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Curious behavior of three-dimensional lattice Dirac operators coupled
to a monopole background
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We numerically investigate the effect of regulating fermions in the presence of singular background
fields in three dimensions. For this, we couple free lattice fermions to a background compact U(1) gauge
field consisting of a monopole-antimonopole pair of magnetic charge +£Q separated by a distance s in a

periodic L* lattice and study the low-lying eigenvalues of different lattice Dirac operators under a
continuum limit defined by taking L — oo at fixed s/L. As the background gauge field is parity even, we
look for a twofold degeneracy of the Dirac spectrum that is expected of a continuumlike Dirac operator. The
naive-Dirac operator exhibits such a parity doubling but breaks the degeneracy of the fermion-doubler
modes for the Q lowest eigenvalues in the continuum limit. The Wilson-Dirac operator lifts the fermion
doublers but breaks the parity doubling in the Q lowest modes even in the continuum limit. The overlap-
Dirac operator shows parity doubling of all the modes even at finite L that is devoid of fermion doubling
and is singled out as a properly regulated continuum Dirac operator in the presence of singular gauge field
configurations, albeit with a peculiar algorithmic issue.
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I. INTRODUCTION

Lattice regularization of noncompact QED [1] in three
dimensions is defined by a noncompact action for the gauge
fields, 6,(n) € R, on the link connecting n and n + f, and
the lattice fermions couple to U(1) valued link variables,
U,(n) = €™ Monopoles are suppressed in the con-
tinuum limit in such a regularization. Recent numerical
analysis of noncompact QED in three dimensions with an
even number of massless two-component fermions shows
that these theories are scale invariant independent of the
number of flavors [2—4]. It is natural to follow up such a
study with an analysis of compact QED; where the lattice
gauge action is the compact gauge action [5]. When we
attempted to numerically study this theory using overlap-
Dirac fermions, we found it be numerically formidable
due to anomalously small eigenvalues of the massive
Wilson-Dirac kernel that is at the core of the overlap-
Dirac operator—to contrast, for a smooth field, one would
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find the spectrum of a massive Wilson-Dirac operator to be
gapped at least by the Wilson mass. This prompted us to
consider the question of what happens when the conven-
tional lattice regulated fermions, which lead to universal
results in the continuum limit over generic smooth gauge
fields, are coupled to a singular gauge field from a
monopole; do operations at the level of lattice spacing,
such as point splitting used regularly in lattice regulariza-
tion, have any effect in the presence of a Dirac string which
is also one lattice spacing thick? We present related
numerical observations in this paper.

Briefly, we recount some aspects of lattice fermions
in three dimensions. We use two-component fermions
throughout this paper. The naive fermion operator P
obtained by using the discrete derivative operator is the
simplest. As is well known, it leads to 2¢ (8 in three
dimensions) fermions flavors. It is a well-motivated expect-
ation that there is flavor degeneracy in the continuum limit.
There is a trivial twofold degeneracy for naive-Dirac
fermions [6,7] on the lattice, and one copy is the
staggered-Dirac fermion, which is expected to realize a
four-fermion flavor theory in three dimensions. If there is a
fourfold degeneracy in the continuum limit, one could
possibly define a theory with the square root of the
staggered-Dirac operator to study a two-flavor parity
invariant theory. Some continuum-based reasoning pro-
vides arguments as to why gauge field backgrounds with
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nontrivial topology might obstruct a well-defined con-
tinuum limit of a lattice theory with the fourth root of
the staggered-Dirac operator in even dimensions [8—11]. It
is possible that monopole backgrounds in three dimensions
suffer from similar effects. The two-component Wilson-
Dirac operator is obtained by adding the Wilson term B,
which is irrelevant by naive power counting, to the naive
operator . That is, the massive Wilson-Dirac operator is
given by

X=-m,+B+D, (1)

which lifts the mass of the seven of the doublers, leaving
only one physical fermion of lattice mass m,, on smooth
gauge fields. The lattice fermion, which is capable of
reproducing the continuum symmetries, such as the U(N)
flavor symmetry in three-dimensional N-flavor QED3, is
the overlap-Dirac operator. The central quantity that
appears in the overlap formalism [3,12] is the unitary
operator V defined as

