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We describe a method for computing near-exact energies for correlated systems with large Hilbert spaces.
The method efficiently identifies the most important basis states (Slater determinants) and performs a variational
calculation in the subspace spanned by these determinants. A semistochastic approach is then used to add a
perturbative correction to the variational energy to compute the total energy. The size of the variational space
is progressively increased until the total energy converges to within the desired tolerance. We demonstrate the
power of the method by computing a near-exact potential energy curve for a very challenging molecule: the
chromium dimer.
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I. INTRODUCTION

The evaluation of accurate energies for correlated many-
electron systems is one of the most important challenges for
computational science. The difficulty arises from the fact that
the number of many-electron states increases combinatorially
with the number of single-electron states (orbitals) Norb and
the number of up- and down-spin electrons N↑, N↓ (N = N↑ +

N↓) as NorbCN↑
×Norb CN↓

.
There exist a number of accurate methods for weakly cor-

related systems, which we define for the purpose of this paper
as systems for which much of the wave-function amplitude
resides on a relatively small number of many-electron basis
functions (Slater determinants), all of which can be con-
structed by exciting electrons from the orbitals of a reference
state to orbitals within a small set of “active” orbitals [1]. In
that case it is possible to perform an exact diagonalization
in the complete active space (CAS), i.e., the space spanned
by all determinants reachable by any number of excitations
among these active orbitals. If the orbitals are rotated to opti-
mize the energy, the resulting method is called the complete
active space self-consistent field (CASSCF) method [2,3]. The
resulting energy can be improved by performing second-order
perturbation theory to approximately include the contribution
of additional states, resulting in the complete active space
perturbation theory (CASPT2) method [4].

At the other end of the spectrum, very strongly correlated
systems can be defined as those systems for which it is
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necessary to include a large fraction of all possible Slater
determinants to get an accurate energy and other expectation
values. For these systems there is no recourse other than exact
diagonalization in the entire Hilbert space, which is feasible
only for very small systems or very small basis sets.

In between these two extremes, moderately strongly corre-
lated systems require a large number of important Slater deter-
minants to obtain accurate results, but this number constitutes
a vanishingly small fraction of the dimension of the Hilbert
space. Further, these states do not have any obvious pattern
(e.g., they do not all belong to a CAS space). Many ab initio

Hamiltonians belong to this category. It is for these systems
that selected configuration interaction plus perturbation theory
(SCI+PT), first developed about 50 years ago [5,6], can be
most useful. Recently, there has been renewed interest in these
methods [7–15] and some interesting applications, particu-
larly to excited states [14,16]. The recent development of a
very efficient algorithm in the form of the semistochastic heat-
bath configuration interaction (SHCI) method by some of the
authors of this paper [17–21] has now made it possible to per-
form calculations on a wider and more interesting set of sys-
tems. We next briefly describe the SHCI method and the main
innovations that account for its efficiency. Then we apply the
SHCI method to calculate the potential energy curve of a small
but very challenging molecular system, the chromium dimer.

II. METHOD

Selected configuration interaction plus perturbation theory
(SCI+PT) methods approximate the full configuration inter-
action (FCI) energy by selecting the most important determi-
nants from a large Hilbert space. These methods contain two
steps. In the first step, a set of important determinants, V , are
selected and the Hamiltonian is diagonalized in the subspace
of these determinants to obtain the lowest, or the lowest few,

2643-1564/2020/2(1)/012015(6) 012015-1 Published by the American Physical Society



JUNHAO LI et al. PHYSICAL REVIEW RESEARCH 2, 012015(R) (2020)

eigenstates. In the second step, a second-order perturbation
theory is used to calculate the energy contributions of the
determinants that are in a space P that is disjoint to V , but that
have a nonzero Hamiltonian matrix element connecting them
to at least one of the determinants in V . We will refer to V

and P as the variational and perturbative spaces, respectively.
The recently developed SHCI algorithm substantially reduces
the computational time of performing both the variational
calculation and the perturbative correction, and eliminates
the memory bottleneck for the perturbative calculation. We
describe these two innovations next.

