of LQG, which defines a quantum 4d geometry, describes

the quantum transition between boundary states for quantum 3d geometries. The boundary states of a

4-dimensional spinfoam amplitude are SU(2) spin-network states. The latter states form the kinematical

framework of LQG (see [48, 49]) and describe quantum 3d geometries. A spin-network state is a triple

(Γ, ~j,~i) consisting of: an oriented graph Γ; a map ~j = { j`}`∈E(Γ) from the set of graph edges E(Γ) to the space

of unitary irreps of SU(2) labeled by j`; and~i = {iv}v∈V(Γ), a map from the set of graph vertices V(Γ) to the

invariant tensors (intertwiners) v 7→ iv ∈ InvSU(2)(V j1 ⊗ · · · ⊗ V jn ), where j1, · · · , jn are the spin labels on
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the edges incident to v. The spin-network states are a basis for the LQG Hilbert space and diagonalize the

geometrical operators, e.g. quantum area and volume operators. The discrete spectrum of the area operator

is parametrized by the spins j` (and is linear in j` when j` � 1), and the discrete spectrum of volume is

parametrized by both the spins j` and the invariant tensors iv [47, 94]. The invariant tensor iv carries even

more information, it parametrizes the space of quantum (zero curvature) polyhedra with face areas being

proportional to the incident j` [93, 95].

The spin-network data (Γ, ~j,~i) is well adapted to the framework in the present paper and can be identified

with the boundary data of the flat connections we have been discussing. The identification of the spin-

network graph with Γ5 is immediate since it appears in the definition of the Wilson graph operator and its

Chern-Simons evaluation A [uab; ua, va]. The spin j` is mapped by Y to an SL(2,C) principle series irrep

( j`, γ j`) for each edge, where γ is the Barbero-Immirzi parameter of LQG. At each vertex, we employ the

SU(2) coherent state basis and consider iv to be a coherent intertwiner, which is mapped by Y to an SL(2,C)

invariant tensor in the Wilson graph operator.

Given a graph, e.g. Γ5 in our context, and its tubular neighborhood N(Γ5), let us consider the quan-

tization of SU(2) flat connections on the closed 2-surface Σ6 = ∂N(Γ5). By specifying the meridian

closed curves cab as in Section 2.2, we arrive at a set of local symplectic coordinates forMflat(Σ6,SU(2)):

xab = euab , yab = e−
π
k

vab ∈ U(1) with {uab, vab} = 1. Quantizing these coordinates, as well as the flat con-

nectionsMflat(Sa,SU(2)) of the 4-holed spheres with fixed conjugacy class xab at each hole will provide a

quantization for the full spaceMflat(Σ6,SU(2)). The quantization of xab, yab is a quantization of S 1×S 1. The

prequantum line bundle over S 1 × S 1 has a curvature ω = − k
π
d ln xab ∧ d ln yab. Weyl’s integrality criterion

then implies that k ∈ Z. We choose the polarization such that the wave function is written as f (uab) and

satisfies both periodicity and Weyl invariance f (uab) = f (−uab) = f (uab + 2πi). Periodicity in both uab and

vab directions implies that uab can only take k + 1 discrete values uab = 0, iπ
k
, 2iπ

k
, · · · , iπ, i.e.

xab = e
2πi
k

jab , with jab = 0,
1

2
, · · · ,

k

2
. (5.2)

The quantization of the flat connections Mflat(Sa,SU(2)) with fixed conjugacy classes xab results in the

Hilbert space H(Sa) spanned by Wess-Zumino-Witten (WZW) conformal blocks F (ia) of level k ∈ Z on

a 4-holed sphere [66]. Each conformal block F (ia) is associated with a 4-valent SU(2) intertwiner ia with

the above spins jab. A restricted subclass of SU(2) intertwiners is allowed because of the restrictions on

the ranges of the spins jab and the spin in the recoupling channel. The dimension of the intertwiner space,

H(Sa), consequently is given by the famous Verlinde formula [96]. As a result, we obtain the Hilbert space

for the full quantization ofMflat(Σ6,SU(2)); it is spanned by the basis

ψ(Γ5,~j,~i)
=

∏

a<b

δ(xab, e
2πi
k

jab )

5∏

a=1

F (ia). (5.3)

The above discussion can be straightforwardly generalized to arbitrary graphs Γ. Now we see that the

quantization of SU(2) flat connections on Σg = ∂N(Γ) for any graph Γ naturally gives the spin-network data

(Γ, ~j,~i) with j ≤ k/2 and a restricted subclass of intertwiners. The restricted class of spin-network data is

likely to be the right subclass for LQG when a cosmological constant is included.

