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Abstract—Real-time multimedia applications such as interac-
tive gaming, live video streaming, and augmented reality have
strict latency and bitrate requirements. However, unpredictable
network conditions like congestion and link quality can severely
degrade the Quality of Experience (QoE). While buffer-based
mitigations cannot be applied to real-time applications due to
their immediate resource needs, recent innovations in network
slicing have demonstrated the feasibility of dedicating specified
amounts of network resources to individual sessions in the radio
access network. Encouraged by this, we propose to reserve
network resources for multimedia sessions ir real time according
to their declared needs, thereby providing ad hoc session-
level performance guarantees. Through WiFi experiments and
trace-driven LTE simulations, we show that such session-level
resource provisioning is robust to real-time channel fluctuations
and congestion externalities over the lifetime of a session. This
approach, however, raises challenges: how can the network
ensure that users are honest about their resource needs and
optimally allocate its limited resources to users, under uncertainty
in future sessions’ resource needs? We derive a novel Multi-
Unit Combinatorial Auction (MUCA) model with a unique
structure that can be exploited for fast winner determination and
yet incentivize truthful bidding, properties not simultaneously
achieved in a generic MUCA but essential to making real-time
session guarantees. Further, since dynamic bidding in real time is
challenging for end-users who are budget-constrained, we develop
a Reinforcement Learning based utility-maximizing strategy to
distribute their budget across sessions, and show that it yields
high user utility.
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Resource management, Economics, Machine Learning, Network
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I. INTRODUCTION

Cyber-Physical Systems (CPS) and the Internet of Things
(IoT) are emerging paradigms for increasingly pervasive and
real-time computing environments. Users are coming to rely
implicitly on the availability of services like Amazon Alexa
and Google Home for their day-to-day tasks, while ambitious
next-gen offerings like HoloLens promise to enable new use
cases for real-time augmented reality like telepresence. How-
ever, the network connectivity that these ubiquitous computing
environments rely on is insufficient [1] even for current
applications. Widespread mobile multimedia services such
as video conferencing and interactive mobile gaming have
specific resource needs to provide an acceptable Quality of
Experience (QoE) for the end-user. Without any means of
conveying these needs to the network, the network may not
meet them [2], [3] leading, for instance, to Google deploying
its network Espresso.

In this work, we propose to provide resource guarantees
on a per-session basis to QoE-sensitive applications by rec-
onciling available resources with their session needs. To see
the benefits of such guarantees, consider a Skype user starting
a video conferencing session for a job interview who cannot
procure any guarantees for the call quality and performance.
Mechanisms for QoS-aware allocation [4], [5] typically do not
model resource consumption at session-level timescales, hence
allowing demand spikes to potentially interrupt or degrade the
call. Xu et al. [1] and others [6] investigate this problem of
high variance in cellular resource availability in the context
of real-time applications. With buffer-based reactive measures
like HTTP DASH infeasible [7], [8], the authors propose a
short-term up-ahead estimation of channel conditions to proac-
tively adjust application behavior, thereby reducing perceived
delay. Improved channel estimation, however, cannot help
sessions that must be preempted altogether due to congestion
or spiky traffic, thereby entirely disrupting the call. Hence,
channel estimation itself is insufficient to guarantee call qual-
ity or completion. We instead propose to proactively allocate
resources to real-time sessions to guarantee high QoE over
their entire duration. Proactive resource provisioning has been
studied [5], [9] at the time-scale of packets or transmission
time interval (TTI), using dynamic pricing or auction-based
methods to allocate limited resources. However, the resulting
allocation at one TTI is entirely independent of the next,
limiting their use here. For multimedia applications, while



millisecond level network performance affects user perception,
user engagement and ultimately QoE occur at the session
level. Therefore, the user’s QoE depends on the resource
allocation throughout the duration of the session, which is
on the order of minutes or hours. Qur goal in this work
is to proactively provide resource guarantees expressed in
terms that a user agent or application can understand and
negotiate for, abstracting away the lower-level intricacies of
network resource allocation as details left to the network
operator. Similar mechanisms have been proposed for the
Internet backbone [10] and cloud environments [11], [12], and
wireless applications are likely to benefit from them even more
due to their best-effort nature. However, this also makes it
challenging to provide such guarantees in wireless networks.
In fact, offering multiple tiers of service guarantees to wireless
users is the goal of the emergent network slicing paradigm
in 5G. Critical components of network slicing are still in
their infancy [13], including RAN slicing, i.e., designing the
wireless radio access network to enforce per-flow performance
guarantees, and slice admission and management. This work
addresses these research challenges [14] that arise in enabling
proactive, session-level resource provisioning for wireless net-
works.