The method used in this paper is an improved version of
the one recently developed [21] by some of the authors of
this paper. Straightforward SCI+PT implementations use an
energetic criterion based on second-order perturbation theory,

(
∑

Di∈V
Haici

)2

E − Ea

< −ε, (1)

for selecting determinants Da, to be included in V . In Eq. (1)
E is the energy of the variational wave function and Ea is
the energy of determinant Da. SHCI modifies the selection
criterion to

max
Di∈V

|Haici| > ε1, (2)

which greatly reduces the cost by taking advantage of the fact
that most of the Hai matrix elements are two-body excitations,
which depend only on the indices of the four orbitals whose
occupations change and not on the other occupied orbitals of
a determinant [17]. Thus, by presorting the absolute values
of all possible matrix elements of the two-body excitations
in descending order, the scan over determinants Da can be
terminated as soon as |Hai| drops below ε1/|ci|. In this paper,
a similar idea is used to speed up the selection of one-body
excitations as well. This enables a procedure in which only

the important determinants are ever looked at, resulting in
orders-of-magnitude saving in computer time. SHCI uses an
analogous procedure to efficiently select the important pertur-
bative determinants in P , replacing the variational cutoff ε1 in
Eq. (2) with a much smaller perturbative cutoff ε2 � ε1.

Even with this improvement, a straightforward evaluation
of the perturbative correction has a very large memory re-
quirement because all distinct determinants connected to V ,
but not in V , that meet the criterion in Eq. (2) with ε = ε2 must
be stored [22]. The total number of connected determinants
is >1015 (>1013 distinct connected determinants) when the
number of variational determinants is on the order of 109,
as is the case for the calculations in this paper. To solve
this problem, we have developed a two-step [18], and later
an improved three-step [21] semistochastic perturbative ap-
proach that overcomes this memory bottleneck, and is fast and
perfectly parallelizable. A different efficient semistochastic
perturbative approach has been used in Ref. [11]. These
improvements allowed us to use 2 × 109 variational determi-
nants [21], which is two orders of magnitude larger than the
largest variational space of 2 × 107 determinants [11] used in
any other SCI+PT method.

We choose ε2 = 10−6ε1, so by progressively reducing the
single parameter ε1 a systematic convergence to the full
configuration interaction limit is obtained. The energy at the

ε1 = 0 limit is obtained using a quadratic fit to the energies
versus the perturbative correction [19]. The convergence of
the energy depends greatly on the choice of orbitals. Natural
orbitals give faster convergence than Hartree-Fock orbitals.
Orbitals that are optimized to minimize the SHCI energy
[20] for a large value of ε1 yield yet faster convergence, but
the optimization typically requires many more optimization
iterations than CASSCF optimizations require because of
strong coupling between the orbital and CI parameters. In
this paper, we greatly accelerate the convergence by using an
overshooting method based on the angle between successive
parameter updates.

III. POTENTIAL ENERGY CURVE OF Cr2

The potential energy curve of the chromium dimer is very
challenging for state-of-the-art quantum chemistry methods
for several reasons. The 1�+

