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Conical metrics on Riemann surfaces
I: The compactified configuration space and regularity

RAFE MAZZEO
XUWEN ZHU

We introduce a compactification of the space of simple positive divisors on a Rie-
mann surface, as well as a compactification of the universal family of punctured
surfaces above this space. These are real manifolds with corners. We then study the
space of constant curvature metrics on this Riemann surface with prescribed conical
singularities at these divisors. Our interest here is in the local deformation for these
metrics, and in particular the behavior of these families as conic points coalesce. We
prove a sharp regularity theorem for this phenomenon in the regime where these
metrics are known to exist. This setting will be used in a subsequent paper to study
the space of spherical conic metrics with large cone angles, where the existence
theory is still incomplete. Of independent interest is how setting up the analysis on
these compactified configuration spaces provides a good framework for analyzing
“confluent families” of regular singular, ie conic, elliptic differential operators.
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1 Introduction

This paper is a sequel to [16], by the first author and Weiss, concerning the space
of metrics with constant curvature and prescribed conic singularities on a compact
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Riemann surface M. In that paper a careful analysis was made of the deformation
theory for such metrics provided all the cone angles are less than 2. This assumption
simplifies both the analytic and the geometric considerations considerably. Consider the
space of tuples (c, p, ,g , K, A), where ¢ is a conformal structure on M, p a collection
of k distinct points, B a k—tuple of parameters prescribing the cone angles at the
points p; with each B; € (0, 1) (this corresponds to all cone angles lying in (0, 27)),
and constant K specifying the Gauss curvature and 4 > 0 specifying the area, all
subject to the requirement forced by Gauss—Bonnet that
- k 1

(1) XM B) == x(M) +j;(ﬂ,- —1)=5_KA.

It is known through the work of several authors that for each such tuple there exists a
unique metric on M which has constant curvature K, area A and conical singularities
at the points p; with cone angle 27 ;. There is a caveat when K > 0 and k > 2,
which states that in this case an extra condition is needed on the cone angles, namely

that they satisfy the so-called Troyanov condition

k
) min{2, 28} +k—x(M)> > Bi. j=1....k
i=1

which is trivial when restricted to E € (0, )k except when M = S?. The main result
of [16] states that the Teichmiiller space 7;‘“";{““ of all such solutions modulo the space
of diffeomorphisms of M isotopic to the identity is a smooth manifold.

It is known that the situation becomes much more complicated when some or all of
the B; are greater than 1, at least in the case that K > 0. One classical inspiration to
study this case is when each B; € N, ie all cone angles are integer multiples of 2, in
which case examples are easily obtained as ramified covers over other compact surfaces
with metrics of constant curvature. Existence and uniqueness of spaces with arbitrary
cone angles and curvature K < 0 subject to (1) is relatively easy; see McOwen [17].
Much more recent is the dramatic breakthrough by Mondello and Panov [19], which
establishes, through beautiful and purely geometric reasoning, necessary and sufficient
conditions on the possible set of values B for which there exists a metric with constant
curvature 1 (a spherical metric) on S? with these prescribed cone angle parameters.

This last-cited paper leaves open some fundamental questions. The one which interests
us here is to describe the space of points p and cone angle parameters 8 for which
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there exist spherical metrics with this data prescribing the conic singularities. The
answer is complicated and (at least to our understanding) not completely explicit. An
initial hope might be to show that the space of all solutions (mod diffeomorphisms) is
a smooth manifold. From this one might then further try to apply various techniques
from geometric analysis to count solutions. Unfortunately, for spherical cone metrics
with cone angles greater than 27, this space fails to be smooth on certain subvarieties.
One of our goals, which will be addressed in a sequel to this paper, is to understand this
failure more precisely. Briefly, however, the key observation is that if g is a spherical
metric for which the deformation theory is obstructed, it is possible to consider this
solution in a larger moduli space where the deformation theory is unobstructed. This
broader setting consists of letting certain of the cone points p; split into clusters of cone
points with smaller angles. This is an analytic manifestation of one of the important
steps in the geometric arguments of Mondello and Panov [19].

The analysis needed to carry this out turns out to be somewhat complicated and requires
the development of some machinery which will occupy a significant part of this paper.
We regard this machinery of independent interest, and expect that it may be a useful
tool in studying various other analytic problems involving geometric objects which
are singular or otherwise distinguished at families of points which can cluster. We
mention in particular the study of solutions of the two-dimensional vortex equation on a
Riemann surface, as well as the study of analytic constructions related to holomorphic
quadratic differentials in relationship to the Hitchin moduli space.

1.1 Outline of results

This paper has two main parts. In the first part, Section 2, we develop these general
ideas, which involve the construction of a resolution via real blowup of the configuration
space of k points on M and of the universal family of marked surfaces over this blown-
up configuration space. Similar constructions are classical in algebraic geometry if one
uses complex blowups, but our use of real blowups and other C*° methods here lead to
spaces which are compact manifolds with corners which encode the different modes
of clustering of these k points. This construction is closely related to other recent
work, notably the ongoing work of Kottke and Singer [12] on the compactification of
the moduli space of monopoles in R3. We describe the construction of the extended
configuration space & (the base manifold) in Section 2.1, and the resolution of the
universal family Cj (the total space) in Section 2.2. We then give the two simplest
examples when k£ = 2 or 3 in Sections 2.3 and 2.4. In Section 2.5 we give a description
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of the combinatorial structure of the boundary faces for the generic k—point case, and
in particular show that we obtain a b—fibration.

In the second part we consider the space of metrics with constant curvature and
prescribed conic singularities; in this paper we restrict attention to flat and hyperbolic
metrics with no angle constraints, and spherical metrics with cone angles less than 2.
Our main theorem here is a new regularity result, which we give a sketch below, and
refer to Theorems 16, 29 and 32 for the precise statements.

Theorem The family of hyperbolic or flat metrics with conic singularities with ar-
bitrary cone angle, or spherical conic surfaces with cone angles less than 2m and
satisfying the Troyanov constraint, lifts to be polyhomogeneous, a natural generalization
of smoothness, on the compactified universal family of curves Cy over this extended
configuration space &y, .

In Section 3 we set up the geometric process of merging cone points, described both
locally and globally. In Section 4 we recall some facts on analysis of conic elliptic
operators. Sections 5—7 give the proof of the main theorem in the flat, hyperbolic and
spherical cases. In each of the three cases we study solutions to a family of singular
elliptic PDEs on the new space Cj constructed above. For the flat case in Section 5,
the proof is done by a direct computation and we show that the solutions given by
Green'’s functions are polyhomogeneous. The proof for the nonzero curvature cases are
more involved. In Section 6.1 we prove the result when two cone points merge, which
involves first constructing approximate solutions to arbitrarily high order, followed by
using the maximum principle to get the exact solution, and finally using commutator
argument to show conormality and polyhomogeneity. In Section 6.2 the case where
more cone points merge is proved by a similar argument but with a more involved
process in constructing the approximate solutions. In Section 7 the spherical case is
proved in a similar way, except that the maximum principle no longer holds and is
replaced by invertibility of the linearized operator.

These results are first steps in our program to understand the entire moduli space
of constant curvature conical metrics on surfaces. The explanation of the extended
configuration family, which is the setting for this regularity theory, is already of interest,
and its definition is vindicated by our main regularity theorem. In a second paper we
will employ this machinery to understand features of the moduli space of spherical cone
metrics where the cone angles are greater than 2. Our eventual goal is to understand
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the stratified nature of these moduli spaces in sufficient detail that we can produce a
count of solutions. We also hope to reach a better correspondence between the classical
results and tools used to study these problems and the ones developed here.

Acknowledgements The authors are happy to acknowledge useful conversations with
Misha Kapovich, Richard Melrose and Michael Singer. Mazzeo was supported by the
NSF grant DMS-1608223. Zhu was supported by the NSF grant DMS-1905398.

2 Resolution of point configurations

The first part of this paper focuses on a rather intricate geometric construction, which
is a resolution via real blowup of the configuration space of k points on a compact
Riemann surface M, as well as the resolution of the universal family over this space.

To be more specific, let Dy (M) denote the space of nonnegative divisors on M of total
degree k. Thus a point of Dy (M) consists of an ordered k—tuple of not necessarily
distinct points pi,..., pr € M. Although it is more common to study this using
algebrogeometric ideas, we take a decidedly real and C*° approach. Away from
coincidences where two or more of the p; are the same, Dy (M) is a copy of M k with
all the partial diagonals removed. Of course, X acts freely on this open set. Our first
goal is to define a real compactification & (M) of this open dense set in Dy (M), which
we call the extended configuration space. This compactification is a manifold with
corners, which comes equipped with a blowdown map f: & — M k. We next consider
the product & (M) x M ; this is a trivial bundle which has a tautological multivalued
section 0: if g € (M) and p = B(q), then o (p) is the divisor p considered as a subset
of M. We shall define a resolution of this object, again as a manifold with corners, using
a suitable blowup of the graph of ¢ ; this is called the extended configuration family and
denoted by Cr(M). This is not quite a fibration over &£ (M) since certain fibers are
“broken”; instead it is a slightly more general type of map called a b—fibration, a natural
extension of the notion of fibrations to the category of manifolds with corners. See the
appendix for a general discussion about b—fibrations and manifolds with corners.

2.1 The extended configuration space £

Our first goal is to define a good compactification for Dy, the space of all “simple”
divisors, defined in (3) below. We begin with some notation. Suppose first that
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T C{l,...,k} is an index set with |Z| > 2. The Z" partial diagonal is the subset
Az ={peDy:pi=pjforali,j eI}

There is a reverse partial order of diagonals corresponding to the inclusion of index
sets,
ICJ <= ArDA.

The union of the two index sets is defined in the usual sense. If Z and 7 have at least
one common element, one can identify the partial diagonal corresponding to their union
as the intersection of their diagonals:

Azug =AzNAy if ITNJ # 2.

The assumption of nonempty intersection guarantees that the intersection of two diago-
nals is still a diagonal. Otherwise, if Z N J = &, there is a strict inclusion

AIUJQAIQAJ.

On the other hand, when |Z N 7| > 2, then Azn 7 is the smallest diagonal containing
both Az and A 7.

We also let

A = A7\ (gIAJ).

It is then clear that the ensemble {AOI} is a stratification of M* = Dy ; the dense open
stratum equals

3) D;gsz\(UA‘{,).
s

To resolve the point collisions, we resolve all the partial diagonals; this is done by
blowing up the diagonals iteratively in order of decreasing index set. In other words,
if Z ¢ J, then A7 is blown up before Az. There is still some freedom in the order
of blowup, since the inclusion of index sets only provides a partial order. Below we
show that the final space is well defined and does not depend on which specific order
we blow up.

Let X be a manifold with corners, containing two p—submanifolds, ¥; and Y. (A
p—submanifold Y C X is defined to be a submanifold for which some neighborhood
U DY is diffeomorphic as a manifold with corners to the normal bundle NY.) The
iterated blowup [X; Y7; Y2] is the manifold with corners obtained as follows. First blow
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up Y7 in X to obtain a space [X; Y1]. Now lift Y5\ (Y1 NY>) to this space and take its
closure. Finally, take the blowup of this lift in [X; Y1]. In general the resulting space
depends on the order in which these blowups are taken; the reverse order may result in
a nondiffeomorphic space. There are two special situations where the order does not
matter: the first is if Y7 C Y3, and the second is if Y; and Y> meet transversely so that
their normal bundles are disjoint (away from the zero section). Similarly, when there
are more p-submanifolds {Yi}f-‘zl, [X; Y1;...; Y] is well defined if the following is
true: for any Y; and Y;, either ¥; C Y;, or Y¥; and Y; are transversal.

In the prescription for blowing up the partially ordered sequence of partial diagonals,
we are blowing up these partial diagonals by inclusion, ie we always blow up the
“smaller” submanifolds first. However, we must check that the second criterion about
transversality is satisfied.

Lemmal Let Z and J be any two index sets. Suppose that Xz, is the manifold
with corners obtained by blowing up all the partial diagonals Ax in M* for which
K DT and K D J. Then the lifts of Az and A s are transverse in Xz,7.

Proof When 7N J = &, we can choose the complex coordinates s, ..., S} so that
Ar={s1=--=s5p, =0} and Ay ={sp41 =---=154 =0}. Clearly then Az and Ay
intersect transversely.

On the other hand, if ZNJ # @, then 7/ =Z\ (ZNJ) and J'\ (ZN J) are disjoint.

Choosing coordinates so that {s; =--- =5, = 541 = --- = §¢ = 0} on Az and
{Sp41 =-"=584 =S¢41 ="+ =58k on Ay, itis not hard to check that the lifts of
these submanifolds to the blowup around the set {s; =--- =55 =5¢41 =+ =5, =0}
are disjoint, hence transverse by default. a

Using this lemma, we may now proceed through this sequence of blowups to obtain
the extended (ordered) configuration space

) & = [Dk; U AI:|-
A

One consequence of this operation is that the action of symmetric group X3 on Dy is
resolved.

Proposition 2 The symmetric group Xy, acts freely on & .

Proof The fixed points of X on Dy are precisely the partial diagonals and, moreover,
the isotropy group at Az is a subgroup of the isotropy group at A7 when Az D A7,
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or equivalently when Z C J. Thus our iterative blowup corresponds to the blowup
which resolves this group action, defined by blowing up the fixed point sets ordered by
reverse isotropy type inclusion, and it is not hard to check in this case that the isotropy
groups of the lifted group action are all trivial. This is a special case of a more general
iterated blowup considered by Albin and Melrose [1], which resolves a general Lie
group action. o

The space & appears rather complicated at first glance, but the combinatorial structure
of its faces mirrors the partially ordered set of subsets {Z} of {1,...,k}. For each
element Z of this set, there is a boundary hypersurface F7 of £ generated by blowing
up Az. We also denote by p7 the boundary-defining function for this face. Identifying
the interior of & with the nonsingular part of M k away from all the diagonals, we
see that p7 provides a measurement of the radius of a cluster of |Z| coalescing points.

2.2 The extended configuration family Cj

We next consider the universal family over £ . This is a space C equipped with a
b—fibration
ﬂ: Ck — 5k

such that for each p € Slr:g (>~ P]Sc)’ the fiber 3_1 (p) is the surface M blown up at the
points of p. We point out that § is different than the map § discussed earlier, which is
the blowdown & — M¥ . In the following, it is often simpler to refer to points p
on & ; these are, however, elements of the compactified configuration space, so the
actual divisor, or k—tuple of points on M, is really the image under 8 of this point. In
any case, with this understanding, if p lies in one of the boundary faces of &, then the
fiber ,3 ~1(p) is a union of surfaces with boundary which encode the various ways the
corresponding cluster of points can come together.