1
V=X (2)

with the Wilson mass 0 < m,, <2, and the massless
overlap operator is given by

14V

24 V4Vt
2 '

DiD, = Z

D, (3)
The instance where the otherwise irrelevant operators used
in lattice regularization play significant roles is the parity
anomaly [13-16]. Parity takes the naive-Dirac operator 2
to BT = —p; the Wilson-Dirac operator X transforms to
X7, and the unitary operator transforms V to V. The phase
of det X for m,, = 0 is nonvanishing even in the continuum
limit, even though the unregulated continuum massless
Dirac operator is anti-Hermitian. This effect propagates
itself to the nonvanishing phase of det(1+ V) of the
massless overlap fermion. Notwithstanding such effects
in three dimensions, we expect X to commute with X" in
the continuum limit, unless the gauge field background
is not smooth even in the continuum limit. Independent of
the nature of the gauge field background, V and V'
commute. This places the overlap-Dirac operator closer
to the continuum Dirac operator compared to the Wilson-
Dirac operator. The domain-wall-Dirac operator formalism
in three dimensions [17,18] is expected to behave like the
overlap-Dirac operator.

Having explained the lattice formalism, we return back
to the problem that motivated us to study the problem to
be presented in this paper. Following the conventions of
Ref. [3], we will assume that m,, > 0 in the region
of interest, and this will lead us to the unconventional
notation for Wilson-Dirac fermions; namely, m,, < 0 will

correspond to fermions with positive mass. Since the
operator XX can be viewed as the one for two flavors
of two-component fermions that preserves parity, the sign
of the mass should not matter in the conventional approach
to the continuum limit. But our attempts to study compact
QED with overlap-Dirac fermions failed due to several
eigenvalues of X'X becoming very small for all values of
m,, € (0,2). Furthermore, we found the number of such
anomalously small eigenvalues to grow with the size of the
three-dimensional torus.

The failure described in the previous paragraph prompted
us to study the low-lying spectrum of the following positive
definite operators constructed out of lattice operators; D' D
for the naive-Dirac operator; X' X as a function of m,, for the
Wilson-Dirac operator; and of the (1 + V)(1 + V') for the
overlap-Dirac operator in a controlled background before
proceeding to address an alternative approach to the study
of compact QED. As we will argue, the eigenvalues of such
a positive definite operator is doubly degenerate in the
continuum in a monopole-antimonopole background and
hence serve as a promising observable to look for any
deviation of the regulated lattice operator from the con-
tinuum one. It is not possible to write down a background
gauge field that has a single monopole in a periodic lattice,
but it is possible to write down one that has a monopole-
antimonopole pair separated by a fixed distance. Such a
background was considered in a study of the monopole
scaling dimension [19]. We will use a similar background
with a minor change to better fit it in a periodic lattice.

II. LATTICE MONOPOLE-ANTIMONOPOLE
FIELD

An expression for the standard spherical Dirac monop-
ole with a specific choice for the direction of the semi-
infinite Dirac string can be found in Ref. [20]. It is natural
for us to pick the direction of the Dirac string along one of
the spatial directions on the lattice. Since we will work on
a finite periodic lattice, we need to insert a Dirac
monopole-antimonopole pair with the string attached
between the monopole and the antimonopole. One way
to include the monopole-antimonopole background field
on the lattice is to integrate the continuum field A of a
Dirac monopole-antimonopole pair [20] over links joining
site X to X + a, where «a is the lattice spacing. That is,
define a link variable

B, (x) = / T e AL (X)), @)

as given in Ref. [19]. The drawback of this approach is
that periodicity of lattice forces artificial jumps in the
gauge field across the “boundaries.” So, we consider
a better construction of the field on periodic lattice
below.
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A. Monopole-antimonopole field on periodic lattice

We place the finite Dirac string along a lattice spatial
direction. We implement the background gauge field that
contains a monopole-antimonopole pair of integer charge
+Q and separated by a length s on a periodic lattice of
length L as defined by the following noncompact field
strength B, (n) at the lattice site n = (n;, n,, n3):

By;(n) = B3;(n) = 0;

271Q ny=n, =%, 1<ny<s
B = | o~ ;

0 otherwise,

€ [l,L]. (5)
That is, B,,(n) denotes the noncompact field strength on

the directed plaquette defined by the corners n, n + f,
n+j+ 7, and n 4 7 traversed in the counterclockwise
direction. We could have spread the jump from O to Q and
Q to 0 over more than one lattice spacing. This will not
change the symmetries, and our choice enables the largest
numbers of choices of L without having to go to very large
L. As constructed, the monopole charge density is

0() = 13 e B0 + ) = Byu(n)

Hvp

= 06,16 Syl (6)

[ n3,0 =

As is well known, we cannot find a set of gauge fields,
6, (n), that realizes the above set of plaquette values as their
field strength. Instead, one can find a set of gauge fields that
minimizes the noncompact action in the presence of a flux

background, B,,, given by

3
SQ = Z Z [Fﬂ (Il) - Bﬂu(n)]z;
n u<v=I1
F,m)=06,(n)+6,n+p)—60,m+0)—6,n). (7)

The minimum is easily found by going to the momentum
space k = (ky, k,, k3) for integer k,, and the solution is
given by

I

where the current is given by

Jll(n) = Z[Buv(n> - B/w(n - ﬁ)}’
,4 L; ZJ —jrken (9)

The current has no zero momentum component, and
the conservation of the current on the lattice is given

by >, [Ju(n) = J,(n = )] = 0.

