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We numerically investigate the effect of regulating fermions in the presence of singular background

fields in three dimensions. For this, we couple free lattice fermions to a background compact U(1) gauge

field consisting of a monopole-antimonopole pair of magnetic charge �Q separated by a distance s in a

periodic L3 lattice and study the low-lying eigenvalues of different lattice Dirac operators under a

continuum limit defined by taking L → ∞ at fixed s=L. As the background gauge field is parity even, we

look for a twofold degeneracy of the Dirac spectrum that is expected of a continuumlike Dirac operator. The

naive-Dirac operator exhibits such a parity doubling but breaks the degeneracy of the fermion-doubler

modes for the Q lowest eigenvalues in the continuum limit. The Wilson-Dirac operator lifts the fermion

doublers but breaks the parity doubling in the Q lowest modes even in the continuum limit. The overlap-

Dirac operator shows parity doubling of all the modes even at finite L that is devoid of fermion doubling

and is singled out as a properly regulated continuum Dirac operator in the presence of singular gauge field

configurations, albeit with a peculiar algorithmic issue.
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I. INTRODUCTION

Lattice regularization of noncompact QED [1] in three

dimensions is defined by a noncompact action for the gauge

fields, θμðnÞ ∈ R, on the link connecting n and nþ μ̂, and

the lattice fermions couple to Uð1Þ valued link variables,

UμðnÞ ¼ eiθμðnÞ. Monopoles are suppressed in the con-

tinuum limit in such a regularization. Recent numerical

analysis of noncompact QED in three dimensions with an

even number of massless two-component fermions shows

that these theories are scale invariant independent of the

number of flavors [2–4]. It is natural to follow up such a

study with an analysis of compact QED3 where the lattice

gauge action is the compact gauge action [5]. When we

attempted to numerically study this theory using overlap-

Dirac fermions, we found it be numerically formidable

due to anomalously small eigenvalues of the massive

Wilson-Dirac kernel that is at the core of the overlap-

Dirac operator—to contrast, for a smooth field, one would

find the spectrum of a massive Wilson-Dirac operator to be

gapped at least by the Wilson mass. This prompted us to

consider the question of what happens when the conven-

tional lattice regulated fermions, which lead to universal

results in the continuum limit over generic smooth gauge

fields, are coupled to a singular gauge field from a

monopole; do operations at the level of lattice spacing,

such as point splitting used regularly in lattice regulariza-

tion, have any effect in the presence of a Dirac string which

is also one lattice spacing thick? We present related

numerical observations in this paper.

Briefly, we recount some aspects of lattice fermions

in three dimensions. We use two-component fermions

throughout this paper. The naive fermion operator =D
obtained by using the discrete derivative operator is the

simplest. As is well known, it leads to 2d (8 in three

dimensions) fermions flavors. It is a well-motivated expect-

ation that there is flavor degeneracy in the continuum limit.

There is a trivial twofold degeneracy for naive-Dirac

fermions [6,7] on the lattice, and one copy is the

staggered-Dirac fermion, which is expected to realize a

four-fermion flavor theory in three dimensions. If there is a

fourfold degeneracy in the continuum limit, one could

possibly define a theory with the square root of the

staggered-Dirac operator to study a two-flavor parity

invariant theory. Some continuum-based reasoning pro-

vides arguments as to why gauge field backgrounds with
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nontrivial topology might obstruct a well-defined con-

tinuum limit of a lattice theory with the fourth root of

the staggered-Dirac operator in even dimensions [8–11]. It

is possible that monopole backgrounds in three dimensions

suffer from similar effects. The two-component Wilson-

Dirac operator is obtained by adding the Wilson term B,
which is irrelevant by naive power counting, to the naive

operator =D. That is, the massive Wilson-Dirac operator is

given by

X ¼ −mw þ Bþ =D; ð1Þ

which lifts the mass of the seven of the doublers, leaving

only one physical fermion of lattice mass mw on smooth

gauge fields. The lattice fermion, which is capable of

reproducing the continuum symmetries, such as the UðNÞ
flavor symmetry in three-dimensional N-flavor QED3, is

the overlap-Dirac operator. The central quantity that

appears in the overlap formalism [3,12] is the unitary

operator V defined as

V ¼ X
1
ffiffiffiffiffiffiffiffiffi

X†X
p ; ð2Þ

with the Wilson mass 0 < mw < 2, and the massless

overlap operator is given by

Do ¼
1þ V

2
; D†

oDo ¼
2þ V þ V†

4
: ð3Þ

The instance where the otherwise irrelevant operators used

in lattice regularization play significant roles is the parity

anomaly [13–16]. Parity takes the naive-Dirac operator =D

to =D† ¼ −=D; the Wilson-Dirac operator X transforms to

X†, and the unitary operator transforms V to V†. The phase

of detX for mw ¼ 0 is nonvanishing even in the continuum

limit, even though the unregulated continuum massless

Dirac operator is anti-Hermitian. This effect propagates

itself to the nonvanishing phase of detð1þ VÞ of the

massless overlap fermion. Notwithstanding such effects

in three dimensions, we expect X to commute with X† in

the continuum limit, unless the gauge field background

is not smooth even in the continuum limit. Independent of

the nature of the gauge field background, V and V†

commute. This places the overlap-Dirac operator closer

to the continuum Dirac operator compared to the Wilson-

Dirac operator. The domain-wall-Dirac operator formalism

in three dimensions [17,18] is expected to behave like the

overlap-Dirac operator.