By the analysis in Section 2.2, the SU(2) flat connections on a 4-holed sphere with fixed conjugacy

classes xab correspond to constant curvature tetrahedral geometries with fixed face areas. Therefore the

Hilbert space H(Sa) of conformal blocks is the space of “quantum constant curvature tetrahedra” with

“quantum areas” proportional to jab. We may consider an overcomplete coherent state basis ψk
xa,ya

peaked

at the phase space point with conjugate coordinates (xa, ya). For these coherent states and Γ = Γ5 the spin-

network data (Γ, ~j,~i) can be mapped to the SL(2,C) flat connection data (xab; xa, ya) on Σ6 = ∂S 3 \Γ5 subject

to the restriction of spins and intertwiners just discussed.
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In order to be the boundary data of an SL(2,C) Chern-Simons theory, we make the following identifi-

cation:

xab = e
2πi
k

jab = e
2πi

t
(1+iγ) jab (5.4)

where Eq. (4.19) has been used (and we have set ~ = 1). Here k ∈ Z has been identified with Re(t), and

both γ and 1
t

(1 + iγ) have been assumed to be real numbers, so that γ = s/k. Given that (xab; xa, ya) comes

from spin-network data, the boundary condition in Section 2.2 and the quantization condition Eq. (3.58)

are satisfied following the same argument as given in Section 4. It is interesting to notice that when t is

purely imaginary (k = 0 or γ → ∞), the spectrum of xab is not discrete anymore, while the quantization

condition Eq. (3.58) is satisfied trivially. This possibility is beyond the regime of spin-network data, but still

well-controlled by the 3d blocks of Chern-Simons theory discussed in Section 3.3.21

The discussion above provides a map from spin-network data to the boundary data (xab; xa, ya) of

SL(2,C) Chern-Simons theory satisfying the boundary condition in Section 2.2. When there exists an

SL(2,C) flat connection A on S 3 \Γ5 whose boundary value is consistent with the boundary data (xab; xa, ya),

we may use these data to construct a Chern-Simons 3d block Z
(α)
CS

(u)Z
(α)
CS

(ū). The Chern-Simons 3d block

Z
(α)
CS

(u)Z
(α)
CS

(ū) studied in Section 3.3 may play an interesting role in LQG as could the amplitude A [uab; ua, va]

(compare AEPRL[ jab, ξab]).

As we have seen in Section 4, the Regge-action asymptotic behavior of A [uab; ua, va] crucially depends

on the peakedness of the Chern-Simons state created by the Wilson graph operator. However, different

Wilson graph operators may produce the same peakedness in the boundary data, and thus lead to the same

asymptotics of A [uab; ua, va]. The close relationship with the EPRL 4-simplex amplitude has led us to

study the particular type of Wilson graph operators Γ5[ jab, ξab|A, Ā]. Independent of the choice of Wilson

graphs, the Chern-Simons 3d block Z
(α)
CS

(u)Z
(α)
CS

(ū) on S 3\Γ5 with the right boundary condition imposed is the

essential ingredient behind the Regge-action asymptotics of A [uab; ua, va]. Although we have defined Z
(α)
CS

(u)

perturbatively on the cover space parametrized by the logarithmic data u instead of x, it can be defined non-

perturbatively, as in [77, 78]. These references show that the non-perturbative Z
(α)
CS

(u) manifestly depends on

x = exp(u). Therefore Z
(α)
CS

(u)Z
(α)
CS

(ū) depends on the boundary or spin-network data in the desired manner.

When we generalize our framework from a 4-simplex to a generic simplicial manifold, the class of 3d

blocks Z
(α)
CS

(u)Z
(α)
CS

(ū) that asymptotically reproduce classical gravity may ultimately span the physical Hilbert

spaceHPhys in LQG. The operator constraint equation that quantizes the Lagrangian subvariety LA,

Âm(x̂, ŷ, ~)Z
(α)
CS

(u) = 0, (5.5)

may relate to the quantization of the Hamiltonian constraint equation in LQG [97–99], provided the proper

boundary conditions are implemented.

There is a perspective that we would like to point out before we conclude this section. In [101], it is

suggested that the simplicial 4d geometries correspond to the dynamical vacua of LQG, namely, to solu-

tions of the critical equations of the spinfoam amplitude. In the present work and in [20], we have made

the correspondence between simplicial 4d geometry and SL(2,C) flat connections on the graph comple-

ment 3-manifold S 3 \ Γ5 explicit, and shown that the solutions of the critical point equations arising from

A [uab; ua, va] give the SL(2,C) flat connections on S 3 \ Γ5. Therefore we suggest that the moduli space of

LQG dynamical vacua can be embedded into the moduli space Mflat(S
3 \ Γ5,SL(2,C)), where the image

of the embedding map is specified by the boundary condition in Section 2.2. We expect that the dynamical

properties of the LQG vacua, including the perturbative behavior of LQG, should be largely controlled by

SL(2,C) Chern-Simons theory.

21SL(2,C) Chern-Simons theory with purely imaginary t relates to the quantum Lorentz group with real q [23]. The 3d blocks of

Chern-Simons theory with our boundary conditions implemented may relate to the spinfoam model defined in [54].
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6 Beyond A Single 4-Simplex

The above analysis is primarily about the geometry of a single 4-simplex and its correspondence with flat

connections on S 3 \ Γ5. This analysis can be generalized to an arbitrary simplicial decomposition of a

4-dimensional manifold into an arbitrary number of simplices. In this section we give the idea of the con-

struction and results, more details appear in [78].