g ground state of the molecule
dissociates into two atoms in high-spin 7S states, each with
six unpaired 3d and 4s electrons. Thus, the molecule has a
formal sextuple bond, and the minimal CAS space required
for correct dissociation is CAS(12e,12o). Consequently, near-
degeneracy correlation is very important, as evidenced by the
fact that spin-unrestricted coupled cluster theory with sin-
gle, double, and perturbative triple excitations [UCCSD(T)]
predicts a dissociation energy that is much too small [23].
Simultaneously, dynamic correlation is also very important,
as evidenced by the fact that CASSCF in a CAS(12e,12o)
space gives a very weak minimum at a very large bond length.
Thus, most of the calculations that have been performed
employ CASPT2 [24–27] or the related n-electron valence
state perturbation theory (NEVPT2) [28] to try to capture
both near-degeneracy and dynamic correlation effects. These
methods are sensitive to the choice of the CAS space, and
in addition the CASPT2 method is sensitive to the choice of
the ionization potential electron affinity (IPEA) shift. In fact,
CASPT2 with a CAS(12e,12o) reference space and reason-
able choices of IPEA shift yield well depths ranging from 1.1
to 2.4 eV [26]. Since conventional CASSCF calculations are
limited to about CAS(18e,18o), the density matrix renormal-
ization group (DMRG) [29,30] method has been employed
[24,28] as a CAS space solver, allowing the use of the larger
CAS(12e,22o), CAS(12e,28o), and CAS(28e,20o) reference
spaces, which partially cures this problem. Despite this, these
methods have been unable to provide a definitive potential
energy curve (PEC) for Cr2.

Externally contracted multireference configuration inter-
action (MRCI) using determinants selected from a DMRG
calculation in a CAS(12e,42o) as the reference space has
also been used [31]. It gives a reasonably-shaped PEC shifted
down by about 0.1 eV relative to experiment. Multireference
averaged quadratic coupled cluster (MR-AQCC) [32] is an-
other accurate method that has been used to compute the PEC
of Cr2. It gives a well depth of 1.35 eV, and the shape of the
PEC is in reasonable agreement with experiment.

Probably the most accurate method used for Cr2 is the
auxiliary field quantum Monte Carlo (AFQMC) [33]. Most
AFQMC computations are performed using the phaseless
approximation, the accuracy of which depends on the choice
of the trial wave function. For Cr2, phaseless AFQMC is not
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sufficiently accurate with affordable trial wave functions. On
the other hand, free-projection AFQMC is exact (aside from
statistical error), but very computationally expensive. So, a
hybrid approach was used wherein free-projection AFQMC
was performed in the 3z basis and the complete basis set
correction was computed by adding in the correction from
phaseless AFQMC for 3z, 4z, and 5z basis sets for r < 2 Å,
and by adding in the correction from free-projection AFQMC
with only 12 rather than 28 correlated electrons in 3z and 4z

basis sets for r > 2 Å.
Part of the interest in Cr2 comes from the fact that an exper-

imentally deduced PEC is available which can be used to some
extent to test the accuracy of theoretical methods. The shape
of the PEC comes from high-resolution photoelectron spectra
of Cr−

2 , which showed 29 vibrationally resolved transitions
to the neutral Cr2 ground state [34]. However, there are gaps
in the measured vibrational levels and the assignment of the
higher levels is not unambiguous, so part of the PEC is not
well constrained by the data. The vertical placement of the
potential energy curve is determined from the dissociation
energy. Experimental values vary considerably: 1.56(26) [35],
1.78(35) [35], 1.44(6) [36], 1.43(10) [37], and 1.54(6) eV
[38]. We will use the last number in most of our plots since
it is more recent, but will keep in mind that it has considerable
uncertainty. Since the zero-point energy is 0.03 eV [24], the
potential energy curves we present are shifted so that the well
depth is 1.57 eV. Recently, the experimental data of Casey and
Leopold [34] have been reanalyzed by Dattani [39] using a
more flexible fitting function and a fully quantum mechanical
treatment to obtain a slightly different PEC from the original.
We show both of these curves in all our figures.

IV. HAMILTONIAN

For the 3d transition metals it is important to include scalar
relativistic effects, but the spin-orbit splitting is small. The
two standard scalar relativistic Hamiltonians are the Douglas-
Kroll and the x2c [40] Hamiltonians. In our work, we employ
mostly the x2c Hamiltonian, but we have verified that the
Douglas-Kroll Hamiltonian yields essentially the same PEC,
though it gives a total energy for the molecule that is about
14.6 mHa higher. The one- and two-body integrals for the x2c

Hamiltonian are obtained using the PYSCF package [41].

