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Abstract—In this paper, a flexible resource sharing paradigm is
introduced, to enable the allocation of users’ computing tasks in
a social cloud computing system offering both Virtual Machines
(VMs) and Serverless Computing (SC) functions. VMs are treated
as a safe computing resource, while SC due to the uncertainty
introduced by its shared nature, is treated as a common pool
resource, being susceptible to potential over-exploitation. These
computing options are differentiated based on the potential
satisfaction perceived by the user, as well as their corresponding
pricing, while taking into account the social interactions among
the users. Considering the inherent uncertainty of the considered
computing environment, Prospect Theory and the theory of
the Tragedy of the Commons are adopted to properly reflect
the users’ behavioral characteristics, i.e., gain-seeking or loss-
averse behavior, as well as to formulate appropriate prospect-
theoretic utility functions, embodying the social-aware and risk-
aware user’s perceived satisfaction. A distributed maximization
problem of each user’s expected prospect-theoretic utility is
formulated as a non-cooperative game among the users and
the corresponding Pure Nash Equilibrium (PNE), i.e., optimal
computing jobs offloading to the VMs and the SC, is determined,
while a distributed low-complexity algorithm that converges to
the PNE is introduced. The performance and key principles of
the proposed framework are demonstrated through modeling and
simulation.

Index Terms—Social Computing, Virtual Machines, Serverless
Computing, Prospect Theory, Risk-aware Behavior.

I. INTRODUCTION

The remarkable growth of social networks over the last

decade - evidenced by the more than 1.62 billion Facebook

users and the 270 million Twitter users in 2019 - has concluded

to new solutions for communication networks and mobile

computing. It is predicted that by 2020, 67% of the overall

enterprise information technology infrastructure and software

development will be served by cloud-based offerings [1].

A. Related Work and Motivation

The Social Cloud Computing is arising as a resource sharing

framework, which exploits the users’ social ties to improve

the services offered by the cloud providers. In [2], the trust

levels among users in social networks are exploited to create a

dynamic social cloud computing environment, where the users

are sharing their cloud computing resources, creating a volun-

teer social cloud computing environment. In [3], the authors

tackle the problem of placing the users’ computing tasks over

multiple clouds considering the social-aware services and the

users’ social ties.

While social cloud computing is still in its infancy, a new

cloud computing solution is coined by the industry, named

Serverless Computing (SC), where the users’ computing tasks

are defined as a workflow of event-triggered functions [4]. In

contrast to the model of Virtual Machines (VMs), where the

users are renting the VMs from the cloud provider and the

resources could remain idle in the case of sporadic requested

computing tasks, concluding to unwanted monetary cost, the

SC model allows the users to offload computing tasks to

the cloud provider, who remains responsible to manage the

infrastructure and respective resources [5]. The users run

stateless functions at the cloud providers’ servers and are

charged with respect to the allocated memory and the actual

required CPU time of executing them [6], thus promising a

more cost-efficient and flexible model compared to the VMs.

Example platforms supporting the SC model include: AWS

Lambda [7], Google Cloud Functions [8], etc.

However, all these efforts in social cloud computing and

serverless computing have been progressing in isolation of

each other. Thus, despite the advances that have been achieved

in both these areas independently, the lack of joint consider-

ation and exploitation of the users’ social relation and the

available VMs and SC by the cloud provider, limits their

potential exploitation and adoption in a realistic scenario.

B. Contributions & Outline

In this paper, we aim to fill the aforementioned research

gaps by introducing a risk-aware social computing framework,

which exploits the computing capabilities of the available VMs

and SC offered by the cloud provider, while accounting for

the users’ social ties and their risk-aware behavior. The latter

stems from the risk imposed by the shared nature of the SC,

which may become non-responsive due to its over-exploitation.

The specific contributions of this paper are as follows.

1. Each user dynamically offloads part of its computing jobs

to the VMs and/or the SC (Section II). Fixed price is assumed

for the use of VMs, while a social-aware SC pricing is

considered based on the ”social importance” of a user within

the system (Section II-A). A holistic user’s actual utility

function is introduced to capture the user’s satisfaction by

executing its jobs in a specific time frame, while considering

the corresponding price (Section II-B).