A 4-dimensional simplicial complex K4 is built by gluing 4-simplices σ. The simplicial geometry

of K4 is made up of the constant curvature geometry of each 4-simplex together with the distributional

curvature located at the 2d hinges at the 4-simplex-gluing interfaces. The simplicial geometries onK4 again

correspond to a class of SL(2,C) flat connections on a 3-manifold M3. The 3-manifold M3 is obtained by

gluing N copies of S 3 \ Γ5, where N is the number of 4-simplices in K4, as in Fig. 6.

Figure 6. Left: Two copies of the graph complement 3-manifold S 3 \ Γ5 viewed from 4 dimensions. Each S 3 \ Γ5

is drawn by suppressing 1 dimension. The 3-manifold S 3 \ Γ5 has five “big boundary” components, which are 4-holed

spheres and correspond to the five vertices of Γ5. The manifold S 3 \Γ5 also has ten “small boundary” components, which

are ten cylinders and correspond to the ten edges of Γ5. Removing the tubular neighborhoods of the 10 edges results in

the red ‘tunnel’ curves that connect the holes in the big boundary components. The tunnels give the 10 small boundary

components. The union of big and small boundary components gives the closed 2-surface Σ6 = ∂(S 3 \ Γ5). Right: The

graph complement 3-manifolds can be glued through a pair of big boundary components, i.e. a pair of 4-holed spheres,

via an identification of the holes. After gluing, some of the tunnels are continued from one S 3 \Γ5 to the other. Note that

in this figure, the properties of crossings are not shown.

The 3-manifold M3 can be constructed in the following way (see Fig. 6): Corresponding to gluing

a pair of 4-simplices in 4d through a pair of tetrahedra, a 3-manifold is constructed by gluing a pair of

S 3 \ Γ5 through a pair of 4-holed spheres. The boundary Σ6 of S 3 \ Γ5 can be decomposed into 2 types of

components: the “big boundaries”, which here consist of five 4-holed spheres that resulted upon removing

the neighborhood of the five vertices in Γ5, and the “small boundaries”, which here consist of the 10 cylinders

that resulted upon removing the tubular neighborhood of the 10 edges of Γ5.22 When a pair of S 3 \ Γ5 are

glued through a pair of 4-holed spheres via a certain identification of holes, the resulting 3-manifold is a

graph complement S 3 \ (Γ5#Γ5) of a bigger graph. The graph sum Γ5#Γ5 is obtained by removing a vertex in

each Γ5, and connecting the resulting 4 pairs of open edges. Using this procedure repeatedly, we can obtain

M3 = (S 3 \ Γ5) ∪ · · · ∪ (S 3 \ Γ5)︸                            ︷︷                            ︸
N copies

= X3 \ Γ
#N
5 . (6.1)

Here N is the number of 4-simplices in the 4-manifold and X3 is, in general, a more complicated closed

3-manifold than S 3. For example, π1(X3) may be nontrivial, as can be seen when we glue 2 pairs of 4-holed

spheres between 2 copies of S 3 \ Γ5.

22The two types of boundary components are also called “geodesic boundaries” and “generalized cusps”.
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We impose the boundary conditions of Section 2.2 to specify the SL(2,C) flat connection on M3, i.e.

the flat connections restricted to the big boundary components of M3 become SU(2) flat connections on

4-holed spheres. However, in addition to the boundary condition, we have to require that on the 4-holed

sphere that serves as the interface for the gluing of the (S 3 \ Γ5)’s, the SL(2,C) flat connection has to reduce

to SU(2) as well. This is required so that the flat connection in each copy of (S 3 \ Γ5) determines a constant

curvature 4-simplex geometry. Given an SL(2,C) flat connection on M3 satisfying the above requirements,

it determines a convex constant curvature 4-simplex geometry for each copy of S 3 \ Γ5 by Theorem 2.3.

The fundamental group of M3 is obtained simply by forming the product of π1(S 3 \ Γ5)’s and iden-

tifying the generators corresponding to the 4-holed spheres that serve as the gluing interface. In terms of

holonomies, there may be need for a parallel transport between the base points of loops lab in different copies

of S 3 \ Γ5. Given a pair of glued S 3 \ Γ5, the uniqueness Lemma 2.2 guarantees that the isomorphisms Eq.

(2.32) gives identifications between the loops in the two copies of S 3 \ Γ5 and the simple paths in the two

4-simplices. These isomorphisms induce 2 isomorphisms S 1 and S 2, as in Eq. (2.20), between the identified

loops and the simple paths in the two tetrahedra from the two 4-simplices. Since the loops are identified,

the composed map S 1 ◦ S −1
2

identifies the simple paths in the two tetrahedra. This SL(2,C) flat connection

in M3 gives an SU(2) flat connection on the interface 4-holed sphere, which determines uniquely a convex

constant curvature tetrahedron by Theorem 2.1. This tetrahedron is shared by the 2 geometrical 4-simplices,

since the simple paths of the tetrahedra seen from each side of the gluing have been identified. Therefore the

geometrical 4-simplices determined by each copy of S 3 \ Γ5 glue geometrically and form a large simplicial

geometry. All 4-simplices and tetrahedra have the same constant curvature Λ.

