1904.10774v3 [cond-mat.str-el] 7 Jan 2020

arxiv

Orbital differentiation in Hund metals

Fabian B. Kugler,! Seung-Sup B. Lee,! Andreas Weichselbaum,? ! Gabriel Kotliar,?? and Jan von Delft!

Y Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for
Quantum Science and Technology, Ludwig-Mazimilians- Universitdt Minchen, 80333 Munich, Germany
2 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
3 Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
(Dated: September 27, 2019)

Orbital differentiation is a common theme in multiorbital systems, yet a complete understanding
of it is still missing. Here, we consider a minimal model for orbital differentiation in Hund metals
with a highly accurate method: We use the numerical renormalization group as a real-frequency
impurity solver for a dynamical mean-field study of three-orbital Hubbard models, where a crystal
field shifts one orbital in energy. The individual phases are characterized with dynamic correlation
functions and their relation to diverse Kondo temperatures. Upon approaching the orbital-selective
Mott transition, we find a strongly suppressed spin coherence scale and uncover the emergence of
a singular Fermi liquid and interband doublon-holon excitations. Our theory describes the diverse
polarization-driven phenomena in the t2, bands of materials such as ruthenates and iron-based
superconductors, and our methodological advances pave the way toward real-frequency analyses of

strongly correlated materials.

I. INTRODUCTION

The discovery of superconductivity in the iron pnic-
tides and chalcogenides [1, 2] (FeSCs) has led to renewed
interest in multiorbital systems. Both theoretical and
experimental studies of these systems have uncovered the
remarkable phenomenon of orbital differentiation: In an
almost degenerate manifold of d states, some orbitals are
markedly more correlated than others. For instance, in
FeSe,Te;_, [3], LiFeAs [4], and K 76Fe; 72Seq [5], among
the t9, states, only the zy orbital disappears from pho-
toemission spectra as temperature is raised. Orbital dif-
ferentiation is also seen in tunneling experiments [6] and
is a key ingredient in theoretical frameworks to describe
FeSCs [7-9]. Tt is not unique to the FeSCs; it has further
been documented in the ruthenates [10] and likely takes
place in all Hund metals [11, 12].

An extreme form of orbital differentiation is the orbital-
selective Mott transition (OSMT) [13], where some or-
bitals become insulating, while others remain metallic.
Despite its importance, the OSMT in three-band sys-
tems has not yet been systematically investigated with a
controlled method enabling access to low temperatures,
where Fermi liquids form. Controversial questions include:
For a given sign of crystal-field splitting, which orbitals
localize? Is the OSMT of first or second order? Do cor-
relations enhance or reduce orbital polarization as one
approaches the OSMT? Is it true that quenching of orbital
fluctuations makes the orbitals behave independently? Do
the itinerant electrons in the OSM phase (OSMP) form
a Fermi liquid? Finally, how are the precursors of the
OSMT related to the physics of Hund metals?

In this paper, we use a minimal model (see motiva-
tion below) for orbital differentiation in Hund metals to
answer these questions in a unified picture. Our concep-
tual arguments are supported by a numerical method of
unprecedented accuracy: We use the numerical renormal-
ization group (NRG) [14] as a real-frequency impurity

solver for dynamical mean-field theory (DMFT) [15], ex-
tending the tools of Ref. 16 from full SU(3) to reduced
orbital symmetry. Whereas different bandwidths directly
lead to different effective interaction strengths among the
orbitals (as extensively studied for two-orbital models;
see, e.g., [17] for a list of references), we focus here on
the more intricate case where a crystal field shifts one
orbital in energy w.r.t. two degenerate orbitals [18—-22].
Thereby, we can isolate polarization effects and drive
the system through band+Mott insulating, metallic, and
OSM phases, reminiscent of CagRuOy [13], SroRuOy [23],
and FeSCs, respectively.

Theoretically, the OSMP has been under debate both
w.r.t. the precise form of the (conducting) self-energy
[18, 21, 24-26] and w.r.t. subpeaks in the insulating spec-
tral function [20, 26-28]. Whereas previous studies were
limited by finite-size effects of exact diagonalization or fi-
nite temperature in Monte Carlo data (requiring analytic
continuation), our NRG results yield conclusive numeri-
cal evidence down to the lowest energy scales. We give
a detailed phase diagram including coexistence regimes
(lacking hitherto) and characterize the individual phases
with real-frequency properties and their relation to Kondo
temperatures spanning several orders of magnitude. Upon
approaching the OSMT, we find a strongly suppressed
spin coherence scale and uncover the emergence of a singu-
lar Fermi liquid [24, 29-32] and interband doublon-holon
excitations [33-36] (both of which were previously realized
only separately and in two-orbital models).

II. MODEL AND METHOD

The Hamiltonian of our three-orbital Hubbard model
is given by
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where djmg creates an electron on lattice site 4 in orbital
m € {1,2,3} with spin o € {f,]}. The first term de-
scribes nearest-neighbor hopping within each orbital on
the lattice of uniform amplitude ¢ = 1, which thus sets the
unit of energy. As local interaction, we use the following

“minimal rotationally invariant” form [12, 16, 37, 38],
Hig[dmo] = 3T+ (U — 30)a(i — 1) — JS2.