2. Each VM is characterized as a ”safe resource”, as it is

exclusively rent by a user, and accordingly the user enjoys



guaranteed computing service. In contrast, the SC is typically

more cost-efficient, having the potential of providing high

satisfaction to the user. Given that its computing resources are

shared among many users, it is characterized as Common Pool

Resource (CRP), which introduces risk in users’ decisions to

offload their computing jobs to it, as it can potentially become

over-exploited. We capture this phenomenon via adopting the

theory of the Tragedy of the Commons [9] (Section III-A). The

problem of users’ risk-aware offloading decision to the VMs

and the SC, is formulated by using the Prospect Theory [10].

Each user’s prospect-theoretic utility function is introduced

by considering its actual utility, its behavioral patterns, and

the probability of the SC’s failure (i.e., non-responsiveness)

(Section III-B).

3. The problem of each user determining the number of com-

puting jobs that will be offloaded at the SC and the VMs, is for-

mulated as a maximization problem of its expected prospect-

theoretic utility, and treated as a non-cooperative game among

the users (Section IV). The existence and uniqueness of a

Pure Nash Equilibrium (PNE) is shown (Section V), while

a distributed and low-complexity algorithm is introduced, and

its convergence to the unique PNE is proven (Section VI).

4. A series of simulation experiments is performed to evaluate

the performance of the proposed risk-aware social computing

framework. A comparative study demonstrates its superiority,

in terms of user’s satisfaction and proper system operation

(Section VII). Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

A Cloud Provider (CP) consisting of Virtual Machines

(VMs) and Serverless Computing (SC) functions is considered.

A set of N = {1, · · · , N} users is assumed, while a set of

T = {1, · · · , T} time slots is defined, where Dt denotes the

duration of each time slot t. Each user i has a number J
(t)
i

of computing jobs that wants to offload to the CP for remote

execution per time slot. In the VMs case, a user can reserve a

VM with its own operating system and predefined on demand

computational and storage capabilities, while in the SC the

user executes its own serverless instance as an application

in a common operating system without any control over the

resources on which the job is executed. Given a specific type of

VMs, we define as λ
(t)
vm(Dt) the maximum number of jobs that

can be executed by the VM in the duration Dt, where λ
(t)
vm(Dt)

is an increasing function of the duration Dt. Each user i aims

at determining the number λ
(t)
i (λ

(t)
i ≤ J

(t)
i ) of computing jobs

to be executed at the SC, while the rest (J
(t)
i − λ

(t)
i ) jobs are

offloaded to the VMs.

A. Social-aware Cloud Aspects and Pricing

With respect to the social aspects of the cloud computing

system, we define an overlay virtual representation of the sys-

tem as follows: S = {N,E,W}, where the users N = {1, · · · , N}

may interact with each other. Specifically, the edge set, i.e.,

interactions, is denoted as E = {(i, j) : ei,j = 1, ∀i, j ∈ N},

where ei,j = 1 indicates the existence of information flow from

user i to user j. The weight set W = {wi,j , ∀i, j ∈ N} is defined,

where wi,j ∈ R depicts the strength of the interaction (e.g.,

criticality of information) that is exchanged between the source

user i and the destination user j, while wi,j = 0, ∀i, j ∈ N

such that ei,j = 0. Therefore, each user is characterized by

its social factor fi =
ω1

∑

j∈N,j 6=i wi,j+ω2

∑

j∈N,j 6=i wj,i
∑

j∈N
fj

, where

ω1, ω2 ∈ [0, 1], ω1 + ω2 = 1 depict the weights of a user’s

interactions by acting as a sender or receiver of information,

respectively.

In the VMs case, each user is charged based on the reserved

VMs: p
(t)
i,vmp =

⌈

J
(t)
i −λ

(t)
i

λ
(t)
vm(Dt)

⌉

· pvm, where pvm is a fixed

VM’s price [6]. In the SC case, the user is charged based

on its execution time: p
(t)
i,sc = λ

(t)
i Dtf

−1
i p

(t)
sc (λ

(t)
T ), where the

average SC’s response time is Dt and f−1
i shows that the more

important is a user for the social cloud computing system the

greater is the incentive for the SC to assign a lower price.

The p
(t)
sc (λ

(t)
T ) is the SC’s rate of return function, which is a

function of the overall number of offloaded jobs at the SC,

i.e., λ
(t)
T =

∑

i∈N
λ
(t)
i , and is formulated as:

p(t)sc (λ
(t)
T ) =

{

Λ(t)
sc −λ

(t)
T

Λ
(t)
sc

· psc , if λ
(t)
T < Λ

(t)
sc

pfsc , otherwise
(1)

where Λ
(t)
sc is the number of jobs threshold that the SC can

operationally process during Dt. If λ
(t)
T ≥ Λ

(t)
sc , the SC’s

response time is greater than Dt and the SC ”fails”, thus, the

SC’s price is the minimum one (pfsc < psc). This phenomenon

is known as the Tragedy of the Commons [9]. In the case of

SC’s failure, the user’s successfully executed jobs during Dt

are only the ones executed at the VMs.