Note that the large simplicial geometry on the simplicial complex is not necessarily constant curvature.

It can approximate arbitrary Lorentzian geometry on a 4-dimensional manifold because of the hinging at

4-simplex interfaces; this is just as in Regge calculus [44].

In a single copy of S 3 \Γ5, an SL(2,C) flat connection A corresponding to 4-simplex geometry is always

accompanied by its parity partner Ã, which determines the same geometry but with different 4d orientation

by Theorem 2.4. The pair A & Ã are related by complex conjugation with respective to the complex structure

of SL(2,C) and therefore A & Ã give the same SU(2) flat connection on 4-holed spheres. On an M3 formed

by gluing N copies of S 3\Γ5 there are 2N parity-related flat connections, which determine the same geometry

on the simplicial complex. Each of the 2N flat connections associates with a choice of 2 possible orientations

in each individual 4-simplex.23 All of the parity-related flat connections give the same set of SU(2) flat

connections on all 4-holed spheres, including the big boundary components and gluing interfaces. Among

the 2N parity-related flat connections, there are only 2 flat connections associated with the 2 possible uniform

4d orientations on the entire simplicial complex, which we call the global parity pair and denote again by A

& Ã.

In terms of complex FN coordinate onMflat(∂M3,SL(2,C)), the global parity pair A, Ã ∈ Mflat(M3,SL(2,C))

can be written as

A = [x`, y`; xB, yB], and Ã = [x`, ỹ`; xB, yB], (6.2)

where x` and y` are the complex length and twist variables of a small boundary component `.24 Here xB

and yB are the canonical coordinates ofMflat(4-holed sphere,SU(2)) at a big boundary component and the

variables [x`; xB, yB] are treated as the boundary data.

A small boundary component ` corresponds to a unique triangle ∆` in the simplicial complexK4.25 The

coordinate x` relates to the triangle area a` of ∆` in the same way as before, e.g. in Eq. (3.41). The relation

23The same phenomena happens in the asymptotics of LQG spinfoam models [56].
24When the small boundary component ` is a torus cusp, x`, y` are simply the eignvalues of meridian and longitude loop holonomies.
25The triangle ∆` is an internal triangle when ` is a torus cusp and a boundary triangle when ` is a cylinder connecting 2 big boundary

components. If the 4-manifold is closed and the simplicial complex does not have boundary, the corresponding M3 has only torus cusps.
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between y` and the hyperdihedral angles is given by a sum over all the 4-simplices sharing ∆`, i.e.

ln y` = −
1

2
ν sgn(V4)

∑

σ,∆`⊂σ

Θ`(σ) − iν θ` +
ln χ`(ξ)

2
mod 2πiN`, N` ∈ Z, (6.3)

whereΘ`(σ) is the hyperdihedral (boost) angle in the 4-simplex σ hinged by ∆`. The sign sgn(V4) is a global

sign determined by the uniform 4d orientation and y` and ỹ` relate to two different signs, sgn(V4) = ±1

respectively.

We define the logarithmic variables u, v in the same way as before, and choose a canonical lift to the

cover space for the boundary data [x`; xB, yB] 7→ [u`; uB, vB]. We also choose two arbitrary lifts α, α̃ for

y` 7→ vα
`

and ỹ` 7→ ṽα̃
`
. The holomorphic 3d block Z

(α)
CS

(
M3

∣∣∣u
)

of SL(2,C) Chern-Simons theory on M3 can

be constructed in the same way as Eq.(3.35), for (A, α) with the reference (Ã, α̃). The Liouville 1-form is

now given by

ϑ =
∑

`

v`du` +
∑

B

vBduB. (6.4)

The integration contour of
∫
C
ϑ is in LA ' Mflat(M3,SL(2,C)), which is a holomorphic Lagrangian subva-

riety inMflat(∂M3,SL(2,C)).

The semiclassical asymptotic behavior of Z
(α)
CS

(
M3

∣∣∣u
)

can be analyzed in the same way as in Section

3.3, which leads to the following generalization of Eq.(3.52)

Z
(α)
CS

(
M3

∣∣∣ u
)

Z
(α)
CS

(
M3

∣∣∣ ū
)
= exp


i

~
2Re

(
Λt

12πi

) 
∑

`

a`

∑

σ,∆`⊂σ

Θ`(σ) − Λ
∑

σ

VolΛ4 (σ)