V. BASIS SETS

Quantum chemists have designed several different sets of
standard single-particle basis functions for most of the ele-
ments in the periodic table [42]. The “correlation consistent”
bases of Dunning and co-workers [43–45] are widely used
and are designed to enable systematic extrapolation to the
complete basis limit. These bases are designated cc-pVnZ,
where n is referred to as the cardinal number of the basis
set. They are designed for nonrelativistic calculations; the
corresponding basis sets for relativistic calculations are des-
ignated cc-pVnZ-DK. We employ the cc-pVnZ-DK basis sets
with n ranging from 2–5, and for brevity we designate these
by 2z, 3z, 4z, and 5z. These have 86, 136, 208, and 306
basis functions for the dimer, respectively, which result in
the same number of orbitals written as linear combinations
of the basis functions. In the SHCI calculations we allow

excitations to and from all these orbitals, keeping only a small
number of core, and in some calculations semicore, orbitals
doubly occupied. By using more than one basis set, we can
extrapolate the UCCSD(T) and SHCI energies to the complete
basis limit making the usual assumption that the binding
energy converges as the inverse cube of the cardinal number n

for n � 3.
Cr2 at a bond length of 1.5 Å in the Ahlrichs SV basis [46]

has become a very popular system for testing the accuracy and
efficiency of electronic structure methods, even though this
basis is much too small to give even a qualitatively correct
PEC [47]. In the Supplemental Material [48], we provide
accurate energies for this basis, both with and without core
excitations.

VI. CORRELATING 12 ELECTRONS

Molecular systems containing heavy atoms have orbitals
with very different energies. Although core electron correla-
tions make a large contribution to the total energy, they have
only a relatively small effect on energy differences such as the
potential energy curve (PEC) because the core contributions in
the atoms and the molecule tend to cancel. In Cr, the 3d and
4s electrons are the valence electrons, the 3s and 3p electrons
are semicore electrons, and the 1s, 2s, and 2p electrons are
the core electrons. Early calculations of Cr2 employed only
valence electron excitations; later calculations included also
semicore electron excitations.

The computed energies depend not only on which orbitals
are allowed to excite, but also on the nature of the orbitals that
are kept frozen (not allowed to excite). Figure 1 shows the
PEC obtained from correlating only the 12 valence electrons
by allowing excitations to all higher-lying orbitals, keeping
the semicore and core electrons fixed either in Hartree-Fock
(HF) orbitals, or in orbitals obtained by optimizing in a
CAS(12e,12o) space. The two curves differ greatly from each
other and from the experimentally deduced PECs.
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FIG. 1. Comparison of the SHCI potential energy curves corre-
lating the 12 valence electrons with a HF core and a CAS core to
experimentally deduced curves. Note that in the SHCI calculation
excitations to all higher-lying orbitals are allowed. When correlating
12 electrons, the nature of the frozen orbitals has a large effect on the
PEC.
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FIG. 2. Comparison of the SHCI potential energy curves, corre-
lating the 12 valence electrons using a CAS core and 2z-4z basis sets,
to experimentally deduced curves. It is apparent that correlating just
the 12 valence electrons is insufficient to get an accurate PEC.

In Fig. 2 we employ the 2z, 3z, and 4z basis sets to study
the basis set dependence of the PECs obtained again from cor-
relating only the 12 electrons, using CAS(12e,12o) semicore
and core orbitals. Although the PECs improve with increasing
basis size, it is clear that correlating just 12 electrons is
insufficient to get good agreement with experiment. This is in
fact well known, but the precise PECs have not been published
before.