Here, S = Yom S,, is the total spin operator; . = i,
T— ZU Nomo, and Mo = CZIWdAm,, are number operators
with expectation values n, n,,, and n,,,, respectively.
This interaction yields an intraorbital Coulomb interaction
of size U, interorbital Coulomb interactions of size U — J
and U —2J for opposite and equal spins, respectively, and
a spin-flip term proportional to J [cf. Eq. (B1)]. With
only two parameters, it exhibits the full SU(3) symmetry,
as opposed to the SO(3) symmetry of the usual Hubbard—
Kanamori Hamiltonian [12, 39]. We mostly fix these
parameters to U = 6 and J = 1.

Our only source of orbital differentiation comes from
the last term in H via the crystal-field splitting A, defined
as relative shift among the on-site energies (cf. Fig. 1):
€1 — A = €5 = €3 = €93. (The index “23” indicates shared
properties of the degenerate doublet, e.g., no3 = no = ns.)
The overall shift of €, is determined by the average filling
n = 2, taken one away from half filling as characteristic
for Hund metals. Note that, for J to act nontrivially, this
setting requires at least three orbitals. While the effect of
A in uncorrelated systems is rather straightforward, the
interplay of A with U and especially J in Hund metals
leads to intriguing phenomena.

Within the DMFT approximation, the lattice Hamil-
tonian is mapped to an impurity problem with self-
consistently determined hybridization [15]. We use a
semicircular lattice density of states (half-bandwidth 2),
for convenience, and restrict ourselves to paramagnetic
solutions at zero temperature (7' = 1078, in practice).
The impurity problem is solved on the real-frequency axis
by means of the full-density matrix [40] NRG. The numer-
ical challenge of three orbitals with reduced symmetry is
overcome by interleaving the Wilson chains [41, 42] of the
1-orbital and 23-doublet, while fully exploiting the remain-
ing SU(Q)spin ®U(1)charge,1 ®U(1)charge,23 ®SU(2)orbita1723
symmetry, using the QSpace tensor library [43, 44]. We
set the overall discretization parameter to A = 6 and
keep up to 30000 multiplets (~ 2.5 - 10° states) during
the iterative diagonalization. While NRG can famously
resolve arbitrarily small energy scales very accurately,
we also obtain a sufficiently accurate resolution at high
energies via adaptive broadening [45, 46] of the discrete
spectral data obtained for two different z shifts [47]. As
dynamic correlation functions, we compute the impurity
self-energy Y [48], also used to extract the DMFT local
spectral function A, as well as spin and orbital suscepti-
bilities ¥ = ¥’ — ¢mwx”, defined in Appendix D.
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FIG. 1. Illustration of the on-site energies €1 — A = €2 = €3
and impurity occupations. Due to Hund’s coupling, spins are
aligned; shaded arrows symbolize a symmetric distribution
among the degenerate orbitals. The different phases portrayed
are (a) a band+Mott insulator for large, positive A, (b) an
orbitally symmetric metal for vanishing A, and (c) the OSMP
for large, negative A, yet |A| < 2J. After a particle-hole
transformation and the identification 1 < zy, 23 < zz/yz,
(a) and (b) mimic properties of the t24 orbitals of CazRuO4
and SraRuOy, respectively; with a half-filled zy orbital and
further metallic ones, (c) resembles the situation in FeSCs.
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III. CRYSTAL-FIELD SPLITTING

As we tune A, the system undergoes (for suitable inter-
action strength) several phase transitions. The nature of
the different phases can be easily understood by looking
at the occupations in the atomic limit (Fig. 1) [19, 21]:
For large A > 0, the 1-orbital has highest energy; both
electrons reside in the half-filled 23-doublet and are likely
to form a Mott insulator [49]. For the symmetric model
at A = 0, the two electrons are equally distributed among
the three degenerate orbitals with occupation n,, = 2/3
each, giving rise to metallic behavior (for not too strong
interaction). Finally, for large A < 0, the filling of the
lowest orbital is eventually increased up to half filling,
ny = 1, and the remaining electron occupies the quarter-
filled 23-doublet. For intermediate interaction strengths
[50], the half-filled 1-orbital is Mott-insulating while the
quarter-filled 23-doublet remains metallic, thereby realiz-
ing an OSMP. By decreasing A even further, one reenters
a metallic (1 < n; < 2) and ultimately a band-insulating
phase (n; = 2).

These considerations anticipate the mechanism driving
the phase transitions [18-22, 53]: A primarily induces
orbital polarization; i.e., it changes the relative filling
of the orbitals. Starting from the orbitally symmetric,
metallic phase, the different orbitals can become band-
insulating or undergo a filling-driven Mott transition. If
there are partially filled orbitals of different occupations
and/or degeneracies, as in Fig. 1(c), this leads to different
critical interaction strengths for the Mott transition, and
an OSMP can be realized.