B. Parity invariance of the field

Using the field A from a continuum Dirac-monopole
pair, it is easy to show that the field is parity invariant under
X — —Xx about the midpoint of the Dirac string connecting
the monopole and antimonopole. In order to demonstrate
this for the background field as defined above, let us first
define the parity operator P via its actionn — n” = L. —n,
where L = (L, L, L). The action of parity on gauge fields
on the lattice is then

(PO),(n) = 0;(n) = =6, (L —n—p).  (10)

and the plaquette defined in Eq. (7) satisfies

Fﬁv(n):F/Av(L_n_ﬁ_ﬁ)' (11)

Under this relation, the background flux defined in Eq. (5)
satisfies the property

Bl(n—t)=B,(m); t=(-l.—ls+1-L). (12)

Therefore, the background field that minimizes Eq. (7) will
satisfy the property

Oi(n—t)=6,(n). (13)
Let us define the special translation operator z; by
[rew](n) = y(n +t) (14)

and the standard covariant translation operator 7, by

(Tyy)(m) = ey (n + f). (15)
Since
PTSP =T} and 7Tz =T, (16)
we arrive at
T9" = PTOPT, P = Pty PP=1(17)
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C. Defining continuum limit of the
background field

The continuum limit of a lattice field theory is a subtle
limit along the lines of constant physics near a fixed point
of the lattice theory. However, in this paper, we consider a
comparatively trivial continuum limit—it is possible to
define a continuum limit of a background gauge field in
such a way that length scales associated with the back-
ground field remain fixed with respect to the lattice size. In
other words, we set the physical size of the periodic box to
be unity by definition and measure all other length scales
with respect to it, in which case the lattice spacing is 1/L.
For example, we can consider a wavelike lattice gauge field
0,(x) = ¢,/ L cos(2x/L) of which the continuum limit
L — oo is taken at a fixed value of parameter c,. In the
case of the monopole-antimonopole pair, the associated
length scale is the lattice distance s between the monopole
and antimonopole. Therefore, we define the continuum
limit as the L — oo limit at a fixed value of f = s/L. In
this paper, we set f = 1/4. Now, it makes sense to ask
whether different lattice discretization of the continuum
Dirac operator gives universal results in the above defined
continuum limit.

It is possible to demonstrate the nontrivial nature of the
monopole background that is discretized on the lattice by
using the spherical Dirac monopole field A. Since A is
scale invariant, it easy to see that the corresponding lattice
field 6, (n) that connects the lattice site n to n + {2 remains
invariant at fixed n for all values of L under the above
continuum limit. The reason is the following: when the
lattice spacing is reduced by a factor k, the physical
distance of a lattice site from the monopole reduces by a
factor k, and hence the physical gauge field at the lattice site
increases by a factor 1/k. When integrated over a lattice
spacing to obtain 6, the factor k gets canceled. This is
unlike the smooth background 6%*'¢ considered above,
which approaches zero as 1/L in the continuum limit.

The latticelike nature of the background field even in the
L — oo limit can be seen in the scaling of the noncompact
action S, =3, > ., F,(n)* with L for F,, obtained
through the minimization of Eq. (7). The background
field does not have a continuum limit in the usual sense
where we expect 6,(n) to be of order % and the derivatives
to be order % In that case, the average value of the action,
namely,

1

p(L) :msh(L)v (18)

is expected to go like # Instead, we find that

1 1

p(L) =3271 5 =585 (19)

3.1 ; ; : ‘

— 3.271-5.85/L

2.95

2.9 ‘ : \ ‘ ‘
0.03 0.04 0.0 0.06 0.07
L
FIG. 1. The action of the background gauge field as a function
of L.

for the background field discussed in Sec. Il A with Q = 1
as shown in Fig. 1. This atypical behavior is expected due
to the presence of a monopole-antimonopole pair in the
background gauge field corresponding to singularities in
the flux distribution. In the following sections, we will
study the effect of this on the low-lying spectrum of
fermions.