VII. CORRELATING 28 ELECTRONS

The coupled cluster method with single, double, and per-
turbative triples [CCSD(T)] amplitudes gives very accurate
energies for systems where a single determinant has a large
amplitude, such as most organic molecules at equilibrium
geometry. Here, we use the spin-unrestricted versions of HF
and CCSD(T), denoted by UHF and UCCSD(T), respectively,
meaning that the HF up-spin and down-spin orbitals, and
the CCSD up-spin and down-spin amplitudes, need not be
the same, since this allows for dissociation of the molecule
into two high-spin atoms. On the other hand, in our SHCI
calculations, up- and down-spin orbitals are the same, so that
the SHCI wave function can be an eigenstate of S2. In Fig. 3
we show the PECs obtained from UCCSD(T) using PYSCF

[41] and 2z through 5z basis functions. Of course, the total
energies go down monotonically with increasing basis size,
but very surprisingly the 2z PEC curve lies lower than the
3z, 4z, and 5z curves. The same behavior is observed also in
SHCI calculations at equilibrium with 2z, 3z, and 4z bases.
The infinite basis extrapolated UCCSD(T) curve, shown as
the solid blue line, lies below the 2z curve at short distances
and above the 2z curve at large distances. The extrapolation
is done using the 4z and 5z curves, but almost the same
extrapolated curve is obtained from 3z and 4z curves. The 28
correlated electron UCCSD(T) curves have shapes similar to
those from the 12 correlated electron SHCI curves, but they
agree even less well with experiment.

Although UCCSD(T) gives poor PECs, it can be used
to provide a reasonable basis set correction to the SHCI
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FIG. 3. UHF and UCCSD(T) potential energy curves correlating
28 electrons in bases ranging from 2z to 5z, and the complete basis
limit. Note that the 2z curve lies lower than the 3z, 4z over the entire
range, and lower than the 5z and complete basis curves over most of
the range.

curves that we present next. The accuracy of the correction
has been checked at the equilibrium bond length, where we
find that the correction to the 2z SHCI energy, using the
(3z, 4z, 5z) UCCSD(T) energies agrees with that obtained
from the (3z, 4z) SHCI energies within 0.1 eV. More precise
agreement cannot be expected since the uncertainty of the
SHCI 3z, 4z energies from the extrapolation in ε1 is itself
about 0.1 eV. The 4z SHCI calculations with 28 correlated
electrons have a Hilbert space of (198C14)2 ≈ 1042. One of
the desirable features of the SHCI method is that although the
Hilbert space increases by 10 orders of magnitude going from
the 2z to the 4z basis, the cost of the calculation is only a
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FIG. 4. Comparison of the SHCI potential energy curves corre-
lating 28 electrons to experimentally deduced curves. The red curve
is for the 2z basis, the orange dot for the 3z basis, the green dot
for the 4z basis, and the blue curve is the complete basis limit
using the correction from UCCSD(T). Similarly to UCCSD(T), when
28 electrons are correlated, the binding energies do not change
monotonically with the basis cardinal number. The FP-AFQMC
curve from Fig. 4 of Ref. [33] is also shown.

012015-4



ACCURATE MANY-BODY ELECTRONIC STRUCTURE NEAR … PHYSICAL REVIEW RESEARCH 2, 012015(R) (2020)

few times larger. This desirable feature is even more evident
when the increase in Hilbert space comes from correlating
additional core orbitals. However, since the 2z calculations are
already expensive, we have done the larger basis calculations
only at equilibrium.

The PEC from SHCI in the 2z basis, correlating the 28
valence and semicore electrons, is shown as the red curve in
Fig. 4. The blue curve is the PEC extrapolated to infinite basis
size using the correction from UCCSD(T). It has a minimum
of −1.55 eV at 1.679 Å, in agreement with the experimentally
determined −1.57 eV [38] at 1.679 Å [34]. It agrees very well
with experiment at bond lengths around equilibrium and also
at long bond lengths. It differs a little from experiment in the
shoulder region from 1.8 to 2.7 Å, which roughly coincides
with the range of distances where the experimentally deduced
curve is most uncertain because of missing vibrational levels,
as also noted in Ref. [33]. This is also the region where
the computed energies converge most slowly. The blue curve
agrees well also with the curve labeled FP-AFQMC in Fig. 4
of Ref. [33], except that the FP-AFQMC curve is yet a bit
lower than SHCI in the shoulder region.

