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Abstract—This paper introduces a Multi-Agency
DisAster Management (MADAM) framework for Un-
manned Aerial Vehicle (UAV)-assisted public safety
systems, based on the principles of game theory and
reinforcement learning. Initially, the information qual-
ity and criticality (IQC) provided by each agency to
an UAV-assisted public safety network is introduced
and quantified, and the concept of Value of Information
(VoI) that measures each agency’s positive contribution
to the overall disaster management process is defined.
Based on these, a holistic cost function is adopted by
each agency, reflecting its relative abstention from the
information provisioning process. Each agency aims at
minimizing its personal cost function in order to better
contribute to the disaster management. This optimiza-
tion problem is formulated as a non-cooperative game
among the agencies and it is proven to be an exact
potential game, thus guaranteeing the existence of at
least one Pure Nash Equilibrium (PNE). We propose a
binary log-linear reinforcement learning algorithm that
converges to the optimal PNE. The performance of the
proposed approach is evaluated through modeling and
simulation under several scenarios, and its superiority
compared to other approaches is demonstrated.

Index Terms—Disaster Management, Unmanned
Aerial Vehicle, Information Quality and Criticality,
Game Theory, Reinforcement Learning.

I. INTRODUCTION

In public safety events, communication plays an im-
portant role throughout the overall disaster management
operation. Various agencies are involved in the disaster re-
sponse operations, e.g., Non-Governmental Organizations,
relief and government agencies, reporting their collected
information to the Emergency Operation Center (EOC),
which is responsible for the disaster response planning.
In the traditional Public Safety Networks (PSNs), the
agencies’ communication with the EOC was enabled by
the TETRA or Project 25, which use exclusive bands and
specialized hardware, while offer low data rate [1].

Recent additions to the PSN era include broadband
Long Term Evolution (LTE) technology [1]. A further
addition to improve the communication of the agencies
with the EOC is the use of Unmanned Aerial Vehicles
(UAVs) acting as relays, overcoming the problem of the
damaged communication infrastructure [2]. Extensive re-
search efforts in the relevant recent literature have been
devoted to: (i) the optimal resource management in the

UAV-assisted PSNs [3], (ii) the optimal UAVs positioning
in the disaster area [4], and (iii) the coordination of the
LTE undamaged /remaining infrastructure, the UAV-base
stations and the WiFi access points [5].

Simply guaranteeing the communication between the
disaster relief agencies and the EOC, though critical, is
not sufficient to achieve a successful disaster response plan-
ning, as the EOC has to cope with incomplete information.
Thus, the Information Quality (IQ) is essential for the
EOC, since partial information can have catastrophic im-
pact on both the rescue teams and the victims [6]. Various
metrics have been proposed in the literature to capture
the I1Q in PSNs, which can be summarized as follows: (a)
product level parameters (e.g., correctness), (b) commu-
nity level metrics (e.g., usefulness), (c) contextual IQ (e.g.,
timeliness, amount of information), (d) infrastructure level
parameters (e.g., security, response time), and (e) process
level metrics (e.g., traceability, interactivity) [7]. The role
of IQ in each one of the aforementioned research pillars
relevant to the use of UAV in PSNs, i.e., (i)-(iii), has
been confronted by several research efforts in an isolated
manner though. Thus the unprecedented need arises to
develop a holistic approach to enable efficient and effec-
tive autonomous multi-agency disaster management, while
accounting for the quality of the collected information.

A. Contributions & Outline

In this paper, our goal is to tackle exactly this problem
by introducing a holistic distributed framework supporting
the multi-agencies’ self-optimization in terms of reporting
their information to a UAV that hovers over the disaster-
struck area, and particularly enables the communication
of the various agencies with the EOC due to the damaged
ground infrastructure. The main technical contributions of
this research work are summarized as follows.