Having explained the lattice formalism, we return back

to the problem that motivated us to study the problem to

be presented in this paper. Following the conventions of

Ref. [3], we will assume that mw > 0 in the region

of interest, and this will lead us to the unconventional

notation for Wilson-Dirac fermions; namely, mw < 0 will

correspond to fermions with positive mass. Since the

operator X†X can be viewed as the one for two flavors

of two-component fermions that preserves parity, the sign

of the mass should not matter in the conventional approach

to the continuum limit. But our attempts to study compact

QED with overlap-Dirac fermions failed due to several

eigenvalues of X†X becoming very small for all values of

mw ∈ ð0; 2Þ. Furthermore, we found the number of such

anomalously small eigenvalues to grow with the size of the

three-dimensional torus.

The failure described in the previous paragraph prompted

us to study the low-lying spectrum of the following positive

definite operators constructed out of lattice operators; =D†=D

for the naive-Dirac operator; X†X as a function ofmw for the

Wilson-Dirac operator; and of the ð1þ VÞð1þ V†Þ for the
overlap-Dirac operator in a controlled background before

proceeding to address an alternative approach to the study

of compact QED. As we will argue, the eigenvalues of such

a positive definite operator is doubly degenerate in the

continuum in a monopole-antimonopole background and

hence serve as a promising observable to look for any

deviation of the regulated lattice operator from the con-

tinuum one. It is not possible to write down a background

gauge field that has a single monopole in a periodic lattice,

but it is possible to write down one that has a monopole-

antimonopole pair separated by a fixed distance. Such a

background was considered in a study of the monopole

scaling dimension [19]. We will use a similar background

with a minor change to better fit it in a periodic lattice.

II. LATTICE MONOPOLE-ANTIMONOPOLE

FIELD

An expression for the standard spherical Dirac monop-

ole with a specific choice for the direction of the semi-

infinite Dirac string can be found in Ref. [20]. It is natural

for us to pick the direction of the Dirac string along one of

the spatial directions on the lattice. Since we will work on

a finite periodic lattice, we need to insert a Dirac

monopole-antimonopole pair with the string attached

between the monopole and the antimonopole. One way

to include the monopole-antimonopole background field

on the lattice is to integrate the continuum field A of a

Dirac monopole-antimonopole pair [20] over links joining

site x to xþ a, where a is the lattice spacing. That is,

define a link variable

θ̄μðxÞ ¼
Z

xþaμ̂

x

dx0μAμðx0Þ; ð4Þ

as given in Ref. [19]. The drawback of this approach is

that periodicity of lattice forces artificial jumps in the

gauge field across the “boundaries.” So, we consider

a better construction of the field on periodic lattice

below.
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A. Monopole-antimonopole field on periodic lattice

We place the finite Dirac string along a lattice spatial

direction. We implement the background gauge field that

contains a monopole-antimonopole pair of integer charge

�Q and separated by a length s on a periodic lattice of

length L as defined by the following noncompact field

strength BμνðnÞ at the lattice site n ¼ ðn1; n2; n3Þ:

B23ðnÞ ¼ B31ðnÞ ¼ 0;

B12ðnÞ ¼
�

2πQ n1 ¼ n2 ¼ L
2
; 1 ≤ n3 ≤ s

0 otherwise;
;

n ∈ ½1; L�: ð5Þ

That is, BμνðnÞ denotes the noncompact field strength on

the directed plaquette defined by the corners n, nþ μ̂,

nþ μ̂þ ν̂, and nþ ν̂ traversed in the counterclockwise

direction. We could have spread the jump from 0 to Q and

Q to 0 over more than one lattice spacing. This will not

change the symmetries, and our choice enables the largest

numbers of choices of L without having to go to very large

L. As constructed, the monopole charge density is

QðnÞ ¼ 1

4π

X

μνρ

ϵμνρ½Bμνðnþ ρ̂Þ − BμνðnÞ�

¼ Qδn1;L2
δn2;L2

½δn3;0 − δn3;s�: ð6Þ

As is well known, we cannot find a set of gauge fields,

θμðnÞ, that realizes the above set of plaquette values as their
field strength. Instead, one can find a set of gauge fields that

minimizes the noncompact action in the presence of a flux

background, Bμν, given by

Sg ¼
X

n

X

3

μ<ν¼1

½FμνðnÞ − BμνðnÞ�2;

FμνðnÞ ¼ θμðnÞ þ θνðnþ μ̂Þ − θμðnþ ν̂Þ − θνðnÞ: ð7Þ

The minimum is easily found by going to the momentum

space k ¼ ðk1; k2; k3Þ for integer kμ, and the solution is

given by

θμðnÞ ¼
X

k

θ̃μðkÞei
2πk·n
L ; θ̃μðkÞ ¼

J̃μðkÞ
k̂2

;

k̂2 ¼ 4
X

2

μ¼1

sin2
πkμ

L
; ð8Þ

where the current is given by

JμðnÞ ¼
X

ν

½BμνðnÞ − Bμνðn − ν̂Þ�;

J̃μðkÞ ¼
1

L3

X

n

JμðnÞe−i
2πk·n
L : ð9Þ

The current has no zero momentum component, and

the conservation of the current on the lattice is given

by
P

μ ½JμðnÞ − Jμðn − μ̂Þ� ¼ 0.

