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A large collaboration carefully benchmarks 20 first-principles many-body electronic structure methods

on a test set of seven transition metal atoms and their ions and monoxides. Good agreement is attained

between three systematically converged methods, resulting in experiment-free reference values. These

reference values are used to assess the accuracy of modern emerging and scalable approaches to the many-

electron problem. The most accurate methods obtain energies indistinguishable from experimental results,

with the agreement mainly limited by the experimental uncertainties. A comparison between methods

enables a unique perspective on calculations of many-body systems of electrons.
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I. INTRODUCTION

A major challenge in condensed matter physics, materi-

als physics, and chemistry is to compute the properties of

electronic systems using realistic Hamiltonians. Efficient

and accurate calculations could enable computational

design of drugs [1] and other materials [2,3] and shed

light on a number of physical questions, such as the origin

of linear-T resistivity [4], high-temperature superconduc-

tivity [5], and many other effects that currently lack a

satisfying explanation.

Many-body quantum calculations on classical computers
are challenging, because the dimension of the Hilbert space
increases dramatically with the number of particles. For
example, in the simple case of a CuO molecule with a large
(5z) basis, the Hilbert space is of dimension 1044 for the

Sz ¼
1

2
sector. A vector of this size cannot be represented in

any computer; at the present time, the Oak Ridge machine
Summit has approximately 250 petabytes of storage [6],
which is still approximately 17 orders of magnitude too
small to store a single vector. Modern techniques therefore
use compression and other techniques to approximate the
state vectors.
There are many, not always mutually exclusive,

approaches to dealing with the dimensionality: truncation
of the wave function space through wave function Ansätze,
one-particle Green function approaches, density functional
theory, Monte Carlo methods, and embedding techniques.
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The techniques vary dramatically in their computational

cost and accuracy. Most studies [7–15] judge the accuracy

of the methods by comparing to experimental energies [16],

which are computed by taking differences of total energies

and are therefore subject to a fortuitous cancellation

of error. Recently, it has been pointed out [17,18] that

comparisons between numerical implementations can

be extremely valuable, rather than making comparisons

directly to experiment. In this study, we include three

systematically improvable methods with sufficiently small

prefactors that they yield almost exact total energies within

the chosen basis set and serve as a benchmark for testing

all other methods.

In this manuscript, we apply a diverse array of 20

established and emerging techniques to a test set of small,

realistic transition metal molecules and atoms. Each tech-

nique is implemented by an expert and employs precisely

the same Hamiltonian. This approach allows us to directly

assess methodological differences without confounders

such as different Hamiltonians and has been important

for a previous benchmark study of the hydrogen chain [19]

and helium atom [20,21]. For these systems, we achieve a

convergence of exponentially scaling but systematically

convergable methods at the order of 1 mhartree in the total

energy, or about 300 K, establishing a reliable reference on

realistic Hamiltonians with complex atoms. We then assess

the accuracy of more approximate approaches for comput-

ing the total energy of atoms and molecules, which allows

some assessment of the transferability of performance with

an increasing system size. Finally, we study how errors in

the total energies translate into errors of physical observ-

ables obtained as differences of total energies, and we make

comparisons to experiments. These results provide an

important reference for the development of techniques that

can address the larger goal of computing electronic proper-

ties of realistic materials.

II. METHODOLOGY

Table I lists the methods tested in this work. It includes

most of the common techniques to address the many-

electron problem, as well as some emerging methods. It

also includes a few methods such as configuration inter-

action with singles and doubles (CISD) which are no longer

commonly used but have historical relevance. The methods

in this benchmark vary dramatically in their computational

cost; the density functional theory methods require only a

few minutes to complete the test set, while some of the

more advanced techniques are not able to treat every basis

for every system with the available amount of computer

time. The methods also scale very differently, ranging from

OðN3
eÞ to exponential in the number of electrons Ne. Of the

three systematically converged methods [initiator full con-

figuration interaction quantum Monte Carlo (iFCIQMC),

density matrix renormalization group (DMRG), and semi-

stochastic heat-bath configuration interaction (SHCI)], only

SHCI is performed for all the systems in all the basis sets.

Consequently, SHCI energies are used as the reference.

