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Hydrodynamic theories describe the flow of systems as 
diverse as water, quantum electronic states1 and galaxies2 
over decades in scale3. Since hydrodynamic equations are 

built on symmetry principles and conservation laws alone, systems  
with similar symmetries have similar descriptions and flow in  
the same way.

For example, symmetry under parity and time reversal— 
conditions met by all conventional fluids at thermal equilibrium— 
constrains both the stress and viscosity tensors to be symmetric. 
These constraints are in principle alleviated in collections of inter-
acting units that are driven to rotate4–10. This seemingly innocent 
twist on an otherwise structureless fluid represents, however, an 
elemental change with rich hydrodynamic consequences common 
to quantum Hall fluids, vortex fluids and chiral condensed mat-
ter11–18. Collections of spinning particles offer a natural opportunity 
to engineer and study the properties of such chiral fluids; experi-
mental examples include rotating bacteria19,20, colloidal and milli-
metre-scale magnets21–26, ferrofluids in rotating magnetic fields27,28 
and shaken chiral grains29,30. Such systems have been shown to have 
non-trivial dynamics. For example, ferrofluids driven by a.c. fields 
can flow against external pressure31 and small numbers of spinning 
particles self-assemble into dynamic crystalline clusters21–26,32–35.

A colloidal chiral fluid
We report the creation of a millimetre-scale cohesive chiral fluid 
(Fig. 1a) by spinning millions of colloidal magnets with a magnetic 
field (Fig. 1b,c), and we track its flows over hours (see Supplementary 
Videos 1 and 2). The macroscopic flow of our chiral fluid is reminis-
cent of free surface flows of Newtonian fluids: nearby droplets merge  
(Fig. 1d and Supplementary Video 3), fluid spreads on a surface 
under the influence of gravity (Fig. 1e and Supplementary Video 4), 
voids collapse (Fig. 1f and Supplementary Video 5) and thin streams 

become unstable, as revealed by flowing fluid past a solid object (Fig. 1g  
and Supplementary Video 6). We demonstrate that these seemingly 
familiar features are accompanied by unique free surface flows. We 
then exploit the odd interfacial dynamics of this prototypical chiral 
liquid to infer its material constants, which remain out of reach of 
conventional rheology.

In contrast to Newtonian fluids, the surface of our fluid supports 
a spontaneous unidirectional edge flow in its steady state, as well as 
unusual morphological dynamics such as the rotation of asymmet-
ric droplets. These features, illustrated in Fig. 1 and Supplementary 
Videos 1 and 3–6, follow from the breaking of parity through active 
rotation25,29,30,36.

Chiral surface waves and ‘edge-pumping’
To investigate these lively surface flows, we first look at surface 
excitations in a simple slab geometry, as shown in Fig. 2a and 
Supplementary Video 7. We measure the spectrum of surface fluc-
tuations, |h(k, ω)|2, by tracing the height profile, h(x, t), of the sur-
face and Fourier-transforming it in space and time. We observe the 
spectrum to be peaked along a curve ω(k), revealing the existence of 
dispersive waves (see Fig. 2b). The curve has only one branch with 
odd parity, meaning that the waves are unidirectional. This behav-
iour contrasts with that of conventional surface waves that propa-
gate in all directions.

These surface waves beg a hydrodynamic description. Chiral-
fluid hydrodynamics follows from conservation of momentum 
and angular momentum, and thus includes both the spinning 
rate of individual fluid particles and the momentum and angular 
momentum of their flow6,29,37–39. As our colloids are birefringent, 
we are able to measure their individual spinning rate by imag-
ing through crossed polarizers. We find that all particles rotate at  
the same rate, Ω, which is set by the rotating magnetic field  
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(see Fig. 3a and Supplementary Video 8). From this, it follows that 
the particles’ rotational inertia is negligible; the torque exerted on 
each particle by the magnetic field instantly adjusts to balance the 
frictional torques exerted by the neighbouring particles, solid sub-
strate and surrounding fluid layer. This fast response enables the 
decoupling of the angular momentum equation from the momen-
tum equation. Nonetheless, a strong signature of the microscopic 
angular momentum manifests as an ‘odd’ stress. A minimal hydro-
dynamic theory to predict the chiral fluid velocity ui then balances 
the force generated by viscous and odd hydrodynamic stresses, ∂jσij, 
against friction with the substrate, Γijuj ¼ ðΓuδij þ Γ?ϵijÞuj