Feasibility: To proactively provision flows for their antic-
ipated duration, available spectrum resources must be quan-
tified and accurately reconciled with session requirements
presumably expressed in terms of bitrate, latency and dura-
tion. Is this feasible? Even then, are performance guarantees
possible despite uncontrollable wireless influences like fast
fading? Recent works in RAN slicing [15], [16] facilitate
functional slice isolation and empirically analyze various fac-
tors to provide probabilistic performance guarantees in cellular
networks. We herein employ an admission control algorithm
that allows a flow into the network based on a simple resource
forecast and reconciliation model that is generalizable to both
scheduled and random-access wireless networks. We conduct
extensive WiFi experiments and trace-driven LTE simulations
with multimedia applications. In Sections II and I, we
find that admitted latency-sensitive as well as bitrate-heavy
flows achieve their promised performances and congestion
externalities are effectively mitigated. In fact the network
accommodates even more flows by implementing incentivized
admission control. Further, since this may be offered as a
value-added service that some users may not require, we
show reliable guarantees can be made even in the presence of
background flows not controlled by our admission algorithm.

Allocation and Incentive Compatibility: Given a forecast
of network resource availability and a mechanism to reconcile
this with session needs, how should these limited resources be
provisioned? The network will likely need to prioritize users
with higher resource valuations as it cannot accommodate
all session requests. Variation in such valuations could arise
from usage context (medium quality for recreational video
calls but high for an interview) or device preferences (lower
resolution on a smartphone vs a 4K monitor). Further, allo-
cating resources for the duration of a session is particularly
difficult as the operator must account for uncertainty in future
needs, and users may strategically misrepresent their needs and

valuations. We address these concerns in a novel auction model
introduced in Section IV. The operator offers consecutive
auctions throughout the day, and users relay their sessions’
resource needs dynamically in a combinatorial bid to the
current auction; session durations may span multiple auctions.
In Section V, we show that the spontaneous and real-time
nature of sessions can be exploited to reduce the search
space of the intractable optimization problem of determining
winning bids, thereby facilitating spontaneous guarantees. In
Section VI, we propose multiple ways for the operator to
incentivize truthful user declarations even under uncertainty
of future bid arrivals and analyze trade-offs in social welfare,
incentive compatibility and operator revenue.

Usability: For users to procure and benefit from perfor-
mance guarantees in this system, they must engage in routine
auctions by bidding. However, studies have shown [17] that
dynamic pricing is challenging for end users who are budget
constrained and averse to making real-time network con-
sumption decisions. We consequently address the user-facing
challenges of resource-specification overhead, price discovery
and budget constraints. We envision that an automated agent
will participate in these session-oriented resource auctions on
each user’s behalf, placing bids using a parameterized utility
model and enforcing the user’s daily budget. In Section VII,
we formulate the distribution of this budget across bids as a dy-
namic program solved with model-free reinforcement learning,
specifically the Monte Carlo policy iteration algorithm [18].
We show via simulation in Section VIII that these agents
maximize user utility for a given budget within a billing cycle
(1 month) without any loss in revenue to the network operator.

Overall, we formulate an end-to-end system for realizing
session-level performance guarantees, addressing challenges
in the radio access network, incentive mechanisms for resource
provisioning, and usability. We defer discussion of related
work to Section X and conclude in Section XI. Additional
experimental results and proofs can be found in our extended
report [19].

II. FEASIBILITY OF SESSION-LEVEL PERFORMANCE
GUARANTEES OVER LTE

Providing session-level performance guarantees requires an
Admission Control (AC) procedure that only admits flows with
demands that can be fulfilled for the stated session duration.
This reconciliation of available and required resources is
then expected to result in admitted flows that are robust to
externalities and realize their promised performances. While
unpredictable real-time channel fluctuations are inevitable
(e.g., fast fading), our premise is that the short timescale
of these fluctuations affects session-level QoE less than user
competition, which occurs at session-level timescales. We
validate this via a proof-of-concept trace-driven simulation of
users with different traffic types sharing the resources of an
LTE eNodeB. We show session performance can be guaranteed
by an AC that 1) accounts for resource competition in flow
admission and 2) accommodates for unpredictable wireless
externalities when provisioning capacity.
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Fig. 1: (a) Without a resource-aware Admission Control (AC) algorithm, almost half of the LTE network’s resources are
expended in failed sessions. (b) With the AC in place, this is reduced to ~5% while preserving high network utilization and
(c) most performance guarantees are met even in the presence of uncontrolled background traffic.