1. A multi-agency disaster management system is consid-
ered, which is supported by an UAV enabling the com-
munication between the agencies and the EOC by acting
as a relay. The novel concept of Information Quality and
Criticality (IQC) is introduced to quantify the importance
level of the agencies’ transmitted information. Combining
the IQC with the amount of the provided information by
each agency, we introduce the concept of Value of Infor-
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Fig. 1: Multi-agency Disaster Management Topology

mation (Vol), which captures each agency’s contribution
to the disaster management operation (Section II).

2. Each agency is characterized by a cost function that
captures its relative abstention from the information pro-
visioning process to the EOC compared to the total infor-
mation contribution by all the agencies based on the IQC
and Vol. In this setting, each agency aims at minimizing
its experienced cost in order to efficiently contribute to
the disaster management process (Section III.A). The
minimization problem of each agency’s cost function is
formulated as a non-cooperative game, while we prove that
it is an exact potential game, and thus there exists at least
one Pure Nash Equilibrium (PNE) (Section III.B).

3. To determine the PNE, the agency’s cost minimization
problem is transformed to the corresponding maximization
problem of the formulated game’s potential function. This
problem is solved by appropriately adapting the binary
log-linear reinforcement learning algorithm, referred to as
B-logit [8]. The B-logit algorithm determines among all
PNEs, the one that maximizes the introduced potential
function. A detailed complexity analysis of the overall
Multi-Agency DisAster Management (MADAM) frame-
work is provided that demonstrates its feasibility and
applicability in real-life scenarios (Section IV).

4. Detailed numerical results, obtained via modeling and
simulation, show that the proposed framework concludes
to a promising solution for realizing an effective multi-
agency disaster management process, which efficiently
scales in large-scale use case scenarios while significantly
outperforms other alternatives (Section V). Finally, Sec-
tion VI concludes the paper.

II. SYSTEM MODEL

A heterogeneous wireless PSN is considered consisting
of |N| different agency mobile infrastructure objects, e.g.,
police cars, fire trucks, ambulances. We consider |N| > 3
for realistic applications, while N denotes the agencies’ set.
A set of Points of Interest (POIs) J = {1,...,4,...,|J|},
e.g., schools, religion institutions, stadiums, exists in
the disaster area, where the humans tend to gather. A
UAV hovers above the disaster area with coordinates
(rvav,yvav,zuav) and covers a disaster area of radius

R (e.g., R = 1800m). The UAV acts as a relay to
forward the agencies’ information to the EOC, which is
out of the agencies’ communication range while the ground
communication infrastructure is assumed to be damaged.
The POIs are static, having (x;,y;) coordinates on the
disaster’s area plane. The agencies are moving to collect
information from the POIs and help the victims, thus,
their respective coordinates on the disaster’s plane are
time varying. The overall topology is presented in Fig. 1.

A. Communication Model

The agencies send their data to the UAV, which acts
as a relay transmitting the overall collected data to the
EOC. The access network (agencies to UAV), is examined
in this paper assuming Non-Orthogonal Multiple Access
(NOMA), while the backbone network (UAV to EOC), is
considered to have sufficient bandwidth in the single link
communication to transmit the overall data. The channel

gain between the agency ¢ and the UAV is G; = 2 where

k expresses the shadow effect via a lognormallrandom
variable, and d; is the distance between the agency ¢ and
the UAV. Noting that the power control of the agencies’
transmissions is not the key objective of this paper, we con-
sider a simplistic, but realistic, transmission power model,
as P; = - PM® where the agency’s transmission power is

relative to its distance from the receiver and PM* = 1W
is the agency’s maximum transmission power. Due to the
NOMA’s Successive Interference Cancellation technique
[9], the interference is I = Zy\giﬂ Gy - Py + I, where
I, is the thermal noise captured as Additive White Gaus-
sian Noise. Based on Shannon’s formula, the agency’s
data rate is RE“ = B - loga(1 + i 'IGi), where B is the
system’s bandwidth. At each time slot ¢, each agency
transmits to the UAV a ratio of information a{” € A" =

min(®) - amaz(y 1401 ¢ N (JAD]: cardinality of AY)
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from its total amount of information 1/"**™_ The latter
stems from the argument that the transmission of whole
1" s neither always useful for the EOC, nor efficient
due to bandwidth limitations. The amount of agency’s @
transmitted information at time slot ¢ is given as follows.
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B. Information Quality & Criticality