I
, and 

surface tension γ at the fluid interface. In this theory, which has 
been used to capture the bulk flows of chiral granular fluids, the 
hydrodynamic stress tensor is given by:

σij ¼ �pδij þ η ∂iuj þ ∂jui
� �

þ ηRϵij 2Ω� ωð Þ ð1Þ

σij includes the pressure p and ordinary viscous stress also present 
in Newtonian fluids with a shear viscosity η. The additional term 
containing the Levi-Civita symbol ϵij

I
 and the dissipative coefficient 

ηR, known interchangeably as ‘rotational viscosity,’ ‘spin viscosity’ 
or ‘inter-rotor friction’, captures the rotational friction between 
neighbouring particles6,13,27,29,37,38,40. Such an odd stress builds up as 
the local spinning rate Ω deviates from half the local fluid vorticity 
ω ¼ ẑ  ð∇ ´ uÞ
I

. In torque-free fluids, angular momentum conser-
vation constrains these two quantities to be equal: odd stresses are 
unique to chiral fluids.

We finally simplify the model by assuming incompressibility and 
find this assumption to be supported by the agreement between the-
ory and the experiments reported in this Article. We also note that 
there is no direct appearance of the magnetic field or its stresses in 
this hydrodynamic description unlike in conventional ferrofluids. 
In this respect, our colloidal chiral fluid can be seen as a special type 
of driven ferrofluid in which weakly Brownian particles are densely 
packed and magnetic forces provide cohesion and induce chirality 
(Supplementary Section 6).

To make a quantitative comparison between our model and the 
flows we observe, we require a measurement of the hydrodynamic 
and friction coefficients η, ηR, Γu and Γ⊥. Fortunately, the prominent 

effect of odd stress at the free surface of our chiral fluid can be effec-
tively exploited to infer its bulk rheology. The homogeneous spin-
ning motion of the colloidal particles gives rise to a net tangential 
edge flow even in the absence of pressure gradients. These tread-
milling dynamics, characteristic of all chiral fluids4,9,19,25,29, are illus-
trated in circular droplets in Fig. 3b–e and Supplementary Video 
9. The tangential flow that is localized at the free surface is read-
ily explained by expressing the hydrodynamic equation in terms of 
vorticity for an incompressible chiral fluid:

∇2 � δ�2
� �

ω ¼ 0 ð2Þ

where δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηþ ηRÞ=Γu

p

I
. This Helmholtz equation indicates that 

the vorticity generated at the surface decays exponentially into 
the chiral fluid, with a characteristic penetration depth δ (see Fig. 
3c,d,g). In this model, the loss of substrate friction causes the pen-
etration depth to diverge, resulting in rigid-body rotation of the 
entire fluid, as observed in ferrofluid droplets36. The magnitude of 
the vorticity at the free surface, ωedge = 2ΩηR/(η + ηR), is set by the 
stress-free boundary condition for a flat strip and expresses the 
competition between the odd and viscous stresses (Supplementary 
Section 6). We point out that ωedge is directly proportional to ηR, 
which demonstrates the importance of odd stress for the dynam-
ics. Comparison between experiment and prediction (Fig. 3d) yields 
the values of η and ηR in terms of Γu. The latter is then measured by 
tilting the substrate and measuring the sedimentation rate of drop-
lets (see Fig. 3f and Supplementary Section 3). Ultimately, we find 
η = 4.9 ± 0.2 × 10−8 Pa m s, ηR = 9.1 ± 0.1 × 10−10 Pa m s and Γu = 2.4
9 ± 0.03 × 103 Pa s m−1. The sedimentation direction is aligned with 
gravity, which bounds Γ⊥ ≪ Γu, so we take Γ⊥ = 0 in the following 
(Supplementary Section 3).