B. Parity invariance of the field

Using the field A from a continuum Dirac-monopole

pair, it is easy to show that the field is parity invariant under

x → −x about the midpoint of the Dirac string connecting

the monopole and antimonopole. In order to demonstrate

this for the background field as defined above, let us first

define the parity operator P via its action n → n
p ¼ L − n,

where L ¼ ðL;L; LÞ. The action of parity on gauge fields

on the lattice is then

ðPθÞμðnÞ ¼ θ
p
μ ðnÞ ¼ −θμðL − n − μÞ; ð10Þ

and the plaquette defined in Eq. (7) satisfies

F
p
μνðnÞ ¼ FμνðL − n − μ̂ − ν̂Þ: ð11Þ

Under this relation, the background flux defined in Eq. (5)

satisfies the property

B
p
μνðn − tÞ ¼ BμνðnÞ; t ¼ ð−1;−1; sþ 1 − LÞ: ð12Þ

Therefore, the background field that minimizes Eq. (7) will

satisfy the property

θ
p
μ ðn − tÞ ¼ θμðnÞ: ð13Þ

Let us define the special translation operator τt by

½τtψ �ðnÞ ¼ ψðnþ tÞ ð14Þ

and the standard covariant translation operator Tμ by

ðTθ
μψÞðnÞ ¼ eiθμðnÞψðnþ μ̂Þ: ð15Þ

Since

PTθ
μP ¼ Tθp†

μ and τ
†
t
Tθp

μ τt ¼ Tθ
μ; ð16Þ

we arrive at

Tθ
μ
† ¼ P̄Tθ

μP̄
†; P̄ ¼ Pτt; P̄†P̄ ¼ I: ð17Þ
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C. Defining continuum limit of the

background field

The continuum limit of a lattice field theory is a subtle

limit along the lines of constant physics near a fixed point

of the lattice theory. However, in this paper, we consider a

comparatively trivial continuum limit—it is possible to

define a continuum limit of a background gauge field in

such a way that length scales associated with the back-

ground field remain fixed with respect to the lattice size. In

other words, we set the physical size of the periodic box to

be unity by definition and measure all other length scales

with respect to it, in which case the lattice spacing is 1=L.
For example, we can consider a wavelike lattice gauge field

θwaveμ ðxÞ ¼ cμ=L cosð2π=LÞ of which the continuum limit

L → ∞ is taken at a fixed value of parameter cμ. In the

case of the monopole-antimonopole pair, the associated

length scale is the lattice distance s between the monopole

and antimonopole. Therefore, we define the continuum

limit as the L → ∞ limit at a fixed value of f ¼ s=L. In
this paper, we set f ¼ 1=4. Now, it makes sense to ask

whether different lattice discretization of the continuum

Dirac operator gives universal results in the above defined

continuum limit.

It is possible to demonstrate the nontrivial nature of the

monopole background that is discretized on the lattice by

using the spherical Dirac monopole field A. Since A is

scale invariant, it easy to see that the corresponding lattice

field θ̄μðnÞ that connects the lattice site n to nþ μ̂ remains

invariant at fixed n for all values of L under the above

continuum limit. The reason is the following: when the

lattice spacing is reduced by a factor k, the physical

distance of a lattice site from the monopole reduces by a

factor k, and hence the physical gauge field at the lattice site
increases by a factor 1=k. When integrated over a lattice

spacing to obtain θ̄, the factor k gets canceled. This is

unlike the smooth background θwave considered above,

which approaches zero as 1=L in the continuum limit.

The latticelike nature of the background field even in the

L → ∞ limit can be seen in the scaling of the noncompact

action Sb ¼
P

n

P

μ>ν FμνðnÞ2 with L for Fμν obtained

through the minimization of Eq. (7). The background

field does not have a continuum limit in the usual sense

where we expect θμðnÞ to be of order 1
L
and the derivatives

to be order 1
L
. In that case, the average value of the action,

namely,

pðLÞ ¼ 1

3L3
SbðLÞ; ð18Þ

is expected to go like 1

L4. Instead, we find that

pðLÞ ¼ 3.271
1

L2
− 5.85

1

L3
ð19Þ

for the background field discussed in Sec. II Awith Q ¼ 1

as shown in Fig. 1. This atypical behavior is expected due

to the presence of a monopole-antimonopole pair in the

background gauge field corresponding to singularities in

the flux distribution. In the following sections, we will

study the effect of this on the low-lying spectrum of

fermions.