Let us denote by I QCZ(? the Information Quality and
Criticality of each agency i with respect to each Pol j. This
metric reflects the information’s importance, relevance, as
well as the thematic, temporal and positional accuracy
of the reported information, where all those different
angles are comprehensively captured by a weighting factor
w; 5, wi; € (0,1]. Each Pol and each agency have an
information gathering area of radius r; and r;, r; > 74,
respectively. Thus, if the agencies are within the informa-
tion gathering area of the Pol, then they may report in-

formation with relatively high I QCZ»(?, taken into account



that the information quality is improved if agencies collect
information closer from the field of a 1ven Pol where an
incident occurred. Therefore, the I QC’ ;; of each agency ¢
with respect to each Pol j is defined as follows:

Wi, j, rj 2 Dij+r;
Agver
. wi,j I, ri < D j+riandr; +r; > D;;
1QC{) = ¢, A )
7D1@j , ri+7i < Dy
ri + 7
where D;; is the Euclidean distance between
the centers of the agency’s ¢ and the Pol's j
information gathering areas, 4; = w - 7,]2 is the

information gatherlng area characterizing the PoI 7 and

D?. 477 — 2 D? +r r2
over 2 2
Ifi’j =r;-cos” (277]'2_+Tj-cos (ﬁ)f
2\/(*Dm' +rj4ri) - (Dig+ri—r5) - (Dij —ri+715)-

v/ (D; j +r; +r;) is the overlapping area between the two
information gathering areas, i.e., A;, A; (see Fig. 1). The
average 1QC of each agency, reflecting the importance
of the agency’s i reported information regarding all the

|J\
Pols, is obtained as: IQC(t) =

I1QC (t)
the relative amount of information f( (a (t)) that each
agency reports and the [ QC’Z.(t , we define the value of
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of agency 7 per time slot ¢ as follows.
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Also, the Value of Information that each agency provides
to the EOC should be evaluated over the past time. Thus,
we define the relative value of information of each agency
with respect to the others over the past time as follows.

information Vol i(t)

VoI (a®,a®) = 1QCY (3)
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where ¢ denotes the current time slot. For the special case

of t = 1, we assume that VoIi(t) is calculated based on
previous experience of the agencies from past events. In
the following, for notational convenience we have fi(t) =

f,i(t)(az(»t)) and VoI(t) VoI(t)( (t),a(_tg).

III. MULTI-AGENCY DISASTER MANAGEMENT
A. Agency’s Cost Function

Each agency i is associated with a cost function (prop-
erly formulated in Eq.5) representing its relative absten-
tion from contributing information to the EOC compared
to the other agencies (numerator of Eq.5) and compared
to the provided information by all the agencies in the
previous time slot (denominator of Eq.5). Each agency
aims at minimizing its cost function (Eq. 5) towards
significantly contributing to the disaster management.

Definition 1: An information ratios vector
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Given the the partial information availability among the

agencies, a distributed minimization problem of each
agency’s cost function is formulated as follows.

O @D a® 6
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B. FExact Potential Game

Based on the distributed nature of the minimization

problem (6), it is confronted as a non-cooperative game
G = [N, {Agt)}ieN,{C’i(t)}ieN], where N is the set of
agencies, Agt) is the set of agency’s i strategies at time slot
t, and Ci(t) is the agency’s i cost function. The solution of
the game G is a Pure Nash Equilibrium (PNE) regarding
all the agencies’ information transmission ratios.
a*® in the
strategy set A®) = xy; GNA() is a PNE of the game
G if Va(t ,Vi € N, it holds true that C(t (a; ®) a*_(it)) <
COD, a7)
Towards ensuring the existence of a PNE for the game
G, we prove that it is an exact potential game. An exact
potential game is characterized by its exact potential
function @(agt)7a(_ti))) that exactly reflects any unilateral
change in each agency’s cost function, as follows.

