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Abstract— Training supervised algorithms such as deep
learning requires a large labeled datasets; however, labeled data
are not enough for training deep learning, and labeling process
is tedious, time-consuming, and requires expert knowledge. In
this paper, we proposed an active deep learning approach for
cell segmentation and counting based on unbiased stereology.
This method allow obtaining labeled data with minimal human
intervention by using snapshot ensemble to get a confidence
score for each mask in an unlabeled pool, where the user verifies
only the images of higher confidence. The proposed method
showed an error rate of less than 1% in the unbiased stereology
cell count of stained sections with about 25% reduction in
a human-in-the-loop verification time cost compared to the
previously proposed method (iterative deep learning).

I. INTRODUCTION

Understanding the behavior and the presence of certain
diseases such as Alzheimer and cancer requires quantification
of the total number of cells during the diagnostic process
and treatment process. An approach of such quantification is
called unbiased stereology, which is a set of theoretical and
practical methods for making accurate counts of stained cells
by carefully avoiding all known sources of methodological
bias [1][2]. Examples of common stereology parameters
include counts of total cell number and cell density; region
and mean cell volumes; surface area and surface density;
and total length and length density [3][1]. However, current
computer-assisted stereology systems available to biosci-
entists and medical scientists are based on a technology
developed more than two decades ago. Though based on
theoretically unbiased principles, this approach is prone to
data errors and low reproducibility due to user subjectivity,
variable expertise, and fatigue. The adaptive Segmentation
algorithm was proposed in [2] to automate cell count in
stained sections. Moreover, a deep learning approach was
proposed in [4] to automate cell segmentation and counting
based on unbiased stereology.

The Adaptive Segmentation Algorithm (ASA) [2] makes
stereology counts of total numbers of brain cells (Neu-
N immunostained neurons) by automatic segmentation and
cell counting on Extended Depth of Field (EDF) images
[5][6]. However, ASA requires manual adjustment of several
parameters (i.g., minimum cell size, cell maximum size, and
Gaussian Mixture Model (GMM) threshold) to achieve a
good result. In Section IV, we present ASA details.

Deep neural networks have generated considerable interest

in the medical imaging field because they have shown perfor-
mance advantages over conventional engineered image anal-
ysis algorithms. Although the idea of neural networks has
been around for a long time, the recent deep neural networks
revolution is partly due to the development of the convolu-
tional neural network (CNN), optimization algorithms [7] [8]
[9] [10], and powerful, efficient computation resources. Deep
learning refers to learning methods that often start from raw
data get to a more abstract level [11]. Convolutional Neural
Networks have shown significant success in challenging tasks
in image classification and recognition [12] [13]. In this
paper, we use a CNN based architecture for medical image
segmentation known as Unet [14]. This architecture is a
simple, fast, and end-to-end fully convolutional network that
contains contraction and expansion paths to capture context
and learn precise localization.

Supervised learning algorithms such as deep learning
requires an extensive labeled data to learn from; how-
ever, labeled data is inadequate for many deep learning
applications such as medical images analysis, because data
labeling is time-consuming, expensive, and labor intensive
[15]. Active learning is an artificial intelligence technique
that solves the labeling bottleneck by querying the most
uncertain instances of unlabeled data to be labeled by a
user and added to the training instances [15]. This technique
has been used in many applications such as image retrieval
[16], support vector machine based text classification [17],
gene expression classification [18], and interactive image
segmentation [19][20][21]. However, labeling medical image
for segmentation (i.e., creating a pixel-level label) is hard,
time-consuming, and requires medical expert knowledge.
Therefore, in this paper, we followed a slightly different
approach when querying a pool of unlabeled data, so the
confidence is calculated using snapshot ensemble of deep
learning models, and the user verifies the most certain
masks. Verification was done by human-in-the-loop where
just accepting or rejecting the of masks are performed, and
no manual labeling is involved as explained in Section VI.

Snapshot ensemble approach was proposed in [22], which
allow obtaining multiple deep learning models saved during
a single deep neural network training, and eliminates any
extra-training cost of multiple neural networks individually.
Snapshot ensemble takes advantage of training convergence
of multiple local minima, and it uses a cyclic learning rate



scheduling technique to make performance variation in the
saved snapshot models.