D. Parity doubling of continuum Dirac

spectrum as reference for lattice fermions

In order to investigate the effect of the singular nature

of the monopole-antimonopole background field on lattice

regulated fermions, we need to choose an appropriate

observable that is characteristic of the field and has a

well-defined property in the unregulated continuum Dirac

operator. As we noted above, a characteristic feature of the

background field is its parity invariance. For the continuum

Dirac operator,

P=DcontðAÞP ¼ −=DcontðApÞ; =DcontðAÞ ¼ =∂ þ i=A; ð20Þ

with A
p
μ ðxÞ ¼ −Aμð−xÞ. For parity invariant fields,

A
p
μ ðxÞ ¼ AμðxÞ up to a gauge transformation. This implies

the anticommuting relation

P=DcontðAÞP ¼ −=DcontðAÞ: ð21Þ

Since =Dcont is anti-Hermitian, the above anticommutation

property implies that, if ψþ is an eigenvector with

=Dcontψþ ¼ iλψþ; ð22Þ

then ψ− ¼ Pψþ is an eigenvector with eigenvalue −iλ. It is

convenient to recast this as a statement about ð=DcontÞ†=Dcont:

½ð=DcontÞ†=Dcont�ψ� ¼ λ2ψ�: ð23Þ

0.03 0.04 0.05 0.06 0.07

1/L

2.9

2.95

3

3.05

3.1

L
2
p
(L

)

3.271 - 5.85/L

FIG. 1. The action of the background gauge field as a function

of L.
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Thus, there a parity doubling of eigenvalues of

ð=DcontÞ†=Dcont. As we will see, the low-lying eigenvalues

of ð=DcontÞ†=Dcont and their expected parity doubling lead to

unexpected observations for lattice fermions.

The following will then be our method. Wewill study the

low-lying eigenvalue spectrum of lattice Dirac operators in

the limit ðL; sÞ → ∞ at a fixed f ¼ s
L
. Precisely, we will

study the microscopic eigenvalues of the positive definite

operator ð=DlatÞ†=Dlat constructed out of the lattice Dirac

operators =Dlat for the naive-Dirac, Wilson-Dirac, and

overlap-Dirac lattice operators in the above background

and analyze the low-lying spectrum as a function of L at a

fixedQ and f. We will mainly considerQ ¼ 1, and we will

set f ¼ 1
4
. We will work with L that are multiples of 4 from

L ¼ 12 to L ¼ 56. At the end, we will study Wilson-Dirac

fermions with Q ¼ 2 in order to make some conclusions

about the study of compact QED using Wilson-Dirac and

overlap-Dirac fermions.

III. NAIVE-DIRAC FERMIONS

The naive massless Dirac operator in three dimensions is

explicitly given by

=D ¼ 1

2

X

3

μ¼1

σμðTμ − T†
μÞ; ðTμϕÞðnÞ ¼ eiθμðnÞϕðnþ μ̂Þ;

T†
μTμ ¼ 1; =D† ¼ −=D; ð24Þ

where σμ are the two-component Pauli matrices. This

operator is expected to describe a theory with eight

degenerate flavors. Since the staggered-Dirac operator is

obtained from the naive-Dirac operator by a change of

basis [6,7], it is clear that the spectrum will trivially show a

two-flavor degeneracy for all background gauge fields. In

addition, for our background gauge field that satisfies

Eq. (17), we have a relation similar to the continuum

Dirac operator as

0 0.05 0.1
1/L

2

2.5

3

L
Λ

i(L
)

1.9620
3.1088
3.3405
3.3416

0 0.05 0.1
1/L

1.5

2

2.5

3
L

Λ
i(L

)

1.318
2.3738
2.9807
3.2458
3.3400
3.3403
3.3420
3.3420

0 0.05 0.1

1/L

3.28

3.3

3.32

3.34

L
Λ

i(L
) 3.3400

3.3403
3.3420
3.3420
3.3405
3.3416

FIG. 2. The low-lying eigenvalues of the naive-Dirac operator as a function of L. The top-left plot shows the spectrum for

L ¼ 4ð2nþ 2Þ; n ¼ 1, 2, 3, 4, 5, 6 and shows an eightfold degeneracy. The top-right plot shows the spectrum for L ¼ 4ð2nþ 1Þ; n ¼ 1,

2, 3, 4, 5, 6 and shows a fourfold degeneracy. The bottom plot shows the third and fourth distinct eigenvalues for L ¼ 4ð2nþ 2Þ (in
black) and the fifth to eighth distinct eigenvalues for L ¼ 4ð2nþ 1Þ (in red). All these different spectral levels in the bottom panel are

expected to become degenerate only when L → ∞.
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P̄=DP̄† ¼ −=D: ð25Þ