To define this universal family, we begin with the trivial fibration & x M — &, and let
z be a generic point on the fiber, which we may as well assume is a local holomorphic
coordinate there. We wish to resolve the graph of the canonical “section” o of this
bundle,

{(p,2) €& xM :zea(p)}.

Since o is multivalued, we must first blow up the crossing loci, which are contained in
the graphs of o over the faces of £ . More specifically, if p lies in a face Fr, we write
oZ(p) for the corresponding “coincidence point” p;, =---= p; if Z=(iy,...,ir) (s0
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o (p) has r copies of this point and k —r other points), and then define the coincidence
set

Q) FZ ={pr =0, z=0%(p)}.

The space C; may now be defined by iteratively blowing up this collection of submani-
folds with respect to the partial order on index sets, culminating at the last step in the
blowups of the nonsingular parts of the graph of o, ie the submanifolds F” ={z = p;}
fori =1,...,k, where p does not lie in any partial diagonal. Altogether,

(6) Cr = [Ex x M {F]}].
The following lemma shows, just as for &, that the blowup is well defined.
Lemma 3 The lifts of F7 and F£ are transverse after F7, ; has been blown up. In
particular, the lifts of F? and F jf’ do not meet when i # j.
Proof As before, this follows from the fact that
FNFS =Fp,,
when ZNJ # @, while F7 and Fg are transverse away from F7 7 whenZNJ =9.

The last assertion is obvious. O

2.3 The simplest case, k =2

The description of the boundary faces of & and Cj is somewhat complicated and at
first glance confusing, so to warm up, we present the cases k = 2 and 3 in some detail
since it is possible to see what is going on without too much work then.

The space of ordered divisors D5 is simply M2, and there is a single diagonal A1, =

{p1 = p2}, hence
& = [D2; Ar2].

Here and below we keep the subscript 12 to foreshadow the general case. From local
coordinates (z1, z2) near (po, po) € A, we determine the center of mass { = %(21 +2z3)
and displacement w = %(zl — 23), so that

7 z1=C+w, zZx=(—w.

The blowup amounts to setting w = py2¢'? with 6 €[0, 2] and adding the face p1» =0.
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The front face Fp, is then a possibly nontrivial circle bundle over the diagonal. Indeed,
it is the unit normal bundle of the diagonal in M2, and hence has Euler characteristic
equal to y(M). In any case, we have coordinates (6,¢) on Fj» and a full set of
coordinates (p12, 6, {) near this face in the blowup.

The symmetric group X, interchanges the two coordinates (z1, z»), and hence sends
¢+ ¢ and w > —w. In local coordinates, (p12, 6, ¢) — (p12, 7w + 6, (), and it is easy
to see that this is a free action.

The extended configuration family is now obtained from the product £, x M by blowing
up in succession the two submanifolds

Fo={(p12=0,0,0,z) :z=0} CFiaxM and FJUF; ={(p,0o(p)):pecDs}.

For the first of these blowups, introduce spherical coordinates (R1z, 2) around the
codimension three submanifold {p1, =0, =1z},s0 Rj2 >0 and Q2 € Si. We write

®) Q = (p12,.2 —¢)/R12 = (sinw, cosw '?),
where @ € [0, %] and ¢ € [0,27], and so

9) P12 = Rz sinw, Z=§+Rlzcosa)ei¢.
We also set z — ¢ = re'?.

The face created by this blowup, which we call €,,, is the total space of a fibration
m12: €15 — Fia, with each fiber a copy of Si. The preimage of a point (0, 8, () € Fi»
is the union of two manifolds with boundary: the first is the blowup [M, {¢}] of M
around the point ¢, and the second is Si. These meet along their common boundary,
which is a circle. From (9),

(10) 72 (p12) = AR,

where A is a strictly positive smooth function. The significance of this computation is
that the lift of the defining function for Fi equals the product of defining functions
for the fiber M blown up at ¢ and the half-sphere, up to a nonvanishing smooth factor.
That is, the boundary-defining functions satisfy the »—fibration condition.

We now turn to the second blowup. Consider the graph of o,

FY ={z=z}={z=0+pne’}={o=

T
Z?
F{={z=)={z=t-ppefi={o=1,

1D
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Figure 1: The singular fibration of C, — &,. Here we removed the center
of mass ¢, and the coordinate in the base is w; see (7). The boundary face
in the base, Fi,, is parametrized by 6 such that w = p1,e'?. When 6 goes
from O to 7, the two points p; and p, on the fiber interchange.

These two components intersect €1, at two disjoint copies of S!. Their intersection
with each 711_21 (0,8, &) consists of two points on each Si fiber. In other words, the
boundaries of these components are each circles, and there is one point of each of these
circles in each Si fiber. These intersection points are given explicitly in (11). Observe
that as 6 goes from O to 7, these two points interchange. The final configuration space
is equal to

Cr:=[E2x M; F,; FT U F7].

Note finally that since each F projects surjectively to &>, the relation describing the
pullback of boundary-defining functions stays the same as for the space before this last
blowup.

This space is equipped with a b—fibration
T Cz —> 52.

Over a regular point p ¢ A5, the preimage 7~ !(p) is a copy of M blown up at the
two points of p. On the other hand, the preimage 7 ~1(0, 0, ¢) of a point on F, is the
union of M blown up at the single point { and the half-sphere Si blown up at two
points, [Si; {a) =T.¢= 9} U {a) =T.¢9=0+ n}] See Figure 1 for an illustration
of the fibration.
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2.4 Thecase k=3

The next case illustrates the iterative nature of the general construction.

As before, we work in local coordinates (21, z2, z3) € M3 near a point (po, po. Po)
in A123 .

The initial blowup of the central diagonal Aj,3 in D3 results in the space [D3; A123].
Just as for &, this is a manifold with boundary; its boundary, or front face at this first
step, is called Fj,3 and is a sphere bundle over Aj,3, but now with three-dimensional
spherical fibers. In choosing coordinates, it seems to be more convenient to break the
symmetry by using classical Jacobi coordinates (introduced originally to study the
N -body problem in celestial mechanics). Thus we define a center of mass ¢ in the
first two variables as well as two displacement variables,
{=3(z1+22)., wi=%(z1—-22), wp=2z3—73(z1+22).

In these coordinates,

Az ={{+w; ={—w; ={+w2}={w; =wy =0}.

The resolution is the blowup of the origin in C,4,, which is captured by spherical
coordinates in the fibers of the normal bundle:

N¢Aiaz =R 501230, (p123,0) e RT x S?.

wi,w2
To proceed, write

O = (¢'? cos 0, ¢ sinh), (0,¢1.¢5) € [O, %] x [0, 27]?,
corresponding to the fact that S3 is a join of two circles, so that
(12) w1 = P123 cos @ ¢!t Wy = P123 sin 0 ¢!z,

These coordinates are singular at § = 0, % To remedy this near 6 = %, for example,
we use instead the projective coordinate W, = wi/p123 along with ¢, .

In these new coordinates, the lifts of the partial diagonals in a neighborhood of A3
have the form

A ={z1=2n}={w =0}={0 =%} = {0, =0},
(13) Ap={zi=z}={wi=w}={0 =%, ¢1 =},

Aoz ={zm=z}={w =—w2} = {0 =%, 1 = —¢2}.
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The additional expression for the lift of A1 is included because 6 = 7 is a singular
locus for the (6, ¢1, ¢2) coordinate system. Each of these lifts is locally a product
ST xR* near S3x {0}, and their intersections with each fiber of Fi»3 are three disjoint
circles. We then blow these up in any order to obtain

&= [D3’ A123; AIZ U A13 U A23],

There are three new front faces, Fj;, each with a boundary-defining function p;;,
and each (locally) diffeomorphic to S! x S! x R*. The intersection Fj; N Fio3 is a
torus S! x S1.

Let us illustrate this geometry near Fi5 N Fj23 in coordinates. From (12) and (13),
¢r € S! and P123 € RT parametrize Aj,, while we set W1 := w1 /p123 as a coordinate
for the normal bundle. Blowing up at w; = 0 amounts to writing w1 = plzei 012 This
is of course really the same as setting p;2 = cos 6 and 61, = ¢, but the new monikers
have been introduced to conform with the general notation when k > 3. Altogether,
we have a full set of local coordinates

(14) (Z,p12,912,¢2,p123)GRZXR+XSIXSIXR+.
These are related to the original coordinates by
(15) z1 = +p123p12€' 92, 22 =C—p1o3p12e'2,  z3=C+pra3V1—phe®2.

Now consider the configuration space £3 x M. Near (F12 N F123) X M we extend the
local coordinates (14) to

(16) (€, p12. 012, 92, p123.2) € RZXRT x ST x ST x RT x R2,

where z is a local coordinate on M. The coordinate { is sometimes omitted below.
The first step is to resolve the “central” coincidence set—cf (5) —

Fl3 ={z—{=p123 =0},

which we do by introducing spherical coordinates (z — ¢, p123) = R123S2123, where
Ri33 >0 and

17) 8139123=(coswei¢,sinw), a)e[O, %], ¢ eSh.
This introduces the front face €123 = {R123 = 0}. Coordinates at this stage are

(8. R123. Q123. p12. 012, $2) € R x RT x §7 xR x S' x S'.
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Note also that

Z1 —é‘ = —(22 —é‘) = R123 sinwplzeielz,
(18) zZ3 —C = R123 sin w v 1 —p%zeid’z,

z—C = Rip3cosw s

b1
2
of this locus we replace these by the projective coordinate Z = (z — )/ R123.

As before, the coordinates (w, ¢) become degenerate at @ = -, so in a neighborhood

Now fix a point ¢ = (p12, 612, ¢2) on the front face Fi,3 in the base £3. The fiber
above ¢ after the blowup above is a union of R? blown up at the origin (or, more
globally, the surface M blown up at the point ) and a half-sphere, parametrized by
the coordinates (w, ¢) (or z) above. These meet along the circle {®w = 0}. If 73 is
the blowdown map, then, analogous to (10),

(19) 73 p123 = Rizzsinw = ARj230
for some smooth nonvanishing function A.

The partial coincidence sets Fl.‘} intersect the fiber over ¢ only in the interior of the
hemisphere. In local coordinates,

F102={Z=21=22}={P12=0,w=%}={@1=0,E=0},
(20) F&:{Z:Zl =Z3}={p12=\/75, tana):ﬁ, 912=¢2=¢}’
F203={2222=Z3}={p12=%\/§’ tanw:ﬁ, 912+7T=¢2=¢},

The final expression for the lift of F[, is included because of the degeneracy of the

other coordinate system at pj2 =0, ® = %n.

Now blow up F,. This introduces a new front face €13, the fibers of which (for
each (¢, q)) are hemispheres “on top” of the previous hemispheres. Carrying out the
analogous blowup for the two other partial diagonals as well leads to the collection of
front faces €;;, each diffeomorphic to R* x S x S' x S7 . Each €;; fibers over the
front face F;; in the base £3 by projecting off the final S%r. Again, this is very similar
to the two-point case.

Let Q215 € S%r be the variable in the fiber of €;5 and R5 the corresponding boundary-
defining function. Thus
(coswe'®, p12) = Ri12Q1»

and

21D Q17 = (coswiz €i¢12, sinwyz), iz € [0, %JT], ¢12 € st.
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Coordinates near €1, are then
(é’, Ri23, R12, 12, 912, (]52) S Rz X R+ X R+ X S_%_ X Sl X Sl,

and these translate to the original coordinates by

Z1 —é‘ = —(22 —é‘) = R123 \/1 — (R12 COS(()12)2 R12 sina)lz ei912’
(22) Z3 —g‘ = R123 \/1 — (R12 Ccos a)lz)z\/l — (R12 sinw12)2 €i¢2,

zZ —é‘ = R123R12 COS w12 €l¢12.

The boundary-defining function relation near the corner €13 N &y, is given by

(23) JT§P123=R123\/1—(R12€086012)2~R123, 73 p12=Rizsinwiz ~Ri2012.

We conclude by blowing up the lifts of the three submanifolds F;? ={z =z;}. Ina
generic fiber over Fiz3 (ie away from all the partial diagonals), F;° meets the front
face €123 on the hemisphere at three distinct points. Using the coordinates (18),

FY = {cotw = p12, 012 = ¢},
(24) Fy ={cotw = p12, 012 =¢p + 7},

F§ ={cotw = V1—piy, 2 = ¢}.

On approach to the resolved partial diagonals, two of the points z; converge to one
another on M. However, their lifts converge to distinct points on a hemispherical
fiber of the innermost front face. In other words, Fl.‘r and F j?’ both intersect &;;
while, if k is the third value distinct from i and j, then F If does not. In terms of the
coordinates (22), we have

FY ={w12 =%, 612 = ¢12},
(25) F§ ={win=%, 012 =12+ 7}.
F§ ={cotw = vV 1—p1,, ¢ = p12}.

The roles of z1, zp and z3 are interchangeable in this whole discussion, even though
the Jacobi coordinates w; and w, break this symmetry. it is also not hard to check
that the symmetric group X3 acts freely on Cs.

As this case makes clear, the geometry illustrated in Figure 2 requires compound singular
coordinate transformations, which quickly become quite involved. The optimistic
interpretation is that the compound asymptotics of solutions to natural elliptic operators
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4

1 o
p2
p3 \

Figure 2: One of the singular fibers in C3, where two of the points collide
faster than the third one.

which appear later in this paper are captured entirely by the intricate but still quite
comprehensible geometry of this iterated blowup.

2.5 Boundary faces of £; and Cy

The previous discussion suggests that while it is possible to write out the iterated
polar coordinate systems corresponding to iterated blowups, these become prohibitively
complicated after a few steps. The special cases above should be used to gain intuition
about the general case. In this section we undertake a more systematic study of the
boundary faces and corners of £ and C. The goal is to explain some general features
of the geometry of these boundary faces, which is done through a combination of
invariant and local coordinate reasoning.

Faces of £, As per our initial discussion in Section 2.1, the boundary hypersurfaces
F7 of & are in bijective correspondence with subsets Z C {1,...,k} by way of
the associated partial diagonals Az. The set of all such subsets {Z} is ordered by
inclusion; thus {1,...,k} is the unique maximal element and the minimal elements
are the singletons {j}. The associated directed graph G; has a vertex for each Z and
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>

we choose the direction on the edges to point from Z to J when Z D J. This “flips’
the inclusion ordering, so we should think of {1,...,k} as the bottom vertex (or root)
of the tree, with the edges flowing upward.