We now investigate the precise nature of these phase
transitions as function of A for fixed U, J, n. Figure 2(a)
shows the orbital polarization, p = n; — noz. Starting
from the symmetric case (A = 0, p = 0) and increasing
A, p decreases to its minimum p = —1 [cf. Fig. 1(a)].
For large A > 0, we observe a coexistence region when
approaching A from below or above, giving rise to the
definitions AP® ~ 0.3, APS® ~ 0.6. If we decrease A
starting from A = 0, p increases until it saturates for
A < Ar°® ~ —(.85 at p = 0.5. This regime constitutes the
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FIG. 2. Phase diagram for varying A. (a) The orbital polar-
ization, p = n1 —naes, directly hints at the different phases por-
trayed in Fig. 1. We find coexisting solutions for A € [0.3,0.6]
but no hysteresis between metal and OSMP. (b) The self-
energy difference, 6X = ReX; — ReX23, adds to a renormalized
A. Whereas §% increases with increasing A > 0 at both
w € {o00,0}, the §3(0) curve (only shown for metallic solu-
tions) bends upward for A < —0.3, thereby counteracting the
splitting. (c) The full width at half maximum of the quasipar-
ticle peak, dwqp, confirms the metallic vs. insulating character.
In the coexistence regime, either dwqp = 0 or dwqp > 0 for all
orbitals alike. (d) The orbital and spin Kondo temperatures
are clearly separated (T2P ~ 0.5, TP ~0.05 at A =0). Strik-
ingly, T5 strongly decreases with increasing |A| and vanishes
altogether in the OSMP (out of range on the log scale).

OSMP, for which we find no hysteresis w.r.t. A. Clearly,
the A-driven OSMT is much more second-order-like than
the ordinary Mott transition at A > 0. We also note
that, while p appears differentiable at the OSMT, Var(p)
exhibits a kink [cf. Fig. 8(a)]. The OSMP is stable from
AZ® down to A ~ —1.5, where one enters a strongly
polarized (p > 0.5) metallic phase (not shown).

To address the effect of correlations on orbital differen-
tiation, we examine the difference in the real part of the
self-energies, 0¥ = ReX; — ReXo3, which adds to a renor-
malized crystal field [20], A 4 6% [cf. also Fig. 8(b)]. The
overall shift of the self-energies is given by the Hartree
part, ¥ = X(w = 00), which can directly be calculated:

Sttne = Ui + [(U — Dt + (U — 20 1m0 |

m’#m

The difference, Xy = —(U — 3.J)p/2, increases monotoni-
cally with A (via p) for U —3.J > 0, such that interactions
overall enhance orbital differentiation [12]. However, the
renormalization of A at low energies must be determined
numerically. Figure 2(b) displays 6% at w € {0, 00}: 6%(0)
is smaller in magnitude than §Xg (plot shows 0¥y /2) and
increases monotonically with A only for A > —0.3. For
A < —0.3, 6X(0) bends upward and eventually increases
with decreasing A, thereby counteracting the splitting.
Next, Fig. 2(c) shows the width of the quasiparticle
peak, dwqp, of the spectral function (cf. Fig. 4) to confirm
the conducting vs. insulating character of the different
phases. For positive and negative A, we indeed find that
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FIG. 3. Illustration of all 15 different impurity states for
n = 2 in the 7, Sz, basis. Finite J and A yield a relative
shift in the eigenenergies (dashed arrows) and thus split the
J = 0 = A ground-state manifold. The states in the middle are
eigenstates of the impurity Hamiltonian only without spin-flip
(SF) terms, where Hund’s coupling merely shifts the density-
density interactions by J and 2J [cf. Eq. (B1)]; with SU(2)
spin symmetry, they form singlet and triplet combinations.
Subscripts x2 indicate that the number of states is counted
twice due to spin degeneracy. Without SF terms, the ground-
state degeneracy of 15 at J =0 = A is reduced to 6 at J > 0,
A =0and to4 at J >0, A <O0. Including SF terms, these
are 15, 9, and 6.

the 23- and l-orbital(s), respectively, undergo a Mott
transition, with gradually decreasing dwq,. The sharp
decline in dwqp around |A| ~ 0.3 corresponds to the for-
mation of a subpeak (see below). For A > 0, the 1-orbital
shows a slight increase of dwqp, and eventually becomes
band-insulating, while, for A < 0, dwqp of the 23-orbitals
decreases until it saturates in the OSMP. Note that the
quasiparticle weight, Z,, = [1 — d,ReX,,(0)]7!, often
used to describe the single-orbital Mott transition, is not
ideal to characterize the full range of orbital differentia-
tion: For A > 0, when the 1-orbital gets emptied out, Z;
increases although the whole quasiparticle peak gradually
disappears; for large A < 0, Z; of the insulating 1-orbital
does not vanish throughout the OSMP, yet Zo3 = 0 in
the metallic 23-orbitals, as further explained below.

We complete our phase diagram by showing in Fig. 2(d)
the A-dependence of Kondo temperatures, defined as the
energy scale at which the corresponding susceptibility, x”,
is maximal [cf. Fig. 4(d)]. As typical for Hund metals [12,
16], we observe spin—orbital separation in terms of Kondo
scales: orbital fluctuations are screened at much higher
energies than spin fluctuations (7% > T3F). While T;}r’%
characterizes orbital fluctuations within the 23-doublet,
T}"{“l’ describes those between the (separated) 1l-orbital
and the 23-doublet [cf. Eq. (D2)] and reduces to the
bare energy scale ~ |A] for large splitting. At sizable J,
both orbitals have the same T} [54], and, strikingly, 737
strongly decreases with increasing |A|.