Proposition 1: The SC’s rate of return function p
(t)
sc (λ

(t)
T )

is strictly decreasing with respect to λ
(t)
T , since as the λ

(t)
T

increases the less the SC can guarantee that the average

response time is Dt, and the lower is the SC’s price.

B. Actual Utility Function

The user’s i actual utility z
(t)
i expressing its satisfaction

from executing λ
(t)
i jobs at the SC and the rest (J

(t)
i − λ

(t)
i )

at the VMs is formulated. This satisfaction is captured by

the portion of jobs that are executed successfully during the

timeslot t and the user’s overall cost, as follows.

z
(t)
i (λ

(t)
i , λ

(t)
−i

) =
E

(t)
i

J
(t)
i

−
p
(t)
i,vmp + p

(t)
i,sc

B
(t)
i

(2)

where λ
(t)
−i

is the vector of the offloading decisions of all users

except i, E
(t)
i are the jobs that are executed successfully during

Dt (see Section III-A), and B
(t)
i is the user’s i total budget.

III. THE PROSPECT OF CLOUD

A. Risk-aware Behavior: The Tragedy of the Commons

The SC is a CPR since all the users can arbitrarily offload

part of their jobs to it and share its resources. Towards

maximizing the actual utility, each user aims at determining in

an autonomous and distributed manner the number of jobs λ
(t)
i



offloaded to the SC, by accounting for the uncertainty of the

SC’s failure due to over-exploitation. Based on this uncertainty,

we introduce the SC’s probability of non-responsiveness.

Assumption 1: SC’s probability of non-responsiveness

PnR(t)(λ
(t)
T ) is strictly increasing, convex and twice contin-

uously differentiable with respect to λ
(t)
T ∈ [0,Λ

(t)
sc ), with

PnR(t)(λ
(t)
T ) = 1, ∀λ

(t)
T ≥ Λ

(t)
sc .

We consider a linear probability of non-responsiveness, i.e.,

PnR(t)(λ
(t)
T ) =

λ
(t)
T

Λ
(t)
sc

, ∀λ
(t)
T < Λ

(t)
sc . Other forms of PnR(t)

that follow Assumption 1 can be considered, e.g., logarithmic,

exponential, without damaging the applicability and validity of

the following analysis.

B. Risk-aware Resource Allocation under Prospect Theory

Prospect Theory is adopted to address the users’ subjectivity

in decision-making [10]. Following this behavioral model, the

users make actions under risk and uncertainty regarding the

corresponding payoff of their actions. Each user’s satisfaction

by offloading a number of jobs to the SC and the VMs is eval-

uated with respect to a reference point (reference dependence

property). Each user’s reference point is the guaranteed utility

z
(t)
i,0 that the user obtains by offloading all the jobs at the VMs

(referred to as the safe resource), thus, λ
(t)
i = 0. Therefore,

each user’s i reference point is z
(t)
i,0 = 1 −

⌈

J
(t)
i

λ
(t)
vm(Dt)

⌉

· pvm

B
(t)
i

,

where
E

(t)
i

J
(t)
i

= 1 (Eq. 2) since all the jobs are executed

successfully during the time slot t.

Based on Prospect Theory, each user’s i, i ∈ N prospect-

theoretic utility is defined as follows [11]:

u
(t)
i (λ

(t)
i , λ

(t)
−i

) =

{

(z
(t)
i − z

(t)
i,0)

αi , if z
(t)
i ≥ z

(t)
i,0

−ki · (z
(t)
i,0 − z

(t)
i )βi , if z

(t)
i,0 > z

(t)
i

(3)

The parameters ai, βi ∈ (0, 1] express the user’s i sensitivity

to gains and losses of its actual utility z
(t)
i , respectively. Small

values of ai parameter reflect a gain-seeking and loss-aversion

behavior. Small values of βi capture a higher decrease of the

prospect-theoretic utility u
(t)
i , when the user’s actual utility

z
(t)
i is lower than its reference point z

(t)
i,0 . In our study, without

loss of generality, we consider a similar behavior in gains and

losses, thus ai = βi, ∀i ∈ N. The parameter ki ∈ [0,∞)
expresses how users weigh losses compared to gains. If ki > 1

the user’s prospect-theoretic utility u
(t)
i has a greater slope of

decrease in losses compared to the slope of decrease in gains.