We first consider the interiors of each face F7. Write AOZ for the open dense subset
of elements in Az where only the points p; for i € Z coincide. Fixing Z, let M%‘ be
the subset of M* where we remove all partial diagonals A(g with 7 NZ # &. The
blowup

[Mf: A7)

can be regarded as a relatively open subset of & . If |Z| = £, then the normal bundle
of A% in M¥ is naturally identified with (TM)®“=1D . This means that the new
front face coming from the blowup of A% is a bundle over a dense open subset in
M*=4+1 = A7 with fiber S2¢73.

Reorder the indices so that Z = {1,...,¢} and write z/ = (z1,...,z¢) and z” =
(Ze41.....2x); thus 2”7 € MKt and Az is the complete diagonal in the z’ sub-
system. Subdivide z’ further, writing it as the sum of a center of mass ¢Z(z’) and
w' = (wi,...,wg) € CPl, where Y, ., w; =0, so w’ lies in a space of real di-
mension 2|Z| — 2. The blowup affects only the w’ coordinates, and we see in this
coordinate description that the new front face is locally a fibration over R2k=2642 with
fiber S2¢-3.

We now turn to the more difficult task of understanding the structure of each boundary
hypersurface of £ as a manifold with corners. By the iterative nature of these spaces,
it is sufficient to focus on the innermost face F;__j, which for convenience we denote
by Fmax below. We also write Zpyax = {1,...,k}.

Proposition 4 The boundary faces and corners of Fyax are in bijective correspondence
with the connected trees T C Gy such that any minimal vertex Z € T has |Z| > 2.

The correspondence is that if Z is any corner of this principal face, then the vertices
of the associated tree T = Tz are the subsets Z for which the face created by blowing
up Az contains Z in its closure.

To get a feel for this, consider a few examples. First, a boundary hypersurface of Fax
is the intersection of precisely two boundary hypersurfaces of & : Fpax and some
other F7. The corresponding tree has two vertices, Zn,x and Z, connected by an
edge. Slightly more generally, if Ap,x C A7y C Az, C -+ C Ag,, then Z =
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FiuaxN Fz, N---N Fz, is a (nonempty) corner, and 77z is the tree Zyax —Z1 —---—>1y.
On the other hand, if Z and J are disjoint, then the lifts of Az and A 7 to [M k. Anmax]
intersect transversely, so the blowups of these two partial diagonals may be taken in
either order, and the intersection Fpx N Fz N F7 is a corner of codimension two
in Fpax. The corresponding tree has root Zy.x connected to Z and .7, but these two
vertices are at the same level and not connected to one another. There is a similar
description for any collection 71, ..., Zs of disjoint subsets.

To prove Proposition 4, we recapitulate the construction of &, emphasizing what
happens at each stage of the iterative process. A basic principle here is that the lifts
of the partial diagonals at each stage are “ p—submanifolds”. Recall that if X is a
manifold with corners, then a submanifold Y is called a p—submanifold if, near every
point ¢ € Y, there is a local coordinate system (x, y) € (RT)¢ x R™ for X such that
Y is given by setting some number of the x; and y; to 0. In other words, locally,
Y is a product inside of X. Denote by M k(r) the space obtained after blowing up all
partial diagonals Az with |Z| > k —r. Also, let F(r) denote the central front face
in M¥(r), so F(k) = Faax.

At the initial step, M k 0)=[M k. Amax] and F(0) is an S2k=3 bundle over M 2 Ay
The partial diagonals A7 with |Z| = k —1 lift to M*(0) to a disjoint collection of four-
dimensional submanifolds with boundary; these intersect each S2k=3 fiber of F (0) in
k disjoint copies of S!. The space M k(1) is obtained by blowing up these lifted partial
diagonals, and doing so yields a manifold with corners of codimension two. The new
boundary hypersurface has S2k=5 fibers over a (disconnected) four-dimensional base.
The codimension two corner of M* (1) is the boundary of F(1); it has k components,
each of which is a bundle with fiber S* x S%*~5 over Apax.

Continuing on, the partial diagonals Az with |Z| = k — 2 lift to p—submanifolds
in Mk (1). These lifts intersect each S2X~> fiber in the new boundary face (over the
(k—1)—fold diagonals) in copies of S!, and intersect the fibers of F(1) in a copy
of S3. The important observation is that even in low dimension, ie k = 4, these
3—spheres in S%*~3 do not intersect in M¥ (1) by virtue of the fact that we have
already blown up their intersection loci, the union of S!. When we blow up this set of
lifted partial diagonals, the new boundary hypersurface of F(2) is fibered by copies of
[83; L] Sl] x S2k ~7 and the corners of this boundary face, which are now corners of
codimension 3 in M¥(2), have fibers equal to S* x S? x S2k=7.

As we proceed further in this construction, the thing to note is that at each stage, the
lift of each Az with |Z| =k —r —1 to M¥(r) is a p—submanifold. Furthermore, if 7
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and J are two subsets of size k —r — 1, then either ZN J share an element in common,
or the intersection is empty. In the first case, it is straightforward to check that their
lifts to M (r) are in fact disjoint. In the second case, these two lifted diagonals intersect
transversely, and hence it is not necessary to blow up their intersection since we can
blow these up in either order to obtain the same result.

Now let us return to Proposition 4. As already described, given a corner Z of Fpx,
we may associate to it a subgraph Tz C Gj. Clearly T is connected since all branches
lead to the root Zn,.x (since Z C Fpax in particular). Next, suppose that ZN 7 # &,
but neither one contains the other. Then the lifts of Az and A 7 would already be
separated in M(r), where r = k —|Z U 7|, which is where A7y is blown up, hence
Fr N F7 = &. This shows that it is impossible for there to exist Z1,Z, D K with
71 p I, and I, p Z;. This proves that Tz is a tree.

Conversely, if T' is any connected tree in G; emanating from Zy,x (and which does
not terminate at a node with |Z| = 1), then we must show that

Z=ﬂFI

is nonempty. Since 7 is a tree, if Z and J lie on the same branch, then one of these
is a proper subset of the other, while if they lie on different branches, then they are
disjoint. We can divide T into branches B;, and it follows from the earlier discussion
that the intersection of the Fr along a branch B; is a nonempty corner Z;; on the
other hand, if the branch B, is rooted at some vertex of another branch Bj, then we
can reduce back to the case of one node splitting in two as in the previous paragraph
to see that the corresponding corners Z; and Z, intersect transversely in a nontrivial
subset. We conclude using induction on the number of branches. This proves the result.

Faces of C;; 'We wish to carry out a similar analysis of the faces of Cr. As before,
we proceed inductively, so it suffices to analyze the structure of the central face C,x.

Recall that the construction of Cj involves iteratively blowing up the coincidence sets
F7 in & x M defined in (5). Let Cx(r) denote the space obtained by blowing up
all such coincidence sets with |Z| = j and k > j > k —r, in order of decreasing
cardinality, and also write €(r) for the central front face of Ci(r).

If pmax 1s a defining function for Fi,x in &, then Cr(0) is the blowup of the set
{Pmax = 0, z = d™*(p)}. The front face €(0) is fibered over F.x with fiber a half-
sphere Sﬁ_. The lifts of the coincidence sets Fy intersect €(0) as (usually mutually
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Af direction

Figure 3: The intersection of front faces €23 and €5, where the dotted red
lines are where the singleton coincidence sets Fi" for i = 1,2,3 meet the
front faces.

intersecting) p—submanifolds. We denote the faces created by blowing up F; by Cz;
with a slight abuse of notation, we often do not distinguish between this face at some
intermediate step of the construction and at the final stage in C.

2

For expository purposes we jump immediately to the final step and consider the “generic’
region, ie the preimage of the interior of & . The only coincidence sets in this region
are those with |Z| = 1, which means that the blowups in this region are unaffected by
any other blowups. These (singleton) coincidence sets F;? are of codimension two
in £ x M, so the faces ¢; are fibered by copies of S!. In particular, the intersection
of €; with €.« intersects each Si fiber in an S!. In other words, the portion of €pax
over the interior of Fyax (ie the principal front face of C; away from all the faces lying
over partial diagonals) is fibered by copies of Si blown up at k distinct points, the
locations of which are determined by the corresponding point in Fpax (the “directions

of approach” of the coalescing cluster of k points).

Now return to the construction in the proper order, and consider the passage from Cy (0)
to Cr(1). This involves blowing up the coincidence sets FY with |Z| =k —1. Over
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the interior of the faces Fz x M in & x M, the picture is analogous to the blowup at
the principal front face in £_; X M : indeed, the corresponding point in M ks, up to
reordering, of the form (p, ..., p, pr). As pmax — 0, the points p and pj; coalesce.
The coincidence set F7 is a p—submanifold which intersects the codimension two
corner (Fpax N F7) X M. When it is blown up, the new face is a bundle with Si fibers
over Fz, uniformly to this intersection.

The new feature is that the fibers of Cr (1) — &, over the corner Fp.x N F7 are each a
“tower” of hemispheres of height two, ie two copies of S2 , the second one attached
along its boundary to the circle created by blowing up a point in the first S_zi_. The
submanifold F)J (corresponding to the singleton set {k} = {1,...,k}\Z) intersects
each of these fibers at a point of Sﬁ_ away from this second hemisphere. On the other
hand, the other Fl." (away from the boundaries of the corner Fy,x N F7) intersect the
S%r fibers of the face over Fz in k — 1 distinct points, so after blowing these up, the
fibers are hemispheres blown up at k — 1 points. At the intersection with Fi.x, the
fibers are each a tower of two hemispheres, the inner one blown up at k — 1 distinct
points and the outer one at one additional point. All of this has been illustrated earlier
in Figure 3 for the case k = 3.

The rest of the construction follows the same pattern. When we perform a blow up
in Ci (r) of a coincidence set F7 for some Z with |Z| = k —r — 1, having previously
blown up all coincidence sets F'7 with | 7| >k —r — 1, then the interior of this face, ie
the portion lying over the interior of Fr, is again fibered by copies of S2 , and in this
region the blowups of the sets F for i € Z produce hemisphere fibers blown up at
|Z| distinct points. These fibers intersect the fibers of the previous faces € in similar
ways, creating a new level in the tower of hemispheres over those corners.

We now state the final result, which is a description of all boundary faces and corners
of Chax. We have already described this face over the interior of Fiax: it is a fibration
with each fiber a copy of Si blown up at k distinct points. More generally, at any
corner Z of Fyax, consider the preimage €p,x(Z), ie the portion of the boundary
of Cnax lying over Z. This is a tower of hemispheres, each blown up at a set of points,
so that altogether k points in this entire tower are blown up. Figure 4 illustrates a
typical scenario when k = 5.

We can classify the towers of hemispheres which arise in this way. Recall first that
associated to the corner Z is a tree T in the power set G;. We claim that the half-
spheres in this tower correspond precisely to the nodes in 7. Indeed, 7" consists of
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{1,2,3,4,5}

Figure 4: A tree structure encodes the clustering of bubbles.

all multi-indices Z with |Z| > 1 such that F7z D Z. We use induction on the height
of the tree. The cases of height 0 and 1 were described earlier. The same argument
applies when we pass from the space obtained up to height r as we take the blowups
corresponding to the nodes in 7" at height r + 1. This shows that there is a half-sphere
corresponding to each node of T. Conversely, the blowups required to construct this
tower of half-spheres corresponds exactly to the sequence of blowups in this induction.
In summary, we have:

Proposition S The boundary faces and corners of €y, in Cy are in bijective corre-
spondence with pairs (T, T), where, to each corner 3 of €.x, T is the tree associated
to the corner Z of Fua.x under 3 and T is a node of T.

We also consider augmented trees, which are simply trees as before, but now allowing
the terminal nodes to consist of single-element sets. These nodes correspond to the
faces €; of Ci, but in particular to the boundary components of the hemispheres in
the penultimate faces.

Cluster decompositions It is helpful to understand both & and Cj using the intuition
that each point p € M k and (p,z)eM ks M hasa neighborhood ¢/ in which there is
a well-defined decomposition of the points into clusters Q1,. .., Qs for some k' < k.
Each cluster Q; has a center of mass {;, and the k’—tuple ({1,..., /) determines a
divisor, as do the points in each Q;. This cluster decomposition picture changes as
the points move around, and the corners of & and Cr quantify precisely where the
clusters trade points.
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We say a bit more about this now. Recall the blowdown map fB: & — M k. Fix
€ > 0 and a collection of disjoint index sets Zy = {Z;} for j = 1,...,{ such that
UZ; ={1,...,k}. Now define the open sets

(26) Uz, =p*pe M d(pi,pjr)>eifi’ €T; and j' € T; for some i # j}.

(The precise distance function used here is not important.) Thus in each Uz, ., co-
alescing occurs only within each cluster. Furthermore, any point g € & \ Fax lies
in one of these open sets. Indeed, B(g) = p lies in some corner Z of & . Take the
corresponding tree 7. Note that since ¢ ¢ Fiax, the lowest element of T is some
T # Tmax. Denote by Z7,...,Zy the vertices at the other extreme, ie the highest
elements of T. If Uf/=1 Tj # Imax, set £ = €' + 1 and define Zy = Zyx \ Uf/=1 7.
These correspond to the “free” points which are not in any larger cluster. Otherwise,
let £ = ¢

Lemma 6 There exists € > 0 such that g € Uz, .

Proof By the definition of 7', B(g) = p lies in the intersection of diagonals {Az; }f;ll .
We must first choose € so that the e—ball around p in M k" does not intersect any other
partial diagonals. Within this ball, clustering only happens amongst the points p; with
i lying in a single index set Z; . Since ¢ ¢ Fax, there are at least two clusters, ie £ > 2,
so we can suppose that 2¢ is smaller than the minimal distance between the various
clusters. It is then easy to see that p is contained in the open set Uz, ¢. O

These cluster decompositions allow us to describe some further useful structure of the
spaces & and Cy,.

Lemma7 (1) Forany q € & \ Fnax and associated neighborhood Uz, ¢, there ex-
ists a smaller neighborhood U C Uz, ¢ of q which is a product of neighborhoods
U; in Ex(;y for smaller values of k(i). More specifically,

14
U= ]_[uj, where Uj C E|z;).
ji=1
(2) For q € & and U a product neighborhood of ¢ as in (1), there exist £ open
sets V; C Cr with Ule V; = B~Y(U) such that in each V; , the fibration B is a
product form
(Biz;1: Vi — Ui) x HUJ’,
- J#i

where Vi C Cz;|.
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(3) Consider any point q € Cy, and let (T, J) be the data encoding the hemisphere
tower on which it sits. We assume that g lies in the interior of the maximal
hemisphere of this tower. Let J' = J \ U ToTET T be the set of free points in J.
If J' # &, then there exists a neighborhood of z with product decomposition

E_I(UI*,e) DVexVe, Ve CCygrs Ve CE— g7
(4) If there are no free points, ie J' = &, then there is a decomposition

q<€VexVe, VeCM, Ve CE&.