This can be understood as follows: It is well-known that
finite J decreases T}} [12, 55, 56], as it splits the impurity
ground-state manifold. Intuitively, a smaller ground-state
degeneracy implies a reduced effective hybridization and
thus a reduced Kondo temperature. For J > 0 and finite
A, the ground-state degeneracy is reduced even further,
particularly for A < 0; see Fig. 3. Moreover, the DMFT
self-consistency suppresses the low-energy hybridization
strength of the orbital approaching the Mott transition.
In the OSMP, A;(0) and T}? eventually vanish altogether.
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FIG. 4. (a,b) Spectral functions in the metallic phase for the
orbitals approaching a Mott transition (main panels) and the
remaining ones (insets). (b) Decreasing A sharpens the quasi-
particle peak (reduced T}), destroys the orbital resonance if
|A| > TP(A = 0)/2, and generates interband doublon-holon
subpeaks. (c) Spectral functions and Kondo temperatures
(inset) in the orbitally symmetric case for increasing J and
fixed U — 2J. (d) Spin (solid lines) and orbital (dashed) sus-
ceptibilities corresponding to (b). (For A # 0, we plot xj°
and 435 to have the two curves for each A closer together.)

IV. METALLIC SPECTRUM

Let us now examine in detail how the spectral functions
change with A in the metallic phase. Figures 4(a,b) show
that, for both positive and negative A, the most important
change with stronger correlations occurs in the orbital(s)
approaching a Mott transition (main panels). The other
orbitals (insets) mostly adjust the spectral weight. At A =
0 [gray lines in Figs. 4(a—c)], the spectral functions exhibit
the typical shoulder in the quasiparticle (qp) peak [16, 56]
(below half filling at w < 0). In Ref. 56, this has been
explained as the combination of a sharp SU(2) spin Kondo
resonance (“needle” with width o T;F) and a wider SU(3)
orbital Kondo resonance (“base” with width oc T). If
we first stay with the orbitally symmetric case [Fig. 4(c)]
and use J and Eoy = U —2J as tuning parameters [56], we
can reduce T3 by increasing J while only mildly affecting
Tf{b. As a consequence, the needle sharpens while the
wide base remains, revealing a subpeak.

Similarly, increasing |A| drastically decreases T5°
[Figs. 2(d), 4(d)] and causes a thin qp needle. Addi-
tionally, finite A, which acts in orbital space similarly to
a magnetic field in spin space, splits the qp base. For
|A| = TP, the orbital Kondo resonance is destroyed and
subpeaks on both sides of w = 0 remain. In fact, the
orbital-resonance shoulder is remarkably accurately cen-
tered at —T2P(A=0)/2 [Fig. 4(c)], and crosses over to an
interband doublon-holon excitation at A < 0 (see below)
for |A| > T2P(A=0)/2. Note that the authors of Ref. 38
similarly marked strong influence of J by J > TP (J=0).
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FIG. 5. Metallic self-energies for all orbitals, for different A.
The characteristic features, such as an inverted slope and a
kink, already present at A = 0, are enhanced as the orbital
becomes more correlated, induced by proximity to half filling:
n1 (ne3) approaches 1 with increasing (decreasing) A.

Generally, finite A amplifies Hund-metal features in
some orbitals while suppressing them in others. This
is apparent in spectral functions (Fig. 4) as well as self-
energies; see Fig. 5. For A = 0, we find the typical [23, 57]
inverted slope in ReX for small w < 0 and kink in ReX
for small w > 0 (with Im¥ related by Kramers—Kronig
transform). These features are enhanced as the orbital
becomes more correlated, and suppressed as it becomes
less correlated. The degree of correlation follows from
proximity to half filling: ny approaches 1 as A decreases;
ng3 approaches 1 as A increases.

V. OSMP

For A < —0.85, T}? and the gp needle vanish alto-
gether; the 1-orbital becomes a Mott insulator while the
23-doublet retains spectral weight at w = 0 [Fig. 6(a)]. In
the metallic orbitals, Luttinger pinning [58] via the semi-
circular lattice density of states p, with A23(0) = p(z,)
and ijo p(x)dx = nag o, is fulfilled throughout [leading
to mAa3(0) = 0.91 at quarter filling no3 , = 1/4]. Yet, the
spectral function of the half-filled 1-orbital strongly differs
from a single-orbital Mott insulator. Next to the stan-
dard Hubbard bands, charge fluctuations in the 23-doublet
enable interband doublon-holon excitations (previously
identified in a two-band DMFT+DMRG study [35]; cf.
[33, 34] for experimental signatures) in the insulating
spectral function. Here, they occur at energies A and
A +2J, as derived in Appendix B. These gap-filling states
give A; its soft form. They are shifted with A, leading
to a “tilt” of A; around w = 0. A hard gap is revealed
when pushing the subpeaks apart (via J) and decreasing
their weight (via F, = U — 2J) by suppressing 23-charge
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FIG. 6. Characterization of the OSMP. (a) Spectral functions
showing the insulating and metallic character of the 1- and 23-
orbital(s), respectively. Interband doublon-holon excitations
are seen as subpeaks in A;, whose position shifts with A,
leading to a tilt of A; around w = 0; the A3 curves all lie
on top of each other. (b) Close up of the insulating spectral
function at variable U (only in this panel), with J/U = 1/6
fixed. Increasing J shifts the right subpeak toward larger
energies, and increasing E,y = U — 2J decreases the weight
of the subpeaks by suppressing charge fluctuations in the
23-doublet. Both effects help to reveal a hard spectral gap.
(¢) Diverging spin (solid lines) and regular orbital (dashed)
susceptibilities. (We again plot 4x3%.) (d) NRG flow diagram
of the rescaled, lowest-lying energy levels at characteristic
level spacing ~ |w|. The legend provides charge Qm, total
spin S, and SU(2) orbital T3 quantum numbers. The ground
state carries a residual spin 1/2 since the contribution to
the impurity spin from the insulating 1-orbital cannot be
screened. The SFL nature entails that the flow approaches
the Fermi-liquid fixed point (where the first and second as
well as third and fourth excitations become degenerate) only
asymptotically.