Some of the other techniques are, in principle, system-

atically improvable, such as configuration interaction,

TABLE I. A list of abbreviations used in this benchmark. Details are available in Supplemental Material [22]. Column A lists the

largest basis set employed by that method for at least one of the transition metal atoms, and column B lists the same for the monoxide

molecules. The basis sets are abbreviated in order as d, t, q, 5, and c for complete basis set.

Abbreviation Method A B

AFQMC(MD) Auxiliary field quantum Monte Carlo with a multideterminant trial function [23,24] 5 5

B3LYP DFT with the B3LYP functional [25] 5 5

CISD Configuration interaction with singles and doubles 5 5

DMC(SD) Fixed node diffusion Monte Carlo with a single-determinant nodal surface [26,27] c c
DMRG Density matrix renormalization group [28,29] t d
GF2 Second-order Green function [30,31] q q
HF Hartree-Fock 5 5

HFþ RPA Hartree-Fock random phase approximation [32] t t
HSE06 DFT with the HSE06 functional [33,34] 5 5

iFCIQMC Initiator full configuration interaction quantum Monte Carlo [35,36] q d
LDA DFT in the local density approximation [37,38] 5 5

MRLCC Multireference localized coupled cluster [39–42] 5 5

PBE DFT in the Perdew-Burke-Ernzerhof [43] approximation 5 5

QSGW Quasiparticle self-consistent GW approximation [44] t t
SCAN DFT with SCAN functional [45] 5 5

SC-GW Self-consistent GW approximation [46,47] t � � �
SEET(FCI/GF2) Self-energy embedding theory with many-body expansion [48–52] q q
SHCI Semistochastic heat-bath configuration interaction [53,54] 5 5

UCCSD Unrestricted coupled cluster with singles and doubles [55] 5 5

UCCSD(T) Unrestricted coupled cluster with singles, doubles, and perturbative triples [55] 5 5
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coupled cluster, self-energy embedding theory, and the

Monte Carlo methods, but convergence to better than 1

mhartree is not achieved on these systems for the level of

the method employed. Some of the techniques give upper

bounds to the exact energy, such as diffusion Monte Carlo

(DMC), CISD, DMRG, and Hartree-Fock (HF). Finally, for

completeness, it should be noted that the methods also

require different levels of specification to define the

approximations used. For example, some of the methods

can be reproduced only by specifying the initial starting

determinant; others require defining an initial multideter-

minantal wave function or the choice of partitioning

between high-level and low-level methods.

We consider transition metal systems, with the core

electrons removed using effective core potentials [56–58].

These potentials accurately represent the core [59] in many-

body simulations and allow all the methods considered in

this work to use the same Hamiltonian. In addition, they

provide an easy way to include scalar relativistic effects,

needed for a meaningful comparison to experiment. These

potentials are available for O, Sc, Ti, V, Cr, Mn, Fe, and Cu,

which define our test set. We consider these atoms, their

ions, and the corresponding transition metal monoxide

molecules. To simplify the comparison, the molecules are

computed at their equilibrium geometry.

Almost every electronic structure method (all the meth-

ods in this study except DMC) works in a finite basis. Here,

we follow the chemistry convention of defining an ascend-

ing basis set denoted by the zðζÞ value, ranging from 2 to 5;

i.e., dz, tz, qz, and 5z. For each system, we consider the

first-principles Hamiltonian projected onto the basis, mak-

ing for a total of 23 × 4 ¼ 98 calculations for each method.

See Supplemental Material [22] for details on the precise

basis sets used in this study. While the results are

comparable to experiment only in the complete basis set

limit (cbs), for each basis set there corresponds a projected

Hamiltonian which also has an exact solution. We thus can

compare methods within a basis, since the Hamiltonian is

defined precisely.

In Table I, we list the methods considered in this work.

The deviation in the total energy between two methods

m and n is computed as

σðm; nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i∈systems½EiðnÞ − EiðmÞ�2

N

s

; ð1Þ

where N is the total number of calculations performed in

common between the methods. This number is a measure

of how well the output total energies between two methods

agree. It is possible for two methods with large σ to agree

on energy differences if there is a significant cancellation of

errors.