c;f><agt>,a<;z> - c;f><a;<f>, &) = q><a5t>,a<;;> e ®a®) (1)

where a( ) A(t) (t) #+ a

Theorem 1 : The non-cooperatlve game G is an exact

potential game with an exact potential function given by
Eq.8 and has at least one PNE a*(®) ¢ A(®),
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Proof: Towards proving Theorem 1, the condition of Eq.7
should hold true Vi € N. The exact potential functlon
(Eq. 8) can be written as presented in Eq. 9. Let a €
Az,al =+ al, then, the outcome of Eq. 10 is derived, given

that VOIZ' (a;,a_;) depends only on agency’s i strategy
a; in the previous time slots [1,¢ — 1]. Thus, we conclude
that Eq.7 holds true. Therefore, the game G is an exact
potential game and at least one PNE exists [10].
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IV. DISASTER MANAGEMENT PLANNING BASED ON
REINFORCEMENT LEARNING

In this section, we propose the Multi-Agency DisAster
Management (MADAM) algorithm based on the principles
of the binary log-linear reinforcement learning algorithm,
called B-logit. The MADAM algorithm requires no infor-
mation to be exchanged among the agencies and converges
to the optimal PNE of the game G, in the sense that
maximizes the potential function (Eq.8) and equivalently
minimizes each agency’s cost function (Eq.5) [8]. Initially,
each agency selects an information transmission ratio
agmzo) with equal probability Pr(a{"*= 0)® ) =1/]A].
At each iteration, one agency, based on its priority ID that
is assigned offline by the EOC, performs exploration and
learning. Thus, at the ite iteration, the agency ¢ randomly

PN
tries an alternative strategy ai(”e)

1/|A( [, concluding to a cost C’/

Let a (m ne and C(m b denote the selected strategy
of the agency and the cost function at (ite — 1) iteration,
respectively. At the ite iteration, the agency i updates its
strategy according to the following rule, while the rest
agencies keep their previous strategies (learning phase).

with equal probability

e)® )
exploration pnase
(exploration phase).

(ite) ()
—C. .
= a;(ite)(t)) = e - ’
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where [ is the learning parameter. The detailed steps of
MADAM algorithm are summarized in Algorithm 1.
Regarding the MADAM algorithm’s complexity, for a
specific time-slot ¢ we initially determine the agencies’
coordinates (z;,y;) and the IQCi(t),Vi € N, which con-
cludes to a complexity of O(|N|). Since at each ite® only
one agency Performs the exploration, and since all the
actions a( ite)™ ,Vi € N, involve only algebraic calculations,
ie, O(1 ), the complexity of the MADAM algorithm for
a time-slot ¢ is O(|N| + Ite), where Ite(*) is the total
number of iterations for convergence in time-slot t. Since
Ite® >> |N| (see Section V), the complexity in time-
slot t is O(Ite®). The overall complexity of the MADAM
Algorithm for all the time-slots T is O(T - trerﬁu%]{lte(t)}).

V. NUMERICAL RESULTS

A detailed numerical evaluation is presented in terms
of the overall framework’s operation efficiency (Section
V-A), its scalability and complexity (Section V-B), and
superiority compared to other alternatives (Section V-C).
We consider |[N| = 30, |J| = 4, B = 5 MHz, I, =
10713, R = 1800m, IMe® € [150,250]M B, mm“ €
[0.1,0.3], m“() € [0.8,1.0] with an mtermedlate step
of 0.1. T he agencies follow a random route with velocity
lvi| €6, Q]E. A detailed Monte Carlo analysis has been

executed considering averages over 10,000 executions.

A. Pure Framework Operation Evaluation

Fig. 2a presents the average cost C; and the average
potential function ®(a;,a_;) as a function of MADAM
algorithm’s iterations till convergence to the PNE (the
lower horizontal axis reflects iterations while the upper
horizontal axis refers to the actual execution time). We
observe that for practical purposes less than 800 iterations,

e., 0.17 sec, are required to reach the PNE, where the
agencies’ average abstention from providing information to
the EOC is minimized (i.e., C;). Accordingly, as expected
from Eq.8, it is also observed that & is maximized.