fluctuations [Fig. 6(b)]. The subpeaks’ distinct nature
[46, 59] is further underlined in plots of the momentum-
resolved spectral function, shown in Appendix C, where
one can also see how the widths of the 23-qp peak and
1-orbital subpeaks narrow together with increasing F,;.

As the insulating 1-orbital does not contribute to spin
screening, the OSMP inherits properties of an under-
screened (spin) Kondo effect [32], as manifested in a di-
vergent spin susceptibility [Fig. 6(c)]. Within our DMFT
description of the OSMP, the impurity electron in the
l-orbital and that in the 23-doublet form a combined
spin 1, due to Hund’s coupling. However, the 1-orbital
hybridization (o .A;) has zero weight at low enough en-
ergies. Hence, given the diagonal hybridization, only the
23-contribution to the impurity spin can be screened,
while its 1-orbital contribution remains unscreened. The
underscreened Kondo effect in turn leads to the singular
Fermi-liquid (SFL) state of the OSMP, as strikingly evi-
dent in the NRG flow diagram [14, 16, 56]: Fig. 6(d) shows
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FIG. 7. Self-energies in the OSMP. (a) Real part of the insu-
lating 1-orbital self-energy. Upon decreasing A in the OSMP,
the position of the singularity in ¥; (marked by dashed lines)
shifts through w = 0. (b) Low-energy zoom of the self-energy
in the metallic 23-orbitals (solid lines) with fits (dashed) to
the SFL logarithmic singularities. (c) The logarithmic deriva-
tive £(z) of —Im3a3 vanishes as z — 0, providing additional
confirmation of the logarithmic nature of the singularity.

that the rescaled, lowest-lying energy levels of the itera-
tively diagonalized Wilson chain reach the Fermi-liquid
(FL) fixed point only asymptotically [30].

The self-energy of the insulating 1-orbital diverges. In
Fig. 7(a), we see that the singularity of ¥; is not bound
to w = 0; instead, its position shifts with A. This
implies that Z; = 1/(1 — 9,,ReX;1(0)) does not vanish
throughout the OSMP and is thus not suited to mark
the insulating character of the 1-orbital in the OSMP.
A low-energy zoom of the self-energy in the metallic 23-
orbitals [Fig. 7(b)] reveals strong deviations from the
standard zero-temperature FL form, ReXgpr, = a+ bw and
ImYpr, = —|c|w?. Instead, it exhibits logarithmic singu-
larities that can be well fitted [dashed lines in Fig. 7(b)]
to the SFL relations [24, 32, 60]

ReXspr, = @ + b sgn(w) In~ |w/T*|,

ImYgpr, = —[¢/In 2 |w/T™].
The logarithmic singularity in o3 implies that Zy3 =0
despite the conducting character of the 23-orbitals with
finite spectral weight at the Fermi level [Fig. 6(a)]. To fur-

ther scrutinize the singularity, we consider the logarithmic
derivative of the imaginary part of a3,

_ dIn[-Im¥y3(2)]

N dlnz

both for real frequencies, z = w440 with w € R, and for
imaginary frequencies, z = iw € (2Z + 1)ixT. This quan-
tity is well suited to discriminate between singularities of
logarithmic or fractional power-law type:

—ImX(z) = ||z* = L(z) = a,
—Im¥(z) = |&|In"%(2/T*) = L(z)=—-2In""(z/T")

— 0.
z—0

L(2)

In Fig. 7(c), we clearly see that £(0) = 0, confirming
the logarithmic nature of the singularity. Note that a



smoothening postprocessing was used to suppress minor
oscillations in very small values of Im¥. The imaginary-
frequency data L(iw), available for |iw| > #T', perfectly
match the low-frequency behavior but does not suffice to
follow the decay up to £(0) = 0. In fact, if the imaginary-
frequency data were available only in a limited temper-
ature range, as is the case in Monte Carlo studies, say,
T > 1072 and |iw| = 7-1073, one might easily be tempted
to conclude that L£(iw) saturates at « ~ 0.5.