Equipped with the hydrodynamic coefficients, we can now 
investigate the origin of the surface waves within our model. The 
mass flux in the tangential surface flow provides significant insight. 
This flow, sketched in Fig. 2d and plotted in Fig. 2e,f, is determined 
by the balance of the tangential odd stress at the boundary, the shear 
stress and the substrate friction. In the presence of a perturbation 
to a free surface, the resistance to flow caused by the shear stress 
will be modulated in proportion to the curvature. For a sinusoidal 
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Fig. 1 | A chiral fluid of spinning colloidal magnets. a, An optical micrograph of the colloidal magnets in bulk, after a few minutes of spinning. b, A 
schematic diagram of one colloidal particle. The ~1.6 μm haematite colloidal cubes have a permanent magnetic moment (μ, black arrow). They are 
suspended in water, sedimented onto a glass slide and spun by a rotating magnetic field (B, white arrow tracing the white circle). c, An optical micrograph 
of the colloidal magnets in bulk at increased magnification. d–g, The particles attract and form a cohesive material with an apparent surface tension that, 
over timescales from minutes to hours, behaves like a fluid: clusters coalesce (d) and spread like liquid droplets when sedimented against a hard wall (e); 
void bubbles collapse (f); and when driven past an obstacle, the fluid flows around it, thinning and eventually revealing an instability to droplet formation 
(g). All images were taken through crossed polarizers.
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perturbation, there is enhanced flow in positively curved regions 
(top of the wave) and decreased flow in negatively curved regions 
(bottom of the wave). This ‘edge-pumping’ mechanism is reminis-
cent of the phenomenon of shifting sand dunes41, in which an exter-
nal wind moves material away from curved regions towards the flat 
wavefront, giving rise to unidirectional wave motion. As the chiral 
liquid produces an intrinsic surface wind, these free surface waves 
are distinctly self-shifting.

A linear stability analysis of the hydrodynamic equations (see 
Supplementary Section 6 for a detailed calculation) confirms this 
scenario and yields a prediction for the dispersion relation, dissipa-
tion rate and flow fields of surface waves, which we plot in Fig. 2b 
(red dashed curves). With no fitting parameters, our model shows 
excellent agreement with the experimentally measured dispersion 
relation. For surface waves h ~ ei(kx+ωt) of long wavelength k ≪ 1/δ, 
the asymptotic dispersion relation is:

ωðkÞ ¼ 2ωedge
η

ηþ ηR
ðkδÞ3 ¼ 2uedge

η

Γu
k3 ð3Þ

where uedge = 2ΩδηR/(η + ηR).
The wave dynamics are thus crucially sensitive to boundary-layer 

flows. A natural avenue for investigation, then, is to seek to increase 
the thickness of the boundary to increase its relative role. We now 
show how an increase of the penetration depth of the boundary 
layer amplifies chiral effects and suggests the presence of a long 
sought-after source of stress, commonly referred to as Hall viscosity.