In this paper, we propose a method based on deep learning
with snapshot ensemble to enable time reduction of the
human-in-the-loop verification. This method uses an existing
unsupervised algorithm (ASA) for initial data labeling of
NeuN stained images to quantify the number of cells in
an ROI. This approach uses a state-of-art deep learning
architecture in which user verified ASA results of EDF
images are used to train a convolution neural network (CNN)
model to segment and make automatic neuron counts on test
images. Meanwhile, a set of deep learning predicted masks
of high confidence scores are verified by a human-in-the-
loop and fed back to the train set. The main innovation is: i)
reduction of human-in-the-loop verification time compared to
[23] by using verifying only images of high confidence cal-
culated using snapshot ensemble, ii) improving deep learning
stereology cell counting by adding correctly labeled images
(EDF images and their corresponding masks) to the training
set for the next iteration.

II. UNBIASED STEREOLOGY

Unbiased stereology is the state-of-the-art for biological
objects quantification in tissue sections [24]. An essential
component of this approach is unbiased sampling (i.e.,
systematic-random) that avoids all sources of biased assump-
tion such as shape, size, and orientation [24] [3]. Unbiased
stereology uses a virtual disector box to quantify the number
of cells in a region-of-interest (ROI). Counted cells are
based on their location within an ROI and disector box.
For instance, cells touching the disector inclusion-line (i.e.,
disector upper and right line) or inside the disector box are
counted. However, cells that touch the exclusion line (i.e.,
disector lower and left line) are not counted. An example of
the disector box counting procedure is shown in Fig. la,
where the green line represents inclusion line, and the red
line represents the exclusion line. Counted cells are marked
manually with the blue marks.

III. DATA SET

The data set used in this work was sampled from the
neocortex brain region of Tg4510 mice. As described by
Mouton et al. in [2], animals and the process used in this
study were approved by the University of South Florida
(USF) Institutional Animal Care and Use Committee which
follows NIH guidelines. The data set includes both ge-
netically modified mice and control mice. Mice neurons
change while expressing mutant tau. These neuron changes
include neuron degeneration and neuroglia cells activation
[2][25][26]. Mice samples were stained with NeuN single
staining from which counting was performed manually using
an optical fractionator [27]. Disector stacks were captured
and saved using the Stereologer system [2]. Table I shows
the number of sections from which multiple stacks were
obtained and converted into EDF images. The total number
of EDF images we have is 966 with their corresponding ASA
masks.

TABLE I
DATASETS MOUSE ID, NUMBER OF SECTIONS PER MOUSE AND TOTAL
NUMBER OF STACKS PER MOUSE

Mouse ID | Number of sections | Number of stacks

02 8 113
03 6 121
14 8 90
17 7 91
29 8 135
21 7 102
24 8 103
67 8 104
09 6 107

IV. ADAPTIVE SEGMENTATION ALGORITHM

As shown in [2], the adaptive segmentation algorithm
(ASA) consists of multiple steps optimized to segment cells
at high magnification (63 to 100x oil immersion) microscopy.
The ASA includes a Gaussian Mixture (GMM), morpholog-
ical operations, Voronoi diagrams, and watershed segmen-
tation. It starts with EDF images to segment NeuN stained
cells within a region of interest (ROI) using GMM; where
GMM uses pixel intensity for the Expectation Maximization
algorithm (EM) to estimate its components followed by
thresholding and morphological operations to get separate
cells. A processed EDF image using opening then clos-
ing by reconstruction is used in the watershed foreground
and background markers extraction. These foreground and
background markers are used in applying the watershed
segmentation followed by segmentation approximation using
Voronoi diagrams. ASA uses a smoothing process to enhance
cell boundaries using a Savitzky-Golay filter [28]. The reason
to use ASA is that manual annotation does not provide mask
information, but instead, it provides a mark of what cell is
being counted based on the unbiased stereology approach.
An example of manual annotation is shown in Fig. la.

V. ITERATIVE DEEP LEARNING

Iterative deep learning algorithm was proposed in [23],
to enhance deep learning models segmentation performance
by increasing the training data examples in an iterative
approach. This method uses a pool of unlabeled data called
active set, where a deep learning model is trained on a
training set and then used to predict (i.e., generate masks)
on the active set of EDF images. After that, human-in-the-
loop verifies all predicted masks generated for all available
EDF images in the active set (i.e., verifying the agreement
of a mask and the corresponding manual annotation). If a
mask is accepted, then the mask and EDF is augmented
and added to the training set; otherwise, it is rejected. This
process was performed for 5 iterations, and the five resulting
models from all iterations were used to predict (i.e., generate
masks) on a test set image, followed by post-processing and
counting. Although this process is effective in increasing the
number of training images by utilizing previously trained
model to generate labels (i.e., masks) for a pool of unlabeled
set (i.e., active set), the time consumed by the human in the
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(a) Manual annotation (b) EDF image