VI. CONCLUSION

We have shown that DMFT+NRG can be used to
study three-orbital Hubbard models with reduced or-
bital symmetry, used this method to accurately describe
polarization-driven phase transitions induced by a crystal
field A, and uncovered the rich real-frequency structure
inherent in the interplay of Hund-metal physics and or-
bital differentiation. Our analysis leads to a conclusion
of major conceptual significance: The popular notion
that orbital screening, facilitated by J, makes the orbitals
behave almost independently [8-10, 12, 18, 26, 49, 61]
[as seen, e.g., in static correlations [18, 26, 61]; cf. also
Fig. 8(a)] misses the importance of spin fluctuations. It
must be revised when looking at dynamic correlation
functions, as (i) a suppressed hybridization in one orbital
suppresses the spin Kondo temperature of all orbitals (at
sizable .J), (ii) charge fluctuations in some orbitals enable
interband doublon-holon excitations [35] in the spectrum
of other orbitals, and (iii) the presence of localized spins
implies singular Fermi-liquid behavior of the remaining
itinerant electrons [32].

With our methodological advances, NRG is ready to be
used as a real-frequency impurity solver in a DET+DMFT
description of three-orbital materials with reduced orbital
symmetry [62]. Future studies should further investigate
the stability of the OSMP against interorbital hopping
[63].
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Appendix A: Additions to the phase diagram

In the discussion of the phase diagram in Fig. 2, we
mentioned that the polarization p = (p), with p = 7] —7ia3
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FIG. 8. Additions to the A phase diagram. (a) Var(p) =
(p?) — (p)? and Cov(f1, faz) = |(Rafres) — (f1)(f2s)| exhibit
a kink at the OSMT. The latter shows that static, interband
correlations are rather weak (plot shows 5 Cov). (b) Two
different versions of an effective crystal field (shown only for
metallic solutions), A+ §%(0) as relevant for electronic degrees
Of freedom and A = Zl . (61 + 21(0)) — Zz . (623 + 223(0)) fOI‘
quasiparticle excitations. Both show similar behavior: They
depend monotonically on A in a region around A = 0 but
bend upward for large, negative A, counteracting the splitting.

and 7o = (g + Ng)/2, varies with A in a differen-
tiable way throughout the OSMT. Regarding the nature
of the phase transition, it is then interesting to note
that Var(p) = (p?) — (p)? exhibits a kink at the OSMT
[Fig. 8(a)]. Further, we have elaborated on the intri-
cate interorbital effects on dynamic correlation functions,
such as a strongly suppressed spin coherence scale, singu-
lar Fermi-liquid behavior, and interband doublon-holon
excitations. These effects are completely hidden when
looking at static properties like the interorbital correlator
COV(’ﬁ,l,’ﬁgg) = |<ﬁ1’fL23> - <TAL1><TAL23>|, WhiCh7 generally, is
rather weak [Fig. 8(b)] and has a kink at A28 analogous
to Var(p) [18, 26].

To gauge the influence of correlations on orbital differ-
entiation, we investigated §3(0) = X1(0) — ¥25(0), which
contributes to a renormalized crystal field, A 4+ §3(0),
for electronic degrees of freedom. An alternative def-
inition for an effective crystal field, A.g, is given by
A=2Z1-(e14+%1(0)) — Z3- (e23+X23(0)), which constitutes
a splitting for quasiparticle excitations [20]. Figure 8(b)
shows that both variants of Acg vary similarly with A:
In a region around A = 0, the self-energy difference §%(0)
increases the magnitude of Aeg, i.e., §%(0) > 0 for A >0
and dX(0) < 0 for moderate A < 0. However, for large,
negative A, we find that 63(0) > 0 for A < 0, thus de-
creasing |A.g|. The quasiparticle effective crystal field,
A, is much smaller in magnitude than the bare crystal
field, but, nonetheless, shows a trend similar to that of
A + 6%(0): It depends monotonically on A in a region
around A = 0 but bends upward for large, negative A,
thereby counteracting the splitting.

Appendix B: Doublon-holon excitations

The spectrum of the insulating 1-orbital in the OSMP
can be qualitatively explained from the atomic level struc-
ture. In the atomic limit, the ground state consists of
eigenstates of the impurity Hamiltonian with one electron
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FIG. 9. (a) Ground state |G) in the atomic limit at A < 0, yet |A| < 2J, and single-particle and -hole excitations in the
23-doublet. Shaded arrows symbolize a symmetric distribution over the degenerate orbitals. (b) Illustration of interband
doublon-holon excitations in the OSMP. The occupation of the insulating 1-orbital is pinned to 1; however, the metallic
23-doublet still exhibits charge fluctuations. Then, |G) is a mixture of states, where the dominant impurity occupation is 2 (state
marked red), and subleading contributions have impurity occupation 1 and 3 (Ja|> > |8)?, |y|?). At fixed filling, the residual
charge is carried by the bath (second “ket”). Single-particle and -hole excitations on top of the dominant contribution to the
ground state mark the 1-orbital Hubbard bands. Analogous excitations on the subleading terms lead to states which again have
impurity occupation 2. If we relate these states to the dominant first part, we can identify them as interband doublon-holon
excitations [35]: The charge on the impurity remains the same while an electron is removed in the 23-orbital and added in
the 1-orbital (dashed blue line), or added in the 23-orbital and removed in the 1-orbital (dashed green). The location of the
excitations in the 1-orbital spectral function (right, vertical axis) can be deduced from the atomic energy levels [see Eqgs. (BT7)
and (B9)].