Setup: We use SimuLTE and INET! to simulate LTE with
TCP/UDP/IP. Our simulation includes one eNodeB with 12
resource blocks and a noisy channel. Users are randomly
dispersed in the coverage area, yielding variation in channel
qualities. Data usage is modeled from the multimedia activity
found in mobile traffic traces of 20 users collected over
10 days. Multimedia content from the traces includes video
streaming, audio streaming and real-time video conferencing,
parameterized by bitrates and latencies of known applica-
tions?4. Since the AC algorithm compares these required
quantities with the available capacity to determine flow feasi-
bility, it must translate granular frequency-time network blocks
into bitrate and latency capacity forecasts. While devising
an accurate model for this is a challenging task in itself
and out of our scope, we presume a naive model that is
sufficient to indicate general feasibility and benefits of this
approach. In essence, the AC procedure maps the 12 resource
blocks to a conservative estimate of bitrate capacity (e.g.,
10Mbps), thereby allowing a buffer of radio capacity that
may be consumed, for example, by an admitted flow(s) with
poor signal strength or temporary channel degradation. A flow
is admitted after verifying that its required capacity can be
accommodated, and the capacity forecast reduced according
to the requested bitrate for the specified duration.

Network Performance with AC: We measure link-layer
utilization both with and without session-level AC. Figure 1(a)
shows that without AC, roughly 47% of resource blocks
are allocated to sessions that fail (i.e., the stream halts be-
fore completion) mainly from excessive resource competition.
However, as in Figure 1(b), the AC algorithm drastically
reduces this wastage (to below 5%) while preserving nearly
full utilization of available resources. While the AC allocates
a conservative 10 Mbps for flow provisioning to guard against
externalities, this would presumably leave the network un-
derutilized. In this case, however, congestion between flows
and impact from other externalities were almost entirely
eliminated while retaining high utilization. These promised
performances were achieved with noise and channel qual-
ity variation, indicating that session-level guarantees can be
provided in wireless cellular networks without the significant

Uhttp://simulte.com/, https://inet.omnetpp.org/
Zhttps://support.skype.com/en/faq/FA 1417/how-much-bandwidth-does-
skype-need, http://download.skype.com/share/business/guides/skype-connect-
requirements- guide.pdf
3https://help.pandora.com/customer/portal/articles/166391-minimum-
specifications-to-run-pandora
“https://support.google.com/youtube/answer/2853702

cost of network under-provisioning. Even the naive model
of capacity forecasting used by our AC procedure proved
sufficient to serve most admitted flows of different application
types. This validates our premise that wireless radio resource
modeling and reconciliation with session-oriented resource
requirements are feasible and can likely provide performance
guarantees.

Since AC-admitted sessions may co-exist with unregulated
background sessions (of users that do not require performance
guarantees), we reserve some network capacity for this traffic
and apply AC to the remaining capacity. We employ the MAX
C/1 scheduling at the MAC layer to prioritize flows with better
channel quality [20], and modify the scheduler to further pri-
oritize AC-admitted flows before ranking by channel quality.
Figure 1(c) compares the resulting performance of sessions
belonging to AC and non-AC traffic. An AC session is deemed
successful if it streams for its entire duration at its guaranteed
bitrate on average; real-time sessions additionally require a
packet inter-arrival time below 40 ms. A non-AC session is
successful if it achieves any resolution supported by its traffic
type. As in Figure 1(c), the network is highly congested with
non-AC traffic, so only one of eleven non-AC flows succeeds,
while four of the five admitted AC flows succeed. Figure 1(c)
demonstrates that session-level guarantees can be achieved in
the presence of non-AC traffic with appropriate reservations
in the capacity forecast and MAC prioritization. Our extended
report [19] provides additional LTE-based simulation studies.

III. FEASIBILITY OF SESSION-LEVEL PERFORMANCE
GUARANTEES OVER WIFI

We now assess whether performance guarantees can be
made in a random access medium like WiFi. Unlike LTE, WiFi
has a short range and operates in unlicensed spectrum, making
the channel more susceptible to interference and externalities.
A likely use case for performance guarantees, however, is
where multiple users engaged with various apps contend for
congested resources of a public WiFi network, for instance,
in a café-like scenario. Measurement studies [21], [22] have
shown extensive growth in public hotspot traffic and Access
Point (AP) deployment, with WiFi traffic doubling every two
years (~35% video). These experiments verify the feasibility
of session-level guarantees in such scenarios.