The exact opposite holds true if ki ≤ 1.

If the SC does not fail due to the overall offloaded number

of jobs λ
(t)
T , then z

(t)
i ≥ z

(t)
i,0 , and by appropriate mathe-

matical derivations based on the first branch of Eq. 3, we

conclude that its prospect-theoretic utility is u
(t)
i (λ

(t)
i , λ

(t)
−i

) =

(λ
(t)
i )ai( γipvm

λ
(t)
vm(Dt)B

(t)
i

−
Dtf

−1
i

p
(t)
sc (λ

(t)
T

)

B
(t)
i

)ai , where γi is the user’s

i regulator factor, such that
−λ

(t)
i

λ
(t)
vm(Dt)

· γi =

⌈

−λ
(t)
i

λ
(t)
vm(Dt)

⌉

.

On the other hand, if the SC ”fails”, user’s i experi-

enced actual utility z
(t)
i is lower than its reference point

z
(t)
i,0 , and the user’s i prospect-theoretic utility is obtained as:

u
(t)
i (λ

(t)
i , λ

(t)
−i

) = −ki(λ
(t)
i )ai( 1

J
(t)
i

− γipvm

λ
(t)
vm(Dt)B

(t)
i

+
f
−1
i

Dt

B
(t)
i

pfsc)
ai ,

based on the second branch of Eq. 3, where the price of the

SC is the minimum one, thus p
(t)
sc = pfsc. For notational conve-

nience we define ǫ
(t)
i = ( 1

J
(t)
i

− γipvm

λ
(t)
vm(Dt)B

(t)
i

+
f
−1
i

Dt

B
(t)
i

pfsc)
ai , and

h
(t)
i (λ

(t)
T ) = ( γipvm

λ
(t)
vm(Dt)B

(t)
i

−
Dtf

−1
i

p
(t)
sc (λ

(t)
T

)

B
(t)
i

)ai , where h
(t)
i (λ

(t)
T ) >

0 if the SC does not fail. Thus, considering the probability

of non-responsiveness PnR(t) of the SC, the user’s prospect-

theoretic utility can be written as:

u
(t)
i (λ

(t)
i , λ

(t)
−i

) =

{

(λ
(t)
i )aih

(t)
i (λ

(t)
T

) with prob. 1 − PnR(t)

−kiǫ
(t)
i (λ

(t)
i )ai with prob. PnR(t)

(4)

Thus, user’s i expected prospect-theoretic utility is given as:

E(u
(t)
i ) = (λ

(t)
i )

aih
(t)
i (1 − PnR

(t)
) − (λ

(t)
i )

aikiǫ
(t)
i PnR

(t)

= (λ
(t)
i )

ai [h
(t)
i (1 − PnR

(t)
) − kiǫ

(t)
i PnR

(t)
]

= (λ
(t)
i )

aigi(λ
(t)
T

)

(5)

where gi(λ
(t)
T ) = [h

(t)
i (1−PnR(t))− kiǫ

(t)
i PnR(t)] is the user’s

effective rate of return from the SC.

IV. OPTIMIZING RESOURCE ALLOCATION: PROBLEM

FORMULATION

Each user’s i goal is to maximize its perceived expected

prospect-theoretic utility (Eq. 5) via determining its best re-

course allocation strategy, i.e., the number of jobs λ
(t)
i that are

offloaded at the SC at timeslot t. This problem is formulated

as a maximization problem of each user’s i expected prospect-

theoretic utility function (Eq. 5), as follows.

max
λ
(t)
i

∈S
(t)
i

E(u
(t)
i ) = (λ

(t)
i )aigi(λ

(t)
T ) (6)

where S
(t)
i is the user’s i strategy space as it is defined later.

The above maximization problem can be treated as a

non-cooperative game G = {N, {S
(t)
i }, {E(u

(t)
i )}} among the

N users, where S
(t)
i = [0,min(J

(t)
i ,Λ

(t)
sc )] is the strategy

space of each user i, and E(u
(t)
i ) is its expected prospect-

theoretic utility. Towards solving the non-cooperative game,

the concept of Pure Nash Equilibrium (PNE) is adopted. Let

λ∗,(t) = [λ
∗,(t)
1 , · · · , λ

∗,(t)
N ] denote the users’ resource allocation

strategies and λ
∗,(t)
−i

the vector of all the users’ resource

allocation strategies except user i at the PNE point.