D. Parity doubling of continuum Dirac
spectrum as reference for lattice fermions

In order to investigate the effect of the singular nature
of the monopole-antimonopole background field on lattice
regulated fermions, we need to choose an appropriate
observable that is characteristic of the field and has a
well-defined property in the unregulated continuum Dirac
operator. As we noted above, a characteristic feature of the
background field is its parity invariance. For the continuum
Dirac operator,
PBcont(A)P — _Bcont(Ap); Bcont<A) — a_'_ lAv (20)
with AJ/(x) = —A,(-x). For parity invariant fields,
Aj/(x) = A,(x) up to a gauge transformation. This implies
the anticommuting relation

PDM(A)P = —P(A). (1)

Since D™ is anti-Hermitian, the above anticommutation
property implies that, if y, is an eigenvector with

DMy = idy (22)

then y_ = Py is an eigenvector with eigenvalue —i/. It is
convenient to recast this as a statement about (D)7 peont;

(D) Dy = 23)
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Thus, there a parity doubling of eigenvalues of
(BeentyTpeont - As we will see, the low-lying eigenvalues
of (Pn)Tpeont and their expected parity doubling lead to
unexpected observations for lattice fermions.

The following will then be our method. We will study the
low-lying eigenvalue spectrum of lattice Dirac operators in
the limit (L, s) — oo at a fixed f = % Precisely, we will
study the microscopic eigenvalues of the positive definite
operator (P')TPt constructed out of the lattice Dirac
operators D' for the naive-Dirac, Wilson-Dirac, and
overlap-Dirac lattice operators in the above background
and analyze the low-lying spectrum as a function of L at a
fixed Q and f. We will mainly consider Q = 1, and we will
set f = %. We will work with L that are multiples of 4 from
L =12 to L = 56. At the end, we will study Wilson-Dirac
fermions with Q = 2 in order to make some conclusions
about the study of compact QED using Wilson-Dirac and
overlap-Dirac fermions.

——————— et e -8 e o ______
3L _
~
Sh — 19620
< —— 31088
B —- 33405
251 -os 33416 _

II1. NAIVE-DIRAC FERMIONS

The naive massless Dirac operator in three dimensions is
explicitly given by

13 .
P =32 oulTu=Ta); (T,d)m)=e™g(n+p);

T,T,=1; DbP'=-p, (24)

where o, are the two-component Pauli matrices. This
operator is expected to describe a theory with eight
degenerate flavors. Since the staggered-Dirac operator is
obtained from the naive-Dirac operator by a change of
basis [6,7], it is clear that the spectrum will trivially show a
two-flavor degeneracy for all background gauge fields. In
addition, for our background gauge field that satisfies
Eq. (17), we have a relation similar to the continuum

Dirac operator as

""" D i o
K - O O — O — — — — o — e _ —— e .
<) 2.5 L e @ -
2T TIPS s .
< — 1318
- 2.3738
- = 29807
2 —- 32458 |
—- 3.3400
— 3.3403
= 3.3420
—-- 3.3420
1.5 :/‘_‘__//:
. | ‘

3.34

3.32

LA(L)

3.3F

3.28

| L
0.05 0.1
1/L

FIG. 2. The low-lying eigenvalues of the naive-Dirac operator as a function of L. The top-left plot shows the spectrum for
L=402n+2);n=1,2,3,4,5, 6 and shows an eightfold degeneracy. The top-right plot shows the spectrum for L = 4(2n + 1); n = 1,
2,3,4,5, 6 and shows a fourfold degeneracy. The bottom plot shows the third and fourth distinct eigenvalues for L = 4(2n + 2) (in
black) and the fifth to eighth distinct eigenvalues for L = 4(2n + 1) (in red). All these different spectral levels in the bottom panel are

expected to become degenerate only when L — 0.

