


scheduling technique to make performance variation in the

saved snapshot models.

In this paper, we propose a method based on deep learning

with snapshot ensemble to enable time reduction of the

human-in-the-loop verification. This method uses an existing

unsupervised algorithm (ASA) for initial data labeling of

NeuN stained images to quantify the number of cells in

an ROI. This approach uses a state-of-art deep learning

architecture in which user verified ASA results of EDF

images are used to train a convolution neural network (CNN)

model to segment and make automatic neuron counts on test

images. Meanwhile, a set of deep learning predicted masks

of high confidence scores are verified by a human-in-the-

loop and fed back to the train set. The main innovation is: i)

reduction of human-in-the-loop verification time compared to

[23] by using verifying only images of high confidence cal-

culated using snapshot ensemble, ii) improving deep learning

stereology cell counting by adding correctly labeled images

(EDF images and their corresponding masks) to the training

set for the next iteration.

II. UNBIASED STEREOLOGY

Unbiased stereology is the state-of-the-art for biological

objects quantification in tissue sections [24]. An essential

component of this approach is unbiased sampling (i.e.,

systematic-random) that avoids all sources of biased assump-

tion such as shape, size, and orientation [24] [3]. Unbiased

stereology uses a virtual disector box to quantify the number

of cells in a region-of-interest (ROI). Counted cells are

based on their location within an ROI and disector box.

For instance, cells touching the disector inclusion-line (i.e.,

disector upper and right line) or inside the disector box are

counted. However, cells that touch the exclusion line (i.e.,

disector lower and left line) are not counted. An example of

the disector box counting procedure is shown in Fig. 1a,

where the green line represents inclusion line, and the red

line represents the exclusion line. Counted cells are marked

manually with the blue marks.

III. DATA SET

The data set used in this work was sampled from the

neocortex brain region of Tg4510 mice. As described by

Mouton et al. in [2], animals and the process used in this

study were approved by the University of South Florida

(USF) Institutional Animal Care and Use Committee which

follows NIH guidelines. The data set includes both ge-

netically modified mice and control mice. Mice neurons

change while expressing mutant tau. These neuron changes

include neuron degeneration and neuroglia cells activation

[2][25][26]. Mice samples were stained with NeuN single

staining from which counting was performed manually using

an optical fractionator [27]. Disector stacks were captured

and saved using the Stereologer system [2]. Table I shows

the number of sections from which multiple stacks were

obtained and converted into EDF images. The total number

of EDF images we have is 966 with their corresponding ASA

masks.

TABLE I

DATASETS MOUSE ID, NUMBER OF SECTIONS PER MOUSE AND TOTAL

NUMBER OF STACKS PER MOUSE

Mouse ID Number of sections Number of stacks

02 8 113
03 6 121
14 8 90
17 7 91
29 8 135
21 7 102
24 8 103
67 8 104
09 6 107

IV. ADAPTIVE SEGMENTATION ALGORITHM

As shown in [2], the adaptive segmentation algorithm

(ASA) consists of multiple steps optimized to segment cells

at high magnification (63 to 100x oil immersion) microscopy.

The ASA includes a Gaussian Mixture (GMM), morpholog-

ical operations, Voronoi diagrams, and watershed segmen-

tation. It starts with EDF images to segment NeuN stained

cells within a region of interest (ROI) using GMM; where

GMM uses pixel intensity for the Expectation Maximization

algorithm (EM) to estimate its components followed by

thresholding and morphological operations to get separate

cells. A processed EDF image using opening then clos-

ing by reconstruction is used in the watershed foreground

and background markers extraction. These foreground and

background markers are used in applying the watershed

segmentation followed by segmentation approximation using

Voronoi diagrams. ASA uses a smoothing process to enhance

cell boundaries using a Savitzky-Golay filter [28]. The reason

to use ASA is that manual annotation does not provide mask

information, but instead, it provides a mark of what cell is

being counted based on the unbiased stereology approach.

An example of manual annotation is shown in Fig. 1a.

V. ITERATIVE DEEP LEARNING

Iterative deep learning algorithm was proposed in [23],

to enhance deep learning models segmentation performance

by increasing the training data examples in an iterative

approach. This method uses a pool of unlabeled data called

active set, where a deep learning model is trained on a

training set and then used to predict (i.e., generate masks)

on the active set of EDF images. After that, human-in-the-

loop verifies all predicted masks generated for all available

EDF images in the active set (i.e., verifying the agreement

of a mask and the corresponding manual annotation). If a

mask is accepted, then the mask and EDF is augmented

and added to the training set; otherwise, it is rejected. This

process was performed for 5 iterations, and the five resulting

models from all iterations were used to predict (i.e., generate

masks) on a test set image, followed by post-processing and

counting. Although this process is effective in increasing the

number of training images by utilizing previously trained

model to generate labels (i.e., masks) for a pool of unlabeled

set (i.e., active set), the time consumed by the human in the





B. Training Active Deep Learning

Our Active deep learning approach uses the initial training

set generated during data preparation, where the labels of

EDF images (i.e., segmentation masks) are based on ASA

verification process as shown in Fig. 2a. The Active set has

EDF images from which ASA masks were rejected during

the ASA verification process in the data preparation process.