Chiral wave damping and measurement of Hall viscosity
We reduce the surface friction by allowing our chiral liquid to sedi-
ment on an air/water interface (Fig. 4b), as opposed to a glass sur-
face (Fig. 4a). Due to the difficulty in maintaining a slab geometry 
in this regime, we examine surface fluctuations on circular droplets.
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Fig. 2 | Surface waves in a chiral spinner fluid. a, Surface waves are excited by perturbing a strip of the spinner fluid. To characterize them, we track the 
height profile of the strip in time, h(x, t). b, The resulting power spectrum from these waves 〈|h(k, ω)|〉 is plotted versus the normalized wavevector kδ 
and frequency ω/(uedge/δ). The spectrum peaks on a curve corresponding to the dispersion relation of the waves. Shown with the red dashed line is the 
theoretical prediction for the dispersion relation, obtained with the hydrodynamic parameters that we measure in Fig. 3; its long-wavelength asymptotic 
form is given in equation (3). c, The power spectrum ω(k𝜙) for surface waves on a perturbed circular droplet of spinner fluid (left panel and Supplementary 
Section 4) can be collapsed (right panel) by rescaling the angular wavenumber k𝜙 by the droplet radius R. d, A sketch of the mechanism for wave 
propagation. The propagation of waves can be understood by considering the mass flux, plotted in e. The chiral fluid is displaced from the high-curvature 
to the low-curvature regions. This process explicitly breaks the left–right symmetry, thereby propagating surface waves along only one direction. 
 e, Correction to the net mass flux along the interface due to a sinusoidal height perturbation, Jx � J0x

I
, where J0x

I
 is the mass flux in a flat strip and Jx is 

the mass flux in the presence of a perturbation of wavelength λ. This variation in mass flux tracks the variation in local curvature, as illustrated by the 
experimental images of regions of positive, neutral and negative curvature κ. f, The integrated flow, derived from our hydrodynamic theory, yields the mass 
flux (left), which scales with curvature (right).
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As can be seen in Fig. 4a,b and Supplementary Video 10, the edge 
flow penetrates deeper into the chiral fluid as friction is reduced. The 
dispersion relations for high- and low-friction droplets display the 
same trend, although the range of accessible wavevectors normal-
ized by the penetration length (kδ) is larger in the low-friction case. 

An extension of our theory to circular geometries (Supplementary 
Section 6) again accurately captures the dispersion relations for high 
friction (Fig. 4a) and low friction (Fig. 4b).

The remarkable agreement between experiment and theory is, 
however, challenged when investigating the damping dynamics of 
the chiral waves. Experimentally, the damping rate α of chiral waves 
of wavevector k is given by fitting a Lorentzian to the width of the 
power spectrum (Supplementary Section 4); the resulting damping 
rates are shown in Fig. 4c,d. Our hydrodynamic theory predicts this 
damping rate to be proportional to surface tension. This is natural 
since surface tension flattens interfacial deformation: in the absence 
of inertia, the relaxation does not overshoot and capillary waves 
are overdamped. In the long-wavelength limit (kδ ≪ 1), the damp-
ing rate α ~ (γ/Γu)|k|3 stems from the competition between surface 
tension and substrate friction. As seen in Fig. 4c, in the high-fric-
tion case, we again find excellent agreement between theory and 
experiment, which provides a direct measurement of surface ten-
sion. The value we find, γ = 2.3 ± 0.2 × 10−13 N, is consistent with an 
estimate based on magnetic interactions between rotating dipoles 
(Supplementary Section 6).

In the case of low surface friction, however, we observe a dis-
tinct new feature in the dissipation rate: a levelling off of the dissipa-
tion rate at short wavelengths that cannot be accounted for by the 
hydrodynamic theory discussed thus far, suggesting the presence of 
an additional mechanism for surface wave dissipation in our chiral 
fluid. Seeking a hydrodynamic description, we recall that isotropic 
chiral fluids can in principle possess an additional stress in their 
constitutive relation, known interchangeably as ‘anomalous viscos-
ity,’ ‘odd viscosity’ or ‘Hall viscosity’12,14,15,42. This non-dissipative, 
transverse stress is linked by Onsager relations to the breaking of 
time-reversal symmetry.