094501-5



NIKHIL KARTHIK and RAJAMANI NARAYANAN

PHYS. REV. D 100, 094501 (2019)

PDP' = -D. (25)

The above parity doubling will lead to at least a fourfold
degeneracy of the spectrum of

D' Py, = Ny O<A <Ay<---. (20)

If naive-Dirac fermions do not break the flavor symmetry,
we should therefore find a 16-fold degenerate spectrum. We
will compute the low-lying eigenvalues of PP using the
Ritz algorithm [21] and impose antiperiodic boundary
conditions in one of three directions (we choose the y
direction). We expect A; = lim; _, A;L to be finite and
nonzero. For reference, the three distinct lowest eigenval-
ues for free fermions with antiperiodic boundary conditions

in one of three directions will be (4,4, 43) = (1,V/5,3)x.
The results for the lowest 32 eigenvalues are shown in
Fig. 2. Let us first focus on the top-left plot in Fig. 2, which
corresponds to even values of s obtained by setting L =
4(2n+2) for n=1, 2, 3, 4, 5, 6. The first two-lying
distinct eigenvalues have an eightfold degeneracy, and the
third distinct eigenvalue has an almost 16-fold degeneracy.
Therefore, we conclude that the eightfold flavor symmetry
is broken into two remnant fourfold flavor symmetries at
the lowest level and this effect persists all the way to
L — oco. When we look at the spectrum in the top-right plot
corresponding to odd values of s obtained by setting L =
4(2n+1)forn=1,2,3,4,5, 6, we see that the four low-
lying distinct eigenvalues have only a fourfold degeneracy.
Therefore, the flavor symmetry is broken to the minimum
required by the trivial twofold symmetry required by the
presence of two copies of staggered fermions. Furthermore,
this flavor breaking persists all the way to L — oo.
Focusing on the bottom plot, the third and fourth distinct
eigenvalues when L = 4(2n+ 2) and the fifth to eighth
distinct eigenvalues when L = 4(2n + 1) all approach a
16-fold degeneracy when L — o0, and the results from L =
4(2n+1) and L = 4(2n 4 2) match. We fitted

a; , pi
AL =2 +24+2 27
L=%+7+3 (27)

using a standard least-square fit, and the fitted values of 4;
are quoted in Fig. 2 as legends of the corresponding fits. To
make the point the 16-fold degeneracy is achieved only
when L — co, we have listed the fits from the four fourfold
degenerate spectrum for L = 4(2n + 1) and the two eight-
fold degenerate spectrum for L = 4(2n + 2) in all three
plots. The convergence in the actual data as L — oo is
better than what is seen in the fitted values at L — oco. We
expect any slight disagreement between the almost degen-
erate extrapolated eigenvalues to be within systematical
errors associated with the fit form in Eq. (27).

IV. WILSON-DIRAC FERMIONS

The Wilson term,

3
S @-T,~T)) - m,

pu=1

B=B', (28)

N[ =

B—m, =

will lift the doublers observed in Sec. III, and

X=B-m,+D; X'=B-m,—-b (29)
are Wilson-Dirac fermions for a pair of two-component
fermions related by parity. The mass term is parity even as
long as we view (B — m,,) as a whole as the mass term with
m,, € (—2,2). We have used an unconventional notation
for the sign of the mass to make it convenient for the
definition of overlap-Dirac fermions.

The Wilson-Dirac fermion action for a pair of two-
component fermions that is parity invariant is given by

oo 0

For our particular background which obeys Eq. (17), we
have P'XP = X', and we can identify ¢, with P'¢,. Since
we can only discuss the spectrum of a four-component
parity invariant fermion, we do not have the double
degeneracy present in two-component naive fermions at
the expense of removing the doublers. The eigenvalues of
the four-component fermion operator come in +A; pairs
where A; > 0 are obtained from the eigenvalue problem

XXy, =Ay;  O<A <Ay<---. (31

Using Eq. (29), we can write
X'X =-P>+[B,P| + (B—m,)*. (32)

If we consider gauge field configurations generated by the
standard noncompact Wilson action [gauge fields on links
will scale as % at a fixed L when the background field is set
to zero in Eq. (7)] as was done in Ref. [2], we expect D to
scale like ; and B to scale like 7. To maintain a finite
physical mass, we set m,, = 7 where we keep m fixed as we
take L — oo. In this setup, we expect

Ji(m) = im LyJA2 =, (33)

to be finite and nonzero. Furthermore, we expect 4;(m) to
be independent of m and consistent with the value obtained
using naive-Dirac fermions.

A. Properties at finite physical mass m =m,, L

We first set m,, = 0 and plot the four lowest eigenvalues,
LA;(L), as a function of 7 in Fig. 3. The data fit Eq. (27)
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FIG. 3. The low-lying eigenvalues of the Wilson-Dirac operator

with m,, = 0 as a function of L.