Proof For (1), the decomposition separates points into independent clusters. If
q € Uz, ¢, then it has a neighborhood which does not intersect any F; except when
J CI; for some i. All the possible blowups in this neighborhood occur within each
cluster, so one can write ¢ = (q1,...,q¢) where ¢g; € Ez;. The conclusion is now
clear.

For (2), the clusters in Ux ¢ are separated by distance at least €, so this decomposition
exists. Restricting to each V;, then, only p; for i € Z; are included, so locally the
map Cr — & splits in such a way that the lift of projection (p, z) — p restricts to the
lift of {(pz,;,2) = pz; } X Py, kN, -

It is possible to refine the decomposition in (2) further when moving deeper into the
tree. To prove (3) and (4), take a point in C lying above (p,z) and let €, be the
boundary face, some point on the interior of which projects to (p, z). By the definition
of T, the only boundary faces intersecting € 7 in this fiber correspond to the vertices
Z D J. Since z lies in the interior of a boundary face, it has a neighborhood which
does not intersect any of these €7. If J' # &, there are |J’| free points contained
in this region, hence only €; for i € 7’ intersect this neighborhood. There are no
other free points in this neighborhood, and it contains no other boundary faces. In
the first case, write p = (p77, p77) with J” ={1,...,k}\ J'. Only the coincidence
set FS

j/ b
by a neighborhood of C| 7| which does not intersect any partial diagonals. The other

ie where z = p; with i € 7/, intersects this neighborhood. Thus it is given

pg7 € Ek_ 4| fill out the remaining base variables. For (4), there are no free points
in this neighborhood, hence the fiber is just a neighborhood of M. Using the same
reasoning as above yields the product decomposition. a

b-fibrations The final and crucial fact we need is the following result:

Proposition 8 The natural projection B : C — & is a b—fibration.
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We review the definition of »—fibrations in the appendix, and their central importance
in the theory of manifolds with corners. In particular, this proposition will be crucial
in proving the fine regularity results for the families of fiberwise constant curvature
metrics later in this paper.

Proof The proof is by induction on k. The result is obvious when k = 1, since in
that case £, = M and Cy = [M x M; A1»], and a map where the range is a manifold
without boundary or corners is trivially a b—fibration.

Note that when k = 2, we have already written the explicit relationship between
boundary-defining functions — see (10) — which proves the result in that case as well.

Now suppose that the assertion is true for any £ < k. The first goal is to show that 5
is a b—map, which means that the pullback of any boundary-defining function pz for a
face Fr C & is a product of boundary-defining functions in Cr (up to a nonvanishing
smooth factor). If g € Cy lies on the interior of some boundary face, then by (3) and (4)
of the previous lemma, we can replace B by the product of maps

(27) Bi7: Clr) = E1771) X Ek— 77

When | 7’| = k, the tree T associated to (p,z) has precisely one node, and only
the face Fp.x contains B(q). Furthermore, in this case, ¢ lies in the interior of the
boundary face €p,x, SO just as for the cases k = 2 and 3, we have

ﬁ*pmax = ARpmaxw,

where Rp.x is the boundary-defining function for €« and w is a defining function
for the boundaries of M blown up at k points. If |J'| < k, then B| g7 in (27) is
a b-fibration by the inductive hypothesis, so the boundary-defining functions pr
with Z C J’ pull back to products of boundary-defining functions in C| 7| (up to
a nonvanishing smooth function), while other boundary-defining functions pz with
Z ¢ J' pull back trivially.

On the other hand, suppose ¢ lies on the boundary of a boundary face, so there is an
associated tree 7" and node 7, and let Z D J be the node directly over J. (If there
is no node above 7, then in the following we regard R7 = w as a boundary-defining
function for the surface M blown up at the appropriate number of points.) By (1) of
the previous lemma, there is a local product decomposition such that the points in Z
are separated from all others, and locally /§ splits as

Bizi: Cizy = &) % Ex—pz.
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Furthermore,
(28) B o7 =ARzwr,  B*py =Ry if T #J.

where R is the boundary-defining function of €7 and wz is the boundary-defining
function of €7 in that corner. All other boundary-defining functions pull back trivially
by virtue of this product decomposition.

The remaining issue is to show that ,3 does not map any one of the boundary hyper-
surfaces €7 of Cy to corners of & . This is clear from the construction since €z maps
to the boundary hypersurface Fr.

These facts together prove that 3 is a b—fibration. |

3 Geometry of merging cone points

3.1 Review of existing results

We study constant curvature metrics with conical singularities, which is defined by the
following: a smooth metric on M \ p with constant curvature, and near the punctures
the metric is asymptotically conical, that is, there exist local coordinates such that the
metric is given by

e¢|z|2('3_1)|dz|2

with ¢ being smooth. There is also a geodesic coordinate description given by
dv® + B2 d¢?, K =0,
g =13de®> 4 p?%sinh?vdg?, K =-1,
de? + B2%sin®vd¢?, K=1.
In particular, in each case with curvature of different signs, asymptotically it is always
given by the flat metric.

The central problem to study is: given (c, p, ,5 , K, A) as the conical data, does there
exist a constant curvature conical metric with this data? Is the metric unique? The
study of this singular uniformization problem has a long history and has been very
active recently. When the curvature K is nonpositive, the conclusion is relatively
straightforward. By the results of McOwen [17] and Luo and Tian [14], for any fixed
(c,p, ,5 , K, A) that satisfy the Gauss—Bonnet formula and K < 0, there exists a unique
constant curvature conical metric prescribed by the tuple. When K > 0, the situation
is complicated depending on the cone angles. When all the cone angles are smaller

Geometry & Topology, Volume 24 (2020)



Conical metrics on Riemann surfaces, [ 335

than 27, by the results of Troyanov [22] and Luo and Tian [14], there is a unique
constant curvature metric when the cone angles are in the “Troyanov region” (2). And
when all the cone angles are less than 27, there is a moduli space structure, obtained
by the first author and Weiss [16].

When some of the cone angles are bigger than 27, unlike the cases above, there is
no uniform result. When M is a sphere, there are some results depending on the
number of cone points. When k = 2, Troyanov [21] gave the results. When k = 3,
the characterization via complex analytical methods was given by Eremenko [8] and
Umehara and Yamada [23]. When k = 4 with symmetry, complex analysis techniques
can also be applied, see Eremenko, Gabrielov and Tarasov [10]. When the genus of M
is greater than 0, there are some general existing results by Carlotto and Malchiodi [3; 4]
and Bartolucci, De Marchis and Malchiodi [2]. In [20] some new families of metrics
are constructed by relating to Strebel differentials. We also mention here some related
problems, including Toda systems and mean field equations; see Chen and Lin [5; 6]
and references therein. In particular, the recent result by Lee, Lin, Yang and Zhang [13]
considering the singularity formation of two-point collision is morally related to the
cone points merging behavior studied in this paper.

Recently, the breakthrough of Mondello and Panov [19] shows the necessary condition
of existence on a sphere by the holonomy condition

(29) di(B—1.Z0a0) = 1.

They also showed that when the strict inequality holds (“noncoaxial” situation) there
exists at least one such metric. The recent results by Dey [7], Kapovich [11] and
Eremenko [9] determined the necessary condition of existence when the equality holds
in (29).

When trying to extend the result of [16] to get a smooth manifold structure in this case,
we found that there are obstructions, reflected in the fact that the linearized operator
fails to be surjective on some subvarieties. A key component in the construction of
Mondello and Panov is the splitting of cone points, which turns out to be the key to
resolve the analytic obstruction. We are going to describe the geometry of this process
(splitting, or equivalently merging, of cone points) below.

3.2 Local geometry of merging cone points

In the next three sections, we consider the behavior of constant curvature metrics with
some of the cone points merging together (or, equivalently, when a cone splits into
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several cones). The cases we are going to study in this paper include all hyperbolic
and flat metrics, and spherical metrics with angles less than 2.

We first describe this process locally by looking at the family of metrics, parametrized
by t €[0,¢),

(30) g(t) =1z = p1OPPV )z — py ()PP D]az .

where p1(¢) and ps(t) are smooth coordinates that parametrize two moving points
on M. We also require p1(0) = p2(0). When ¢ # 0, it gives a metric with two separate

cone points with angles 27 f8; and 27f8,. And the distance between the two cone
points decreases as ¢t goes to 0. Eventually, in the limit # = 0, the metric is given by

|Z|2(/31 +B2-2) |dZ|2,

which is a conic metric with a single cone angle 27 (81 + 82 —1) if 81 +B2—1>0.

This process of merging two cone points can be generalized to multiple points. After

merging j points each with angle {27 8; l] — - the angle we get is given by the defect
formula

J
(31) 271,80:=27t(z,8i—(j—1)).

i=1
One thing to notice from the defect formula is that not all conic points can be merged;
it only happens when the “admissible condition” below is satisfied, otherwise there
is an obstruction to produce a new conic points. When 8 < 0, |z|>=1|dz|? is no
longer conical, and we get some open ends, the form of which depend on the curvature
constant. Therefore, we define the following condition for merging:

Definition 9 We say a set of cone angles {B;}iecz is admissible if

(32) > B> -1.

i€l
In particular, this implies that when k = 2, the two cone points must satisfy 81+ 2 > 1.
3.3 Global geometry
The metrics we are going to consider in this paper are the following:

(33) e flat or hyperbolic conical metrics with ,5 € R’i such that the Gauss—Bonnet
formula (1) is satisfied; or

¢ spherical conical metrics with B € (0, Dk satisfying either (2) if k > 3 or
genus(M) >0, or B = B ifk =2 and M = S2.
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From [22; 14; 17], there is a unique constant curvature metric for each of the configura-
tion (p, /§) with B satisfying one of the conditions above. Now, considering the family
of metrics with varying cone points, we would like to understand the uniform behavior
of those metrics when some of cone points merge together. Using the defect formula
we can see that ;
Bo—1=Y (Bi - 1.
i=1

Together with the Gauss—Bonnet formula, this implies that the curvature remains the
same constant in this merging process.

Because of the restriction of cone angles defined above, not all cones can be merged
to produce new cones. Moreover, the Troyanov constraint for spherical metrics is not
preserved in this merging process. Therefore, for a given set of cone angles ,5 , the fiber
conical metrics might potentially only be defined in a subset of C;. And we define the
following admissible region:

Definition 10 For fixed E = {Bi }f.‘=1 satisfying one of the conditions in (33), the ad-

missible extended configuration space is defined to be the union of configurations

€.
in & with which there exists a constant conical curvature metric on M, ie

!

e 0 . . .
(34) gk, j= & U U {p € ﬂ Fz; : there exists a constant curvature metric
Sier; Bi>ITi-10 =1
for all j

with configuration (p, {ZiEIj Bi—1D+ l}j.=1) .

The admissible extended configuration family Ci g is defined in a similar way by only
considering the admissible combinations, or equivalently C; D Ck i= T ! (Ek 5)

Flat and hyperbolic cases The metrics we consider will be any 5 € R’_i such that the
Gauss—Bonnet formula (1) is satisfied. In particular, while the Gauss—Bonnet constraint

k
> Bi—1) < (M)

i=1

gives an upper bound of §;, we do not require the cone angles to be uniformly small.

The admissible extended configuration space is relatively easy in this case. As long as
the merging cone angles are admissible in the sense of Definition 9, there exists a flat
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(or hyperbolic, depending on the angle combination) conical metric after merging. In
particular, in this case we have

0
gi=8v U

Yier Bi>ITI-1
and
_ 0
¢i=av U @
Yier Bi>ITI-1

When k =2 and M = S?, there are neither flat nor hyperbolic conical metrics on M.
When k > 3 or the genus of M is greater than 0, C, j \C,g is nonempty in general.
In particular, when the genus of M and the cone angles are all sufficiently large, all

directions of merging will be allowed and in that situation Ck = Ck -

The spherical case In this case all the cone angles are assumed to be less than 27,
hence ,é € (0, l)k. Notice that by the relation (31), the cone angle obtained after
merging, denoted by 27y, is also less than 2;. Therefore, during this merging
process we stay inside the class defined in (33).

The extra rigidity in the spherical case of (33) and the fact that merging does not preserve
this constraint make Sk’ i and Ck’ Fi much more complicated to describe, compared to
the previous case. We illustrate a few cases here, keeping in mind that the football
case (M =S?, k =2 and B = B2) is special for a reason that will be made clear in
Section 7.

We start with M = S2. From [21], there is no “tear-drop” metric on S? with only one
conical point. Hence there is no admissible merging on C,, which implies C, = Cg .
On a sphere with three conical points and assuming 0 < 51 < 8, < 83 < 1, the Troyanov

condition is given by

3
(35) 21+1>> Bi. or B1>Pa+Bs—1.
i=1
We show that it cannot merge to a football. Since all cone angles are less than 27, the
merging process decreases the angle strictly, ie 8; + 8; —1 <min{pB;, 8;}. Hence the
only feasible way to achieve a football would be merging the two bigger angles, and
this gives

B2+ B3—1=p1,

which contradicts (35). Since the three points cannot be simultaneously merged into

one point either, we have C3 = Cg.
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When k > 4, depending on different E , the situation can be very different. Assuming
0 < B1 < B2 < B3 <B4 <1 satisfying the Troyanov condition

4
261 +2> Z Bi.
i=1

if 1<Bi1+B4=P2+PB3 (Which can be achieved for example by taking B= (%, % %, %))
then by merging the two groups {81, B4} and {82, B3} simultaneously, we get a football;
however, since we cannot split a football to get an admissible 3—point configuration, one
cannot merge {f1, /34} nor {f,, B3} without the other group. That is, €14NEs3 C ¢,
but €9, U, ¢ C, - However, it is possible to merge {B2, Ba} or {B3, B4} in most
of those cases (as i in the example given above), hence Qf 4 U Cg 4 CC e In contrast,
if B1 + B4 # P2 + B3 then one cannot get a football but merging into a 3—point
configuration is still possible.

When the genus of M is greater than 1, the description of C ¥ still depends on ,5 and
the Troyanov condition; however, since we will not get any football configuration in
this case, it is analytically the same as the flat or hyperbolic cases.

4 Preliminary analysis

Our approach to the study of the geometric problems described in the last section in-
volves the analysis of conic elliptic operators on spaces with isolated conic singularities,
as employed already in [16]. The new feature here is that we study families of such
operators on spaces with coalescing conic singularities.