Setup: We launch 50 iPerf> clients in parallel across
multiple devices to induce channel quality variations. Clients

Shttps://iperf.fr/



connect to an 802.11g AP operating at 2.4GHz and launch
five sequential sessions over 50 minutes, each comprising
a random duration of video streaming, audio streaming or
video conferencing (we continue to use resolution rates and
corresponding bandwidth requirements that are widely in
practice). We further incorporate non-AC web browsing traffic
at 50 Kbps, thereby inducing overall activity variance typical
of public WiFi.

Network performance without AC: As a baseline, we first
engage the 50 clients in their planned mobile activity over this
hotspot without the AC algorithm. Clients request the high-
est supported resolutions for their multimedia sessions (e.g.,
1.5 Mbps and 4.5 Mbps for video conferencing and streaming,
respectively) since they have no incentive to request lower
bitrates due to free hotspot access. An aggregate data demand
of up to 80 Mbps is seen in Figure 4(a). However, although the
802.11g AP has a theoretical capacity of 54 Mbps, only half of
this is realized by the network, indicating severe performance
degradation from congestion. The network also exhibits high
latency and jitter, as in Figure 2(b), causing real-time video
sessions (requiring ~100ms) to fail or be lag-ridden.

AC Procedure: We now introduce our admission control
process. Browsing sessions constitute light-weight traffic and
always commence upon launch, modeling the background
traffic of regular-access users as in the LTE experiments. The
AC algorithm simply uses an estimated bitrate capacity as
an abstracted representation of available radio resources and
permits a session to start only if requisite session bandwidth is
available. We herein refer to this as Non-Incentivized AC and
introduce a corresponding Incentivized version. Since Non-
Incentivized AC admits flows (subject to feasibility) on a
first-come first-serve basis, users always request high bitrates
even when they may be content with lower bitrates (e.g.,
when using a mobile device with low screen resolution). With
Incentivized AC, we presume that an incentive mechanism
induces clients to request only their value-maximizing resolu-
tions for multimedia sessions. This incentive mechanism may,
for instance, be a payment policy that charges admitted clients
to persuade them to state only what they need (developed
in Sections IV, V, VI). Using Incentivized AC, users are
thus admitted according to their valuation for the appropriate
context. We simulate Incentivized AC with clients streaming
multimedia sessions at a resolution that is randomly chosen
from the supported ones, simulating the distribution of utilities,
preferences and budgets in a population.

Performance With AC: While the AP’s theoretical capacity
is 54 Mbps, this is rarely realized in practice due to time-
varying nature of the wireless channel. Since provisioning
based on this capacity may result in poor performance of
some flows, the AC procedure is initialized with a capacity
of 50 Mbps. Figure 3 depicts the number of clients admitted
into the network under AC. A few clients are consistently
rejected for the first half hour due to lack of capacity as
aggregate data demand is highest then, Figure 2(a). However,
with Incentivized AC, the entire pool of 50 clients is admitted
into the network at all times that they initiate multimedia
flows. As clients distribute their requesting resolutions in
alignment with their true utilities and valuations, aggregate

user demand decreases so much that the network has sufficient
capacity to now admit all of them (in this case), thereby
increasing the utility of the entire set of users. Even when
the provisionable capacity is reduced to 40 Mbps and number
of clients increased to 75, the network admits them all with
Incentivized AC, thereby increasing net social welfare of users.

With AC in place, network throughput increases to almost
50 Mbps, as in Figure 4(a). Due to random access in WiFi,
congestion externalities have a severe impact on the network
and are almost entirely mitigated with AC. When the In-
centivized AC is deployed, as in Figure 4(a), only around
30 Mbps is typically required of the network now, indicating
that incentivizing users for truthfulness may allow the network
to serve more users overall. With AC, all real-time sessions
stream at mean latencies below 50 ms, as in Figure 4(b), while
introducing incentives causes lower aggregate demand which
further reduces the mean latency to a maximum of 20 ms.
In fact, the CDF of per-packet jitter for real-time sessions
across all experiments in Figure 4(c) indicates that while more
than 80% of packets exhibit jitter above 40 ms without AC,
~80% of packets experience jitter below 40 ms with Non-
Incentivized AC and below 20 ms (recommended for real-time
video conferencing and gaming) with Incentivized AC.