3.5
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<25
X *tctecey,,, LT PO T
1.5 04 02 0 0.2 0.4
m

FIG. 4. The low-lying eigenvalues, 4;(m) of the Wilson-Dirac
operator obtained in the limit of L — oo as a function of m.

well, and the fitted values of A; are quoted in Fig. 3 as
legends of the corresponding fits. On the one hand, the two
lowest eigenvalues approach different limits as L — oo,
showing that Wilson-Dirac fermions do not recover a
double degenerate spectrum realized by naive fermions
that satisfies Eq. (25). On the other hand, we see that there
is good agreement in the L — oo limit between the two
lowest eigenvalues (4; and A,) for the Wilson-Dirac
operator and the two lowest eigenvalues associated with
the black lines (case of eightfold degeneracy) in Fig. 2. The
doubling seen in the 16-fold degenerate spectrum of naive-
Dirac fermions in Fig. 2 is also seen in Fig. 3, since 4 and
A4 are equal. Furthermore, the values for A; = 44 match
well with the corresponding value obtained from naive-
Dirac fermions. We conclude that naive-Dirac and massless
Wilson-Dirac fermions behave in the same manner in the
continuum limit with Q = 1:
(i) The two lowest eigenvalues show a splitting
either due to the breaking of flavor symmetry or

due to the need for two different two-component
Wilson-Dirac operators to realize a single fermion
flavor.

(i1) The rest of the spectrum shows the expected twofold
degeneracy per two-component flavor (explicitly
seen for the third distinct eigenvalue).

In order to observe possible effects due the Wilson term
not being irrelevant, we proceed to study the behavior of the
eigenvalues as a function of m = m,, L. To this end, we plot
the first four values of 4;(m), obtained by fitting the right-
hand side of Eq. (33) using Eq. (27), in Fig. 4. We note that
Ai(m) and A,(m) depends on m, suggesting that B and
[B, D] do not scale naively as expected. This is an effect
of the background as viewed by Wilson-Dirac fermions.
But we see that A3(m) = A4(m) are independent of m.
The effect of a nonsmooth background with Q = 1 affects
only the two lowest eigenvalues even as a function of m.
Note that naive-Dirac fermions will show the expected
quadratic dependence of mass simply because the mass
term commutes with BD.

B. Properties at Wilson mass m,, that is relevant
to the kernel of overlap operator

Finally, we need to understand the behavior of the low-
lying eigenvalues as a function of m,, when it is kept fixed
as we vary L. As long as m,, # 0, it corresponds to a
fermion with infinite mass that appears as a kernel for the
overlap-Dirac operator. A plot of the four low-lying
eigenvalues, A;(m,,), is shown in the left panel of Fig. 5
for L =56, and the effect of a background that is not
continuumlike is evident in the behavior of the lowest
eigenvalue. The higher eigenvalues seem to show a
behavior that reaches a minimum at m,, = 0. The lowest
eigenvalue, on the other hand, shows two distinct behaviors
for m,, < 0 and m,, > 0. The right panel of Fig. 5 shows
that the lowest eigenvalue at a fixed m,, decreases with
increasing L for m,, > 0, whereas the lowest eigenvalue
approaches a nonzero limit at infinite L for m,, < 0. For
m,, < 0, the eigenvalue A, at a fixed m,, approaches m,, in
the L — oo limit, with finite L corrections that are poly-
nomial in 1/L. This is similar to the behavior seen in the
higher eigenvalues as well. This is shown for a fixed value
m,, = —0.275 in the top-left panel of Fig. 6 where A? is
plotted as a function of 1/L. For m,, > 0, the lowest
eigenvalue approaches zero with a distinct exp (—f(m,,)L)
behavior for larger L with an m,, dependent coefficient
B(m,,). This is demonstrated for m,, = 0.275 in Fig. 5
by plotting log(4?) as a function of L where we observe
a good description of the large L data by a simple
exp (—=f(0.275)L) shown by the line. On the other hand,
the higher eigenvalues are gapped at finite m, > 0 for
L — oo as we would naively expect. If we examine the
dependence of the (m,,) as a function of m,,, we find 5(0)
is consistent with zero and increases with m,, as shown in
the bottom panel of Fig. 5.
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FIG. 5. The low-lying eigenvalues, A;(m,,), of the Wilson-Dirac operator as a function of m,, are shown for L = 56 in the left panel.
The lowest eigenvalue that behaves anomalously for m,, > 0 is shown for four different values of L in the right panel.