(c) ASA mask

Fig. 1. An example from our data set, where a) is the manual annotation
(counted neurons have green dots), b) is the EDF image, and c) is the ASA
mask for the EDF image shown in (b)

verification step is substantial and requires huge human effort
especially for large unlabeled sets, and dense cells images.
Therefore, utilizing the information from predicting masks
using an ensemble approach to derive a confidence score
that can be used to identify the most confidence predicted
masks using the neural network would help the user to get
verification of images done quicker.

VI. METHOD

The main drawback of iterative deep learning [23] is
that the human-in-the-loop needs to verify all deep learning
models’ predicted masks on the active set (i.e., ASA based
rejected EDF images), which is time-consuming especially
for a large set of unlabeled images. Moreover, the decision on
how good is a predicted mask is a hard problem and requires
a human to verify the goodness of a predicted mask. How-
ever, the human ability to verify a large number of unlabeled
sets is limited. Therefore, to reduce the verification effort, it
is crucial to utilize information from deep leaning predicted
masks which can alleviate the burden of verifying every
single image/mask. In this paper, we propose an active deep
learning approach to reduce verification effort by reducing
the amount of time taken by a human-in-the-loop to verify
the predicted masks. This approach is based on snapshot
ensembles to measure the confidence of every predicted
mask. Then human get only the images of confidence score
> 0.9. Active deep learning is in three steps as follows: i)
data preparation, ii) training active deep learning, and iii)
testing process and post-processing

A. Data Preparation

Data set of 966 stacks of microscopy images (as described
in Section III were pre-processed to convert each image in a
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Fig. 2. Proposed method in two steps: a) pre-processing stacks, creating
EDF images, and applying ASA, then human verification, and then b) active
deep learning process using accepted ASA masks/images for training, and
ASA masks/images as an active set. Human verification (i.e., accept or
reject) on subset of predicted mask based on confidence. Test set is a
separate mouse (mouse id 17)

stack from color to gray, then we applied the EDF algorithm
to create a single synthetic image of each stack where all
cells are in-focus as shown in Fig. 1b. After that, we applied
the ASA algorithm to segment cells on EDF images (ASA
is described in Section IV. ASA mask is shown in Fig.
Ic. Then a human verification process is applied, where
a human verifies the agreement of an ASA mask and the
corresponding manual annotation as shown in Fig. 2a. If
an ASA mask matches the manual annotation (i.e., every
counted cell in manual annotation has the corresponding
binary mask in the ASA mask), then it is accepted and moved
to train set. If ASA mask does not match manual annotation
(i.e., at least one marked cell in the manual annotation image
does not have the corresponding mask), then it is rejected,
and the EDF image is moved to the Active set. A separate
mouse was chosen randomly as a test set for which ground
truth was corrected manual.



B. Training Active Deep Learning

Our Active deep learning approach uses the initial training
set generated during data preparation, where the labels of
EDF images (i.e., segmentation masks) are based on ASA
verification process as shown in Fig. 2a. The Active set has
EDF images from which ASA masks were rejected during
the ASA verification process in the data preparation process.
It is important to note that the Active set has no associated
labels (masks), and thus, a deep learning model in each
iteration is used to generate masks (i.e., predict on the Active
set). The process of active deep learning is as follows: 1) train
deep learning model, 2) predict on active set, 3) compute
confidence, 4) human verification.

1) Train deep learning model: We trained deep learning
model using an off-shelf deep neural network called Unet
[14] for 100 epochs using Keras and Tensorflow deep learn-
ing frameworks [29][30]. The Adam optimizer was used
where the learning rate was set to le~%, while exponential
decay rates for the moment estimates hyper-parameters 51
(first moment) and 82 (second moment) were set to 0.9 and
0.999 respectively [31]. During training, we used a snapshot
model saving approach, where saving snapshots model every
specific number of epochs is done, to account for variability
of knowledge learned during training. In our experiment,
snapshots models were saved every 5 epochs starting from
epoch 10 to epoch 100. Total number of snapshots models
are 19 models {M;, Ms, ....., M1g}.