Hamiltonian, f[imp =, Emlm + I:]im, with

ﬁmfﬁmq’
>

m#m/

in the 1- and 23-orbital(s) each [the first contribution
to |G) in Fig. 9(b), marked in red, is a representative].
However, the metallic character of the 23-orbitals implies
charge fluctuations, such that the actual ground state also
contains admixtures from states where the 23-levels of
the impurity are empty or doubly occupied [second and
third contributions to |G) in Fig. 9(b)]. At fixed filling,
the residual charge is carried by the bath [second “ket”
in the tensor-product notation of Fig. 9(b)].

Hip = U  fumyiimy + (U—J)

H(U=2T) Y umottmig —J Y dlydmydl, dos.
m<m/,o m#m/

(B1)

The ground-state energy can be estimated from the im-
purity eigenstate with dominant weight, having one elec-
tron in the l-orbital and another spin-aligned one in

At large interaction, the first term of |G) with impu-
rity occupation 2 is dominant. Single-particle and -hole
excitations in the l-orbital on top of this state mark
the Hubbard bands [first “column” in Fig. 9(b)]. Single-
particle and -hole excitations to the other contributions
make states accessible which are inaccessible in the atomic
limit [second and third “column” in Fig. 9(b)]. If we relate
these states to the dominant part of the ground state,
we can identify them as interband doublon-holon excita-
tions [35]: The charge on the impurity remains 2 while
an electron is removed in the 23-orbital and added in
the 1-orbital [blue dashed line in Fig. 9(b)] or vice versa
(green dashed line).

We can also estimate the positions of both the Hubbard
bands and the doublon-holon peaks in A; from the atomic
level structure. To this end, we first recall the impurity

the 23-doublet, as Fg = €1 + €23 + (U — 2J). The dif-
ference in on-site energies is determined by the crystal
field, A = €; — €23, and the occupation of n; = 1 in the
OSMP sets a range for their overall shift. Additionally, a
specific value for ea3 can be found by looking at charge
fluctuations in the 23-doublet, as shown next.

Charge fluctuations in the 23-orbitals

Charge fluctuations in the 23-doublet on top of the
dominant ground-state contribution connect the states
shown in Fig. 9(a) with atomic energies

EEB,23 = €1 + 2e93 + 3(U — 2.J), (B2a)

HB23 = €1- (B2b)



The energy cost for the respective transitions, giving the
position of Hubbard bands in the 23-doublet, is

0Efp 53 = Eiipps — Ec = 23 +2(U — 2J),  (B3a)

0Eqgp 03 = Egp oz — Ea = —€23 — (U-2J). (B3b)
Equilibrium at filling 2 is thus obtained when

6E§B,23 = 5EﬁB,23 = €93 = —%(U — 2J) (B4)

Inserting the values U = 6 and J = 1 mostly used, this
means €23 = —6 and 6E§B’23 = 2, corresponding to the
bumps in Agz at w = +2 [Fig. 6(a)].

Hubbard bands in the 1-orbital

Single-particle and -hole excitations in the 1-orbital on
top of the dominant ground-state contribution lead to
the states shown in the first “column” of Fig. 9(b) with
energies

Efp, =2 +es+U+U—-J)+(U-2J), (Bb5a)

By, = €23 (B5b)
Excitations to these states mark the 1-orbital Hubbard
bands, which are found in the spectral function at
5EIiB,1 = EﬁB,l
_5EI;B,1 =Fq—

—Bg=e +2U—J,
Bp, =e1+U —2J.

(B6a)
(B6b)

Inserting the value for ¢; = A + eo3 from Eq. (B4) yields

5Eii13,1 =A+ %U + 2J, (B7a)
—0Egp, =A— %U + J. (B7b)
If we further insert the values A = —1, U = 6, and

J =1 of Fig. 6(a), we get the peak positions —3 and
4. Increasing U up to 8, with J = U/6 as in Fig. 6(b),
increases their magnitude up to —33 and 52 3, respectively.
These numbers match the curves in Fig. 6(a,b) very well.

Doublon-holon subpeaks

The doublon-holon excitation energies are found from
single-particle or -hole excitations on top of the sublead-
ing contributions to the ground state with an empty or
doubly occupied 23-doublet [second and third “column”
of Fig. 9(b)]. The atomic energies of the excited states
are

E;lh% =2¢ + U, (B8a)
E;ld% 2€93 + (U — 2J) (B8b)

The energy difference to the dominant ground-state con-
tribution [dashed lines in Fig.9(b)| gives the position of

the subpeaks in the insulating spectral function. Using
€1 — €23 = A, we have

6E;1h23 = E:lrlh% —FEqg=A+2J,
_6Ef?1d23 = Eg — E;1d23 =A.

(B9a)
(B9b)

Interestingly, these peak positions only depend on the
difference of the energy levels, A, and on Hund’s coupling,
J. Inserting the values for Fig. 6(a) gives —1 and +1,
and those for Fig. 6(b) yield —1 and 1 + U/3, in perfect
agreement with the plots.

Both the charge fluctuations in the 23-doublet and the
interband doublon-holon excitations are determined by
the same subleading contributions to the ground state
(such as the terms with coefficients |3|? and |y|? in Fig. 9).
Hence, the widths of the quasiparticle peak in the 23-
doublet and the subpeaks in the 1-orbital are closely tied
together. By increasing F,s = U — 2J, one can then
decrease both the widths of the 23-quasiparticle peak
and the 1-subpeaks. On the other hand, by tuning A
and J at constant E,;, one can shift the positions of the
1-subpeaks, while the weights of the 23-quasiparticle peak
and the 1-subpeaks remain roughly the same.