In Figures 2b and 2c, we examine the detailed behavior
of one randomly selected agency throughout a time-slot.
Specifically, in Fig. 2b we present the fj - VoIj and the
i ti Vol ; (logarithmic scale), as well as the agency’s
k cost function C, as a function of the B-logit iterations.
As time evolves the specific agency decreases slightly the

Algorithm 1 MADAM: Multi-Agency DisAster Manage-
ment Algorithm

—_

: Input: N, J, w; ;, (x;,y,), initial (z;,y;), Vi € N

. Output: a*®

3; Initialization: £, Vol
lv;| € [6,9] =, € = 0.05

: for every time-slot t € T' do

[\

, Vie N, T, di = 4sec,

IS

5. ite® = 0,Convergence = 0, Arbztmry Action
Profile a0 T", find (xi,v;), IQC ,Vie N
6:  while Convergence == 0 do
T ite® = itel) +1; o
8: Agency (zdentzﬁed by priority ID) selects a, “(ite)
©)
with equal probability T)| , computes C’i(lte)
A
ite)(®)
and updates aglte) (Eq.11a, 11b)
9: The other agencies repeat their previous actions,
(1te)(t) (1te 1)®
ie,a’; o
E (@(ite)(t))
0. f (=0 — 9(ite)"”)| < ¢ then
11: Convergznce =1
12: end if
13:  end while
14: end for




quantity of the information it aims to send throughout the
time-slot (VBI % remains the same during the time-slot), in
order to avoid acting in a myopic way. Similarly, all the
other agencies reduce their overall f; - Vol ; and eventually
agency k experiences a lower cost function Cj. In Fig. 2c,
we notice that the k" agency’s Vol value increases over
time/iterations, which confirms that the agency learns to
send the appropriate amount of information, thus achiev-
ing a satisfying combination of quality and quantity of
transmitted information.

Fig. 2d illustrates the behavior of the potential function
value as a function of the B-logit iterations, for different
values of the learning parameter, i.e., 5 = 100,500 and
1000. The results clearly demonstrate a tradeoff between
convergence time and optimality. Higher values of 8 con-
clude to higher values of the potential function ® while
also presenting increased convergence time. This is due to
the fact that for large values of 8 the MADAM algorithm
spends more time to optimal states to better explore them.

B. Scalability and Complexity Evaluation

In this section we adduce an extensive scalability and
complexity analysis of the framework performance in
terms of increasing number of agencies and granularity
of the available number of ratios of information. Fig.
3a presents the following metrics after the MADAM al-
gorithm’s convergence (four different curves): (a) overall
amount of information transmitted from all the agencies,
i.e., > ;cn fi, (b) the respective average f; per agency, (c)
the total ratios of information, i.e., >, a;, and (d) the
corresponding average a; per agency, as the number of the
agencies in the coverage area increases.

We observe that even though the summation of all
agencies’ a; increases as | N| increases, the average portion
of information per agency (i.e., a;), has a decreasing trend
due to the potential access channel congestion. Moreover,
we observe that the total amount of sent information
> ien fi, decreases with respect to the number of the
agencies, because each agency’s achievable data rate de-
creases dramatically due to the increased interference. The
same holds true for the average f;. In Fig. 3b we present
the B-logit execution time required for convergence as a
function of the increasing number of agencies. It is noted
that, since B-logit is an asynchronous distributed learning
algorithm in the sense that in every iteration at a specific
time-slot only one agency can perform exploration and
update its action, when the number of agencies increases,
the corresponding convergence time increases as well.