Theoretically, odd viscosity has indeed been shown to arise 
in the hydrodynamics of plasmas43–45, systems of spinning mol-
ecules13,17, and quantum Hall fluids and vortex fluids12,42,46. A sig-
nature of Hall viscosity was further revealed in the transport 
properties of magnetized three-dimensional dilute gases18. Here we 
conjecture our dense chiral fluid to support an additional Hall stress 
σoij ¼ ηo ∂iϵjkuk þ ϵik∂kuj

� �

I
. In incompressible fluids such as the one 

considered here, the effect of odd viscosity can be seen solely at the 
edge. This is because in the bulk flow Hall stress is merely absorbed 
into the fluid pressure. The signature of odd viscosity in our chiral 
fluid is thus an additional boundary stress. The component normal 
to the interface σnn, after absorbing a vortical component into the 
pressure, is given by

σnn ¼ 2ηo ∂sun þ
us
RðsÞ

� �
ð4Þ

where un (respectively, us) is the velocity normal (respectively,  
tangential) to the surface (see Fig. 4e), and R(s) is the local radius 
of curvature.

In our system, where odd stress powers a boundary-layer edge 
flow, we thus expect odd viscosity to flatten surface deformation in a 
manner akin to surface tension, σo ~ ηous/R. The excellent agreement 
between our measurements and predictions from a hydrodynamic 
theory with this addition confirms this simplified picture and sup-
ports the presence of Hall viscosity in our colloidal chiral fluid (see 
Fig. 4d,f,g). From the fit, we obtain ηo = 1.5 ± 0.1 × 10−8 Pa m s.

The most visible suggestion of the presence of Hall viscosity is 
the decrease in slope in the damping relation, which can be under-
stood on dimensional grounds. In the long-wavelength limit, the 
wave relaxation time is controlled by the competition of either sur-
face tension or Hall stress with substrate friction. Dimensionally, 
this implies a scaling α ~ |k|3, since the ratios γ/Γu and ηous/Γu have 
dimensions of volume per unit time. In contrast, in the short-wave-
length limit, surface friction plays no role and damping stems from 
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Fig. 3 | Characterization of a droplet of chiral spinner fluid. a, When viewed 
through crossed polarizers, the particles blink as they spin. This allows 
us to confirm that they all spin at the same frequency, set by the rotating 
magnetic field. b, By measuring the velocity of each particle within a cluster, 
we find a flow profile that is concentrated at the edge within a penetration 
layer δ shown in c, d and g. c, A zoomed-in view of the flow streamlines, 
obtained by averaging several instantaneous velocity profiles such as the 
one shown in b. d, By measuring the flow profile, the edge current uedge and 
penetration depth δ are extracted. e,g, By measuring the flow profile u(r) 
at a range of frequencies, we extract the shear viscosity, η, and rotational 
viscosity, ηR, in terms of the substrate friction, Γu. f, Finally, by tilting a sample 
by an angle θ and measuring the sedimentation velocity of a droplet, we 
extract the substrate friction. All error bars represent standard deviations.
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the competition of surface tension or Hall stress and bulk viscosities 
alone. In this case, dimensional analysis requires linear scaling with 
wavenumber in the case of surface tension, and wavenumber inde-
pendence in the case of Hall stress (Supplementary Section 6). This 
change in wavenumber dependence brings about a visible rollover 
to a decreased slope in the wave damping rate.

We note that for small ranges of kδ ~ [−1, 1], characteristic of spec-
tral measurements in the presence of high surface friction, the lev-
elling off cannot be seen and the relative roles of Hall viscosity and 
surface tension become hard to separate in our model. This is the case 
for the damping shown in Fig. 4c, which can be fitted well by both a 
non-zero and zero value of Hall viscosity (Supplementary Section 4).

Having established that Hall viscosity affects the damping of waves 
in a simple chiral fluid, it is natural to ask whether it has an effect on 
the dispersion of waves. The first term in equation (4) suggests that 
Hall viscosity and surface tension could act together to support wave 
propagation. Surface tension acts on a sinusoidal surface deforma-
tion by pulling down peaks and pushing up troughs, generating an in-
phase normal velocity component. The normal Hall stress ∂sun would 
then act out of phase on the inflection points of the sinusoidal per-
turbation to propagate it in a chiral fashion. Our full theory confirms 
that this additional wave-driving mechanism indeed exists and gen-
erates waves even in the absence of edge currents. However, for our 
hydrodynamic parameters, their effect on the dispersion is minimal.