The above parity doubling will lead to at least a fourfold

degeneracy of the spectrum of

=D†=Dψ i ¼ Λ
2
iψ i; 0 < Λ1 < Λ2 < � � � : ð26Þ

If naive-Dirac fermions do not break the flavor symmetry,

we should therefore find a 16-fold degenerate spectrum.We

will compute the low-lying eigenvalues of =D†=D using the

Ritz algorithm [21] and impose antiperiodic boundary

conditions in one of three directions (we choose the y
direction). We expect λi ¼ limL→∞ΛiL to be finite and

nonzero. For reference, the three distinct lowest eigenval-

ues for free fermions with antiperiodic boundary conditions

in one of three directions will be ðλ1; λ2; λ3Þ ¼ ð1;
ffiffiffi

5
p

; 3Þπ.
The results for the lowest 32 eigenvalues are shown in

Fig. 2. Let us first focus on the top-left plot in Fig. 2, which

corresponds to even values of s obtained by setting L ¼
4ð2nþ 2Þ for n ¼ 1, 2, 3, 4, 5, 6. The first two-lying

distinct eigenvalues have an eightfold degeneracy, and the

third distinct eigenvalue has an almost 16-fold degeneracy.

Therefore, we conclude that the eightfold flavor symmetry

is broken into two remnant fourfold flavor symmetries at

the lowest level and this effect persists all the way to

L → ∞. When we look at the spectrum in the top-right plot

corresponding to odd values of s obtained by setting L ¼
4ð2nþ 1Þ for n ¼ 1, 2, 3, 4, 5, 6, we see that the four low-

lying distinct eigenvalues have only a fourfold degeneracy.

Therefore, the flavor symmetry is broken to the minimum

required by the trivial twofold symmetry required by the

presence of two copies of staggered fermions. Furthermore,

this flavor breaking persists all the way to L → ∞.

Focusing on the bottom plot, the third and fourth distinct

eigenvalues when L ¼ 4ð2nþ 2Þ and the fifth to eighth

distinct eigenvalues when L ¼ 4ð2nþ 1Þ all approach a

16-fold degeneracy when L → ∞, and the results from L ¼
4ð2nþ 1Þ and L ¼ 4ð2nþ 2Þ match. We fitted

ΛiL ¼ λi þ
αi

L
þ βi

L2
ð27Þ

using a standard least-square fit, and the fitted values of λi
are quoted in Fig. 2 as legends of the corresponding fits. To

make the point the 16-fold degeneracy is achieved only

when L → ∞, we have listed the fits from the four fourfold

degenerate spectrum for L ¼ 4ð2nþ 1Þ and the two eight-

fold degenerate spectrum for L ¼ 4ð2nþ 2Þ in all three

plots. The convergence in the actual data as L → ∞ is

better than what is seen in the fitted values at L → ∞. We

expect any slight disagreement between the almost degen-

erate extrapolated eigenvalues to be within systematical

errors associated with the fit form in Eq. (27).

IV. WILSON-DIRAC FERMIONS

The Wilson term,

B −mw ¼ 1

2

X

3

μ¼1

ð2 − Tμ − T†
μÞ −mw; B ¼ B†; ð28Þ

will lift the doublers observed in Sec. III, and

X ¼ B −mw þ =D; X† ¼ B −mw − =D ð29Þ

are Wilson-Dirac fermions for a pair of two-component

fermions related by parity. The mass term is parity even as

long as we view (B −mw) as a whole as the mass term with

mw ∈ ð−2; 2Þ. We have used an unconventional notation

for the sign of the mass to make it convenient for the

definition of overlap-Dirac fermions.

The Wilson-Dirac fermion action for a pair of two-

component fermions that is parity invariant is given by

Sfw ¼ ð ϕ̄2 ϕ̄1 Þ
�

0 X†

X 0

��

ϕ1

ϕ2

�

: ð30Þ

For our particular background which obeys Eq. (17), we

have P̄†XP̄ ¼ X†, and we can identify ϕ2 with P̄
†ϕ1. Since

we can only discuss the spectrum of a four-component

parity invariant fermion, we do not have the double

degeneracy present in two-component naive fermions at

the expense of removing the doublers. The eigenvalues of

the four-component fermion operator come in �Λi pairs

where Λi > 0 are obtained from the eigenvalue problem

X†Xψ i ¼ Λ
2
iψ i; 0 < Λ1 < Λ2 < � � � : ð31Þ

Using Eq. (29), we can write

X†X ¼ −=D2 þ ½B; =D� þ ðB −mwÞ2: ð32Þ

If we consider gauge field configurations generated by the

standard noncompact Wilson action [gauge fields on links

will scale as 1
L
at a fixed L when the background field is set

to zero in Eq. (7)] as was done in Ref. [2], we expect =D to

scale like 1
L
and B to scale like 1

L2. To maintain a finite

physical mass, we setmw ¼ m
L
where we keepm fixed as we

take L → ∞. In this setup, we expect

λiðmÞ ¼ lim
L→∞

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ
2
i −m2

w

q

ð33Þ

to be finite and nonzero. Furthermore, we expect λiðmÞ to
be independent ofm and consistent with the value obtained

using naive-Dirac fermions.