VIII. CONCLUSIONS

The SHCI method enables systematic convergence to the
exact energy for moderately strongly correlated systems with

sizes of Hilbert space that were previously inaccessible. We
demonstrated its power by computing the potential energy
curve of a very challenging dimer Cr2. The size of the
largest Hilbert space treated with SHCI is 1042. Nevertheless,
energies, that we estimate are accurate to a few milliHartrees,
were obtained from calculations that involve 109 variational
determinants or fewer, and several trillion perturbative deter-
minants. In future work, we plan to use an effective Hamil-
tonian that incorporates the effect of explicit interelectronic
correlation [49] to reduce the magnitude of the basis set
extrapolation error.

ACKNOWLEDGMENTS

This work was supported by the AFOSR under Grant
No. FA9550-18-1-0095 and by the NSF under Grants No.
ACI-1534965 and No. CHE-1800584. The computations were
performed on the Bridges cluster at the Pittsburgh Supercom-
puting Center supported by NSF Grant No. ACI-1445606,
as part of the XSEDE program supported by NSF Grant
No. ACI-1548562, and on the Google Cloud Platform. We
thank N. Dattani for sharing the Cr2 PEC he deduced
from experimental data, A. Mahajan for help with using
PYSCF, and G. Chan, A. Savin, and J. Toulouse for valuable
discussions.

[1] We note that the usual quantum chemistry definition of weak
correlation requires that much of the amplitude resides on a
single state. Hence, some systems that we consider in this
paper to be weakly correlated would count as being strongly
correlated in the quantum chemistry literature.

[2] H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985).
[3] D. A. Kreplin, H.-J. Werner, and P. J. Knowles, J. Chem. Phys.

150, 194106 (2019).
[4] K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and

K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
[5] C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23 (1969).
[6] B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58,

5745 (1973).
[7] F. A. Evangelista, J. Chem. Phys. 140, 124114 (2014).
[8] W. Liu and M. R. Hoffmann, J. Chem. Theory Comput. 12,

1169 (2016).
[9] A. Scemama, T. Applencourt, E. Giner, and M. Caffarel,

J. Comput. Chem. 37, 1866 (2016).
[10] N. M. Tubman, J. Lee, T. Y. Takeshita, M. Head-Gordon, and

K. B. Whaley, J. Chem. Phys. 145, 044112 (2016).
[11] Y. Garniron, A. Scemama, P.-F. Loos, and M. Caffarel, J. Chem.

Phys. 147, 034101 (2017).
[12] M. Dash, S. Moroni, A. Scemama, and C. Filippi, J. Chem.

Theory Comput. 14, 4176 (2018).
[13] Y. Garniron, A. Scemama, E. Giner, M. Caffarel, and P.-F. Loos,

J. Chem. Phys. 149, 064103 (2018).
[14] P.-F. Loos, A. Scemama, A. Blondel, Y. Garniron, M. Caffarel,

and D. Jacquemin, J. Chem. Theory Comput. 14, 4360 (2018).
[15] D. Hait, N. M. Tubman, D. S. Levine, K. B. Whaley, and M.

Head-Gordon, J. Chem. Theory Comput. 15, 5370 (2019).

[16] A. D. Chien, A. A. Holmes, M. Otten, C. J. Umrigar, S. Sharma,
and P. M. Zimmerman, J. Phys. Chem. A 122, 2714 (2018).

[17] A. A. Holmes, N. M. Tubman, and C. J. Umrigar, J. Chem.
Theory Comput. 12, 3674 (2016).

[18] S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and C. J.
Umrigar, J. Chem. Theory Comput. 13, 1595 (2017).

