
Orbital differentiation in Hund metals

Fabian B. Kugler,1 Seung-Sup B. Lee,1 Andreas Weichselbaum,2, 1 Gabriel Kotliar,2, 3 and Jan von Delft1

1Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for

Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
2Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA

3Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

(Dated: September 27, 2019)

Orbital differentiation is a common theme in multiorbital systems, yet a complete understanding
of it is still missing. Here, we consider a minimal model for orbital differentiation in Hund metals
with a highly accurate method: We use the numerical renormalization group as a real-frequency
impurity solver for a dynamical mean-field study of three-orbital Hubbard models, where a crystal
field shifts one orbital in energy. The individual phases are characterized with dynamic correlation
functions and their relation to diverse Kondo temperatures. Upon approaching the orbital-selective
Mott transition, we find a strongly suppressed spin coherence scale and uncover the emergence of
a singular Fermi liquid and interband doublon-holon excitations. Our theory describes the diverse
polarization-driven phenomena in the t2g bands of materials such as ruthenates and iron-based
superconductors, and our methodological advances pave the way toward real-frequency analyses of
strongly correlated materials.

I. INTRODUCTION

The discovery of superconductivity in the iron pnic-
tides and chalcogenides [1, 2] (FeSCs) has led to renewed
interest in multiorbital systems. Both theoretical and
experimental studies of these systems have uncovered the
remarkable phenomenon of orbital differentiation: In an
almost degenerate manifold of d states, some orbitals are
markedly more correlated than others. For instance, in
FeSexTe1−x [3], LiFeAs [4], and K0.76Fe1.72Se2 [5], among
the t2g states, only the xy orbital disappears from pho-
toemission spectra as temperature is raised. Orbital dif-
ferentiation is also seen in tunneling experiments [6] and
is a key ingredient in theoretical frameworks to describe
FeSCs [7–9]. It is not unique to the FeSCs; it has further
been documented in the ruthenates [10] and likely takes
place in all Hund metals [11, 12].

An extreme form of orbital differentiation is the orbital-
selective Mott transition (OSMT) [13], where some or-
bitals become insulating, while others remain metallic.
Despite its importance, the OSMT in three-band sys-
tems has not yet been systematically investigated with a
controlled method enabling access to low temperatures,
where Fermi liquids form. Controversial questions include:
For a given sign of crystal-field splitting, which orbitals
localize? Is the OSMT of first or second order? Do cor-
relations enhance or reduce orbital polarization as one
approaches the OSMT? Is it true that quenching of orbital
fluctuations makes the orbitals behave independently? Do
the itinerant electrons in the OSM phase (OSMP) form
a Fermi liquid? Finally, how are the precursors of the
OSMT related to the physics of Hund metals?
In this paper, we use a minimal model (see motiva-

tion below) for orbital differentiation in Hund metals to
answer these questions in a unified picture. Our concep-
tual arguments are supported by a numerical method of
unprecedented accuracy: We use the numerical renormal-
ization group (NRG) [14] as a real-frequency impurity

solver for dynamical mean-field theory (DMFT) [15], ex-
tending the tools of Ref. 16 from full SU(3) to reduced
orbital symmetry. Whereas different bandwidths directly
lead to different effective interaction strengths among the
orbitals (as extensively studied for two-orbital models;
see, e.g., [17] for a list of references), we focus here on
the more intricate case where a crystal field shifts one
orbital in energy w.r.t. two degenerate orbitals [18–22].
Thereby, we can isolate polarization effects and drive
the system through band+Mott insulating, metallic, and
OSM phases, reminiscent of Ca2RuO4 [13], Sr2RuO4 [23],
and FeSCs, respectively.
Theoretically, the OSMP has been under debate both