4.1 b-vector fields on M and conic elliptic operators

Let M be a manifold with isolated conic singularities at the collection of points
p={p1,..., pr}, and denote by M= [M ; p] the blowup of M at these points. Thus
M is a manifold with k boundary components; when dim M = 2, each boundary
component is diffeomorphic to a circle. Choose local polar coordinates (r, #) near
any p;,so r is a boundary-defining function for the boundary face created by blowing
up p; and 6 is a set of local coordinates on that face, eg ¢ is the angular coordinate
if 9M is a union of circles. We recall the space of b—vector fields, which consists
of all smooth vector fields on M which are tangent to the boundary. In these local
coordinates,
Vp = C*®—span{ra,, dg}.
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A differential operator is called a h—operator if it can be written locally as a finite sum
of products of elements of Vp,

L= " aju(r.0)(ro,)’ 0§
Jtlel=m
(here we continue to think of 6 as possibly multidimensional and o a multi-index).
This operator is called b—elliptic if its h—symbol is nonvanishing,

Pom(L)="Y aja(r.0)p’n* #0 for (p.n) # (0.0).
J+la|=m
Finally, we say that L is an elliptic conic operator if L =r~™ A where A is an elliptic
b—operator of order m. We are primarily concerned with elliptic conic operators of
order 2, in particular the Laplacian on a surface with isolated conic singularities.

Now suppose that X is a more general manifold with corners, ie any point ¢ € X
has a neighborhood ¢/ diffeomorphic to a neighborhood of the origin in an orthant
R]_‘i_ x Rk (in which case ¢ lies on a codimension k corner). As before we define
the space of b—vector fields on X to consist of the smooth vector fields which are
tangent to all boundary faces. In local coordinates (xi,...,Xg, V1,..., Yn—k) Near a
codimension k corner, with all x; > 0, we have that

Vp(X) = C®°—span{x;dy;, Dy, }.

Our main examples of manifolds with corners here, of course, are the extended con-
figuration spaces & and the extended configuration families Cr. We do not consider
here b—differential operators on general manifolds with corners. Instead, as motivated
by our problem, the fibers 71 (g) C Cx are unions of two-dimensional surfaces with
boundary, possibly “tied” along their boundaries, and we consider the families of elliptic
conic operators on these fibers, parametrized by g € & . Nonetheless, it still turns out
to be important to consider b—vector fields on the entire space Cy . In doing so, it is
convenient to organize the boundary hypersurfaces into three types, corresponding to
the boundary faces €z which resolve point coincidences, the faces €; corresponding to
individual conic points, and the faces corresponding to the blowups of each fiber M, .
We denote the boundary-defining functions for these by p7r, p; and p, respectively.

4.2 b-Holder spaces on M and mapping properties of conic elliptic
operators

Conic elliptic operators act naturally between weighted Sobolev and Hélder spaces
defined relative to differentiations by the vector fields in V, (M). Our ultimate problem
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is nonlinear, so we define only the h—Holder spaces and state the key mapping properties
on these. For simplicity, we restrict attention to the two-dimensional case.

Definition 11 (weighted b—Holder spaces) For any function defined on M,,, define
the seminorm [u]p.s in the usual way away from a neighborhood of the boundary faces,
while in each such neighborhood, in local polar coordinates, we set

b§ = u u
0<r<ro r<r,r'<2v |(I’, 9) - (I’/, 9/)|8

Then 62’8 (M) consists of the functions u# which are bounded and for which [u]p.s < co.

Next, for any £ € N, define Cﬁ’g (M) to consist of all functions u such that Vq --- Vju €
Cg’a(M) forevery j <{ and V; € Vj(M).

Finally, r“Clg’S M)y={u=r*v:ve Cﬁ’S(M)}.

It is immediate from these definitions that if L is a second-order conic elliptic operator,
then, for every £ > 2,

(36) L: ricy’ (M) — r=2c; >0 (M)
is bounded.

It can happen that this map does not have closed range for certain values of p. Indeed,
is called an indicial root of L if there exists some function ¢ (8) such that L(r#¢(0)) =
O(r*=1). The expected order of decay or blowup is r*~2, so  is an indicial root
only if there is some leading-order cancellation. It is not hard to check that if w is an
indicial root, then an appropriate sequence of cutoffs of r*¢(6) can be constructed
to show that (36) does not have closed range. This is explained at length in [16]. The
following is the basic Fredholm result, proved in [15], but see also [16].

Proposition 12 If u is not an indicial root, then (36) is Fredholm.

If L=A+V where V e 62’8 for example (or even just V € r_2+EC£’8 for any € > 0),
then, at a conic point p with cone angle 278, the indicial roots consist of the set of
values j/B for j € Z. The coefficient ¢(6) corresponding to the indicial root j/fB
can be any linear combination of sin j& and cos j6.

We also consider L = A+ V, when V € Cf’a, as an unbounded operator

(37) L: ;0 (M) — ¢yt (M).
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We then seek to characterize its domain, ie the (nonclosed) subspace
DLy = {u e CEPP (M) : Lu e clP (M)}

This is called the Holder Friedrichs domain for L.

Proposition 13 [16] The space Dﬁ’g (L) consists of functions u € C£+2’8 (M) such
that, near each conic point p,

N(B)
u=ap+ Z (ajicos jO +ajo sinjg)rj/ﬂ + 7
Jj=1
for some constants a;i and aj,, where N(B) is the largest value N such that N/ <2,
and 7 € rZCﬁJrz"S (M).

4.3 Families of conic elliptic operators

The previous subsection reviews a few standard results about conic elliptic operators on
surfaces. Our interest is in families of such operators, particularly as the conic points
coalesce. In particular, suppose L, is such a family where the cone points are located
at some simple divisor p € D; . A key difficulty in extending the theory for individual
operators to families is that the function space on which L, acts vary with p. We use
the geometric machinery developed above to handle this.

More specifically, we first consider weighted Holder spaces on Cj and the restrictions
of these spaces to the fibers 71(g) for g € &, then define the appropriate families of
weighted Holder spaces on which we may describe extensions of the mapping properties.

In the following, let b be a weight vector, with components indexed by the hypersurfaces
of Cy . We then define in the obvious way the weighted Holder spaces r‘jCi’S (Cr). To
make sense of the restrictions of these spaces to each fiber, we need an easy result.

Lemma 14 The {estriction of rV 5’8 (Ck) to each fiber M, = w1 (p) is precisely the
weighted space r”Cll)’S (M,), where (abusing notation slightly), the weight vector v
here has components indexed by the boundary components of M,,.

Proof Observe first that the boundary faces of M), are the components of the intersec-

The fact that the restriction of Cg’g (Ck) to M, equals C2’8 (M,) is straightforward
from the definitions since the boundary-defining functions for the faces of Cj restrict
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to the boundary-defining functions for the faces of each fiber, and there are coordinates
tangent to the faces of C; which also restrict to the 6 coordinates on each fiber.

Next, the weight functions restrict naturally as well. Thus we must finally show that
C;;’S (Cy) restricts tg Ci’s (My). For this, note that if V' € Vj(M,), then there Ais an
extension of V' to V € V(Ci). Thus, if u € Cﬁ’g (Ck) and V; € Vp(M,), and if V; are
the lifts for i < £, then V; -+~ Vgu € C2’8 (Cr), and the restriction of this expression is
just V7q --- Vyu, which by the first step lies in CZ’S (My). |

Next, for any fiber M, in Cg, if B is the set of cone angles, then we construct the
Friedrichs—Holder domain by including at each p; the terms with local expressions
rj/ﬂi¢j(9) for 0 <j <28;.

Definition 15 If ,g is fixed, then the fiberwise Friedrichs—Holder domain associated
to a family of conic metrics g, is given by

08 08y X
Dgy (C) ={u € C" (Ck) : Ag, (ulpr,) € Cy" (Mp), p € &)

It is clear that Dﬁ;g (Cy) varies smoothly with p € & over the regular fibers (where all
the p; are distinct). We may proceed just as in [16] to obtain that

(28]
(38) u=ao+y r¥Pe o)+, weric,

Jj=1
where as before ¢; = a1 cos jO 4 aj2 sin j6. In this free region, smoothness follows
from the smoothness of the boundary-defining functions with respect to p.

When p approaches a face Fz of &, the aggregate cone angleis B =) ;- (B;i—1)+1,
and functions in Dﬁ;g (Cx) have the form

[28]
(39) u=aofow)+y_p"P fiw)+i. e

j=1
here p = pz is the boundary-defining function for the half-sphere €z and the f;(w) for
j =0,...,[2B] are functions on €7 such that each p//# fj(w) is (formally) annihilated
by the rescaled operator p?B A g, at €z. On this front face, the conic points are all
separated. Therefore, functions in the Friedrichs—Holder domain annihilated by pzﬂ Ag,
are as in (38), where each cone points on this face has the obvious cone angle extended
from the interior of Cy . This means that functions on fibers M), near this face extend
smoothly to this face.
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5 Flat conical metrics

We now begin our analysis of the space of constant curvature conic metrics by studying
the simplest case, when the problem is linear. Thus we fix a closed surface M and a
set of cone angles 8 such that

k
(40) A(M.B) = x(M)+ Y (B — 1) =0.
=1

It is standard that if (40) is satisfied, then for each marked conformal structure (c, p)
there exists a unique flat conic metric with area 1 and cone angle 278; at p;. Our
goal in this section is to show that this family of flat conic metrics is polyhomogeneous
on C.

This is a local regularity theorem, so we fix a smooth family go(c) of smooth constant
curvature metrics on M representing a neighborhood in the space of (unmarked)
conformal structures. For each p € Dj , consider the linear problem

k
AgoG =21 Y (Bi —1)5p,.
i=0
Then
[ k=—2mpn) = [ 2236~ 18
M M
we see that the Liouville equation
Ago@U + Kgo(e) =0

has a solution ¥ = G which is unique if we require that [;, G = 0. This solution G
is essentially the Green function for Ag,. It clearly depends smoothly on ¢, p € D}
and z € M \ p, and near each p; has the form

G ~ (Bi — 1) log|z| + Gi.
where each G; is C® ina neighborhood of p;. We then define
@1) go(e.p. B) = ¢ go(0).

Each of these metrics is flat and, because of the asymptotic structure of G, has a conic
singularity with cone angle 27 f; at p;. This family of metrics is smooth when all the
points p; are distinct.
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Theorem 16 Fix B satistying (40); then the family of flat metrics go(c, p, ,5) extends
to a polyhomogeneous family of fiber metrics on Cy, .

Because go(c) is smooth, it suffices to show that the scalar function G extends to be
polyhomogeneous on Ci . Note that by the remarks above, G is C* on the interior of
the extended configuration family, so our task is to examine its behavior near each of
the boundary faces and corners of Ci . In other words, we must prove that there exists
an index family {Ez} such that

G~ Y (pr)(logpr)aje(wr),
(.0)eér

where wz are variables in the interior of each €7 and each a;; is polyhomogeneous
with index family {E7} ;7. Note that polyhomogeneity of G near the simplest
faces ¢; is obvious. We also suppress the smooth dependence of G on c.

5.1 The case of two cone points

The proof of Theorem 16 is by induction on k. We begin with the proof when k = 2.
Proposition 17 When k = 2, G(z,p) is polyhomogeneous on C; .

Proof Suppose that the two points p; and p, converge at the point p12, which we
may as well assume is fixed and is the center of mass of these two points. Referring to
the local coordinates in Section 2.3, we may as well restrict to a slice where ¢ = (o =0.
Then

(42) G(z,p) = (B1— D log|z —w| 4 (B2 — 1) log|z + w|

= (B1— 1) log|re'® — pe'®| + (B, — 1) log|re'® + pe'®|.
By (8), r = Riacosw, p = Rz sinw, so
43) G(z,p) = (B12— 1) log Rz + (B1 — 1) log|cos we' @~ —sin |

+ (B2 — 1) log|cos we! @0 4 sinw|.
Here, and later in this paper, we set

(44) Biz=p1+B2—1,

ie 2712 is the cone angle which results when two cone points with cone angles 271
and 278, merge. The expression in (43) is certainly polyhomogeneous as Ri; — 0
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away from w = 0 (the corner, where €1, meets [M;{p12}]) and the points where
el (¢=0) — :I:l To understand behavior near the corner, write s = p/r = tan w, so that
when w < Z, say, and recalling that » = R cos @, we have

45) G(z.p) = (P12 — Dlogr + 3(B1— 1) log(1 =25 cos(f) —¢) +5?)

+ 1(B2— 1) log(1 + 25 cos(6 — ) + 52).
The second and third terms on the right are smooth and vanish at s = 0. Note that
there is an apparent asymmetry in the indices 1 and 2 here; however, when the points
p1 and p, are switched, the angle 6 changes to 6 + 7, so this expression is actually
symmetric after all. Finally, near o = % and 0 = ¢, for example, write tanw = 1+ 0,

so that cosw = 1/+/2 + 20 + 2. Then
G(z.p) = (B12 — D 1og(R12/ V2420 + 02) + (B1 — 1) logle' O —1—0]
+ (B2 — Dlogle' @ + 1+ 0],

and this is obviously polyhomogeneous around the face €; created by blowing up o =0.
The argument is the same near €.

The assertion about polyhomogeneity of G on C; is now proved. a

5.2 Inductive proof for higher &

Proof of Theorem 16 Suppose that the result has been proven for C; for any j <k.
Without loss of generality, we can restrict to the slice with the fixed center of mass
=28 =0.

We first consider the case that is away from the central diagonal &€;_, that is, at most
k — 1 points can merge together. This is the case for example when the configuration
E € R¥ is such that Zf-‘zl(ﬂ,- —1) < 1. Then we can cover & ¥ by open sets {Uz, ¢}
defined in (26). That is, the only possible merging happens within the subclusters, and
the distance between any clusters is bounded away from 0. From Lemma 7, Uz, ¢
locally has a product structure, identified with an open subset ]_[f=1 Uz; C ]_[f=1 &iz;1-
The total space fibers over Uz, ¢, and is given locally by a product of fibrations. In
this case, the conformal factor can be written as a sum

G- Z(Z(ﬂl—l)logu—m)

ZEI

Since {z;}iez; is bounded away from any other clusters pz;, for Jj' # J, the term
Ziezj (Bi —1)log|z—z;| is only singular near V; as defined in Lemma 7. By induction,
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this term is polyhomogeneous on Ciz;|, hence is polyhomogeneous on Uz+e. The
same argument can be applied to other terms. By considering all the open covers, we
get polyhomogeneity of G on Ci in this case.