We need to study the consequence of the above anoma-  regulator and one expects physics to be independent of the
lous behavior of the lowest eigenvalue on the overlap-Dirac ~ choice of m,,. In addition, the presence of the one
operator spectrum where m,, > 0 only plays the role of a  anomalously low-lying eigenvalue for positive m,, will
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FIG. 6. This plot shows the behavior of the lowest eigenvalue of the Wilson-Dirac operator. In the top-left panel, the approach of A? to
m? is shown as a function of 1/L for m,, = —0.275. In the top-right panel, the exponential decrease of A? with an increase in L is shown
for m,, = 0.275. In the bottom panel, the m,, dependence of f5(m,,) for the asymptotic exponential decrease exp(—p(m,,)L) for m,, > 0
is shown.
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affect the numerical computation using the overlap-Dirac
operator.

V. OVERLAP-DIRAC FERMIONS

The two different two-component massless overlap-
Dirac operators are

1+V 14 VT 1
DO:L; or D(T,:—’——; V=X—.
X'x

2 2
(34)

Whereas the presence of the Wilson term in the Wilson-
Dirac operator spoiled the commutativity of X and X', D,

commutes with DZ. In that sense, overlap-Dirac operator is
closer to a continuum Dirac operator—D,, cannot be anti-
Hermitian since it has to correctly reproduce the parity
anomaly. Since our background field satisfies Eq. (17), the
spectrum of V has the following property that results in a

double degeneracy in the spectrum of DZDO. Since
[PTVP] = VT, (35)
we have
V; = eiy; = VIPy;| = e i[Py],  (36)
which will result in a double degeneracy in the spectrum of

24V4VE

D)D, I

(37)

The analysis in Sec. IV has shown the presence of an
anomalously small eigenvalue of X'X for m,, > 0. The
mass, m,,, acts as a regulator for overlap-Dirac fermions,
and therefore it is natural to study the spectrum of D} D,, as
a function of m,,. Algorithmically, one uses a rational
approximation [22,23] of the type

n

1 r;
_ i 38
VXTX ZX*X + p; (38)

i=1

where the values of the residues and poles and the number
of them are chosen to approximate the operator on the left-
hand side to a desired accuracy in the needed range. This
range always has a lower limit away from zero, and the
presence of a very small eigenvalue of XX has to be taken
care of by performing

1 1 & r; -
T i -
V=—WVW+571—WW v;
VXX \/Al( V)W — XTX—Fpi( ™)
X" Xw, = Ayw,. (39)

With this algorithm in place for numerically dealing with
the overlap-Dirac operator, we computed the four low-lying
eigenvalues of

— ‘\§~* —
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FIG. 7. The two low-lying distinct eigenvalues, A¢, of the
overlap-Dirac operator as a function of L.

DD = |y, (40)
o 1 2mw/ 15

where we have accounted for the trivial mass renorm-
alization that arises from the mass of the Wilson-Dirac
fermion [24]. Due to the fact that the lowest eigenvalue
of the Wilson-Dirac operator becomes very small as L is
increased, we only went up to L = 36, where the lowest
eigenvalue is still large enough to enable its projection
to the desired accuracy. The spectrum clearly comes in
degenerate pairs due to Eq. (36). The approach to the
infinite L limit of the two low-lying distinct eigenvalues,
AY?, is shown in Fig. 7 with m,, = 0.425, where we fitted
the data to the form like for naive-Dirac fermions,
namely, as in Eq. (27). If we compare with the result for
Wilson-Dirac fermions in Fig. 3, we see that there is a
reasonable agreement between the second distinct eigen-
value of the massless overlap-Dirac operator and the
third distinct eigenvalue of the massless Wilson-Dirac
operator that is doubly degenerate. The lowest eigen-
value of the overlap-Dirac operator that also shows a
double degeneracy falls in between the two lowest
eigenvalues of the Wilson-Dirac operator, and it shows
strong finite L effects, but there is no simple relation-
ship between the lowest eigenvalue of the overlap-Dirac
operator and the two lowest eigenvalues of the Wilson-
Dirac operator.

Finally, we plot the spectrum of the two low-lying
distinct eigenvalues of the massless overlap-Dirac operator
as a function of the Wilson-Dirac mass in Fig. 8. Two
features are evident. There is clear evidence of a double
degeneracy in the spectrum within numerical errors arising
from the anomalously small eigenvalue of XX being not
treated accurately enough. The spectrum is essentially
independent of m,, for m,, > 0.3. If the background
configuration were continuumlike, we would have seen
an independence on m,, over the entire range.
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FIG. 8. The two low-lying distinct eigenvalues, A7, of the

overlap-Dirac operator as a function of m,,.