w.r.t. the precise form of the (conducting) self-energy
[18, 21, 24–26] and w.r.t. subpeaks in the insulating spec-
tral function [20, 26–28]. Whereas previous studies were
limited by finite-size effects of exact diagonalization or fi-
nite temperature in Monte Carlo data (requiring analytic
continuation), our NRG results yield conclusive numeri-
cal evidence down to the lowest energy scales. We give
a detailed phase diagram including coexistence regimes
(lacking hitherto) and characterize the individual phases
with real-frequency properties and their relation to Kondo
temperatures spanning several orders of magnitude. Upon
approaching the OSMT, we find a strongly suppressed
spin coherence scale and uncover the emergence of a singu-
lar Fermi liquid [24, 29–32] and interband doublon-holon
excitations [33–36] (both of which were previously realized
only separately and in two-orbital models).

II. MODEL AND METHOD

The Hamiltonian of our three-orbital Hubbard model
is given by

Ĥ = −t
∑

〈ij〉mσ

d̂†imσd̂jmσ +
∑

i

Ĥint[d̂imσ] +
∑

im

εmn̂im,
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FIG. 4. (a,b) Spectral functions in the metallic phase for the
orbitals approaching a Mott transition (main panels) and the
remaining ones (insets). (b) Decreasing ∆ sharpens the quasi-
particle peak (reduced T sp

K ), destroys the orbital resonance if

|∆| & T orb
K (∆ = 0)/2, and generates interband doublon-holon

subpeaks. (c) Spectral functions and Kondo temperatures
(inset) in the orbitally symmetric case for increasing J and
fixed U − 2J . (d) Spin (solid lines) and orbital (dashed) sus-
ceptibilities corresponding to (b). (For ∆ 6= 0, we plot χsp

1

and 4χsp
23 to have the two curves for each ∆ closer together.)

IV. METALLIC SPECTRUM

Let us now examine in detail how the spectral functions
change with ∆ in the metallic phase. Figures 4(a,b) show
that, for both positive and negative ∆, the most important
change with stronger correlations occurs in the orbital(s)
approaching a Mott transition (main panels). The other
orbitals (insets) mostly adjust the spectral weight. At ∆ =
0 [gray lines in Figs. 4(a–c)], the spectral functions exhibit
the typical shoulder in the quasiparticle (qp) peak [16, 56]
(below half filling at ω < 0). In Ref. 56, this has been
explained as the combination of a sharp SU(2) spin Kondo
resonance (“needle” with width ∝ T sp

K ) and a wider SU(3)
orbital Kondo resonance (“base” with width ∝ T orb

K ). If
we first stay with the orbitally symmetric case [Fig. 4(c)]
and use J and Eat = U−2J as tuning parameters [56], we
can reduce T sp

K by increasing J while only mildly affecting
T orb
K . As a consequence, the needle sharpens while the

wide base remains, revealing a subpeak.
Similarly, increasing |∆| drastically decreases T sp

K

[Figs. 2(d), 4(d)] and causes a thin qp needle. Addi-
tionally, finite ∆, which acts in orbital space similarly to
a magnetic field in spin space, splits the qp base. For
|∆| & T orb

K , the orbital Kondo resonance is destroyed and
subpeaks on both sides of ω = 0 remain. In fact, the
orbital-resonance shoulder is remarkably accurately cen-
tered at −T orb

K (∆=0)/2 [Fig. 4(c)], and crosses over to an
interband doublon-holon excitation at ∆ < 0 (see below)
for |∆| & T orb

K (∆=0)/2. Note that the authors of Ref. 38
similarly marked strong influence of J by J & T orb

K (J=0).
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FIG. 5. Metallic self-energies for all orbitals, for different ∆.
The characteristic features, such as an inverted slope and a
kink, already present at ∆ = 0, are enhanced as the orbital
becomes more correlated, induced by proximity to half filling:
n1 (n23) approaches 1 with increasing (decreasing) ∆.