× exp


i

~
2Re

(
Λt

12πi
Cα
α̃

)
+

i

~
2Re

(
Λt

6

)∑

`

∆N`a` + · · ·

 , (6.5)

where the lift-independent term

S ΛRegge =
∑

`

a`

∑

σ,∆`⊂σ

Θ`(σ) − Λ
∑

σ

VolΛ4 (σ) (6.6)

is the Lorentzian Regge action of Einstein gravity on the simplicial complexK4 [44–46]. The sum
∑
σ,∆`⊂σ Θ`(σ)

is the Lorentzian deficit angle when ∆` is an internal triangle in K4, while it is a hyperdihedral boost angle

when ∆` is a boundary triangle of K4. The gravitational constant GN is given by Eq. (3.55) and Cα
α̃ is again

an integration constant. The term i
~
2Re

(
Λt
6

)∑
` ∆N`a` is lift-dependent and takes discrete values. This term

disappears when the quantization condition 2Re
(
Λt
6

)∑
` ∆N`a` ∈ 2π~Z or t ∈ iR is satisfied.

Acknowledgements

HMH gratefully acknowledges sabbatical support from the Perimeter Institute for Theoretical Physics. MH

would like to thank V. V. Fock, J. Mourão, R. Van der Veen, Z. Sun for several fruitful discussions. MH

would also like to thank F. Vidotto for an invitation and for hospitality while visiting Radboud Univer-

siteit Nijmegen, and for her interesting comments on this work. MH acknowledges funding received from

the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme

(FP7/2007-2013) under REA grant agreement No. 298786, from the Alexander von Humboldt Foundation,

from the US National Science Foundation through grant PHY-1602867, and a Start-up Grant at Florida At-

lantic University, USA. This work is supported by Perimeter Institute for Theoretical Physics. Research at

Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province

of Ontario through the Ministry of Research and Innovation.

– 45 –



A K2-Lagrangian Subvariety

In this appendix, we provide a very brief introduction to the notion of K2-Lagrangian subvariety, and ex-

plain its relation to quantizability. The discussion here follows [67]. See also [33, 72] for more detailed

discussions.

Let C∗ = C \ {0}, we define the Abelian group C∗ ∧C∗ = ∧2C generated by a∧ b, with a, b ∈ C∗ and the

relations

a ∧ b = −b ∧ a, (ab) ∧ c = a ∧ c + b ∧ c. (A.1)

LetM be a complex variety, and denote the set of holomorphic functions Uα → C
∗ on the chart Uα as

C∗(Uα) . A K2-symplectic structure onM is an element ωK
α ∈ C

∗(Uα) ∧ C∗(Uα) on every coordinate chart

Uα, such that on Uα ∩ Uβ, ω
K
α − ω

K
β =

∑
I zI ∧ (1 − zI) for some zI ∈ C

∗(Uα ∩ Uβ). In other words, A

K2-symplectic structure onM belongs to the group K2(C), which is the quotient of C∗ ∧C∗ by the subgroup

generated by z ∧ (1 − z).

We define a map d ln∧d ln from C∗ ∧ C∗ to the space of holomorphic 2-forms Ω2(C) by

d ln∧d ln : x ∧ y 7→ d ln x ∧ d ln y. (A.2)

It is easy to see that d ln∧d ln is essentially a map from K2(C) → Ω2(C), since d ln z ∧ d ln(1 − z) = 0.

Moreover, given a K2-symplectic structureωK =
∑

m xm∧ym, the map d ln∧d ln :
∑

m xm∧ym 7→
∑

m d ln xm∧

d ln ym is a closed 2-form (pre-symplectic form) on the complex varietyM.

LetM be a complex variety with a K2-symplectic form ωK ∈ K2(C) such that [d ln∧d ln] (ωK) = ω is a

symplectic structure. A K2-Lagrangian subvariety LK ∈ M is a subvariety with dimLK = 1
2

dimM and

ωK |LK =
∑

I

zI ∧ (1 − zI), (A.3)

for some holomorphic functions zI onM. References [33, 68, 72] show that, at least on the generic part of

Mflat(Σg,SL(2,C)) that is of interest, the symplectic structure ω =
∑

m
dxm

xm
∧

dym

ym
has a K2-avatar ωK ∈ K2(C)

such that [d ln∧d ln] (ωK) = ω. The moduli space Mflat(M3,SL(2,C)) = LA with ∂M3 = Σg is a K2-

Lagrangian subvariety inMflat(Σg,SL(2,C)), i.e. ωK |LA
=

∑
I zI ∧ (1 − zI) for some holomorphic functions

zI .