Definition 1: The resource allocation vector λ∗,(t) ∈ S(t) =

S
(t)
1 × · · · × S

(t)
N , is a PNE of G, if E(u

(t)
i (λ

∗,(t)
i , λ

∗,(t)
−i

)) ≥

E(u
(t)
i (λ

(t)
i , λ

∗,(t)
−i

)), ∀λ
(t)
i ∈ S

(t)
i , ∀i ∈ N.

V. EXISTENCE AND UNIQUENESS OF PNE

The best response strategy of user i is Bi(λ
(t)
−i

) =

argmax
λ
(t)
i

∈S
(t)
i

E(u
(t)
i (λ

(t)
i , λ

(t)
−i

)) : S
(t)
−i ⇒ S

(t)
i , S

(t)
−i = ×j∈N−{i}S

(t)
j .

Theorem 1: For each user i, its best response strategy exists

and it is single-valued, such that λ
∗,(t)
i = Bi(λ

(t)
−i

).

We adopt the notation λ
(t)
−i,T =

∑

j∈N,j 6=i λ
(t)
j to depict the

total number of offloaded jobs at the SC of all users except

user i. The proof of Theorem 1 can be readily concluded based

on Berge’s Theorem [12] and the following Lemmas 1-3.

Lemma 1: For each user i the following holds true: i) there

exists a value λ
(t)

i , such that gi(λ
(t)

i ) = 0, ii) if λ
(t)
−i,T ≥



λ
(t)

i then λ
∗,(t)
i = 0, and iii) if λ

(t)
−i,T < λ

(t)

i there exists an

user-specific interval A
(t)
i ⊂ [0, λ

(t)

i ) such that all user’s best

responses are positive, and λ
∗,(t)
i + λ

(t)
−i,T ∈ A

(t)
i .

The proof of Lemma 1 is omitted due to space limitations.

Below the notation (t) is dropped for notational convenience.

Lemma 2: The best response λ∗
i , ∀i ∈ N is single-valued

∀λ−i,T ∈ [0,Λsc].

Proof: Based on Lemma 1 we know that ∀λi > 0 such

that λi + λ−i,T ∈ Ai, we have gi(λT ) > 0 and
∂gi(λT )
∂λT

< 0,

where λT = λi + λ−i,T . Also, since gi(λT ) is concave in

interval Ai (Lemma 1), the user’s i expected prospect-theoretic

utility is concave, i.e.,
∂2

E(ui)
∂λ2

i

= λai

i
∂2gi(λT )

∂λ2
T

+ 2aiλ
ai−1
i +

ai(ai − 1)λai−2
i gi(λT ) < 0. As a result, since any best

response λ∗
i satisfies λ∗

i + λ−i,T ∈ Ai, λ∗
i is an argument

of maximum of E(ui), and therefore is unique.

Lemma 3: The user’s best response λ∗
i : S−i ⇒ Si is

continuous for λ−i ∈ S−i.

The proof of Lemma 3 is derived based on Berge’s Theorem

[12] and Lemma 2.

Theorem 2: A Pure Nash Equilibrium λ∗ = [λ∗
1, · · · , λ

∗
N ]

of the non-cooperative game G = [N, {Si}, {E(ui)}] exists.

Proof: The strategy set Si is a convex compact subset

of the Euclidean space and so is the joint strategy space,

S = S1×· · ·×SN ⊂ R
N . By defining a mapping T : S → S

such that T (λ1, · · · , λN ) = (λ∗
1, · · · , λ

∗
N ), from Lemma 2, T

is single-valued and from Lemma 3 is continuous. Brouwer’s

fixed point theorem guarantees the existence of a strategy

profile s = {λ∗
i }i∈N ∈ S that is invariant under the best

response mapping and therefore is a PNE of G [12].

Lemma 4: The function di(λT ) = −aigi(λT )
∂gi(λT )

∂λT

is strictly

decreasing with respect to λT , ∀λT ∈ Ai.