Now we consider the behavior near the central face, and all the k points can merge
together. We now prove that away from all subdiagonals, G is polyhomogeneous
near C(l)...k' In this region we write p; = z; + { and assume that the center of
mass ¢ = 0. Then, writing (z,21,...,2;) = Ry ;2 and Q = (Qo, ..., 2%), we have

k k k
G =3 (i —1)loglz — =] = (Z i —k) log Ry + 3 (Bi — 1) logl2 — 2|
i=1 i=1 i=1
and, since z remains bounded away from the subdiagonals, only the term log Ry _ j is
singular here and this is obviously polyhomogeneous on the interior of €; ;. And
each term (B; — 1) log|€2¢ — €2;| is singular only near &; and is polyhomogeneous.

Near the outer boundary of ¢; , set z =re'?® and w; = z; /r. Then

k k
G = (Zﬂ,- —k) logr + Y (B — 1) logle'? —w;|.
i=1 i=1
Notice that all the faces €; occur along the submanifolds {z = z;} C {|w;| = 1}, so,
provided we stay away from these submanifolds, only the first term (Zf;l Bi —k) logr
is singular, and it is polyhomogeneous. At the principal diagonal €; , however, w; = ¢’ Oi
and the additional singular term is log|e’? — ¢! O |, which is polyhomogeneous there.

Finally, if p is near any one of the partial diagonals, including near their intersection
with €y, then it is in a neighborhood of some intersection of front faces {€z; }le ,
where each Z; is a proper subset of {1,...,k}, and the Z; have no elements in common.
The resolution ensures that the faces €7, and &y, are disjoint, so we can once again
factor out the defining function R;_j and separate out the indices i which do not lie
in any of the 7;, and write

k Y/
(46) Gz(Zﬁi—k)logRl...H S (Bi-Dlogho—wi|+ 3 /.

=1 itU; 7, j=1

where w =z/R;  x and w; = z; /Ry k. Here f; is the rescaled factor

fi =Y (Bi=Dloglw—w;| =Y (B = )log Ry, + Y (Bi — ) log|y’ — ;" |,

1€TL; I€T; I€T;
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where RIj is the boundary-defining function for @Ij and the coordinates over this face
are given by (w, w;)iez; = Rz, (ng, QII’) By induction, each rescaled factor f; is
up to a smooth summand the Green function near Z; and hence is polyhomogeneous
near the collection of faces which constitute the resolution near this cluster. This
behavior is uniform as Ry _j — 0.

It is perhaps wise to illustrate this induction for Cs. In this case, near €1, N €123 we
can write

G=(B1—Dloglz—e1(1+e2)|+ (B2—1Dlog|z —e1(1 —e2)[ + (B3 —1) log|z +€1].

We wish to examine the region Ri23 — 0 and Ry — 0, and in this region, €; ~ R123
and €3 ~ Ry2. Therefore, using wis = (w3 — 1)/€2 as a coordinate on €15,

3 2
mnG=(Zm—ﬂmM+(Zm—qu+%—M®mfu
i=1 i=1
+ (B2 — ) loglwiz + 1] + (B3 — 1) log|ws + 1.

Since w3 ~ 1 here, this is polyhomogeneous. |

6 Hyperbolic conic metrics

We next turn to the analytic description of the space of hyperbolic cone metrics which,
as explained earlier, exist whenever

k
XM+ (Bi—1) <0.
i=1
The problem is now genuinely nonlinear and the proof of polyhomogeneity correspond-
ingly more difficult. Indeed, the proof is directly inductive on the number of cone
points. We now explain the strategy, which requires several steps.

For the case k = 2, we construct a family of background metrics which is hyperbolic
away from the merging points and flat near these points, with a transitional region
in between. Let p be the degeneration parameter which measures the distance to the
fiber where the points coincide. We then solve for the expansion of the conformal
factor iteratively on My, then on €1,. This way we construct approximate solutions to
arbitrarily high order of p. We then solve away the error in the exact curvature equation
on each fiber using the maximum principle. Finally, we use a commutator argument to
show conormality and polyhomogeneity. Once the theorem has been established for

Geometry & Topology, Volume 24 (2020)



Conical metrics on Riemann surfaces, [ 349

k = 2, we follow an inductive procedure to construct families of background metrics
in the general case with the same properties, and once again solve away the error terms
and show polyhomogeneity.

The case k = 2 already contains essentially all of the substantial difficulties, so this
case is presented in careful detail.

6.1 The case of two merging cone points

Consider a family of simple divisors p which converge to a point q € F1, C & . We
may as well assume that ps, ..., pr remain fixed, but p; and p, merge at a point pj»
which, for simplicity, we assume is the center of mass of p; and p, and also remains
fixed. We write p’ for the (simple) (k—1)—tuple (p12, p3., ..., pr). We are working
locally near g, and this point is far from any of the other partial diagonals, so we use
the local coordinates on & and C, p = p12 and R = Rj5, and for simplicity we
set 12 = 0, which amounts to fixing the direction through which p; and p, approach
one another. If B; are the cone parameters at p;, then, as noted earlier, §; and >
determine the limiting cone parameter 812 = 1 + B2 — 1 at p12. In order for the two
points to merge, it is necessary that

,31—|—ﬂ2>1 <~ ,312>O.

The fiber 771 (q) C Cj consists of two surfaces with boundary, My = [M;{p'}] (the
surface M blown up at the points in p’) and the face €;,, and these meet along a
common circle.

The initial metric We now construct a family of metrics on M with k conic singu-
larities at the family of divisors p above, which extends as a smooth family of fiberwise
metrics on Cg. This family is obtained locally near the fiber 77!(q) by gluing the
fixed hyperbolic metric /g with conic singularities at p’, with cone parameters
B12, B3, ..., Bk, to the degenerating family of flat metrics gg’p in (41). To do this,
define

48) go.p = 180, + (1= Dhoy,

where
1 if p<p and |z| <2p,

XEPI=00 i p= 25 or |z| > 4.
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z=pZ
R = /r2+p2
p=Rs

Figure 5: Coordinates used in the computation of expansion near the singular
fiber Q:12 U Mp/.

is a smooth nonnegative cutoff function for some small p > 0. We usually drop p
and p’ from the subscripts for simplicity, and also write

Ko — 0 ifp<p and |z] <2p,
%P7 1=1 ifp>2p or |z| > 4p,

for the curvature of the metrics in this family.

Our goal is to obtain precise analytic control of the solution to the conformal curvature
equation

(49) Ago,u+e* +Kop=0

as p — 0. In the neighborhood where y = 1, (49) becomes

(50) Agy U + e =0.

Here Ag, , is the Laplace-Beltrami operator with nonnegative spectrum.

Our goal is to prove that the solution u to (49) is polyhomogeneous on &£ near the
point p’ € C; with z = 0. To do this we construct the solution anew (even though
its existence is guaranteed by standard barrier arguments) by first constructing an
approximate solution which satisfies (49) to any fixed arbitrarily high order as p — 0,
and then correcting this to the exact solution using an analytic construction which
guarantees that this additional correction term also vanishes to that same high order.
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The specifics of the first part of this are that we construct the entire Taylor series for u
along each of the two faces M and €15. These series expansions are related to one
another and must satisfy a set of matching conditions along the corner where these
faces intersect. The fact that we can correct any finite part of this Taylor series to an
exact solution with a term which vanishes to that order means that these series represent
the true expansions for this exact solution.

Expansion at M,»N&1, within M, Recall the coordinates z = re'? and p near €1o
in & (as before, an angular coordinate is suppressed), and set

r=|z| and s=p/r.

Thus s = 0 defines the surface M) while r = 0 defines €1,. There is a freedom in
the conformal coordinate z on M), by holomorphic reparametrization, and we fix this
below in Lemma 18. We also define the coordinate
= 1 | Zlﬂlz
B12
on My, which is the radial distance function for the background flat conic metric. It
follows from (45) that, near the corner t =5 = 0,

gop = a(s,t, ¢, 0)(de* + 0% do?),

where «(s, t) is polyhomogeneous with «(0,t) = 1 near v = 0. Our first result is that
by choosing the coordinate z carefully, the expansion for « has a particularly simple
form; it simultaneously also gives the first term in the expansion of u at M,y .

Lemma 18 There is a unique bounded solution ug, € ﬂmzo CZ”S (M) to the restric-
tion of (49) to M,y . This solution is polyhomogeneous as vt — 0, and if this defining
function is chosen appropriately, then

Proof All of this except the last assertion, ie the existence and polyhomogeneous
regularity, is contained in [17; 16]. For simplicity set § = B, . Existence and unique-
ness of the solution is proved in [17] by constructing bounded sub- and supersolutions,
and this method also leads to the uniqueness of 1 amongst bounded solutions. The
regularity theorem is proved in [16]. First, (scale-invariant) local elliptic regularity
shows that u;, € CZ”S for every m > 0. The refined regularity theorem in Section 3
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of that paper states that u; is polyhomogeneous, with ug ~ 3" i~ ag; (p)ct/B+i
as v — 0, where ay; is linear in cos £¢ and sin{¢.

It remains to prove the last assertion: that all ag; =0 when £ # 0 in some choice of
coordinates. To this end, recall that near a cone point, there are geodesic coordinates
(7, 0) in terms of which the hyperbolic metric takes the canonical polar form

(51) g = d7? + % sinh? ¥ dg>.

On the other hand, there is a local holomorphic coordinate z centered at the conical
point for which, in the region near pi» in which it is flat, gg,, = |z|2B=D|dz|2, so
that

g= €2u6|Z|2(ﬂ_1)|dZ|2

there. Since %|z|’3 =t, we have

d7? + B2 sinh? 7 dp? = 2402 |71 2B=D)| 4712 = 0240 (g2 + B2:2 dp?).

This gives
dr / D~ /
e e"o,  sinh7 = eYor,
or, equivalently,
dr _ dt
sinh7 ¢’
and hence
tanh %7 =cr.
We finally scale z so that ¢ = %

We have now shown that

(o .¢]
7~t(1 —i—ZEthzJ),
j=1

. ~ . . / — . ~ . .
ie 7 is an odd function of t, so that e¥o = t~!sinh7 is even in v and equals 1
when t = 0. We conclude that u6 is even and vanishes at t = 0, hence

o0
(52) u:)'vzaojtzj :Zaojrzjﬂ,
j=1 j=1

where each ag; is constant. O
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Expansion at M,» We next turn to the complete expansion of u at the face M.
The defining function for this face is s, and we know a priori that ¥ is smooth in s
at s = 0, hence

o0

(53) un~ Y i ¢)s’.

Jj=0
Our goal is to compute these coefficients 17}- , and, more specifically, to understand their
expansions as r — 0. In doing this, it is more convenient to write (53) as an expansion
in p since the Laplacian on the fibers commutes with p. Recall that near the corner
My N €1, we have p = Rsinw, so if we set s = sinw, then s = p/R. Furthermore,
along s = 0, we can take R = r. Therefore,

oo
NE Iy L=
u p’uy, where u; =r—'u;.
Jj=0

For simplicity of notation, we assume here 2kf8 ¢ N for any k € N. The other case
has no essential difference except the notation. In particular, the expansions below are
the same, and for some values £ € N, the coefficients of r* appear in more than one
place because of the coincidence ¢’ + 2kf8 = ¢'.

Proposition 19 As s — 0, there is an expansion
[e.°]

(54) u~ily+ > sTiT,
=1

where, in terms of the functions u; for j > 1,

(55) Wi~ Y rlape@)+ Yt aue),
LeN £,keN,£>0,k>1
or, equivalently,
(56) W~y @+ Y TR (e)
{eN £,keN,£>0,k>1

Here ajg are trigonometric polynomials of pure degree {, ie linear combinations of
cos({¢) and sin(€¢), while a g for £ >0 and k > 1 are trigonometric polynomials
of degree at most £. In particular,

(57) B~y rFlage@) + Y TR (g).

£eN £,keN,£>0,k>1

And aqyy is a linear combination of cos({¢) and sin(£¢) forany £ >0 and k > 0.
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Proof Clearly u is C*° up to My away from z = 0, and thus has an expansion in
nonnegative integer powers of p. Expand Ky, , = Z}io o/ K 7 in (49) and insert a
formal series expansion for u, as in the statement of this theorem. Notice that K; =0
near €1,. Since A g0, commutes with p away from €;,, we obtain a recursive set of
equations which successively determine all of the u} The first of these is the curvature
equation

Ago Uy + €20+ Ko =0

on M, . By the previous lemma, u;, has an expansion involving only the powers r2kB

for k € N.

The equation for u; for j >11is

(58) 70 Ag ) + 20 = —e 720 (K + (2T —1—2uUD) ),

where /1 = le ;é o u’; and the notation (w); means that we take the coefficient
of p/ in the expansion of w. This is the Laplacian with positive spectrum, so this
equation always admits a solution on M. Using the special coordinates (r, ¢) from
Lemma 18 near r = 0, this equation reduces in a neighborhood of r = 0 to

w1

(59) (Arp + 262u6)u} =—(e? 1 2u(j_1))j,

where A,g is the Laplacian for the conic metric |z 12(B=1)|dz|? where z =re'® (which
gives the local form of g¢,). After multiplying by r2B | the equation above can be
rewritten as

60)  ((rdy)? + 3 +2r2P ou); = 2B (27" 12U,
The bounded formal solutions (ie solutions to leading order) of
((ra,)* + aé)u} + 2r2‘8e2“6u} =0

are rtq,(¢) for £ € N, where ¢ is a trigonometric polynomial of pure degree £. The
nonnegative indicial roots are £ =0,1,2,....

For j =1, (59) becomes
(61) ((ro,)* + 335)14’1 + 27‘2'362“62,{,1 = 28K,
note here (ezu(o) —1-2u®); = (e2“6 — 1 —2ug); = 0. Noting that K vanishes

near €15 and e2%0 ~ 1 + > is1 a8, the solution of this equation has an expansion
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of the form

(62) Wy~ Y rlage@)+ Y. rae).

{eN £,keN,{>0,k>1

Here the terms a;y9 come from indicial roots, and are formally undetermined near
r = 0, but of course are fixed because u solves a global equation on M. And each
a1 is a linear combination of cos(£¢) and sin(£¢). All the other terms arise by
matching coefficients on the two sides of this equation. In particular, because of the
multiplication by 728 the leading term in the second sum is given by 2# and there
are no log terms. And each aqyr(¢) is of pure degree £.

We now prove by induction that the expansion of u} for j > 1 is as in (55). The
guiding principle in all of this is that the right-hand side of (60) does not contain any
indicial term of the linear operator. In particular, the right-hand side has an expansion
where terms are given by r28+¢+2kB g, for £ > 0 and k > 0 and its coefficient agx
is a trigonometric polynomial of degree at most £.