To compare total energies between methods and systems

in a consistent way, we use the concept of percent of

correlation, commonly used in quantum chemistry:

% correlation energyðmÞ ¼ 100 ×
EHF − Em

EHF − ESHCI

; ð2Þ

where EHF is the Hartree-Fock energy, m stands for the

method under consideration, and ESHCI is the total energy

computed in the basis by the SHCI method. At 100% of the

correlation energy, the exact result is obtained. This

quantity is particularly useful, since methods tend to obtain

similar percentages of the correlation energy across differ-

ent basis sets and systems.

Extrapolation to the basis set limit is done making the

usual assumption that the correlation energy (difference

between Hartree-Fock and the exact energy) scales as 1=n3,
where n is the cardinal number of the basis set, and that the

Hartree-Fock energy exponentially converges to the com-

plete basis limit. Complete basis set extrapolation is

necessary for a comparison of the finite basis set results

to experiment, DMC, and density functional theory results.

DMC works directly in the complete basis limit, whereas

density functional methods are designed to reproduce

complete basis set limit energies. The uncertainty in the

extrapolation, judged from the variation between different

fits to the extrapolation, is approximately 2–4 mhartree; for

details, see Supplemental Material [22]. Thus, in this test

set, the largest uncertainty in the complete basis set total

energy is due to the extrapolation of finite basis set energies

to the infinite limit.

The energy differences studied are the ionization poten-

tial of a transition metal atom M [IP ¼ EðMþÞ − EðMÞ]
and the dissociation energy of a metal oxide molecule MO
[DE ¼ EðMÞ þ EðOÞ − EðMOÞ]. These quantities have

been studied in detail for these systems in the past, e.g.,

Refs. [7–13,60–63], among others. However, none of these

previous studies attain reference energies as well converged

as the ones in this paper, and none compare energies from a

large number of methods.

III. RESULTS

We show several views of the data collected in this study

in the figures. Supplemental Material [22] contains various

tables and the complete set of data (approximately 1200

calculations) on which these plots are based. Figure 1

establishes that several high-accuracy techniques are in

agreement and establishes a reference technique SHCI.

Figure 2 compares the performance of methods in comput-

ing the total energy as compared to the reference. Figure 3

compares the performance of methods in computing the

ionization potential of the atoms and dissociation energy of

the molecules. Figure 4 summarizes the cancellation of

error for different techniques in computing the differences

in energies. Finally, Fig. 5 compares calculations using

methods found to be accurate to the experimental disso-

ciation energies. In this section, we examine related

methods in the context of these different views.
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In Fig. 1, we show a cluster analysis of the total energies

using Eq. (1), evaluated on the intersection of basis sets and

systems available for both methods, as the distance metric.

iFCIQMC, DMRG, and SHCI are converged to very high

levels of accuracy. In fact, these three methods agree to

approximately 1 mhartree for all systems and basis sets that

are computed. Because of this threefold agreement, we can

take any of these results as the exact ground state energy

in a given basis set to within an rms error of less than

1 mhartree, which is approximately what is termed

“chemical accuracy” in the context of energy differences.

Here, we achieve 1 mhartree accuracy in the total energy

of the ground state. However, as shown in Table I,

iFCIQMC and DMRG calculations are feasible within

the available computer time for only the smaller basis

sets, so we use SHCI as the reference. For finite basis sets,

the estimated uncertainty is approximately 1 mhartree, and

for the complete basis set, the estimated uncertainty is

approximately 2–4 mhartree due to the extrapolation

uncertainty.

Density functional methods have a large spread across

systems in the percent of correlation energy attained

(Fig. 2). The gradient-corrected and the hybrid functionals

(B3LYP, HSE06, PBE, and SCAN) improve the LDA. The

most recently proposed of these, SCAN, is more consistent

in the percent of correlation energy obtained at around

80%–90% of the correlation energy. Figure 4 shows that it

also benefits more than the other functionals from a

cancellation of errors between the atom and the molecule

to give more accurate dissociation energies, although it has

less cancellation of errors for the ionization potentials.

Much of the improvement in accuracy of the hybrid

functionals over PBE is in the cancellation of error.

The random phase approximation (RPA) and both

versions of GW overestimate the correlation energy as

shown in Fig. 2. While the total energy tends to be too low,

those errors tend to cancel for QSGW applied to energy

differences, as can be seen in Figs. 3 and 4.