Proof: The first-order derivative of di(λT ) is
∂di(λT )
∂λT

=

−ai
(
∂gi(λT )

∂λT
)2−gi(λT )

∂2gi(λT )

∂λ2
T

(
∂gi(λT )

∂λT
)2

. When λT ∈ Ai, based on

Lemma 1 it holds true that gi(λT ) > 0 and
∂2gi(λT )

∂λ2
T

≤ 0,

therefore it hollows directly that
∂di(λT )
∂λT

< 0, ∀λT ∈ Ai

Theorem 3: The Pure Nash Equilibrium of the non-

cooperative game G is unique.

Proof: We use the notation λ∗
T to denote the total of-

floaded number of jobs at the SC at the PNE of game G. The

proof of Theorem 3 is based on the reduction to absurdity.

Let λ∗
T (1), λ

∗
T (2) be two distinct PNE points. Without loss

of generality we assume that λ∗
T (2) > λ∗

T (1). We define the

set Sup
∆
= {i ∈ N : λ∗

T < λi}, thus it includes every

user that offloads a non-zero number of jobs at the SC.

Thus, Sup2 ⊂ Sup1. Also, we have
∑

j∈Sup1
dj(λ

∗
T (1)) =

λ∗
T (1),

∑

j∈Sup2
dj(λ

∗
T (2)) = λ∗

T (2). So,
∑

j∈Sup2
dj(λ

∗
T (1))+

∑

j∈Sup1\Sup2
dj(λ

∗
T (1)) = λ∗

T (1) ⇒
∑

j∈Sup2
dj(λ

∗
T (1)) ≤

λ∗
T (1) < λ∗

T (2) =
∑

j∈Sup2
dj(λ

∗
T (2)). However, dj(λT ) is

decreasing, so dj(λ
∗
T (1)) > dj(λ

∗
T (2)), ∀j ∈ Sup2, which is

contradiction. Thus, λ∗
T (1) = λ∗

T (2).

VI. ALGORITHM-CONVERGENCE TO PNE

Based on Lemma 4, each user’s best response strategy λ∗
i

is decreasing with respect to the total number of offloaded

jobs λ−i,T of the rest users. Thus, G belongs to the best-

response potential games, and therefore the sequential best

response dynamics converge to the PNE [13]. Each user i

first receives the total number of offloaded jobs of the rest

users, i.e., λ−i,T , in order to compute its best response λ∗
i

and it determines if λ∗
i = 0, thus, whether gi(λ−i,T ) ≤ 0 and

∂gi(λT )
∂λT

|λT=λ−i,T
< 0 holds true (conditions stemming from

Lemma 1). If the user i finds that λ−i,T < λi, then its λ∗
i

exists and is single-valued (Theorem 1). Specifically, due to

the existence of the unique root of
∂E(ui)
∂λi

= 0, and considering

that
∂E(ui)
∂λi

is a continuously differentiable and decreasing (i.e.,
∂2

E(ui)
∂λ2

i

< 0, Lemma 2) with respect to λi, then the unique

root r∗i can be found via binary search into [0,Λsc] with an

approximation ǫ → 0, and finally user’s i best response to

be λ∗
i = min(Ji, r

∗
i ). The complexity of the binary search is

O(log2 Λsc). In each iteration of the sequential best response

dynamics, only one user i determines its best response strategy

via executing arithmetical calculations (Algorithm 1). By

denoting as Ite the number of iterations that are needed for

convergence to the PNE, the complexity of the Algorithm 1

is O(N ∗ Ite ∗ log2 Λsc). It is noted that the execution time

of Algorithm 1 scales very well with respect to the number of

users (see Section VII-B).

Algorithm 1 Distributed Algorithm for Convergence to PNE

1: Input/Initialization: S, Dt, fi, psc, p
f
sc,Λsc, pvm, λvm

Ite = 0, λi ∈ [0,min(Ji,Λsc)], ∀i ∈ N

2: Output: PNE profile λ∗ = [λ∗
1, · · · , λ

∗
N ]

3: while PNE not reached do

4: Ite = Ite+ 1
5: for i = 1 to N do

6: User i receives the λ−i,T

7: if (gi(λ−i,T ) ≤ 0 &&
∂gi(λT )
∂λT

|λT=λ−i,T
< 0) then

8: λ∗
i = 0

9: else

10: r∗i = BinarySearch([0,Λsc], ǫ), ǫ → 0
11: λ∗

i = min(Ji, r
∗
i )