A. Properties at finite physical mass m =mwL

We first setmw ¼ 0 and plot the four lowest eigenvalues,

LΛiðLÞ, as a function of 1
L
in Fig. 3. The data fit Eq. (27)

NIKHIL KARTHIK and RAJAMANI NARAYANAN PHYS. REV. D 100, 094501 (2019)

094501-6



well, and the fitted values of λi are quoted in Fig. 3 as

legends of the corresponding fits. On the one hand, the two

lowest eigenvalues approach different limits as L → ∞,

showing that Wilson-Dirac fermions do not recover a

double degenerate spectrum realized by naive fermions

that satisfies Eq. (25). On the other hand, we see that there

is good agreement in the L → ∞ limit between the two

lowest eigenvalues (λ1 and λ2) for the Wilson-Dirac

operator and the two lowest eigenvalues associated with

the black lines (case of eightfold degeneracy) in Fig. 2. The

doubling seen in the 16-fold degenerate spectrum of naive-

Dirac fermions in Fig. 2 is also seen in Fig. 3, since λ3 and

λ4 are equal. Furthermore, the values for λ3 ¼ λ4 match

well with the corresponding value obtained from naive-

Dirac fermions. We conclude that naive-Dirac and massless

Wilson-Dirac fermions behave in the same manner in the

continuum limit with Q ¼ 1:

(i) The two lowest eigenvalues show a splitting

either due to the breaking of flavor symmetry or

due to the need for two different two-component

Wilson-Dirac operators to realize a single fermion

flavor.

(ii) The rest of the spectrum shows the expected twofold

degeneracy per two-component flavor (explicitly

seen for the third distinct eigenvalue).

In order to observe possible effects due the Wilson term

not being irrelevant, we proceed to study the behavior of the

eigenvalues as a function ofm ¼ mwL. To this end, we plot
the first four values of λiðmÞ, obtained by fitting the right-

hand side of Eq. (33) using Eq. (27), in Fig. 4. We note that

λ1ðmÞ and λ2ðmÞ depends on m, suggesting that B and

½B; =D� do not scale naively as expected. This is an effect

of the background as viewed by Wilson-Dirac fermions.

But we see that λ3ðmÞ ¼ λ4ðmÞ are independent of m.

The effect of a nonsmooth background with Q ¼ 1 affects

only the two lowest eigenvalues even as a function of m.

Note that naive-Dirac fermions will show the expected

quadratic dependence of mass simply because the mass

term commutes with =D.

B. Properties at Wilson mass mw that is relevant

to the kernel of overlap operator

Finally, we need to understand the behavior of the low-

lying eigenvalues as a function of mw when it is kept fixed

as we vary L. As long as mw ≠ 0, it corresponds to a

fermion with infinite mass that appears as a kernel for the

overlap-Dirac operator. A plot of the four low-lying

eigenvalues, ΛiðmwÞ, is shown in the left panel of Fig. 5

for L ¼ 56, and the effect of a background that is not

continuumlike is evident in the behavior of the lowest

eigenvalue. The higher eigenvalues seem to show a

behavior that reaches a minimum at mw ¼ 0. The lowest

eigenvalue, on the other hand, shows two distinct behaviors

for mw < 0 and mw > 0. The right panel of Fig. 5 shows

that the lowest eigenvalue at a fixed mw decreases with

increasing L for mw > 0, whereas the lowest eigenvalue

approaches a nonzero limit at infinite L for mw < 0. For

mw < 0, the eigenvalue Λ1 at a fixed mw approaches mw in

the L → ∞ limit, with finite L corrections that are poly-

nomial in 1=L. This is similar to the behavior seen in the

higher eigenvalues as well. This is shown for a fixed value

mw ¼ −0.275 in the top-left panel of Fig. 6 where Λ
2
1 is

plotted as a function of 1=L. For mw > 0, the lowest

eigenvalue approaches zero with a distinct exp ð−βðmwÞLÞ
behavior for larger L with an mw dependent coefficient

βðmwÞ. This is demonstrated for mw ¼ 0.275 in Fig. 5

by plotting logðλ21Þ as a function of L where we observe

a good description of the large L data by a simple

exp ð−βð0.275ÞLÞ shown by the line. On the other hand,

the higher eigenvalues are gapped at finite mw > 0 for

L → ∞ as we would naively expect. If we examine the

dependence of the βðmwÞ as a function of mw, we find βð0Þ
is consistent with zero and increases with mw as shown in

the bottom panel of Fig. 5.
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1.5
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3.5
L

Λ
i(L

)
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3.3414
3.3407

FIG. 3. The low-lying eigenvalues of the Wilson-Dirac operator

with mw ¼ 0 as a function of L.
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FIG. 4. The low-lying eigenvalues, λiðmÞ of the Wilson-Dirac

operator obtained in the limit of L → ∞ as a function of m.
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We need to study the consequence of the above anoma-

lous behavior of the lowest eigenvalue on the overlap-Dirac

operator spectrum where mw > 0 only plays the role of a

regulator and one expects physics to be independent of the

choice of mw. In addition, the presence of the one

anomalously low-lying eigenvalue for positive mw will

1/L
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0.1
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Λ
2 1
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0
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5
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L
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2
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n
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Λ
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7
5
)
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β
(m

w
)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 10 20 30 40 50 60

FIG. 6. This plot shows the behavior of the lowest eigenvalue of the Wilson-Dirac operator. In the top-left panel, the approach of Λ2
1 to

m2
w is shown as a function of 1=L formw ¼ −0.275. In the top-right panel, the exponential decrease of Λ2