FIG. 1. Cluster analysis of electronic structure methods in this

work, using the Seaborn [64] function clustermap. The matrix

values are the logarithm of the rms deviation of the total energy in

hartrees [Eq. (1)] between the two methods. The methods are

ordered according to the “complete” distance metric dðm; nÞ ¼
maxðσm;nÞ as defined in Eq. (1). The lines on the left are

dendrograms which quantify the relationship between the two

methods. Closely matching methods are linked with short links,

and grouped by their similarity.

FIG. 2. Kernel density estimation [65–67] of the percent of the SHCI-computed correlation energy within each basis obtained by each

of the methods in the benchmark set. All basis sets available are plotted; individual data points are indicated by small lines.
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As can be seen in Fig. 2, CISD, a truncated determinant

expansion technique well known to have size consistency

defects, performs much better for the atoms than the

molecules, which leads to rather poor predictions for the

dissociation energy of the molecules (Fig. 3). The error is

large enough that CISD is not included in Fig. 4 to improve

readability of the more accurate numbers. We note that

unrestricted coupled cluster with singles and doubles

(UCCSD), which is size consistent, also performs worse

on the molecules than the atoms, though to a lesser degree

than CISD. This difference results in the underestimation of

the dissociation energy (Fig. 3) and no cancellation of error

in the dissociation energy but a significant cancellation in

the ionization potential (Fig. 4).

Fixed node diffusion Monte Carlo with a single-deter-

minant trial function [DMC(SD)] yields a lower bound to

the extrapolated correlation energy, corresponding to an

upper bound to the total energy, which is apparent in Fig. 2.

The remaining energy is the fixed node error, the main

approximation in the DMC calculations, which for a single

Slater determinant nodal surface is much larger than the

extrapolation uncertainty. With the single Slater determi-

nant, DMC obtains 90%–95% of the correlation energy

quite consistently, in line with previous benchmarks on

smaller systems [68]. This consistency results in a signifi-

cant cancellation of error (Fig. 4) in the dissociation energy

and ionization potential.

Self-energy embedding theory with a full configuration

interaction solver and GF2 embedding [SEET(FCI/GF2)]

obtains results in good agreement with the reference total

energy (Fig. 2), resulting in accurate energy differences

(Fig. 3). Consequently, it lies very close to the x ¼ y line in
Fig. 4 and does not benefit from an additional cancellation

of error, as the energies are already accurate. The errors in

the total energy are not strongly correlated with the atomic

species; for example, the error in the Ti atom is not

statistically similar to the error in the TiO atom, resulting

in little cancellation of error.

The auxiliary field quantumMonte Carlo with a multiple

determinant trial function [AFQMC(MD)] gives good

agreement with the reference total energy, with an rms

deviations of about 3–4 mhartree. The dissociation energies

have an rms deviation of approximately 2.5 mhartree,

which is consistent with the conclusion of a recent bench-

mark on a large set of transition metal diatomics [14]. The

use of single-determinant unrestricted Hartree-Fock trial

wave functions leads to less accurate results, roughly

doubling the rms error in the total energy of the molecules

(see Supplemental Material Sec. I A [22]).

Coupled cluster with singles, doubles, and perturbative

triples [UCCSD(T)] performs very well on these systems,

obtaining close to 100% of the correlation energy. For these

problems, UCCSD(T) has a notably low cost for high

performance. The accuracy of UCCSD(T) is likely due to

the fact that these systems are not strongly multireference,

in that, even in the near-exact wave functions, there is a

single dominant determinant that makes a large contribu-

tion to the wave function. This contribution can be seen by

examining the natural orbital occupations; for example, in

UCCSD, the spin-resolved natural orbitals with large

occupations have occupations of 0.96 or greater. The

single-reference nature also explains the mediocre perfor-

mance of the multireference methods such as MRLCC,

which sacrifice some accuracy in the single-reference case

to treat multireference situations more accurately. In gen-

eral, active space techniques, which operate within an

explicitly chosen subspace of the larger Hilbert space,

are not very effective for these systems.