12: end if

13: end for

14: Check convergence to PNE

15: end while

VII. NUMERICAL RESULTS

In this section, we provide detailed numerical results to

illustrate the performance of the proposed approach in terms

of the following aspects: basic operation of our framework

(Section VII-A), scalability (Section VII-B), and framework’s

behavior under heterogeneous users in terms of loss aversion

parameter ki (Section VII-C). Finally, a comparative evalu-

ation of our approach against alternative resource allocation

techniques is provided (Section VII-D).
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Fig. 1: Pure operation of the proposed framework

In our study, the duration of each timeslot is Dt = 1sec
and the price of reserving a VM for Dt is pvm = 10, while

the SC’s price per unit of time is psc = 0.3 and pfsc = 0.2
[6]. The maximum number of jobs that can be executed by

an VM instance during Dt is λ
(t)
vm = 10. A directed social

network is created with random topology and 100 users, where

each user has J
(t)
i ∈ [400, 1000] number of jobs. Each user

is associated with its social factor fi. For the SC, we have

Λ
(t)
sc = 10%×

∑

i∈N
J
(t)
i . Unless otherwise stated, we assume

homogeneous users with parameters ai = 0.2, ki = 5.

A. Pure Operation of the Proposed Framework

Fig. 1a illustrates the average number of offloaded jobs to

the SC (left vertical axis) and the average expected prospect

theoretic utility (right vertical axis expressed in logarithmic

scale), as a function of the iterations (low horizontal axis) and

the execution time (upper horizontal axis). Fig. 1b presents

the overall number of jobs at the SC (left vertical axis)

and the SC’s probability of non-responsiveness (right vertical

axis), while in the contained sub-figure the corresponding SC’s

pricing is depicted. From the results in Fig. 1a and Fig 1b, we

confirm that starting from a random initial strategy, as the time

evolves the algorithm converges to a stable point (i.e. unique

PNE point), where each user has determined its best response

strategy. Throughout this evolving process and till we reach

the PNE point, the users either offload a larger number of

jobs at the SC in order to increase their expected prospect

theoretic utility, or they follow an opposite resource allocation

strategy, i.e., a lower number of jobs at the SC, when the SC’s

probability of non-responsiveness increases.

B. Scalability Evaluation

Fig. 2a illustrates each user’s average number of offloaded

jobs at the SC (and the sub-figure presents the total number

of jobs at the SC) and the average expected prospect theoretic

utility with respect to the number of users. As the number of

users increases, the SC becomes more congested (increased

total number of offloaded jobs at the SC - contained sub-figure

in Fig. 2a), while each user offloads a smaller number of jobs,

since its incentive is reduced due to the higher SC’s probability

of non-responsiveness (Fig. 2b), while experiencing a lower

expected prospect theoretic utility (Fig. 2a). Fig. 2b shows the

actual required time for our algorithm to converge to the PNE.

As observed from the results our algorithm’s execution time

presents sublinear behavior with respect to the number of users

and is well aligned with our scalability analysis (Section VI).
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Fig. 2: Scalability Evaluation
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Fig. 3: Heterogeneous users - loss aversion impact study

C. Heterogeneous Users - Loss Aversion

In this section, the impact of users’ heterogeneous loss

aversion prospect theoretic behavior on the achievable per-

formance is studied. In particular, in Fig. 3a and Fig. 3b

we compare a scenario of heterogeneous users, where each

user is associated with a different personalized loss aversion

index ki, against a homogeneous scenario where all users

assume the same exactly loss aversion parameter km. For

fairness in the comparison we consider that km is equal to

the average loss aversion parameter value of all the members

of the heterogeneous group. It is noted that the more loss

averse is the users’ behavior (higher loss aversion parameter),

the less number of jobs they offload at the SC (Eq. 5). The

opposite holds true for the risk seeking users, which may lead

the SC to ”failure”, thus the users’ expected prospect theoretic

utility will decrease. Indeed, based on Fig. 3a and Fig. 3b, the

heterogeneous users led the system to higher congestion levels,

as there is an increase in the average number of offloaded jobs

at the SC and a decrease in the SC’s pricing psc(λT ) (Eq.1).

However, in our case, Fig. 3a illustrates that the increase

of the average number of offloaded jobs at the SC led the

heterogeneous users to achieve a higher average expected

prospect theoretic utility compared to the homogeneous case.