[19] A. A. Holmes, C. J. Umrigar, and S. Sharma, J. Chem. Phys.
147, 164111 (2017).

[20] J. E. Smith, B. Mussard, A. A. Holmes, and S. Sharma, J. Chem.
Theory Comput. 13, 5468 (2017).

[21] J. Li, M. Otten, A. A. Holmes, S. Sharma, and C. J. Umrigar,
J. Chem. Phys. 149, 214110 (2018).

[22] An alternative straightforward approach does not have a large
memory requirement, but requires considerably larger compu-
tation time.

[23] C. W. Bauschlicher and H. Partridge, Chem. Phys. Lett. 231,
277 (1994).

[24] Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104
(2011).

[25] F. Ruiperez, F. Aquilante, J. M. Ugalde, and I. Infante, J. Chem.
Theory Comput. 7, 1640 (2011).

[26] D. Ma, G. L. Manni, J. Olsen, and L. Gagliardi, J. Chem. Theory
Comput. 12, 3208 (2016).

[27] S. Vancoillie, P. A. Malmqvist, and V. Veryazov, J. Chem.
Theory Comput. 12, 1647 (2016).

[28] S. Guo, M. A. Watson, W. Hu, Q. Sun, and G. K. L. Chan,
J. Chem. Theory Comput. 12, 1583 (2016).

[29] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[30] G. K.-L. Chan, J. J. Dorando, D. Ghosh, J. Hachmann,

E. Neuscamman, H. Wang, and T. Yanai, in Frontiers in

012015-5



JUNHAO LI et al. PHYSICAL REVIEW RESEARCH 2, 012015(R) (2020)

Quantum Systems in Chemistry and Physics, edited by S. Wilson
(Springer, Berlin, 2009), p. 49.

[31] Z. Luo, Y. Ma, X. Wang, and H. Ma, J. Chem. Theory Comput.
14, 4747 (2018).

[32] T. Müller, J. Phys. Chem. A 113, 12729 (2009).
[33] W. Purwanto, S. Zhang, and H. Krakauer, J. Chem. Phys. 142,

064302 (2015).
[34] S. M. Casey and D. G. Leopold, J. Phys. Chem. 97, 816 (1993).
[35] A. Kant and B. Strauss, J. Chem. Phys. 45, 3161 (1966).
[36] K. Hilpert and K. Ruthardt, Ber. Bunsenges. Phys. Chem. 91,

724 (1987).
[37] C.-X. Su, D. A. Hales, and P. B. Armentrout, Chem. Phys. Lett.

201, 199 (1993).
[38] B. Simard, M.-A. Lebeault-Dorget, A. Marijnissen, and J. J. Ter

Meulen, J. Chem. Phys. 108, 9668 (1998).
[39] N. Dattani, G. L. Manni, and M. Tomza, An improved empirical

potential for the highly multireference sextuply bonded transi-
tion metal benchmark molecule Cr2, http://hdl.handle.net/2142/
91417.

[40] W. Kutzelnigg and W. Liu, J. Chem. Phys. 123, 241102 (2005).
[41] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo,

Z. Li, J. Liu, J. McClain, S. Sharma, S. Wouters, and G. K.-L.
Chan, WIREs Comput. Mol. Sci. 8, e1340 (2018).

[42] https://www.basissetexchange.org.
[43] T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
[44] N. B. Balabanov and K. A. Peterson, J. Chem. Phys. 125,

074110 (2006).
[45] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V.

Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf.
Model. 47, 1045 (2007).

[46] A. Schäfer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571
(1992).

[47] Y. Kurashige and T. Yanai, J. Chem. Phys. 130, 234114 (2009).
[48] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevResearch.2.012015 for calculations of Cr2 at
a bond length of 1.5 Å in the Ahlrichs SV basis to an accuracy
of a few microHartrees.

[49] T. Yanai and T. Shiozaki, J. Chem. Phys. 136, 084107 (2012).

012015-6