Define two homomorphisms ϑk and ϑσ from K2(C(LA)) to H1(LA,R) (up to a 4π2Z covering for ϑk) by

ϑσ : x ∧ y 7→ ϑσ(x ∧ y) := ln |y| d(arg x) − ln |x| d(arg y), and

ϑk : x ∧ y 7→ ϑk(x ∧ y) := ln |y| d(ln |x|) + arg x d(arg y). (A.4)

Having chosen a polarization, the Lagrangian subvariety LA is quantizable when the following conditions

are satisfied for all closed path α ∈ LA (when the real part of Chern-Simons coupling Re(t) = k ∈ Z) [7]:

∮

α

ϑσ(ωK |LA
) = 0, and

∮

α

ϑk(ωK |LA
) ∈ 4π2Q. (A.5)

Since LA is a K2-Lagrangian subvariety with respect to ωK , then ϑσ(ωK) is given by

ϑσ(ωK |LA
) =

∑

I

ln |1 − zI | d(arg zI) − ln |zI | d(arg(1 − zI)) = −
∑

I

dD(zI), (A.6)

where D(zI) is the Bloch-Wigner dilogarithm function

D(z) = ln |z| arg(1 − z) + Im (Li2(z)) . (A.7)
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Then
∮
α
ϑσ(ωK |LA

) = 0 is satisfied since D(z) is a continuous function on C. Similarly,

ϑk(ωK |LA
) =

∑

I

ln |1 − zI | d(ln |zI |) + arg zI d(arg(1 − zI))

= −
∑

I

d
[
Re (Li2(zI)) − arg zI arg(1 − zI)

]
. (A.8)

The real part of the dilogarithm Re (Li2(zI)) is also a continuous function onC, while
∑

I

∮
α

d
[
arg zI arg(1 − zI)

]
∈

4π2Z. Thus
∮
α
ϑk(ωK |LA

) ∈ 4π2Q indeed holds. We conclude that LA being K2-Lagrangian implies that LA

is quantizable. In addition, the fact that the 1-forms ϑk(z ∧ (1 − z)) and ϑσ(z ∧ (1 − z)) are exact up to 4π2Z

shows that they are indeed homomorphisms from K2(C(LA)) to H1(LA,R) up to a 4π2Z covering for ϑk.

When we consider the analytic continuation of Chern-Simons theory with generic non-integer k, the

Lagrangian subvariety LA has to be replaced by its cover space LA, on which ln zI is single-valued. This

is because we do not quotient out large gauge transformation for the analytically continued Chern-Simons

theory. So, the 1-forms ϑk(z ∧ (1 − z)) and ϑσ(z ∧ (1 − z)) are indeed exact on the cover space LA, i.e.∮
α
ϑσ =

∮
α
ϑk = 0 on LA.

B Quantization of Coadjoint Orbit, Unitary Representations of SL(2,C), and a Path

Integral Formula for the Wilson Line

In this appendix, we give a brief review of the geometric quantization of the coadjoint orbits of SL(2,C),

which gives the unitary irreducible representations of SL(2,C). We also give a quick review of the path

integral formula for unitary Wilson line, which is a consequence of the coadjoint orbit quantization. More

extensive reviews of these topics can be found in [91] (see also [24] for a nice summary).

As a complex Lie algebra, sl2C is generated by the basis

H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
, and F =

(
0 0

1 0

)
. (B.1)

If sl2C is viewed as a real Lie algebra, it is generated by {E, F, H, Ẽ = iE, F̃ = iF, H̃ = iH}. Given sl2C

(viewed as a real Lie algebra) and its complexification (sl2C)C ' sl2C × sl2C, a nondegenerate trace form

〈 , 〉 : (sl2C)C × sl2C→ C is given by

〈(XL, XR),Y〉 =
1

2
tr(XLY) +

1

2
tr(XRȲ), (B.2)

where XL, XR, and Y are 2 × 2 matrices. The trace form is a complexification of the invariant bilinear form

of sl2C. Using the trace form, a weight λ ∈ (sl2C
∗)C can be identified as a pair of 2 × 2 matrices (λL, λR) in

(sl2C)C. The coadjoint orbit is defined by

(Ωλ)C := {g(λL, λR)g−1}g∈SL(2,C)C ' SL(2,C)/HL
λ × SL(2,C)/HR

λ (B.3)

where HL,R
λ is the stabilizer HL,R

λ = { h ∈ SL(2,C) | hλL,Rh−1 = λL,R}. Here the stabilizer is precisely the

Cartan subgroup (or maximal torus) Hλ = TC, thus the coadjoint orbit is given by

(Ωλ)C = SL(2,C)/TC × SL(2,C)/TC ' T ∗S 2 × T ∗S 2, with Ωλ = SL(2,C)/TC = T ∗S 2. (B.4)

For our present purposes it is sufficient to consider the real form Ωλ of the coadjoint orbit; this is achieved

by viewing the second copy of T ∗S 2 as the complex conjugate of the first copy.

Let ν, κ ∈ (sl2C
∗)C be the linear functionals defined by ν(H) = −iw, κ(H̃) = m (w, n ∈ C), and ν(H̃) =

κ(H) = 0, while both ν and κ annihilate E, F, Ẽ, F̃. The above trace form results in the identification ν ←→

(ν, ν) and κ ←→ (κ,−κ) with ν and κ the 2 × 2 matrices

ν = −
iw

2

(
1 0

0 −1

)
, and κ = −

im

2

(
1 0

0 −1

)
. (B.5)

– 47 –



The weight λ satisfies λ = ν ⊕ κ ←→ (λL, λR) = (ν + κ, ν − κ). The coadjoint orbit Ωλ has a natural SL(2,C)

invariant symplectic structure:

ων,κ =
1

2
tr

[
(ν + κ)g−1dg ∧ g−1dg

]
+

1

2
tr

[
(ν − κ)g−1dg ∧ g−1dg

]
. (B.6)

To proceed with geometric quantization, a line-bundle L → Ωλ must be defined over the phase space

Ωλ, with ων,κ the curvature of L. Due to the compact cycle S 2 ⊂ Ωλ, Weyl’s integrality criterion requires ων,κ
to have m ∈ Z in order that L is prequantizable. Reality of the curvature ων,κ implies w ∈ iR. The prequantum

line-bundle L can be obtained by taking the quotient of C × SL(2,C) by the representation Hλ = TC acting

on C. The representation is given by ( f , x) 7→ (σ(h) f , xh), so that the quotient is given by the identification:

( f , xh) = (σ(h−1) f , x) or f (xh) = σ(h−1) f (x), with f ∈ C, x ∈ SL(2,C), h ∈ TC. (B.7)

The representation σ(h−1) is given by e
(iν+ρ)⊕iκ(h−1). Here ρ ∈ sl2C

∗ is the restricted positive root ρ(H) =

2, ρ(H̃) = 0 (ρ annihilates E, F, Ẽ, F̃). The above quotient gives the prequantum line-bundle L→ Ωλ where

SL(2,C) acts on the sections f by

g B f (x) = f (gT x). (B.8)

An element of SL(2,C) can be written as

g =

(
z1 −x2

z2 x1

)
with z1x1 + z2x2 = 1. (B.9)

In the coadjoint orbit SL(2,C)/TC there is an equivalence (z1, z2, x1, x2) ∼ (αz1, αz2, α−1x1, α−1x2) for α ∈

C∗. We use a polarization such that the resulting sections of L depend only on the projective coordinate

z1/z2. Because of the above quotient procedure Eq. (B.7), the sections transform in the following way:26

f (αz1, αz2, ᾱz̄1, ᾱz̄2) = α−
1
2

(w+m)−1ᾱ−
1
2

(w−m)−1 f (z1, z2, z̄1, z̄2), α ∈ C∗. (B.10)

This transformation is precisely the scaling property of the homogeneous function/section in the principle

series representation when w ∈ iR and m ∈ Z. In our analysis of knotted graph operators, the parameters

w,m are given by

w = −2iγ jab, m = −2 jab, and jab ∈ Z/2. (B.11)

The group action of Eq. (B.8) gives the representation:

(
a b

c d

)
B f (z, z̄) =

(
bz + d

)− 1
2

(w+m)−1 (
bz + d

)− 1
2

(w−m)−1
f

(
az + c

bz + d

)
, (B.12)

where z = z1/z2 is a projective coordinate on CP1. The space of these sections on CP1, completed using the

L2 inner product with measure dz = i
2
(z1dz2 − z2dz1) ∧ (z̄1dz̄2 − z̄2dz̄1), carries the principle series unitary

irreducible representation of SL(2,C) labeled by (m,w). The carrier space is denoted by Hm,w or H j,ρ with

m = −2 j and w = −2iρ. There is an isomorphism between the representations with labels (m,w) and

(−m,−w).

In the above representation, expressed in terms of sections on CP1, the variables z1 and z2 are “position

variables” and correspond to multiplication operators on (a dense domain of) Hm,w. The variable x1 and x2

are “momentum variables” and correspond to the derivative operators:

x1 =

(
2

w + m

)
∂

∂z1
, x2 =

(
2

w + m

)
∂

∂z2
, x̄1 =

(
2

w − m

)
∂

∂z̄1
, x̄2 =

(
2

w − m

)
∂

∂z̄2
. (B.13)

26Let h = etH with t ∈ C, we have
[
(iν + ρ) ⊕ iκ

]
(tH) = 1

2 tr
[
(iν + iκ + ρ)tH

]
+ 1

2 tr
[
(iν − iκ + ρ)t̄H

]
= t

2 (w + k + 2) + t̄
2 (w − k + 2),

where the 2 × 2 matrix ρ equals ν when w = 2i.
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The scaling property of Eq. (B.10) implies

z1 ∂

∂z1
+ z2 ∂

∂z2
= −

1

2
(w + m) − 1, z̄1 ∂

∂z̄1
+ z̄2 ∂

∂z̄2
= −

1

2
(w − m) − 1. (B.14)

Note that the unitary irrep constructed above is an induced representation ind
SL(2,C)
B

(σ) on the sections

of a line-bundle over the coset SL(2,C)/B ' CP1. Here B is the Borel subgroup of upper-triangular matrices,

whose Lie algebra is generated by H, H̃, E, Ẽ. The sections are obtained from the functions f on SL(2,C)

that satisfy

f (xb) = σ(b−1) f (x), (B.15)

where b ∈ B, x ∈ SL(2,C), and σ is given by σ = e
(iν+ρ)⊕iκ, viewed as a representation of B.