D. Comparative Analysis

In this section, we present a comparative study of our

proposed theoretic framework (that assumes prospect theoretic

(pt) users) with five other alternatives, assuming user behaviors

as follows: (a) non prospect theoretic (npt) users, but expected

actual utility E(zi(λi, λ−i)) maximizers instead, taking into

account the SC’s probability of non-responsiveness, (b) actual

utility maximizers (ut) users, where each user maximizes its

actual utility (Eq. 2) without considering the SC’s probability

of non-responsiveness, (c) social (soc) users, where each user

based on its social factor fi offloads fi ∗Ji number of jobs at

the SC, (d) (sp) users where each user i offloads all of its jobs

Ji at the SC, and (e) (vm) users where each user offloads all

of its jobs Ji at the VMs.
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Fig. 4: Comparative Evaluation

The comparative evaluation is performed in terms of: (i)

the expected actual utility, (Fig. 4a), (ii) SC’s probability of

non-responsiveness (Fig. 4b), and (iii) users’ average normal-

ized pricing, i.e.,
p
(t)
i,vmp+p

(t)
i,sc

B
(t)
i

(Fig. 4c). In particular, Fig.

4a shows that both (pt) and the (npt) frameworks achieve

a higher average actual expected utility (with (pt) slightly

outperforming) compared to the rest of the approaches, due to

the realistic consideration of the system’s uncertainty (through

the SC’s probability of non-responsiveness). Both the (ut) and

the (sp) frameworks, by ignoring the SC’s probability of non-

responsiveness, lead the SC to ”failure”, i.e., PnR(λT ) = 1

(Fig. 4b), and therefore these two approaches conclude to a

lower user average actual expected utility compared to the

(pt) and the (npt) (Fig. 4a). Please note that although the (ut)

approach leads the SC to ”failure”, the users still offload part of

their jobs at the VMs, and therefore achieve a positive average

actual expected utility, while on the other hand, under the (sp)

alternative, users achieve a negative average expected actual

utility, since none of their jobs is executed successfully.

On the other hand, the users under the (soc) approach, by

offloading a number of jobs simply based on their social factor

fi, they do not lead the SC to ”failure”, however conclude to

a lower average actual expected utility compared to the (ut)

approach, since they do not perform any optimization. Under

(vm) alternative the SC option is not exploited and each user

offloads all its jobs at the VMs. Thus its actual expected utility

is its reference point, which is lower compared to the ones

achieved by the (ut) and the (soc). Finally, it is stressed that

the (pt) framework operates better than the (npt), achieving

lower SC’s probability of non-responsiveness (Fig. 4b) and

higher average expected actual utility (Fig. 4a), due to the fact

that in the (npt) case, each user does not follow a risk-aware

behavior and determines its best response strategy λ∗
i by only

considering its guaranteed actual utility, and as a result the

SC’s utilization is better by the (pt) users.

Fig. 4c presents the average users’ normalized pricing for

all the scenarios. In the (sp) case, the users by offloading all of

their jobs at the SC perceive the lowest pricing pfsc per unit of

time, while for the opposite reason highest price is experienced

in the (vm) case. The (soc) users perceive the second highest

average normalized price, since they offload a small portion

of their jobs. Comparing the (npt) alternative with the (pt),

we notice that they present very similar performance, with

(npt) concluding to slightly lower average normalized price

compared to the (pt), since by offloading a higher portion of

their jobs at the SC, they perceive a lower price from the

SC. The same holds true for the (ut) users, who offload a

larger number of jobs at the SC compared to the (pt) and

(npt) users (Fig. 4b), and as a result they perceive the second

lowest average normalized price (Fig. 4c).

VIII. CONCLUDING REMARKS

In this paper, a novel risk-based distributed approach, to-

wards determining each user’s computing tasks optimal alloca-

tion strategy, in a social cloud computing environment offering

both options of VM and SC computing, is designed. Based

on the properties of Prospect Theory and the theory of The

Tragedy of the Commons, we take into account the loss averse

and gain seeking behavior of the users, as well as the uncer-

tainty introduced due to the shared nature of the SC model.

In order to address the decision-making problem at hand, a

non-cooperative game is formulated among the users, where

the goal of each user is to maximize its perceived expected

prospect theoretic utility. The existence and uniqueness of the

non-cooperative game’s PNE is proven, and a distributed low-

complexity algorithm that converges to the PNE is devised.

Detailed numerical results were presented highlighting the

performance benefits of our proposed approach.

Our current and future research work focuses on the exten-

sion of the above approach in an environment where multiple

Cloud Providers co-exist acting as common pool of resources.
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