Generally, finite ∆ amplifies Hund-metal features in
some orbitals while suppressing them in others. This
is apparent in spectral functions (Fig. 4) as well as self-
energies; see Fig. 5. For ∆ = 0, we find the typical [23, 57]
inverted slope in ReΣ for small ω < 0 and kink in ReΣ
for small ω > 0 (with ImΣ related by Kramers–Kronig
transform). These features are enhanced as the orbital
becomes more correlated, and suppressed as it becomes
less correlated. The degree of correlation follows from
proximity to half filling: n1 approaches 1 as ∆ decreases;
n23 approaches 1 as ∆ increases.

V. OSMP

For ∆ ≤ −0.85, T sp
K and the qp needle vanish alto-

gether; the 1-orbital becomes a Mott insulator while the
23-doublet retains spectral weight at ω = 0 [Fig. 6(a)]. In
the metallic orbitals, Luttinger pinning [58] via the semi-
circular lattice density of states ρ, with A23(0) = ρ(xn)
and

∫ xn

−∞
ρ(x)dx = n23,σ, is fulfilled throughout [leading

to πA23(0) ≈ 0.91 at quarter filling n23,σ = 1/4]. Yet, the
spectral function of the half-filled 1-orbital strongly differs
from a single-orbital Mott insulator. Next to the stan-
dard Hubbard bands, charge fluctuations in the 23-doublet
enable interband doublon-holon excitations (previously
identified in a two-band DMFT+DMRG study [35]; cf.
[33, 34] for experimental signatures) in the insulating
spectral function. Here, they occur at energies ∆ and
∆+2J , as derived in Appendix B. These gap-filling states
give A1 its soft form. They are shifted with ∆, leading
to a “tilt” of A1 around ω = 0. A hard gap is revealed
when pushing the subpeaks apart (via J) and decreasing
their weight (via Eat = U − 2J) by suppressing 23-charge
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FIG. 6. Characterization of the OSMP. (a) Spectral functions
showing the insulating and metallic character of the 1- and 23-
orbital(s), respectively. Interband doublon-holon excitations
are seen as subpeaks in A1, whose position shifts with ∆,
leading to a tilt of A1 around ω = 0; the A23 curves all lie
on top of each other. (b) Close up of the insulating spectral
function at variable U (only in this panel), with J/U = 1/6
fixed. Increasing J shifts the right subpeak toward larger
energies, and increasing Eat = U − 2J decreases the weight
of the subpeaks by suppressing charge fluctuations in the
23-doublet. Both effects help to reveal a hard spectral gap.
(c) Diverging spin (solid lines) and regular orbital (dashed)
susceptibilities. (We again plot 4χsp

23.) (d) NRG flow diagram
of the rescaled, lowest-lying energy levels at characteristic
level spacing ∼ |ω|. The legend provides charge Qm, total
spin S, and SU(2) orbital T23 quantum numbers. The ground
state carries a residual spin 1/2 since the contribution to
the impurity spin from the insulating 1-orbital cannot be
screened. The SFL nature entails that the flow approaches
the Fermi-liquid fixed point (where the first and second as
well as third and fourth excitations become degenerate) only
asymptotically.

fluctuations [Fig. 6(b)]. The subpeaks’ distinct nature
[46, 59] is further underlined in plots of the momentum-
resolved spectral function, shown in Appendix C, where
one can also see how the widths of the 23-qp peak and
1-orbital subpeaks narrow together with increasing Eat.