Appendix C: Momentum-resolved spectral function

In Fig. 10, we plot the local spectral function, A(w),
together with the momentum-resolved one, A(w, €x). As
explained in the caption, strong particle-hole asymmetry,
decreasing quasiparticle weight, and localization of the 1-
electrons can be nicely seen. Moreover, it is interesting to
observe that the crossover between the w < 0 shoulder and
the interband doublon-holon subpeak at A is accompanied
by a transfer of spectral weight from ex < 0 to € > 0. In
the OSMP, the doublon-holon subpeak at w < 0, €, > 0
can be very well distinguished from the Hubbard band
at w < 0, ex < 0. Especially in the momentum-resolved
plot, these interband doublon-holon subpeaks resemble
the intraband doublon-holon subpeaks known from the
single-orbital strongly correlated metallic phase [46, 59].

Appendix D: Susceptibilities

Here, we give the definitions for the various suscepti-
bilities computed. The total spin operator is given by
S = Yom S,, with S,, = %Zw, ci;fm‘rwrcimgz and Pauli
matrices 7. We further define So3 = (So + S5)/2, and
mainly compute the spin susceptibilities

_%Z STNST)ws X35 :%Z 5511555)w.  (D1)

Further we use the angular-momentum operator L with

Lo = 432, 3 i €mm m”dm adm - and compute or-
bital susceptibilities according to Los = (L2 + L3)/2 and

X§™ = (Las||Las)e, XS5 = (L1|L1 ) (D2)
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FIG. 10. Local A(w) and momentum-resolved A(w, ex) spectral functions for varying A in the metallic phase (left panel) and for
varying U (J = U/6 fixed) in the OSMP (right). Note that, within DMFT, the k dependence enters only via ek, and we set the
half-bandwidth to 2. (a) Already at A = 0, A(w) and A(w, ex) reveal a strong particle-hole asymmetry. (b,c) As we decrease A,
the 1-orbital is pushed toward half filling, the quasiparticle weight decreases, and A(w, ex) reveals an almost flat dispersion.
Interestingly, the spectral weight from the w < 0 shoulder is continuously transferred from negative to positive ex. (d) In the
OSMP, the quasiparticle weight in the 1-orbital has vanished; the Hubbard band in A(w, ex) at w < 0 is found at ex < 0 while
the subpeak is distinctively centered at ex > 0 (note the altered color scale). The logarithmic singularities in the 23-orbitals are
contained in the very sharp structure around w = 0. (e,f) With increasing F.s = U — 2J, the widths of the 23-quasiparticle peak
and, consequently, the widths of the 1-subpeaks decrease. With increasing J, the position of the right subpeak shifts to higher
energies [cf. Eq. (B9)]. The distinct nature of the interband doublon-holon excitations and the Hubbard bands becomes clearly
visible; they resemble the intraband doublon-holon subpeaks in the single-orbital strongly correlated metallic phase [46, 59].



FIG. 11. Various intra- and inter-orbital susceptibilities. As
the latter ones change sign within 0 < w < oo, they are shown
in absolute value. The orbital Kondo scale can be read off
from the position of the maximum of the orbital susceptibility,
x°™ (dash-dotted line), as well as from orbital-resolved charge
susceptlblhtles (n1||n1)w and (ni1||n2s)e (dashed lines).

In fact, as the system exhibits full SU(2) orbital symmetry
in the 23 doublet, we can also use the fully symmetrized

T23 -2 Z Zm m’€{2,3} dmaTmm’dm - and

3
ngb = % Z T23||T23 (D3)

In the literature, orbital susceptibilities are sometimes
computed from charge fluctuations in the individual or-
bitals. In this language, with fia3 = (722 + 713)/2, one
has

ch

Xt = (nllfn)w, (D4)

X595 = (R2s||f2s)e.

10

Using orbital SU(2) symmetry with x35° = (1%]|73,).,
one further obtains

3
% Z nm”nm w — <TL23H7’L23> +X8§b

m=2

(D5)

In the fully symmetric case at A = 0, we can also
extract the spin and orbital Kondo temperatures from

3 8
X =5 D8NS e, X =3 3T, (D)

a=1 a=1

where T' = DI Dmmie{1,2,3) Al G Aoy with SU(3)
Gell-Mann matrices normalized as Tr[g?, g°] = 284.p-

For illustration, we finally show in Fig. 11 intra-
and inter-orbital susceptibilities of spin and number
operators. As the inter-orbital ones, (S1||S23)0 =
158 (8¢11585)e and (fy||fizg)e,, change sign within
0 < w < o0, they are shown in absolute value. We see
that the orbital Kondo scale, read off from the position
of the maximum in x°™ (dash-dotted line), can also be
determined from orbital-resolved charge susceptibilities
(dashed lines), corresponding to their explicit relation
given in Eq. (D5). It is interesting to note that spins
align, meaning <S’1\|S23>w > 0, for |w| < J =1 due to
Hund’s coupling, and the individual charges antagonize,
meaning (7 ||f23) < 0, for |w| < U/2 = 3 to minimize
the Coulomb repulsion.
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