2) Predict on active set and apply snapshot ensemble:
After completing training of a deep learning model and
saving the snapshots models, we used each snapshot model
{My, Ms, .....Mo} to predict on the active set Z, the results
of prediction on an EDF image Zgpr is a probability
map Zp-ob, Where each pixel p € (0,1). We thresholded
the probabilities map Z,,.,, at 0.5, such that each pixel
(p > 0.5) = 1 (i.e., foreground), otherwise p = 0 (i.e.,
background). Let the thresholded probability map be Z;p,sp,-
After thresholding, the results of using snapshot model M;
where ¢ € {1,2,....,19} on the active set is averaged
15 2321 Zl oo Pixel-wise. Let call the resultant averaged
image Zensemble-

3) Compute confidence: We computed the confidence
score f of a predicted masks using corresponding ensemble
mask Zepsembie by adding all the pixels together then
dividing by the total number of non-zero pixels t. f =
Ty 21 Z 2 semple> Where m and n represents the
dimensions of Z.,sembie-

4) Human verification: In the human verification step, the
predicted active set mask using model M9 which have a
confidence score f > 0.9 are given to the human for verifica-
tion. Human verification works the same as previously done
with ASA masks, where verification of agreement between
predicted masks and the manual annotation is performed. If
there is an agreement between the predicted mask and the
manual annotation, then EDF/mask is accepted and moved
to train set. Meanwhile, it gets removed from the active set.
If an EDF/mask do not match manual annotation, then it gets
rejected, and the EDF remains in the active set.

C. Testing and post-processing

After completing 5 iterations of the active deep learning in
as shown in Fig. 2b, testing of model Mg on the test set is
done as shown in Fig. 2c. It is worth noting that each model
M, (i.e., deep learning model saved during training at 100"
epoch) is a result of training Unet on a different number of
training instances where j is the iteration number and can be
j € {1,2,3,4,5}. The results of testing on M7, on an image
TEpr is a probability map x,,,, of the same size as Tgpp.
Each pixel p of zp,p € (0, 1) which represent the likelihood
of p being either part of a cell (foreground) or not part of a
cell (background) based on a given threshold. We thresholded
the probability maps x,,, at 0.9 because we need the most
certain pixels p that belongs to a cell by applying more
restrictions on the decision of foreground and background
(i.e., cell or not a cell). For instance, p > 0.9 belong to a
cell, then (p = 255), otherwise p is background (p = 0).
After thresholding, a post-processing step was applied for
three purposes: 1) to remove small noise (blobs) in the
predicted mask by removing cells of area size < 250 pixels,
2) apply unbiased stereology counting rules, by removing
cells that touch exclusion lines, and 3) separate touching cells
by applying the watershed algorithm. Then, the automatic
counting step is done to count the total number of cells based
on the unbiased stereology counting rules [27].

VII. EXPERIMENTS AND RESULTS

Our data set has 966 NeuN single stain stacks from 9
different mice. The EDF algorithm was used to create an
in-focus image for each stack. The number of images in
the initial train set (no augmentation) is 147 images, the
number of images in the initial active set is 728 images,
and the number of images in the test set is 91 images. The
data augmentation used in this experiment was a combination
of rotation and elastic transformation [32], where the total
number of images generated by applying elastic then rotation
augmentation of a single image is 72 images (including origi-
nal image). When testing deep learning models on the unseen
test set, we used the model Mg which is the last model saved
from snapshots models (epoch 100), whereas the ensemble
of all snapshot models My, M, ...., M19 was used only to
compute the confidence score f of each predicted masks of
the Active set. We have used the error rate to report results
on the test set as shown in Equation 1, where ;.. is the
number of counted cells on ground truth (manual annotation),
and Ypreq 1S the number of counted cells on a predicted deep
learning mask. From all 5 iteration models, the best result of
active deep learning approach is 0.27% error rate and 0.905
dice coefficient as shown in Table II. Dice coefficient was
calculated using Equation 2, where A is the ground truth
mask, and B is the predicted mask.

Error rate = [yrue = Ypreal * 100 (1)
Ytrue
) 2% |ANB|
Dice = ———— 2)
|A[ + |B|



In Table II, a comparison between Iterative deep learning
and Active deep learning in terms of a number of images
verified, the number of images accepted, and time spent by
a human in verification from all five different iterations.
The total number of verified images by the human over
all the five iterations when using Iterative deep learning
approach is 1761 images, which took approximately 101.84
minutes, whereas the total number of verified images by
the human across all five iterations when using Active deep
learning is 1321 images, which took about 76.39 minutes,
where the time taken to verify each mask is approximately
3.47 seconds. Active deep learning proposed in this paper
shows a reduction on verification time by approximately
25%, where the human was allowed to verify only the most
likely confident images based on confidence score calculated
using snapshot ensemble as described in Section VI

VIII. DISCUSSION

Prior studies that have noted the usefulness of using exist-
ing algorithms to generate masks for ground truth [23][33].
However, a human-in-the-loop verification step is required to
reject mislabeled images. The drawback of such a verification
step is that a human needs to verify the entire set of predicted
masks, and thus requires time and effort given the enormous
unlabeled data sets.