As the insulating 1-orbital does not contribute to spin
screening, the OSMP inherits properties of an under-
screened (spin) Kondo effect [32], as manifested in a di-
vergent spin susceptibility [Fig. 6(c)]. Within our DMFT
description of the OSMP, the impurity electron in the
1-orbital and that in the 23-doublet form a combined
spin 1, due to Hund’s coupling. However, the 1-orbital
hybridization (∝ A1) has zero weight at low enough en-
ergies. Hence, given the diagonal hybridization, only the
23-contribution to the impurity spin can be screened,
while its 1-orbital contribution remains unscreened. The
underscreened Kondo effect in turn leads to the singular
Fermi-liquid (SFL) state of the OSMP, as strikingly evi-
dent in the NRG flow diagram [14, 16, 56]: Fig. 6(d) shows
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FIG. 7. Self-energies in the OSMP. (a) Real part of the insu-
lating 1-orbital self-energy. Upon decreasing ∆ in the OSMP,
the position of the singularity in Σ1 (marked by dashed lines)
shifts through ω = 0. (b) Low-energy zoom of the self-energy
in the metallic 23-orbitals (solid lines) with fits (dashed) to
the SFL logarithmic singularities. (c) The logarithmic deriva-
tive L(z) of −ImΣ23 vanishes as z → 0, providing additional
confirmation of the logarithmic nature of the singularity.

that the rescaled, lowest-lying energy levels of the itera-
tively diagonalized Wilson chain reach the Fermi-liquid
(FL) fixed point only asymptotically [30].

The self-energy of the insulating 1-orbital diverges. In
Fig. 7(a), we see that the singularity of Σ1 is not bound
to ω = 0; instead, its position shifts with ∆. This
implies that Z1 = 1/(1 − ∂ωReΣ1(0)) does not vanish
throughout the OSMP and is thus not suited to mark
the insulating character of the 1-orbital in the OSMP.
A low-energy zoom of the self-energy in the metallic 23-
orbitals [Fig. 7(b)] reveals strong deviations from the
standard zero-temperature FL form, ReΣFL = a+ bω and
ImΣFL = −|c|ω2. Instead, it exhibits logarithmic singu-
larities that can be well fitted [dashed lines in Fig. 7(b)]
to the SFL relations [24, 32, 60]

ReΣSFL = ã+ b̃ sgn(ω) ln−3 |ω/T ∗|,

ImΣSFL = −|c̃| ln−2 |ω/T ∗|.

The logarithmic singularity in Σ23 implies that Z23 = 0
despite the conducting character of the 23-orbitals with
finite spectral weight at the Fermi level [Fig. 6(a)]. To fur-
ther scrutinize the singularity, we consider the logarithmic
derivative of the imaginary part of Σ23,

L(z) =
d ln[−ImΣ23(z)]

d ln z
,

both for real frequencies, z = ω+ i0+ with ω ∈ R, and for
imaginary frequencies, z = iω ∈ (2Z+ 1)iπT . This quan-
tity is well suited to discriminate between singularities of
logarithmic or fractional power-law type:

−ImΣ(z) = |c′|zα ⇒ L(z) = α,

−ImΣ(z) = |c̃| ln−2(z/T ∗) ⇒ L(z) = −2 ln−1(z/T ∗)

−−−→
z→0

0.

In Fig. 7(c), we clearly see that L(0) = 0, confirming
the logarithmic nature of the singularity. Note that a
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smoothening postprocessing was used to suppress minor
oscillations in very small values of ImΣ. The imaginary-
frequency data L(iω), available for |iω| ≥ πT , perfectly
match the low-frequency behavior but does not suffice to
follow the decay up to L(0) = 0. In fact, if the imaginary-
frequency data were available only in a limited temper-
ature range, as is the case in Monte Carlo studies, say,
T & 10−3 and |iω| & π ·10−3, one might easily be tempted
to conclude that L(iω) saturates at α ≈ 0.5.

VI. CONCLUSION

We have shown that DMFT+NRG can be used to
study three-orbital Hubbard models with reduced or-
bital symmetry, used this method to accurately describe
polarization-driven phase transitions induced by a crystal
field ∆, and uncovered the rich real-frequency structure
inherent in the interplay of Hund-metal physics and or-
bital differentiation. Our analysis leads to a conclusion
of major conceptual significance: The popular notion
that orbital screening, facilitated by J , makes the orbitals
behave almost independently [8–10, 12, 18, 26, 49, 61]
[as seen, e.g., in static correlations [18, 26, 61]; cf. also
Fig. 8(a)] misses the importance of spin fluctuations. It
must be revised when looking at dynamic correlation
functions, as (i) a suppressed hybridization in one orbital
suppresses the spin Kondo temperature of all orbitals (at
sizable J), (ii) charge fluctuations in some orbitals enable
interband doublon-holon excitations [35] in the spectrum
of other orbitals, and (iii) the presence of localized spins
implies singular Fermi-liquid behavior of the remaining
itinerant electrons [32].