An odd instability
In much of the phenomenology we have discussed, surface dynamics 
are essentially boundary-layer dynamics. Another natural question, 

then, is what happens when two boundary layers meet? Draining 
fluid past a curved obstacle brings about the progressive thinning of 
a curved strip of chiral fluid, as shown in Fig. 1g and Supplementary 
Video 6. The flow is smooth until the strip thickness becomes com-
parable to the penetration depth δ; at that point, the flow becomes 
unstable, resulting in the formation of circular droplets. We study this 
novel pearling mechanism in experiment by creating a sequence of 
strips of decreasing thickness, as shown in Fig. 5a and Supplementary 
Video 11. We find that over a period of 10 min the strips of chiral fluid 
are stable for thicknesses above ~32 μm and unstable below.

Although visually reminiscent of the Rayleigh–Plateau instabil-
ity of a thin fluid cylinder jet47, this instability is fundamentally dif-
ferent. In our two-dimensional system, surface tension is a purely 
stabilizing force, as seen in the wave analysis discussed above. 
Instead, the instability originates from the chiral surface dynamics 
of our fluid. A visual signature of this origin is the consistent offset 
in the phase between top and bottom perturbations at the moment 
the instability occurs in all strips: Fig. 5b shows one such example.

A linear stability analysis of a thin strip of chiral fluid quanti-
tatively predicts the existence of unstable modes that consist of 
wave-like perturbations on the top and bottom surfaces that have a 
relative phase offset, as sketched in Fig. 5d. These are accompanied 
by a stable mode with an opposite relative phase. The associated 
stability diagram is shown in Fig. 5e, together with our experimen-
tal observations. As the Hall stress has little effect on the stability 
of modes for small δ (Supplementary Section 6), here we set ηo = 0.

An intuitive picture for the mechanism driving the instability is 
illustrated in Fig. 5d. The geometry of a thin slab with out-of-phase 
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γ-dissipated fluids. All error bars represent fit uncertainty from the determination of α(k) from the power spectrum (Supplementary Section 4).
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perturbations on the top and bottom surfaces can be approximated 
by a collection of elongated droplets of chiral fluid all canted in the 
same direction. Droplets of this kind rotate in the direction of the 
edge current, in this case clockwise (see Fig. 1d and Supplementary 
Video 3). Depending on the phase difference between the two inter-
faces, the rotation of these effective droplets will either increase the 
amplitude of the perturbation, resulting in the breakup of the strip 
(top), or decrease the amplitude of the perturbation and restore the 
flat interface (bottom). The consistent observation of this phase 
relation between the top and bottom perturbations across many 
experiments of strips becoming unstable (Fig. 5c) further corrobo-
rates our theoretical picture of the instability.

We have broken parity symmetry at the microscopic level in a 
colloidal chiral fluid, resulting in the emergence of an odd stress that 
in turn generates lively surface flows. Through these flows, we have 
observed a signature of Hall viscosity, an experimentally elusive and 
dissipationless transport coefficient that arises from the breaking of 
time-reversal symmetry. The combination of these features drives 
rich interfacial dynamics with no analogues in conventional fluids. 
These dynamics include the unidirectional propagation and anom-
alous attenuation of surface waves, and an asymmetric pearling 
instability. In principle, these chiral phenomena can be tuned (for 
instance, by altering the colloidal particles’ shape and their effective 
interactions). Colloidal chiral fluids enable the study of universal 
aspects of a new class of hydrodynamics, and provide a platform for 
engineering active materials with so far untapped ‘odd’ behaviours.

Note added in proof: In the final stages of the editorial process, we 
became aware of a contemporaneous measurement of Hall viscosity 
in graphene’s electron liquid48.

Data availability
The data that support the plots within this paper and other find-
ings of this study are available from the corresponding author upon 
request.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
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