The equation for u/, is
(63) ((rdp)? + 03 )uly + 2r2P e ouly = —r? (K5 +2(u))?).
and this right-hand side has an expansion

L
64) r2f (Z Z (cee cos(£'p) + dyy sin(€'¢))r

£>04'=0 Y

+ D D (core cos(U'p) +duy sm(z’¢))rﬁ+2kﬂ)_

£>0,k>140=0
Indeed, the expansion of r2B (u/l)2 contains terms

(65) r2q0¢)  and  pE2EEDE L (¢) for k> 0.

The coefficients gy and pyj are finite sums of finite products of trigonometric poly-
nomials [[g;, with degg; =¢; and )_{; = £. Even if each ¢; is pure, this product
usually includes all lower degrees as well. Therefore all gy and pyy are trigonometric
polynomials of degree at most £. Since K5 vanishes identically near r = 0, we can
see that the right-hand side does not contain any indicial terms rte’t? because of the
2P shift, which implies that the solution u’, does not contain any log r terms. Solving
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(63) term by term gives

(66) wh~ Y rlage@)+ Y. rT*Payu(e).

{eN £,keN,>0,k>1

Here the first term contains indicial roots where a,40(¢) is a linear combination of
cos(£¢) and sin(£¢), while the second term comes from matching coefficients on two
sides and a, gy is of degree at most £.

Now suppose (55) is true for u} for i < j. Then the terms on the right-hand side
of (58) are linear combinations of terms HZ i=j u; . By tracking the terms in (55), we
obtain that the right-hand side is a linear combination of terms in (65). Applying the
same guiding principle, we see that u; has an expansion as in (55). By induction, this
concludes the proof of the proposition. |

Expansion at €15 We next consider the expansion at €1,. Unlike the preceding
construction at M, some terms in this expansion can only be determined once we
take into account their compatibility with the previous expansion. Write

(67) u~ Y R, ¢)
a€E

near this face, where £ is an index set which is determined in the course of the
argument below; see (75). The double prime indicates that the terms are coefficients in
the expansion near €15. As usual, R = y/p% +r?2 and R sinw = p, and, as before, we
set s = sinw. (This is a good coordinate away from the pole of this hemisphere.) For
many purposes it is simpler to use the projective coordinates Z = z/p and p, which are
valid on the interior of €15; |Z| — oo at the outer boundary of this face, so s ~ 1/|Z],
and p is only a defining function for this face away from its outer boundary. See
Figure 5 for an illustration of the coordinates.

In these projective coordinates, still writing 8 = B2,
68)  gop=pPe?d2P, = (B1—1)loglz — 1| + (B2 — 1) log|Z + 1| + 7,

where #% is harmonic as a function of Z, so in particular is smooth across the singular
points Z = £1 in this face. It is also bounded in a neighborhood of €, so in fact
its restriction to €1, must be constant. In other words, /0_2’3 go,p Testricts to a flat
metric g on the interior of €1, which has two conic singularities at w = 41 and is
asymptotic to the large end of a cone with cone angle 278 as Z — oc.
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Now write R*u), = p*s~*u,, = p*u,, where u, (s, ¢) = s~ %, . Using that the fiber

Laplacian commutes with fiber variable p, ie [Ag, ,, p] = 0, the curvature equation
thus leads to equations for each of these coefficients,

o

(69) Auf = —2ull_yp— (7 —1-2u@2P), g,

where, here and below, we denote by A the Laplacian for the flat conic metric

g= p‘zﬁ go,p- Also, analogous to our previous notation, u@=28) denotes the sum of

" a—2p8
a/

in the expansion in parentheses. The downward shift by 28 occurs because of the

all terms p® u’, with o/ <o —2p8, and ( *)a—2p indicates the coefficient of p

factor p~2# on Ago -

We now analyze these coefficients. The shift of exponents here motivates the fact that
we carry this out for « in the succession of ranges

2 <a<2(l+1DB, £=0,1,2,...;

the endpoints 2¢8 are handled separately.
The case o € (0,20)

Lemma 20 The only terms in (67) with o € (0,28) are those for which o €
{1,2,....[2B]}. And the term uy, is determined by {a(4—j)jo(¢) :0 < j <a—1}
in (55).

Proof Write the fiberwise Laplacian Ag, , locally as ,0_25 A, where A is the Lapla-
cian for the flat conical metric g = eZLA‘ld Z|?. Inserting (67) into the equation, and
recalling that A commutes with p, we obtain that Au/, = 0 for a < 28, so u/, is
harmonic with respect to €2ﬁ|d Z|?, and hence also with respect to |dZ|?.

The fact that the original coefficient i, is bounded as s — 0, ie Z — oo, means

@ ~ |Z|*. This means that it is a harmonic

that u), = s~ grows at most like s~
polynomial py(Z) of degree less than or equal to . Now, if « were not an integer,
then 5% py(Z) would be a sum of terms, each vanishing at a nonintegral rate as s — 0.
This is impossible since u is smooth in s at s = 0. Hence the only allowable exponents
o < 2f are nonnegative integers. When o = 0, the only possibility for u], would
be a degree 0 harmonic polynomial, hence a constant, which leads to the constant
term cp®r® in the expansion, and by the choice of ug we know that this constant must

vanish. Therefore we can assume 1 <o < 28.
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Write u), = pq = Z?:o Paj Where each pgj(Z) is a harmonic polynomial of degree ;.
The term py; corresponds to a term of growth p*s™/a; where a; is a linear combina-
tion of cos ¢ and sin £¢. Compatibility at the corner means that this must match the
coefficient of s~/ %, that is, a(q—j)jo(¢) in (55). And as we observed there, these
coefficients indeed have pure degree j. In particular, when j = «, this corresponds to
a term p°r% which vanishes from the expansion of ug. Therefore 0 < j <a—1, and
there is a unique homogeneous harmonic polynomial py; which satisfies this boundary
condition. This determines u, for any integer o < 2. a

The case « =2
Lemma 21 When o =28, u), is determined by a1 in (52).

Proof Essentially the same calculation as above yields that
Augﬂ +l :0, u/zlﬁ :ﬁ/zlﬁs_z'B
Here

A=e2UAs, 2V = o@UBI=DloglZ—11+(Bo—DloglZ+11)

where Aj is the Laplacian for |dz|2. Noting that e2U ~ ¢|Z]?6~2 as |Z| — oo for
some constant ¢ # 0, it follows from well-known existence theory for the Laplacian on
asymptotically conic manifolds that there exists a solution u’z/ g to this equation which
asymptotic to A|3|25 for some constant A. This solution is unique up to harmonic
polynomials of degree strictly less than 28. However, as before, any such harmonic
polynomial would lead to a term in the expansion of ), = u 52 which is not
smooth at s = 0, and this is impossible. In addition, R%# u’z’ﬁszl3 — AR?8 as s — 0,
so A must equal the constant ag; in (52). This determines u’z’ 8 uniquely. O

We have now explained all coefficients for the initial part of our index set,
Ep=laef:a<2B}=1{1,2,...,[28].28}.
The case 28 <a <4 Now we consider the cases for o € (28, 48).

Lemma 22 When o € (28,4p8), the index set £ N (28,4P) is given by
(70) {28 <a<4B:a—2B €N or o € N}.

When o = { 4 2 for some £ € N, u;, is determined by {a—jy;1 :0<j <{—1}
in (57). When « € N, uy, is determined by {aq—j);jo(¢):0=<j <a—1}.
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Proof When o < 48, based on whether the right-hand side of (69) is trivial, there
are two cases. The first is when « —28 =£ € {1,2,...,[28]}. In this case we get the
inhomogeneous equation

u®

(71) Auly = —2u}) — (e? 1-2uY),

where, as before, (-), is the coefficient of pe in the expansion of the expression in
parentheses. The right-hand side is a linear combination of terms

(72) u}’l “;/k

where the sum is over all partitions (j, ..., jr) with Zf-;l Ji =£. Recall that each ux
is a sum of harmonic polynomials in Z of degrees strictly less than j;. When there
is only one term in the sum of (72), ie k = 1, then u}/l = uy is a sum of terms
per for £ —1>r >0, where each py, is a harmonic polynomial of pure degree r,
and, in particular, near the “infinity” s = 0 the angular coefficient of s~ED g a
linear combination of cos((£ — 1)¢) and sin(({ — 1)¢). On the other hand, when
there are at least factors in the summand, ie £ > 2, then each of these products is a
homogeneous polynomial of degree j <{—2, and near infinity the angular coefficients
is a trigonometric polynomial of degree no more than j. To combine these two
situations, the right-hand side is given by

sTE Ve )+ Y sTHdi(@).

0<i<{—2

where cy_ is of pure degree £ — 1 and d; is mixed of degree at most i .

The solution u), is the sum of an inhomogeneous term Zf;(l) g; and potential homo-
geneous terms. Here each inhomogeneous term ¢; (Z) solves away the s~ term in the
above expansion, hence ¢; ~ A; (¢)s™ —2B _ For the top degree i = ¢ —1, Ay is
a linear combination of cos((£ — 1)¢) and sin((£ — 1)¢). And for the lower degrees
i <f—1, A; is a trigonometric polynomial of degree at most i . Those coefficients are
matched at the corner, since the term ¢; would lead to p[_i rit2B A; so A; is given by
ag—iyi1 in (55). In particular, when i = £ —1, Ay_; is matched by ay(¢—1)1, which
is indeed of pure degree £ — 1, while for i <{—2, A; is given by a(—;);1, whichis a
trigonometric polynomial of degree at most i from Proposition 19.

Regarding the potential homogeneous terms, u), is unique up to addition by harmonic
polynomials of degree strictly less than o — 28. However this would give a term in
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ug = ups® which is not smooth. By the same reasoning as in the case o = 2, we
have shown that u], is uniquely determined by coefficients listed above.

The other case for the equation (71) is given by the homogeneous equation Au w=0.By
the same reasoning as before, @ must be an integer, and u, =) po;(Z) where each pq;
is a harmonic polynomial of degree j <o —1. And for each j, the boundary asymptotic
of the term p® po;(Z) is given by %~/ R/ Ay i (¢), which is a linear combination of
sin j¢ and cos j¢, hence is matched by the coefficient a(q— ;) j0(¢). |

The case « = 4
Lemma 23 When « = 48, u, is determined by aq, in (52).

Proof When o = 48, the term R*Pu,p solves ﬁuxﬂ = 27/2’5 ~ A|Z|?8 . Using the

same argument as for 1) g ul p 1s unique and asymptotic to B|Z|*B, where B is given

by the constant ag, in (52). O
Hence we have shown
(73) Eap =128 <a<4B:a—-2BeNoraeN}U{4B}.

The case 2(n — 1) < a < 2nf Iteratively we can repeat the argument for o €

(2(n—1)B.2np].
Lemma 24 The index set £, is given by

{ae2n—1p,2np]:a = j +2kB}.

For a = j +2kp with j, k> 1, ug, is determined by {a(;j_gyex : 0 < < j —1} in(55).
When « = 2nf, ul, is determined by ag, in (52). When o € N, u), is determined by
{a@—j)jo:0<j <a—1} in(55).

Proof As before there are two cases: o —2f = ) o' for some o’ € £, which by
induction means « = j + 2kf with n >k > 1 and j > 0, and k = n if and only if
J =0; or @ € N. Note that the endpoint « = 2nf is included in the first case.

In the first case, assuming j > 0 hence k <n — 1, then u], solves an inhomogeneous
equation (71), where the right-hand side is a sum of terms

(74) wy gy Y e =a—28=j+2(k-1)p.
i
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By induction, each term uy, where a; = j; +2k; B is a sum of terms Zé;_ol Ays—t2kiP
such that Aj,_1(¢) is of pure degree j; — 1 and each other Ay is mixed of degree
at most £. Therefore, as discussed before, the terms in (74) are characterized in two
categories:

(a m=1,ie oy = j + 2(k — 1)B, in which case the first term is given by
Aj—q (¢)s~U—D=2k=DB where Aj_1 is of pure degree j — 1, while the rest
of the terms would combine with (b);

(b) m>2,in which case the product contains terms A es—e—z(k DB where £ < j—2,
and each A, is mixed of degree at most £.

For the same reason as before, u[, has a unique solution which is asymptotically
given by Zé;(l) Ays—t72kB | and each term leads Agp/ ¢ RET2%B and each Ay(¢)
is determined by coefficients a(;_g)¢x in (55). In particular, only when £ = j —1,
a(j—gyek is of pure degree £, while for £ < j —2, a(j_gyer is mixed of degree £. So

it is matched.

On the other hand, if in the first case j = 0 and k = n, then o = 2nf. Then u,,
satisfies the same equation (71) with the special requirement that all the «; in (74) are
of the form 2. Then by induction the right-hand side is given by A|Z|2®*~1D# hence

uy, 8 is unique and asymptotic to B|Z|2"# | which is matched by coefficient agy, .

In the second case (o € N), u/, solves the homogeneous equation ﬁuf; =0andisa
combination of harmonic polynomials of degree j < «, and by the same argument as
before, each term is determined by {a(y—;)j0:0=<j <a—1}. |

With the discussion above, we have:

Proposition 25 The index set £ is given by
(75) £=1{j+2kB:j keN.
For each term R%#), with o = j + 2kp, U, (s, ¢) is smooth up to s = 0 and asymp-

totically given by a sum of terms with growth {s: ¢ € N, £ < j}. That is, for the
solution near the corner there is a product-type expansion

j—1
U~ Z ZRo‘seuag(gb).

a=j+2kp £=0
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The approximate solution

Lemma 26 There exists a polyhomogeneous function

i~ Yo R ug(¢) + 0Nt
a=j+2kBes, l<j
which satisfies

(76) Ago, i+ e + Kg, , = O(p™)
forany N >0 as p= Rs — 0.

Proof We take i to be a Borel sum of the formal polyhomogeneous series constructed
above; (76) is then obvious. O

‘We now write
77) go=ego,.

Correction to an exact solution The final step is to correct the approximate solution
to an exact one by solving

Ag;ov +62v + K§0 =0

for each p, or, equivalently,
(78) Agyv +2v =—(Kz, + 1) = (e*’ = 1-2v).

Of course, this solution is already known to exist and be unique, but the method here will
show that it is polyhomogeneous on Cy . Indeed, we find a solution to (78) satisfying
lv| <C pN for any fixed N ; these are all the same by uniqueness, of course. However,
in this way we can estimate the b—derivatives of this solution up to that order, and
hence, since N is arbitrary, to all orders.