With our methodological advances, NRG is ready to be
used as a real-frequency impurity solver in a DFT+DMFT
description of three-orbital materials with reduced orbital
symmetry [62]. Future studies should further investigate
the stability of the OSMP against interorbital hopping
[63].
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Appendix A: Additions to the phase diagram

In the discussion of the phase diagram in Fig. 2, we
mentioned that the polarization p = 〈p̂〉, with p̂ = n̂1−n̂23
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FIG. 8. Additions to the ∆ phase diagram. (a) Var(p̂) =
〈p̂2〉 − 〈p̂〉2 and Cov(n̂1, n̂23) = |〈n̂1n̂23〉 − 〈n̂1〉〈n̂23〉| exhibit
a kink at the OSMT. The latter shows that static, interband
correlations are rather weak (plot shows 5 Cov). (b) Two
different versions of an effective crystal field (shown only for
metallic solutions), ∆+δΣ(0) as relevant for electronic degrees

of freedom and ∆̃ = Z1 · (ε1 + Σ1(0))− Z2 · (ε23 + Σ23(0)) for
quasiparticle excitations. Both show similar behavior: They
depend monotonically on ∆ in a region around ∆ = 0 but
bend upward for large, negative ∆, counteracting the splitting.

and n̂23 = (n̂2 + n̂3)/2, varies with ∆ in a differen-
tiable way throughout the OSMT. Regarding the nature
of the phase transition, it is then interesting to note
that Var(p̂) = 〈p̂2〉 − 〈p̂〉2 exhibits a kink at the OSMT
[Fig. 8(a)]. Further, we have elaborated on the intri-
cate interorbital effects on dynamic correlation functions,
such as a strongly suppressed spin coherence scale, singu-
lar Fermi-liquid behavior, and interband doublon-holon
excitations. These effects are completely hidden when
looking at static properties like the interorbital correlator
Cov(n̂1, n̂23) = |〈n̂1n̂23〉 − 〈n̂1〉〈n̂23〉|, which, generally, is
rather weak [Fig. 8(b)] and has a kink at ∆neg

c analogous
to Var(p̂) [18, 26].

To gauge the influence of correlations on orbital differ-
entiation, we investigated δΣ(0) = Σ1(0)− Σ23(0), which
contributes to a renormalized crystal field, ∆ + δΣ(0),
for electronic degrees of freedom. An alternative def-
inition for an effective crystal field, ∆eff, is given by
∆̃ = Z1 ·(ε1+Σ1(0))−Z2 ·(ε23+Σ23(0)), which constitutes
a splitting for quasiparticle excitations [20]. Figure 8(b)
shows that both variants of ∆eff vary similarly with ∆:
In a region around ∆ = 0, the self-energy difference δΣ(0)
increases the magnitude of ∆eff, i.e., δΣ(0) > 0 for ∆ > 0
and δΣ(0) < 0 for moderate ∆ < 0. However, for large,
negative ∆, we find that δΣ(0) > 0 for ∆ < 0, thus de-
creasing |∆eff|. The quasiparticle effective crystal field,

∆̃, is much smaller in magnitude than the bare crystal
field, but, nonetheless, shows a trend similar to that of
∆ + δΣ(0): It depends monotonically on ∆ in a region
around ∆ = 0 but bends upward for large, negative ∆,
thereby counteracting the splitting.