The Wilson line in the unitary irrep (m,w) can be written as a path integral. When we consider its matrix

element in the z-space representation (z is the projective coordinate of CP1):

〈
z
∣∣∣Pe

∫
`

A
∣∣∣z′

〉
Hm,w
=

∫ z

z′
DgDḡ eiS [g,ḡ;A,Ā], (B.16)

where the action S [g, ḡ; A, Ā] is given by:

S [g, ḡ; A, Ā] = −
1

2

∫

`

tr
[
(ν + κ)g−1(d + AT )g + (ν − κ)ḡ−1(d + ĀT )ḡ

]
. (B.17)

The path integral has a first-order Lagrangian depending on the SL(2,C)-valued functions g : ` → SL(2,C).

The boundary condition for the path integral is that the “position variables” g at the source and target of ` are

equal to z′ and z. The above path integral can be viewed as a quantum particle moving through the “position

space” CP1.

However there is a gauge symmetry of the action, i.e. S [g, ḡ; A, Ā] is invariant under g 7→ gh with

h ∈ Hλ = TC when h is trivial on the boundary. Therefore the path integral is essentially defined over the

maps g : ` → SL(2,C)/TC = Ωλ, where Ωλ is the coadjoint orbit, except for the integral at the boundary

of `. If we consider the gauge transformation g 7→ gh with h ∈ Hλ = TC non-trivial on the boundary,

the path integral Eq. (B.16) transforms non-trivially. Evaluation of the path integral defines a section in

the line-bundle over CP1 × CP1. Indeed, let us consider an arbitrary gauge transformation g 7→ gh with

h = eτH , τ ∈ C. The action S transforms as

S [g, ḡ; A, Ā] 7→ S [g, ḡ; A, Ā] +
i

2
(w + m)

∫

`

dτ +
i

2
(w − m)

∫

`

dτ̄. (B.18)

Under the transformation g 7→ gh the coordinates z1, z2, x1, x2 for the quotient SL(2,C)/TC scale as

(
z1 −x2

z2 x1

) (
α 0

0 α−1

)
=

(
αz1 −α−1x2

αz2 α−1x1

)
, where α = eτ. (B.19)

Eq. (B.18) implies that the path integral transforms in the same way as Eq.(B.10), which has to be the case

in order that Eq.(B.16) is correct and the L2 inner product with dz is scale invariant, i.e.

∫ λz

z′
DgDḡ eiS [g,ḡ;A,Ā] = α−

1
2

(w+m)−1ᾱ−
1
2

(w−m)−1

∫ z

z′
DgDḡ eiS [g,ḡ;A,Ā]

and

∫ z

λz′
DgDḡ eiS [g,ḡ;A,Ā] = α

1
2

(w+m)−1ᾱ
1
2

(w−m)−1

∫ z

z′
DgDḡ eiS [g,ḡ;A,Ā]. (B.20)

Note that a factor α−1ᾱ−1 above comes from the path integral measure at the boundary.

Using the boundary conditions on z and z′, the variational equations of motion can be derived from S :

[
ν + κ, g−1(d + AT )g

]
= 0, and

[
ν − κ, ḡ−1(d + ĀT )ḡ

]
= 0, (B.21)
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which implies that g is the gauge transformation diagonalizing the component of At along the curve `, or,

d

dt
g + AT

t g ∝C gH, and
d

dt
ḡ + ĀT

t ḡ ∝C ḡH. (B.22)

Again expressing g using the coordinates z1, z2, x1, x2, we find that d
dt

z+AT
t z ∝C z (and similarly for z̄) where

z = (z1, z2)T . Then the on-shell relation for the boundary data z, z′ of the path integral is:

z ∝C Pe−
∫
`

AT

z′. (B.23)

Hamiltonian analysis of S [g] reproduces the symplectic structure ων,κ of Eq. (B.6), and gives the Hamil-

tonian H = p · ∂tq − L:

H =
1

2
tr

[
(ν + κ)g−1AT

t g + (ν − κ)ḡ−1ĀT
t ḡ

]
, (B.24)

where At is the component of A along the curve `. We replace the variables in g by the corresponding

operators in the z-space representation to define the Hamiltonian operator Ĥ. Here At is treated as an external

variable, so its components in an sl2C basis are treated as c-numbers. Consequently, it can be shown that,

the resulting Hamiltonian operator −iĤ is precisely the representation of At : ` → sl2C in the unitary irrep

as an operator onHm,w. In other words, if we expand the 2 matrix At = aH + bE + cF, then

−iĤ = aĤ + bÊ + cF̂, (B.25)

where Ĥ, Ê and F̂ are the differential operators representing H, E, and F ∈ sl2C and generating infinitesi-

mally the representation Eq. (B.12). As a result, the path integral of Eq. (B.16) for Wilson line follows from

the quantum mechanical relation:

〈
z
∣∣∣ Te−i

∫
Ĥ dt

∣∣∣z′
〉
=

∫ z

z′
DgDḡ eiS [g,ḡ;A,Ā], (B.26)

where T denotes the time-ordering corresponding to the path ordering P of the Wilson line.
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