1 with an increase in L is shown

for mw ¼ 0.275. In the bottom panel, the mw dependence of βðmwÞ for the asymptotic exponential decrease expð−βðmwÞLÞ for mw > 0

is shown.
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FIG. 5. The low-lying eigenvalues, ΛiðmwÞ, of the Wilson-Dirac operator as a function of mw are shown for L ¼ 56 in the left panel.

The lowest eigenvalue that behaves anomalously for mw > 0 is shown for four different values of L in the right panel.
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affect the numerical computation using the overlap-Dirac

operator.

V. OVERLAP-DIRAC FERMIONS

The two different two-component massless overlap-

Dirac operators are

Do ¼
1þ V

2
; or D†

o ¼
1þ V†

2
; V ¼ X

1
ffiffiffiffiffiffiffiffiffi

X†X
p :

ð34Þ

Whereas the presence of the Wilson term in the Wilson-

Dirac operator spoiled the commutativity of X and X†, Do

commutes with D†
o. In that sense, overlap-Dirac operator is

closer to a continuum Dirac operator—Do cannot be anti-

Hermitian since it has to correctly reproduce the parity

anomaly. Since our background field satisfies Eq. (17), the

spectrum of V has the following property that results in a

double degeneracy in the spectrum of D†
oDo. Since

½P̄†VP̄� ¼ V†; ð35Þ

we have

Vψ j ¼ eiϕjψ j ⇒ V½P̄ψ j� ¼ e−iϕj ½P̄ψ j�; ð36Þ

which will result in a double degeneracy in the spectrum of

D†
oDo ¼

2þ V þ V†

4
: ð37Þ

The analysis in Sec. IV has shown the presence of an

anomalously small eigenvalue of X†X for mw > 0. The

mass, mw, acts as a regulator for overlap-Dirac fermions,

and therefore it is natural to study the spectrum of D†
oDo as

a function of mw. Algorithmically, one uses a rational

approximation [22,23] of the type

1
ffiffiffiffiffiffiffiffiffi

X†X
p ¼

X

n

i¼1

ri

X†X þ pi

; ð38Þ

where the values of the residues and poles and the number

of them are chosen to approximate the operator on the left-

hand side to a desired accuracy in the needed range. This

range always has a lower limit away from zero, and the

presence of a very small eigenvalue of X†X has to be taken

care of by performing

1
ffiffiffiffiffiffiffiffiffi

X†X
p v ¼ 1

ffiffiffiffiffiffi

Λ1

p ðw†

1vÞw1 þ
X

n

i¼1

ri

X†X þ pi

ð1 − w1w
†

1Þv;

X†Xw1 ¼ Λ1w1: ð39Þ

With this algorithm in place for numerically dealing with

the overlap-Dirac operator, we computed the four low-lying

eigenvalues of

½D†
oDo�ψ i ¼

�

Λ
o
i

2mw

�

2

ψ i; ð40Þ

where we have accounted for the trivial mass renorm-

alization that arises from the mass of the Wilson-Dirac

fermion [24]. Due to the fact that the lowest eigenvalue

of the Wilson-Dirac operator becomes very small as L is

increased, we only went up to L ¼ 36, where the lowest

eigenvalue is still large enough to enable its projection

to the desired accuracy. The spectrum clearly comes in

degenerate pairs due to Eq. (36). The approach to the

infinite L limit of the two low-lying distinct eigenvalues,

Λ
o
i , is shown in Fig. 7 with mw ¼ 0.425, where we fitted

the data to the form like for naive-Dirac fermions,

namely, as in Eq. (27). If we compare with the result for

Wilson-Dirac fermions in Fig. 3, we see that there is a

reasonable agreement between the second distinct eigen-

value of the massless overlap-Dirac operator and the

third distinct eigenvalue of the massless Wilson-Dirac

operator that is doubly degenerate. The lowest eigen-

value of the overlap-Dirac operator that also shows a

double degeneracy falls in between the two lowest

eigenvalues of the Wilson-Dirac operator, and it shows

strong finite L effects, but there is no simple relation-

ship between the lowest eigenvalue of the overlap-Dirac

operator and the two lowest eigenvalues of the Wilson-

Dirac operator.