Appendix B: Doublon-holon excitations

The spectrum of the insulating 1-orbital in the OSMP
can be qualitatively explained from the atomic level struc-
ture. In the atomic limit, the ground state consists of
eigenstates of the impurity Hamiltonian with one electron
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The energy cost for the respective transitions, giving the
position of Hubbard bands in the 23-doublet, is

δE+
HB,23 = E+

HB,23 − EG = ε23 + 2(U − 2J), (B3a)

δE−
HB,23 = E−

HB,23 − EG = −ε23 − (U − 2J). (B3b)

Equilibrium at filling 2 is thus obtained when

δE+
HB,23 = δE−

HB,23 ⇒ ε23 = − 3
2
(U − 2J). (B4)

Inserting the values U = 6 and J = 1 mostly used, this
means ε23 = −6 and δE±

HB,23 = 2, corresponding to the

bumps in A23 at ω = ±2 [Fig. 6(a)].

Hubbard bands in the 1-orbital

Single-particle and -hole excitations in the 1-orbital on
top of the dominant ground-state contribution lead to
the states shown in the first “column” of Fig. 9(b) with
energies

E+
HB,1 = 2ε1 + ε23 + U + (U − J) + (U − 2J), (B5a)

E−
HB,1 = ε23. (B5b)

Excitations to these states mark the 1-orbital Hubbard
bands, which are found in the spectral function at

δE+
HB,1 = E+

HB,1 − EG = ε1 + 2U − J, (B6a)

−δE−
HB,1 = EG − E−

HB,1 = ε1 + U − 2J. (B6b)

Inserting the value for ε1 = ∆+ ε23 from Eq. (B4) yields

δE+
HB,1 = ∆+ 1

2
U + 2J, (B7a)

−δE−
HB,1 = ∆− 1

2
U + J. (B7b)

If we further insert the values ∆ = −1, U = 6, and
J = 1 of Fig. 6(a), we get the peak positions −3 and
4. Increasing U up to 8, with J = U/6 as in Fig. 6(b),
increases their magnitude up to −3 2

3
and 5 2

3
, respectively.

These numbers match the curves in Fig. 6(a,b) very well.

Doublon-holon subpeaks

The doublon-holon excitation energies are found from
single-particle or -hole excitations on top of the sublead-
ing contributions to the ground state with an empty or
doubly occupied 23-doublet [second and third “column”
of Fig. 9(b)]. The atomic energies of the excited states
are

E+
d1h23

= 2ε1 + U, (B8a)

E−
h1d23

= 2ε23 + (U − 2J). (B8b)

The energy difference to the dominant ground-state con-
tribution [dashed lines in Fig.9(b)] gives the position of

the subpeaks in the insulating spectral function. Using
ε1 − ε23 = ∆, we have

δE+
d1h23

= E+
d1h23

− EG = ∆+ 2J, (B9a)

−δE−
h1d23

= EG − E−
h1d23

= ∆. (B9b)

Interestingly, these peak positions only depend on the
difference of the energy levels, ∆, and on Hund’s coupling,
J . Inserting the values for Fig. 6(a) gives −1 and +1,
and those for Fig. 6(b) yield −1 and 1 + U/3, in perfect
agreement with the plots.

Both the charge fluctuations in the 23-doublet and the
interband doublon-holon excitations are determined by
the same subleading contributions to the ground state
(such as the terms with coefficients |β|2 and |γ|2 in Fig. 9).
Hence, the widths of the quasiparticle peak in the 23-
doublet and the subpeaks in the 1-orbital are closely tied
together. By increasing Eat = U − 2J , one can then
decrease both the widths of the 23-quasiparticle peak
and the 1-subpeaks. On the other hand, by tuning ∆
and J at constant Eat, one can shift the positions of the
1-subpeaks, while the weights of the 23-quasiparticle peak
and the 1-subpeaks remain roughly the same.