Labeling data manually especially creating masks is a
time-consuming process since it requires pixel-level labeling.
Both Iterative deep learning and active deep learning ap-
proaches require minimal human intervention, where human
is requires only to either accept or reject based on the
agreement of predicted mask and its corresponding manual
annotation. However, the active deep learning study herein
found that utilizing the snapshot ensemble approach to gen-
erate a confidence score of a predicted mask can reduce the
verification time further compared to iterative deep learning
since the user is getting only high confident masks to verify.
Therefore, the total time consumed in verification using
active deep learning approach is 76.39 minutes to verify
1321 masks, whereas iterative deep learning took 101.84
minutes to verify 1761 masks, where verification of each
image takes approximately 3.47 seconds. Whereas the results
of both iterative deep learning and active deep learning on the
test mouse was mostly similar with slightly improvement in
active deep learning. A comparison between manual, ASA,
iterative deep learning, and active deep learning cell counting
per section of the test mouse is shown in Fig. 3. Additionally,
a comparison between ASA and active deep learning cell
segmentation and counting cells on images from test set are
shown in Fig. 4, where best model counted cells contours
are overlaid on top of the manual annotation.

This study was subject to some limitations. For instance,
the ASA approach works on EDF images to create the initial
ground truth masks; however, EDF images may produced
obscured cells and create an overlapping of cells in dense
areas, and therefore, fewer images were accepted. Addition-
ally, EDF images was also an obstacle in some dense area
for deep learning; therefore postprocessing was not able to

separate some overlapping cells. Another limitation of this
study is the subjectivity of human verification, which may
affect the training of images. Nevertheless, the findings of
this study provide an insight into utilizing knowledge driven
from snapshot ensembles to reduce the human verification
effort and time and thus improving the performance of
segmentation and counting of cells using unbiased stereology
counting rules.

TABLE II
THE TOTAL NUMBER OF VERIFIED IMAGES, TOTAL NUMBER OF
ACCEPTED IMAGES, AND TOTAL VERIFICATION TIME FOR EACH OF
ACTIVE DEEP LEARNING AND ITERATIVE DEEP LEARNING

Active
Deep Learning

Iterative

Compare/Deep learning approachs Deep Learning

Total verified images by human 1761 1321
Total accepted images by human 544 401
Total verification time (minutes) 101.84 76.39

TABLE II
BEST PERFORMANCE OF DEEP LEARNING (BASELINE), ACTIVE DEEP
LEARNING VS. ITERATIVE DEEP LEARNING

Deep learning approach Error rate (%)  Dice Coef
Deep learning (baseline) [4] 3.57 0.906
Iterative deep learning [23] 0.41 0.912
Active deep learning (Proposed) 0.27 0.905
200 -
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Fig. 3. Test mouse cells count using manual, ASA, and Unet (active deep
learning)

IX. CONCLUSIONS

This paper presents an active deep learning algorithm
for unbiased stereology cell count that uses a previously
existing unsupervised algorithm called ASA to generate
initial masks for training deep convolution neural network for



(a) ASA (b) Deep learning

(c) ASA (d) Deep learning

(e) ASA (f) Deep learning
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(@) ASA

(j) Deep learning

Fig. 4. Examples from the test set, where a,c,e,g and i are the ASA mask
contours overlaid on manual annotation images (counted neurons have blue
marks), b, d, f, h and j are the Active deep learning predicted masks (iteration
5) contours overlaid on manual annotation image

image segmentation. The proposed method uses the snapshot
ensemble to compute a confidence score for each unlabeled
EDF image in the active set, where the user gets only the
images of higher confidence score to verify, and thus, human-
in-the-loop effort in verification was reduced compared to
the iterative deep learning approach. The proposed method
herein showed a lower error rate of less than 1% compared
to the ASA cell counting (an error rate of 11%) on an
unseen test mouse images. Additionally, the time consumed
by the human-in-the-loop verification was about 25% lower
compared to the iterative deep learning approach.
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