Finally, we plot the spectrum of the two low-lying

distinct eigenvalues of the massless overlap-Dirac operator

as a function of the Wilson-Dirac mass in Fig. 8. Two

features are evident. There is clear evidence of a double

degeneracy in the spectrum within numerical errors arising

from the anomalously small eigenvalue of X†X being not

treated accurately enough. The spectrum is essentially

independent of mw for mw > 0.3. If the background

configuration were continuumlike, we would have seen

an independence on mw over the entire range.
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FIG. 7. The two low-lying distinct eigenvalues, Λ
o
i , of the

overlap-Dirac operator as a function of L.
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VI. CONCLUSIONS

We defined a background flux corresponding to a

monopole-antimonopole pair separated by a distance L
4

on a L3 lattice by a noncompact flux of 2π units on a single

plaquette in the z direction for an extent of L
4
. Using the

standard noncompact Wilson action on the lattice, we

found the noncompact link variables that minimizes the

action in the presence of the above background. A standard

continuum limit does not exist for the gauge field that

minimizes the action—the noncompact link variables do

not approach zero as we take L → ∞. This is akin to

discretizing a spherical monopole—the link variables on

the plaquette surrounding the monopole do not go to zero

as we take L → ∞. The main question we asked in this

paper is the following. Let us couple the monopole-

antimonopole background to a parity invariant lattice

massless fermion action using the compact link variables.

How do different versions of lattice regularization show the

effect of a background that is not continuumlike?

Due to the background gauge field being invariant under

a combination of parity and a particular lattice translation

given by Eq. (17), we expect the spectrum to be doubly

degenerate if the lattice fermion is able to respect this

symmetry. The naive-Dirac fermion respects this symmetry

but describes eight (four if we reduced it to staggered

fermions) fermion flavors. The Wilson-Dirac fermion does

not respect this symmetry because the doublers are lifted by

realizing the two different two-component fermions related

by parity by an operator and its Hermitean conjugate that

do not commute. As such, neither the naive-Dirac fermion

nor Wilson-Dirac fermion shows a doubly degenerate spec-

trum at the lowest level for Q ¼ 1; the 16-fold degeneracy

for eight flavors of naive-Dirac fermions is either split into

two eightfold or four fourfold degeneracies, implying that

flavor symmetry is not realized even when L → ∞, and the

twofold degeneracy for one flavor of Wilson-Dirac fermion

is split into two, implying that Wilson-Dirac fermion does

not recover the expected degeneracy even when L → ∞. In

spite of this, the spectrum of naive-Dirac fermions and

massless Wilson-Dirac fermions match well. The effect of

splitting of the lowest twofold degenerate level is also seen in

the two lowest eigenvalues of the spectrum of the Wilson-

Dirac operator with a physically finite mass. In addition to

this unanticipated behavior, Wilson-Dirac fermion has an

anomalously small eigenvalue for one sign of the Wilson-

Dirac mass that realizes a nonzero Chern-Simons term

[15,16]. Contrary to Wilson-Dirac fermions, the low-lying

eigenvalues of the overlap-Dirac show the anticipated

twofold degeneracy as long as we have evaluated the action

of the overlap-Dirac operator accurately. The spectrum is

independent of the Wilson-Dirac mass parameter that

appears in the kernel of the overlap-Dirac operator as long

as the Wilson-Dirac mass parameter is away from zero.

In spite of the fact that sensible results about monopoles

could be obtained using overlap-Dirac fermions, we expect

a numerical computation to be difficult. The low-lying
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FIG. 8. The two low-lying distinct eigenvalues, λoi , of the

overlap-Dirac operator as a function of mw.
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FIG. 9. The low-lying eigenvalues, ΛiðmwÞ, of the Wilson-Dirac operator as a function ofmw at L ¼ 56 for a monopole-antimonopole

pair with Q ¼ 2 are shown in the left panel. The low-lying spectrum at mw ¼ 0 is shown as a function of L in the right panel.
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eigenvalue(s) of the Wilson-Dirac operator that appears in

the kernel of the overlap-Dirac operator will affect the

numerical computation. A study of compact QED using

overlap-Dirac fermions is possible in principle, but it will

be numerically very expensive to study such a theory due to

the proliferation of low-lying eigenvalues arising from a

finite density of monopoles. This is evident in the left panel

of Fig. 9, where the low-lying eigenvalues of the Wilson-

Dirac operator as a function of Wilson-Dirac mass are

plotted in the presence of a monopole-antimonopole pair

with Q ¼ 2. There are two anomalously small eigenvalues

for mw > 0. In addition, the splitting of the twofold

degenerate spectrum is now seen in the lowest four

eigenvalues of the massless Wilson-Dirac operator as

shown in the right panel of Fig. 9. Therefore, both

anomalous effects increase with Q. Yet, we expect the

massless overlap-Dirac operator to exhibit proper behavior

as long as the numerical evaluation of the operator is

performed accurately.

In spite of the anomalous behavior of the low-lying

eigenvalues of the Wilson-Dirac operator, the massless

operator produced the expected dimension of the monopole

operator in Ref. [19]. This is probably due to the fact that

the entire spectrum contributes to the dimension of the

monopole operator and only the two lowest eigenvalues

show a splitting of the twofold degeneracy. Therefore, a

cheaper alternative would be to proceed in the same

direction and compute the dimension of the monopole

operator in noncompact QED using Wilson-Dirac fermions

in a fixed monopole-antimonopole background, and a

computation in this direction is currently in progress.
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