Appendix C: Momentum-resolved spectral function

In Fig. 10, we plot the local spectral function, A(ω),
together with the momentum-resolved one, A(ω, εk). As
explained in the caption, strong particle-hole asymmetry,
decreasing quasiparticle weight, and localization of the 1-
electrons can be nicely seen. Moreover, it is interesting to
observe that the crossover between the ω < 0 shoulder and
the interband doublon-holon subpeak at ∆ is accompanied
by a transfer of spectral weight from εk < 0 to εk > 0. In
the OSMP, the doublon-holon subpeak at ω < 0, εk > 0
can be very well distinguished from the Hubbard band
at ω < 0, εk < 0. Especially in the momentum-resolved
plot, these interband doublon-holon subpeaks resemble
the intraband doublon-holon subpeaks known from the
single-orbital strongly correlated metallic phase [46, 59].

Appendix D: Susceptibilities

Here, we give the definitions for the various suscepti-
bilities computed. The total spin operator is given by

Ŝ =
∑

m Ŝm with Ŝm = 1
2

∑
σσ′ d̂†mστσσ′ d̂mσ′ and Pauli

matrices τ . We further define Ŝ23 = (Ŝ2 + Ŝ3)/2, and
mainly compute the spin susceptibilities

χsp
1 = 1

3

3∑

α=1

〈Ŝα
1 ||Ŝ

α
1 〉ω, χsp

23 = 1
3

3∑

α=1

〈Ŝα
23||Ŝ

α
23〉ω. (D1)

Further, we use the angular-momentum operator L̂ with

L̂m = i
∑

σ

∑
m′m′′ εmm′m′′ d̂†m′σd̂m′′σ and compute or-

bital susceptibilities according to L̂23 = (L̂2 + L̂3)/2 and

χorb
1 = 〈L̂23||L̂23〉ω, χorb

23 = 〈L̂1||L̂1〉ω. (D2)
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FIG. 10. Local A(ω) and momentum-resolved A(ω, εk) spectral functions for varying ∆ in the metallic phase (left panel) and for
varying U (J = U/6 fixed) in the OSMP (right). Note that, within DMFT, the k dependence enters only via εk, and we set the
half-bandwidth to 2. (a) Already at ∆ = 0, A(ω) and A(ω, εk) reveal a strong particle-hole asymmetry. (b,c) As we decrease ∆,
the 1-orbital is pushed toward half filling, the quasiparticle weight decreases, and A(ω, εk) reveals an almost flat dispersion.
Interestingly, the spectral weight from the ω < 0 shoulder is continuously transferred from negative to positive εk. (d) In the
OSMP, the quasiparticle weight in the 1-orbital has vanished; the Hubbard band in A(ω, εk) at ω < 0 is found at εk < 0 while
the subpeak is distinctively centered at εk > 0 (note the altered color scale). The logarithmic singularities in the 23-orbitals are
contained in the very sharp structure around ω = 0. (e,f) With increasing Eat = U − 2J , the widths of the 23-quasiparticle peak
and, consequently, the widths of the 1-subpeaks decrease. With increasing J , the position of the right subpeak shifts to higher
energies [cf. Eq. (B9)]. The distinct nature of the interband doublon-holon excitations and the Hubbard bands becomes clearly
visible; they resemble the intraband doublon-holon subpeaks in the single-orbital strongly correlated metallic phase [46, 59].
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FIG. 11. Various intra- and inter-orbital susceptibilities. As
the latter ones change sign within 0 < ω < ∞, they are shown
in absolute value. The orbital Kondo scale can be read off
from the position of the maximum of the orbital susceptibility,
χorb (dash-dotted line), as well as from orbital-resolved charge
susceptibilities, 〈n1||n1〉ω and 〈n1||n23〉ω (dashed lines).