For convenience, write f = —(Kgz, + 1); we have arranged that f is smooth and

vanishes to all orders at p = 0. We also set Q(v) = —(e?? — 1 —2v).

Proposition 27 Foreach N > 0 and 0 < p < €, there is a unique bounded solution v
to (78) such that |v| < Cop™ for some constant Cy.

Proof By the maximum principle, if (A + 2)w = h, then sup |w| < % sup ||. For a
given choice of N, there exists a constant Cy such that | | < Cop™ for all sufficiently
small p. There is also a constant C; such that |Q(v)| < Cy|v|*> when |v| < 1. Now
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define the sequence v; by vo =0 and

(Agy +2vj+1 = f + Q(v)).

By the remarks above, sup |v; 1] < %CO oV + %C 1 sup |v;|2. Assume inductively that
sup |vj| < A4; = Cop"N. Then

sup |vj 41| < 2Cop™ + 3C147 < 2(Cop™ +C1CEp*N) = Cop™ (3 + 2C1Cop").

which we can make less than Cop?¥ by choosing p < (C1Co) /¥ .

It now follows by standard theory that the v; converge to a solution v which satisfies
|v] < Cop", and the maximum principle shows that this solution is unique, and in
particular independent of N. a

Polyhomogeneity of the solution In order to prove that the solution u = & + v
is polyhomogeneous, it suffices to prove that v is conormal of order N, ie that
Wy - Wyv = O(p) for any W; € Vp(Ck) and for any £.

Observe that the problem localizes near €1, since the polyhomogeneity of u in all

regions where conic points are not coalescing was proved in [16]. Now apply a single
b-vector field W to (78). This gives

(Ag, +2)Wv = W[ +2WiiAgz,v + WQ(v).

This uses that Az, :e_ZﬁAgo’p. Now |Wf|<Cp" and | Az, v <|-2v+ f+0 ()| =
Cp", while |Wii| < C. Finally, we can write WQ(v) = AWv where A is a smooth
function which is also bounded by Cp”. Absorbing this last term on the left-hand side
perturbs the constant 2 by a small amount, so we can bound Wv by C’p" by the
maximum principle.

This argument can obviously be iterated any number of times, which shows that v is
indeed conormal of order N.

We have proved:

Proposition 28 When k = 2, or more generally near the locus in C; where precisely
two conic points collide, the solution u to (49) is polyhomogeneous.

6.2 Hyperbolic metrics with an arbitrary number of merging cone points

The construction for the case of two merging cone points initiates and provides the
pattern for an inductive argument to prove the corresponding regularity result for the
solution ¥ when an arbitrary number of points coalesce. The construction in that simpler
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case was given in sufficient detail that the steps below for k > 2 are straightforward
generalizations.

Theorem 29 Fix k > 2 and B . Then the family of fiberwise conic hyperbolic metrics
&y, 1s polyhomogeneous on Cy .

Proof We begin as before, writing g, g = ez"go,lJ , where go p 1s the metric which is
flat in a neighborhood of the coalescing points. We have already proved that this flat
metric is polyhomogeneous, so it suffices to prove that u is polyhomogeneous on Cy .

As in Section 2.5, for any g € Cy, there is a (nonaugmented) tree 7" and a terminal
node on that tree encoding the chain of faces leading to ¢, where if Z is the node
corresponding to g, then g lies in the interior of €z. The argument below is an induction
on the depth N of the node, ie the height of the tree from the root up to this node.

We have essentially already given the construction of an approximate solution when
N = 1. More precisely, in the extension of the approximate solution from the fiber M,
to the face €2, that face is blown up at the two points where the incidence sets Fy
and Fy meet €12. When k > 2 (but we are still considering the case N = 1), the
corresponding construction involves blowing up €1, at the k distinct points where
the F Jf’ meet this face. The induced metric on €1, _; is flat, with k conic singularities
at these intersection points, and a complete conic structure near the outer boundary.
The solvability of the sequence of equations to determine the expansion at this face
proceeds exactly as before.

Suppose now that we have described how to carry the construction out for all trees of
height strictly less than N. Let T be a tree with height N and 7 a terminal node (so that
only singleton incident sets Fj" for j € 7 intersect it). There is a maximal ascending
chain Z=Zpx C---CZ;, and by induction we have constructed the full series expansion
for the approximate solution near each of the faces €z, for £ < N —1. In particular, there
is a complete series at the penultimate face €z, _,, which is a hemisphere blown up at
T points, where t is the number of terminal vertices emanating from the vertex Zy _;
in T. This face carries a flat metric gy —_1, which has incomplete conic singularities at
these t interior boundaries as well as a complete conic structure at its outer boundary.

We now choose the terms in the series expansion at €z, . This process is again
almost identical to the one for k = 2. To simplify notation, drop subscripts, and let
r and s denote the radial variables to €z,, N €z, _, in Cz,_, and &z, , respectively.
No analogue of Lemma 18 is necessary here since gy—1 = dr? + B3 r? df? near
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ﬁe'r direction

Figure 6: Boundary faces and defining functions of C3.

this boundary. The approximate solution u has an expansion u ~ Zsj u; as in
Proposition 19. These coefficients are then used to determine the boundary values
for the coefficients in the expansion u ~ )  R*u[, as s — 0; here R is the radial
variable to €z, (which restricts to Cz,_, as r). Rewrite this expansion as u ~ ) p*ii},
(so we can commute the Laplacian past the powers of p). In terms of the defining
functions R; for the intermediate faces €z, , where Ry = R, Ry—1 =5 and Ry is
equal to a defining function for M/, we can take p = Rg--- Ry, so that

Mg = ﬁg(R() ce RN_l)a.

However, on €z,,, Ry, ..., Ry—> are all constant, so more simply ug = ﬁgs“. This
puts us in the same situation as before, where we must show that %, = 0 unless & € N,
and in that case, i, is a polynomial of order «, so that u/, is smooth up to €z, _, .
The calculations and arguments here are just as before.

This paragraph does not conceal any delicate points; the admittedly intricate discussion
carried out to extend the expansion from My to €, adapts directly to the extension
from €z, _, to €z, .
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Now take a Borel sum of this multiseries at all the faces of C; to obtain a function %
for which
Agy, il + Koy +e* = O(p") forall £>0.

Writing go = eZﬁgo,p, we then define v uniquely by
Agyv+ Kz, +e*' =0

with |v| < Cyp* forany £. This shows that the solution u is polyhomogeneous on C. O

7 Spherical metrics: cone angles less than 2x

We conclude this paper by extending Theorems 16 and 29 to the spherical case. As we
have explained earlier, the existence theory for spherical cone metrics is completely
understood only when all cone angles are less than 277, so we restrict ourselves to that
case here. In a sequel to this paper we investigate this problem for spherical metrics
with large cone angles. The results in that case are considerably more intricate and of a
slightly different nature than the considerations here.

First note that if ,5 € (0, 1)*, then the cone angle produced by merging any subset of
these must still have cone angle less than 27 :

2n(2(ﬂi ~+ 1) €(0,27) forall ZC{l,... k}.
i€
We also recall that a (spherical) football is the spherical suspension of a circle of
length 278 it is a surface of genus zero with two antipodal conic points, each with
angle 278. This angle may be any positive number.

The main regularity theorem and its proof are very similar to those in the hyperbolic
case. Indeed, the only real difference is that it is no longer immediately obvious that
the linearized operator is invertible, but, fortunately, this is not the case.

Lemma 30 [16, Proposition 13] If g is a spherical cone metric on the sphere with all
cone angles less than 2, then the first nonzero eigenvalue for the Friedrichs extension
of its Laplacian is always strictly greater than 2, unless (S2, g) is a football, in which
case this eigenvalue is exactly equal to 2.

In our second paper the primary focus will be on the extensions of this analysis when
the Friedrichs extension of the Laplace operator contains 2 in its spectrum.
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Remark We shall restrict here to the case k > 3 and to the fibers of C; lying in the
dense open subset CI’c which do not lie above the preimage in & of any of the sets

(i) the complete diagonal A; ., or

(ii) the intersection of any two partial diagonals Az N Ay with ZN J = & and
TUJ ={l,...,k} (we include the case where either |Z| =1 or |J| = 1).

These two cases correspond to the degenerations where the k points merge into either
one or two points.

The basic existence and uniqueness result in this setting is well known:

Lemma 31 [22; 14] If k > 3 and all cone angles are less than 27, then there exists
a unique spherical cone metric on M provided y(M,B) > 0, and when M = S?, the
cone angles also satisfy the Troyanov condition

Bi—1> Z(,Bi —1) foreach j.
i#]
If k =2 and M = S?, there is a spherical metric if and only if 81 = B2, and this
metric is unique up to conformal dilation.

Theorem 32 Let k >3, restrict to the open dense subset C ,’C of the configuration family
and fix any k —tuple B of cone angle parameters lying in the Troyanov region. Then the
family of fiberwise spherical metrics with these fixed cone angles is polyhomogeneous
onCy .

k

Proof As in Theorem 29, it suffices to work locally near any point g in a corner
ﬂf=1 ¢z, , where 71 D --- D Z; are the nodes associated to ¢ in the associated tree.

Start with a model metric go,p, defined as in (48), which is obtained by gluing the
family of (lifted) flat conic metrics to the family of spherical metrics away from the
coalescence locus:
gop =180, +0— "

Next construct approximate solutions u y using exactly the same argument as before.
Note that we must use Lemma 31 when determining the expansion on the original
surface, and replace sinh7 by sin7 in (51). Otherwise, the steps are carried out in
exactly the same way. Altogether, taking a Borel sum of the resulting series, we obtain
an approximate solution .
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We next obtain the correction term v, which solves
2 ~ 2%
Ag,v+e”’ + Kz =0, Zo=e"go,.

By assumption, the linearization of this equation, Ag, — 2, is invertible on the singular
fiber, hence we may use Lemma 30. Using continuity of the eigenvalues, Ag  —2
remains invertible on nearby fibers. Hence by the implicit function theorem there exists
a solution v which depends smoothly on all parameters.

The arguments of Propositions 27 and 28 now show that |v| < Cop® for any £ € N, with
similar estimates for all »—derivatives, so v vanishes to infinite order at these boundaries.
This shows that ¥ = i + v, and hence g, = ¢2" g, is polyhomogeneous. ad

Appendix b-fibrations and polyhomogeneity

In this appendix we recall some basic facts about manifold with corners, b—fibrations
and polyhomogeneous functions. For details we refer to [18] or [15, Appendix].

Definition 33 A space X is called a manifold with corners of dimension n if at each
point there exists a nonnegative integer k such that X is modeled diffeomorphically
near that point by a neighborhood of the origin in the product (RT)* x R The

boundary faces and corners of X correspond to the boundaries and corners in these local
J

=1
of codimension £ are the submanifolds X;, N---NX;,. We require that all boundary

representations. We list the boundary hypersurfaces of X as {X;} The corners
faces and corners be embedded; this is merely a simplifying assumption to avoid
talking about special cases. However, with this assumption we can choose for each i
a smooth function p; which is positive on X \ X; and which vanishes simply at X;.
This is called a boundary-defining function for that face. If s = (s1,...,s57) € C/,
then p* := pj' -+ o5 .

The spaces & and Cj constructed in Section 2 are manifolds with boundaries, with
boundary faces {€z} and {Fr}, where in each case the index Z ranges over all subsets
of {1,...,k}. We do not introduce a special notation for the corners.

There is a whole ecosystem of geometric and analytic objects naturally defined on a
manifold with corners. One key object is the following:
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Definition 34 The space of b—vector fields V,(X) on X is the space of all smooth
vector fields on X which are tangent to all boundaries. The h—tangent bundle brx is
a canonical bundle whose full space of smooth sections is precisely Vj(X). Its dual is
the b—cotangent bundle T*X.

The local coordinate expression of a general h—vector field is given in Section 4.1.
We next come to the first of two most natural replacements for the space of smooth
functions on X.

Definition 35 (conormality) The bounded conormal functions on X is the space
(79) ANX):={u:Vi---Vou e L%®°(X) forall V; € Vj, and £ € N},

For any pair of multi-indices s € C’ and p € N/, we also define

(80) AP (X) := p*(log p)? A°(X).

Finally,

(81) A*(X) = AP (X).
§,P

Note that any element of A*(X) is smooth in the interior of X.

There is a subclass of A*(X) which is more useful in practice: the space of polyhomo-
geneous functions. These are associated to an index family:

Definition 36 An index set £ is a discrete subset {(s;, pj) € C x Ny such that
(82) (sj.pj)e E and [(s;,pj)| >o00 = N(s;) — oo

Now suppose that £ ={E1, ..., Ej} is acollection of index sets, one for each boundary
face of X ; we call this an index family. The space of polyhomogeneous functions with
index family £ (or more simply £—-smooth functions) on X, Aghg(X ), consists of the
elements of A*(X) with asymptotic expansions with exponents given by the elements
of & ie u € AY if
u~ Y p(logp)Pus,p.
(s,p)ee

where each uy, j, is a smooth function the relevant corner of X. This expansion is meant
in the classical sense, and has a product type at the corners; it is a tractable replacement

for a Taylor expansion at the faces and corners.
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We write u € A*

phg(X ) when the index set is not specified (or is obvious from the

context).

It follows readily from this definition, and is useful in applications, to note that if
u € Apng, then for each i, any coefficient ugi},, which is simply the coefficient of
pfi (log p;i)?! in the expansion at X;, is itself a polyhomogeneous function on X; with

index family & @ obtained by omitting &; .

There is a convenient criterion for polyhomogeneity.

Proposition 37 If u € A*(X) and, forevery N >0,

(83) U-—= Z p*(log p)Pus,p € PN_I-AO(X),
Rs<N
(s,p)ee

then u € Aghg(X).

We also define a distinguished class of mappings between manifolds with corners.

Definition 38 Let X and Y be manifolds with corners, with corresponding sets of
boundary-defining functions {r; } and {p; }, respectively, associated to the enumerations
of boundary faces {X;}iez and {Y;};es. Amap f: X — Y is called a b—fibration if
the following conditions are satisfied:

b—map For any index j € 7, the pullback of the corresponding boundary-defining
function p; is a smooth nonvanishing multiple of the product of boundary-defining
functions of X, ie

I
o) =h[]ri%” h>0 e j)eN.
i=1

The exponent set e(Z, j) is called the lifting matrix of f.

b-submersion At each boundary point p € 30X, the map fy: TpX — Trp)Y is
surjective.

b—fibration The lifting matrix (e(7, j)) has the property that for each i there is at
most one j such that e(i, j) # 0. In other words, no boundary hypersurface of X is
mapped into a corner of Y.
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