FIG. 3. Kernel density estimation plot of the dissociation energy and ionization potential of molecules and atoms to SHCI reference

calculations. Methods are ordered according to the clustering in Fig. 1.
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We believe that the reference data produced computa-

tionally have lower uncertainties than the experiment for

the purposes of benchmarking quantum calculation tech-

niques. The ionization potential of the large-basis SHCI

results is in agreement with the experiment with a mean

absolute deviation of 0.2 mhartree, or 7 meV, so one could

equivalently use experiment or the SHCI reference values,

as can be verified in Table VI in Supplemental Material

[22]. The experimental dissociation energy estimation is

limited by the challenges of the measurements, and the

experimental measures differ from one another by as much

as 0.5 eV. In Fig. 5, the high-accuracy estimates of the

dissociation energy of the molecules is shown, compared

to experimental values with zero point energy removed

[69–75]. For these systems, the experimental uncertainty

of the dissociation energy is larger than the difference

between the most accurate techniques in this benchmark.

Remarkably, SHCI, UCCSD(T), and AFQMC(MD) agree

to about 0.1 eV for all the molecules. We also should note

that, since we use effective core potentials to standardize

the benchmark, there may be some small errors in compar-

ing directly to experiment. However, we see no evidence

that the potentials used are limiting the accuracy; the most

accurate methods obtain results well within the experimen-

tal uncertainty, with the possible exception of VO, for

(a)

(b)

FIG. 4. Cancellation of error for many methods in this study,

computed by comparing the rms error in the total energy to the

rms error in the (a) ionization energy of the atoms and (b) dis-

sociation energy for molecules. HF and CISD are excluded from

the comparison for more detail in the more accurate methods;

they are off the scale here. The red dashed line corresponds to no

cancellation of error.

FIG. 5. Comparison of 5z dissociation energies of the transition
metal molecules obtained from the more accurate methods used

in this work to experiment. The x axis is the year the experimental

result was published, and the width of the bars indicates statistical

or systematic uncertainties.
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which most of the experimental values are slightly below

the theoretical ones.

When computing differences of total energies, both

methodological errors and errors due to finite basis sets

tend to cancel. In Fig. 4, we quantify the methodological

cancellation of errors in many of the techniques studied in

this work. Considering basis set errors, the rms error in the

total energy in the commonly used tz basis compared to the

complete basis set limit is 75 mhartree, while the rms error

in the ionization energy and dissociation energy for the

same comparison are 1.6 and 6 mhartree, respectively, as

can be seen in Table VIII in Supplemental Material [22].

IV. CONCLUSION

We survey 20 advanced many-electron techniques on

precisely defined realistic Hamiltonians for transition metal

systems. For a given basis set, we achieve approximately

1 mhartree agreement on the total energy between high-

accuracy methods, which provides a total energy bench-

mark for many-body methods. To our knowledge, such an

agreement is unprecedented for first-principles calculations

of transition metal systems. Our accurate reference energies

should enable the development of approximate, but more

computationally efficient, many-body techniques as well as

better density functionals, without the necessity of exper-

imental reference values. These systems are also a useful

test for future quantum computing algorithms. To enable

such comparisons, we include pyscf scripts that can execute

the benchmark for any density functional available in libxc

[76] and can export the one- and two-body integrals needed

for testing many-body methods.

We assess the state of the art in achieving high accuracy

in realistic systems. The benchmark set includes systems

with large Hilbert spaces of around 1044 determinants.

While these spaces are so large that a single vector cannot

fit in any computer memory, the computations are feasible

due to powerful compression of that space. The system-

atically converged techniques used in this work (DMRG,

FCIQMC, and SHCI) are able to achieve excellent agree-

ment but can be applied only to relatively small systems

due to their computational cost. It is thus important to

understand the errors in lower-scaling techniques that can

be applied to larger systems and whether performance on

small systems is transferable to larger systems. Our study

takes a step in that direction, since we are able to achieve

converged results for both correlated atoms and molecules,

and indeed we observe that the accuracy of some tech-

niques degrades with system size.

To avoid misinterpretation of the results, we make a

comment here. In order to ensure high-quality results, it is

necessary to limit the number of systems on which this

benchmark is performed. While treating electron correla-

tion accurately is important to obtain accurate results, these

systems have a particular character of correlation. In a

determinant expansion of the wave function, the systems

chosen here have one determinant with a large weight and

many determinants with small weights, rather than several

determinants with large weights. For such systems, meth-

ods such as UCCSD(T) are accurate. The performance

profile will likely be different for differently correlated

chemical systems, so benchmarking efforts of similar

quality in that realm would be highly valuable.
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