It is important to note that the Active set has no associated

labels (masks), and thus, a deep learning model in each

iteration is used to generate masks (i.e., predict on the Active

set). The process of active deep learning is as follows: 1) train

deep learning model, 2) predict on active set, 3) compute

confidence, 4) human verification.
1) Train deep learning model: We trained deep learning

model using an off-shelf deep neural network called Unet

[14] for 100 epochs using Keras and Tensorflow deep learn-

ing frameworks [29][30]. The Adam optimizer was used

where the learning rate was set to 1e−4, while exponential

decay rates for the moment estimates hyper-parameters β1
(first moment) and β2 (second moment) were set to 0.9 and

0.999 respectively [31]. During training, we used a snapshot

model saving approach, where saving snapshots model every

specific number of epochs is done, to account for variability

of knowledge learned during training. In our experiment,

snapshots models were saved every 5 epochs starting from

epoch 10 to epoch 100. Total number of snapshots models

are 19 models {M1,M2, .....,M19}.
2) Predict on active set and apply snapshot ensemble:

After completing training of a deep learning model and

saving the snapshots models, we used each snapshot model

{M1,M2, .....M19} to predict on the active set Z, the results

of prediction on an EDF image ZEDF is a probability

map Zprob, where each pixel p ∈ (0, 1). We thresholded

the probabilities map Zprob at 0.5, such that each pixel

(p > 0.5) = 1 (i.e., foreground), otherwise p = 0 (i.e.,

background). Let the thresholded probability map be Zthrsh.

After thresholding, the results of using snapshot model Mi

where i ∈ {1, 2, ....., 19} on the active set is averaged
1

19

P
19

i=1
Zi
thresh pixel-wise. Let call the resultant averaged

image Zensemble.
3) Compute confidence: We computed the confidence

score f of a predicted masks using corresponding ensemble

mask Zensemble by adding all the pixels together then

dividing by the total number of non-zero pixels t. f =
1

t

Pm

i=1

Pn

j=1
Z

i,j
ensemble, where m and n represents the

dimensions of Zensemble.
4) Human verification: In the human verification step, the

predicted active set mask using model M19 which have a

confidence score f ≥ 0.9 are given to the human for verifica-

tion. Human verification works the same as previously done

with ASA masks, where verification of agreement between

predicted masks and the manual annotation is performed. If

there is an agreement between the predicted mask and the

manual annotation, then EDF/mask is accepted and moved

to train set. Meanwhile, it gets removed from the active set.

If an EDF/mask do not match manual annotation, then it gets

rejected, and the EDF remains in the active set.

C. Testing and post-processing

After completing 5 iterations of the active deep learning in

as shown in Fig. 2b, testing of model M19 on the test set is

done as shown in Fig. 2c. It is worth noting that each model

M
j
19

(i.e., deep learning model saved during training at 100th

epoch) is a result of training Unet on a different number of

training instances where j is the iteration number and can be

j ∈ {1, 2, 3, 4, 5}. The results of testing on M
j
19

on an image

xEDF is a probability map xprop of the same size as xEDF .

Each pixel p of xprop ∈ (0, 1) which represent the likelihood

of p being either part of a cell (foreground) or not part of a

cell (background) based on a given threshold. We thresholded

the probability maps xprop at 0.9 because we need the most

certain pixels p that belongs to a cell by applying more

restrictions on the decision of foreground and background

(i.e., cell or not a cell). For instance, p ≥ 0.9 belong to a

cell, then (p = 255), otherwise p is background (p = 0).

After thresholding, a post-processing step was applied for

three purposes: 1) to remove small noise (blobs) in the

predicted mask by removing cells of area size ≤ 250 pixels,

2) apply unbiased stereology counting rules, by removing

cells that touch exclusion lines, and 3) separate touching cells

by applying the watershed algorithm. Then, the automatic

counting step is done to count the total number of cells based

on the unbiased stereology counting rules [27].

VII. EXPERIMENTS AND RESULTS

Our data set has 966 NeuN single stain stacks from 9

different mice. The EDF algorithm was used to create an

in-focus image for each stack. The number of images in

the initial train set (no augmentation) is 147 images, the

number of images in the initial active set is 728 images,

and the number of images in the test set is 91 images. The

data augmentation used in this experiment was a combination

of rotation and elastic transformation [32], where the total

number of images generated by applying elastic then rotation

augmentation of a single image is 72 images (including origi-

nal image). When testing deep learning models on the unseen

test set, we used the model M19 which is the last model saved

from snapshots models (epoch 100), whereas the ensemble

of all snapshot models M1,M2, ....,M19 was used only to

compute the confidence score f of each predicted masks of

the Active set. We have used the error rate to report results

on the test set as shown in Equation 1, where ytrue is the

number of counted cells on ground truth (manual annotation),

and ypred is the number of counted cells on a predicted deep

learning mask. From all 5 iteration models, the best result of

active deep learning approach is 0.27% error rate and 0.905

dice coefficient as shown in Table II. Dice coefficient was

calculated using Equation 2, where A is the ground truth

mask, and B is the predicted mask.

Error rate =
|ytrue − ypred|

ytrue
∗ 100 (1)

Dice =
2 ∗ |A

T
B|

|A|+ |B|
(2)





(a) ASA (b) Deep learning

(c) ASA (d) Deep learning

(e) ASA (f) Deep learning

(g) ASA (h) Deep learning

(i) ASA (j) Deep learning

Fig. 4. Examples from the test set, where a,c,e,g and i are the ASA mask
contours overlaid on manual annotation images (counted neurons have blue
marks), b, d, f, h and j are the Active deep learning predicted masks (iteration
5) contours overlaid on manual annotation image

image segmentation. The proposed method uses the snapshot

ensemble to compute a confidence score for each unlabeled

EDF image in the active set, where the user gets only the

images of higher confidence score to verify, and thus, human-

in-the-loop effort in verification was reduced compared to

the iterative deep learning approach. The proposed method

herein showed a lower error rate of less than 1% compared

to the ASA cell counting (an error rate of 11%) on an

unseen test mouse images. Additionally, the time consumed

by the human-in-the-loop verification was about 25% lower

compared to the iterative deep learning approach.
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