In fact, as the system exhibits full SU(2) orbital symmetry
in the 23-doublet, we can also use the fully symmetrized

T̂23 = 1
2

∑
σ

∑
m,m′∈{2,3} d̂

†
mστmm′ d̂m′σ and

χorb
23 = 1

3

3∑

α=1

〈T̂α
23||T̂

α
23〉ω. (D3)

In the literature, orbital susceptibilities are sometimes
computed from charge fluctuations in the individual or-
bitals. In this language, with n̂23 = (n̂2 + n̂3)/2, one
has

χch
1 = 〈n̂1||n̂1〉ω, χch

23 = 〈n̂23||n̂23〉ω. (D4)

Using orbital SU(2) symmetry with χorb
23 = 〈T̂ 3

23||T̂
3
23〉ω,

one further obtains

1
2

3∑

m=2

〈n̂m||n̂m〉ω = 〈n̂23||n̂23〉ω + χorb
23 . (D5)

In the fully symmetric case at ∆ = 0, we can also
extract the spin and orbital Kondo temperatures from

χsp = 1
3

3∑

α=1

〈Ŝα||Ŝα〉ω, χorb = 1
8

8∑

a=1

〈T̂ a||T̂ a〉ω, (D6)

where T̂ = 1
2

∑
σ

∑
m,m′∈{1,2,3} d̂

†
mσgmm′ d̂m′σ with SU(3)

Gell-Mann matrices normalized as Tr[ga, gb] = 2δa,b.

For illustration, we finally show in Fig. 11 intra-
and inter-orbital susceptibilities of spin and number
operators. As the inter-orbital ones, 〈Ŝ1||Ŝ23〉ω =
1
3

∑3

α=1〈Ŝ
α
1 ||Ŝ

α
23〉ω and 〈n̂1||n̂23〉ω, change sign within

0 < ω < ∞, they are shown in absolute value. We see
that the orbital Kondo scale, read off from the position
of the maximum in χorb (dash-dotted line), can also be
determined from orbital-resolved charge susceptibilities
(dashed lines), corresponding to their explicit relation
given in Eq. (D5). It is interesting to note that spins

align, meaning 〈Ŝ1||Ŝ23〉ω > 0, for |ω| . J = 1 due to
Hund’s coupling, and the individual charges antagonize,
meaning 〈n̂1||n̂23〉ω < 0, for |ω| . U/2 = 3 to minimize
the Coulomb repulsion.
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[51] N. Blümer and E. V. Gorelik, Phys. Rev. B 87, 085115
(2013).

[52] S.-S. B. Lee, J. von Delft, and A. Weichselbaum, Phys.
Rev. B 97, 165143 (2018).

[53] J. Steinbauer, L. de’ Medici, and S. Biermann, Phys. Rev.
B 100, 085104 (2019).

[54] M. Greger, M. Kollar, and D. Vollhardt, Phys. Rev. Lett.
110, 046403 (2013).

[55] I. Okada and K. Yosida, Progr. Theor. Phys. 49, 1483
(1973).

[56] K. Stadler, G. Kotliar, A. Weichselbaum, and J. von
Delft, Annals of Physics 405, 365 (2019).

[57] H. Iwasawa, Y. Aiura, T. Saitoh, I. Hase, S. I. Ikeda,
Y. Yoshida, H. Bando, M. Higashiguchi, Y. Miura, X. Y.
Cui, K. Shimada, H. Namatame, and M. Taniguchi, Phys.
Rev. B 72, 104514 (2005).

[58] E. Müller-Hartmann, Z. Phys. B Condensed Matter 76,
211 (1989).

[59] S.-S. B. Lee, J. von Delft, and A. Weichselbaum, Phys.
Rev. B 96, 245106 (2017).

[60] C. J. Wright, Theoretical studies of underscreened Kondo

physics in quantum dots, Ph.D. thesis, Balliol College,
Oxford (2011).

[61] L. Fanfarillo and E. Bascones, Phys. Rev. B 92, 075136
(2015).

[62] F. B. Kugler, M. Zingl, H. U. R. Strand, S.-S. B. Lee,
J. von Delft, and A. Georges, arXiv:1909.02389.

[63] R. Yu and Q. Si, Phys. Rev. B 96, 125110 (2017).