Subsequently, we examine the behavior of the proposed
framework when the agencies are equipped with a poten-
tial set of actions of higher granularity, where a larger
number of potential alternative actions are available to
them. In particular, in Fig. 3c we observe that the average
cost function C; per agency presents a decreasing trend
as the number of actions increases, due to the fact that
the wider range of available actions allows a more detailed

exploration, thus leading to the choice of more efficient
strategies. Regarding the execution time, we observe that
until a certain number of actions it has a decreasing trend,
because the agencies have more alternatives to choose from
and the system proceeds faster to convergence. However,
after a certain number of additional actions, e.g., 50 in
our scenario, the time starts to increase instead, because
the agencies spend more time to explore the available
strategy space in order to obtain the desired PNE (this is
well aligned with the increasing B-logit execution time).
Furthermore, in Fig. 3d we present the average f; - Vol;
per agency as a function of the number of the additional
actions to the agencies’ strategy space. We observe that
due to the agencies’ larger strategy space (i.e., number of
actions), they can choose more wisely their actions, thus,
the combination of the average quantity and of the average
quality of information (i.e., f;-Vol;) that they try to send
increases throughout the B-logit iterations .

C. Comparative Results

In this section, initially, we compare the efficiency of
our proposed framework with the following six approaches
concerning the agencies’ selection of their action. (1) Each
agency sends the maximum information. (2) Each agency
sends the minimum information. (3) Each agency sends a
random portion of its I Zk Iax(t).(él) Each agency determines
its action based only on physical aspects. To realize this
the disaster area is divided into different ”information
zones” around the UAV. The further the agency is from the
UAV, the less information gradually it transmits. At the
most distant information zone from the UAV, the agency
will transmit information a;’”'”(t) I ZM az(t), (5) Each agency
determines its action based only on the social aspects
W,W € N. (6) Each agency determines its
action based on the socio-physical criteria az(-t):I QCZ-(t).
Our examined scenario ran for 200,000 time-slots.

Fig. 4a depicts the average Vol i(t) per agency per time-
slot, including all the aforementioned alternative strate-
gies. As we can clearly notice, our approach outperforms
all the other approaches confirming that efficiently and in
a distributed manner orchestrates the agencies to send the
appropriate amount of information with the corresponding
quality of information. This is followed by the socio-
physical approach, being not only aware of the social
aspect, but also more adaptive and dynamic (physical
aspect), due to the fact that the agency’s position changes
over time. The approaches that exhibit the worst per-
formance are the ones where the agencies send their
maximum (a;’““”(t)) or minimum (aznm(t)) amount of in-
formation. This is observed, because in those cases the
agencies act in a myopic and static way that leads to a
very low average Vol;, i1 € N per agency per time-slot.

Subsequently, we compare our approach, where instead
of the B-logit algorithm two alternative algorithms are
applied, namely the Max log linear learning algorithm

Al —
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(denoted as Max-logit) and the Stochastic Learning Au-
tomata (denoted as SLA) [8]. B-logit outperforms both
of the other approaches in terms of achieving a better
maximization value of the potential function. That hap-
pens because B-logit (and Max-logit) converges to the best
Nash equilibrium with a high probability, which maximizes
the potential function, while the SLA just converges to an
arbitrary PNE. For the same reasoning, Max-logit presents
performance very close to the B-logit. However, the SLA
achieves lower actual execution time, clearly presenting a
tradeoff between the efficiency in obtaining the best Nash
equilibrium and the algorithm’s real execution time. SLA
converges faster to an arbitrary PNE due to the fact that
it is a synchronous algorithm where in every iteration of a
specific time-slot all the agencies can simultaneously per-
form exploration and change their actions, in contrast to
B-logit and Max-logit which are asynchornous in nature.

VI. CONCLUSIONS

In this paper, we propose a multi-agency disaster man-
agement framework, where the agencies provide their col-
lected information to the EOC through the UAV, which
acts as a relay given that the ground infrastructure is dam-
aged. The concept of Information Quality and Criticality
(IQC) is introduced to quantify the importance level of the
agency’s provided information. Each agency is associated
with a holistic cost function, which represents its relative
abstention in information provisioning compared to the
rest of the agencies. A non-cooperative game is formulated
among the agencies and we prove that it is an exact
potential game, thus, the existence of at least one PNE
is shown. The optimal PNE is determined by the pro-
posed binary log-linear reinforcement learning algorithm.
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