VI. CONCLUSIONS

We defined a background flux corresponding to a
L

monopole-antimonopole pair separated by a distance 3
on a L3 lattice by a noncompact flux of 27 units on a single
plaquette in the z direction for an extent of %. Using the
standard noncompact Wilson action on the lattice, we
found the noncompact link variables that minimizes the
action in the presence of the above background. A standard
continuum limit does not exist for the gauge field that
minimizes the action—the noncompact link variables do
not approach zero as we take L — oo. This is akin to
discretizing a spherical monopole—the link variables on
the plaquette surrounding the monopole do not go to zero
as we take L — oo. The main question we asked in this
paper is the following. Let us couple the monopole-
antimonopole background to a parity invariant lattice
massless fermion action using the compact link variables.
How do different versions of lattice regularization show the
effect of a background that is not continuumlike?

1
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Due to the background gauge field being invariant under
a combination of parity and a particular lattice translation
given by Eq. (17), we expect the spectrum to be doubly
degenerate if the lattice fermion is able to respect this
symmetry. The naive-Dirac fermion respects this symmetry
but describes eight (four if we reduced it to staggered
fermions) fermion flavors. The Wilson-Dirac fermion does
not respect this symmetry because the doublers are lifted by
realizing the two different two-component fermions related
by parity by an operator and its Hermitean conjugate that
do not commute. As such, neither the naive-Dirac fermion
nor Wilson-Dirac fermion shows a doubly degenerate spec-
trum at the lowest level for Q = 1; the 16-fold degeneracy
for eight flavors of naive-Dirac fermions is either split into
two eightfold or four fourfold degeneracies, implying that
flavor symmetry is not realized even when L — oo, and the
twofold degeneracy for one flavor of Wilson-Dirac fermion
is split into two, implying that Wilson-Dirac fermion does
not recover the expected degeneracy even when L — 0. In
spite of this, the spectrum of naive-Dirac fermions and
massless Wilson-Dirac fermions match well. The effect of
splitting of the lowest twofold degenerate level is also seen in
the two lowest eigenvalues of the spectrum of the Wilson-
Dirac operator with a physically finite mass. In addition to
this unanticipated behavior, Wilson-Dirac fermion has an
anomalously small eigenvalue for one sign of the Wilson-
Dirac mass that realizes a nonzero Chern-Simons term
[15,16]. Contrary to Wilson-Dirac fermions, the low-lying
eigenvalues of the overlap-Dirac show the anticipated
twofold degeneracy as long as we have evaluated the action
of the overlap-Dirac operator accurately. The spectrum is
independent of the Wilson-Dirac mass parameter that
appears in the kernel of the overlap-Dirac operator as long
as the Wilson-Dirac mass parameter is away from zero.

In spite of the fact that sensible results about monopoles
could be obtained using overlap-Dirac fermions, we expect
a numerical computation to be difficult. The low-lying
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FIG.9. The low-lying eigenvalues, A;(m,,), of the Wilson-Dirac operator as a function of m,, at L = 56 for a monopole-antimonopole
pair with Q = 2 are shown in the left panel. The low-lying spectrum at m,, = 0 is shown as a function of L in the right panel.
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eigenvalue(s) of the Wilson-Dirac operator that appears in
the kernel of the overlap-Dirac operator will affect the
numerical computation. A study of compact QED using
overlap-Dirac fermions is possible in principle, but it will
be numerically very expensive to study such a theory due to
the proliferation of low-lying eigenvalues arising from a
finite density of monopoles. This is evident in the left panel
of Fig. 9, where the low-lying eigenvalues of the Wilson-
Dirac operator as a function of Wilson-Dirac mass are
plotted in the presence of a monopole-antimonopole pair
with Q = 2. There are two anomalously small eigenvalues
for m,, > 0. In addition, the splitting of the twofold
degenerate spectrum is now seen in the lowest four
eigenvalues of the massless Wilson-Dirac operator as
shown in the right panel of Fig. 9. Therefore, both
anomalous effects increase with Q. Yet, we expect the
massless overlap-Dirac operator to exhibit proper behavior
as long as the numerical evaluation of the operator is
performed accurately.

In spite of the anomalous behavior of the low-lying
eigenvalues of the Wilson-Dirac operator, the massless
operator produced the expected dimension of the monopole
operator in Ref. [19]. This is probably due to the fact that
the entire spectrum contributes to the dimension of the
monopole operator and only the two lowest eigenvalues
show a splitting of the twofold degeneracy. Therefore, a
cheaper alternative would be to proceed in the same
direction and compute the dimension of the monopole
operator in noncompact QED using Wilson-Dirac fermions
in a fixed monopole-antimonopole background, and a
computation in this direction is currently in progress.
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