By controlling flow admittance based on bitrate demand,
performance guarantees are delivered to latency-sensitive real-
time flows as well as other video and audio streams. We
thus validate our premise of session-oriented wireless resource
provisioning (more results in our extended report [19]) and
shift our focus to the design of the incentive mechanism
employed by the AC algorithm. Note that given a process
for forecasting network resource availability and reconciling
it with session demands, our incentive mechanism is agnostic
to the Radio Access Technology (RAT) in use, a point we
discuss further in Section IX.

IV. MODELING AUCTIONS FOR SESSION-LEVEL
RESOURCE GUARANTEES

We now design the incentive mechanism that determines
session admission and cost. We focus on real-time applications
that require immediate access, but our model is generalizable
to other application types. The network operator discretizes
time into a total of T slots per day, and an auction A; is
held in each time slot ¢. All resource requests are assumed to
have a maximum duration of ¢,,,, time slots; a longer session
may simply submit another bid for resources after ¢4,
slots. For instance, the network may hold an auction each
minute (i.e. 7' = 1440), allowing users to procure resource
guarantees almost spontaneously as they launch sessions, and
set ez = 20, for resources to be periodically freed up once
every 20 minutes. Similarly, the operator supports a discrete set
of resource modes m,, forn =1,..., M, each corresponding
to an operating bandwidth, bitrate, or similar. In Section V,
we define a generic mechanism for the network to define
these modes, which allows for a wide range of supported
bitrates by common applications, while significantly reducing
computational overhead of the auction. To characterize the
resources being auctioned, the operator computes a forecast
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Ct(T) for auction A; of the bandwidth resources that will
be available in each time slot ¢t + 7,7 € {0,...,dmaz}>
accounting for resources reserved in earlier winning bids.

The total number of users submitting bids for A; is denoted
by I. For users to express a desired combination of resources
that the network can actually serve, they must know the
resources available to bid on. We develop a two-round interac-
tion mechanism for this resource discovery. In the first round
of each auction Ay, user i expresses a request R;; that includes
the desired duration ¢;; < ¢max and the desired resource mode
;¢ € {m1,...,mpr}, along with a corresponding valuation
v;¢. We assume the requested 7;; is constant over the dura-
tion ¢;;, as real-time applications typically have fairly stable
resource needs over time. In response to resource requests
R = (nit, ¢i) from users 4, the network operator determines
if granting R;; is feasible (given projected availability). If not,
it generates a set S;; of alternate resource bundles (based on
forecast capacity and adjusting for underlying wireless channel
states), where each bundle B;; € S;; enumerates the offered
resource f;r < n; for time slots k = t 4+ 1,...,t + ¢4.

Figure 5 illustrates an example bundle offered in response to
a resource request. Given the set .S;; of available bundles, user
¢ may bid on a bundle B;; € S;; by assigning a new bid value
v+ on it, yielding a bid b;; = (B, vst) for the select bundle
B;; € S;;. Once auction A; is executed, user 7 learns the result
2t € {0,1} of the bid and starts consumption if x;; = 1.

Maximizing social welfare to determine bid winners is de-
sirable since Vickrey-Clarke-Groves (VCG) [23] payments can
then be charged to incentivize truthful bidding. The resulting
computation, however, is an NP-hard problem, the solution
time of which is exponential in bid durations. Thus, in the
next section we develop novel reductions to the problem by
exploiting the spontaneous nature of winning sessions, i.e. that
they begin consumption immediately. With this, the network
can implement the VCG mechanism in real time, and stating
true product valuations v;; becomes the dominant strategy
of users. This allows users to avoid complex estimation of
other bidders’ strategies to maximize their own utility and
allows the network operator to discover the distribution of
true valuations across bidders, indicating the perceived value
of network resources and the potential revenue. However,
bidders are multi-parameter agents [24] in this setting; they
state not just their valuations but also the desired mode 7 and
duration ¢. Incentivizing bidders to truthfully report ¢ requires
modifications to the mechanism that account for temporal
correlations between the decisions taken in different auctions.
We develop the resulting allocation and payment schemes in
Section VI and analyze their auction properties. Proofs can be
found in our extended report [19].

V. WINNER DETERMINATION

Since offering performance guarantees is a service in ad-
dition to users’ normal mobile data plans, it will likely



represent a small portion of overall operator revenue, and the
operator may rather wish to maximize users’ welfare. Indeed,
for “public utility” goods like network resources that are
competitively auctioned, Cramton [25] argues for maximizing
social welfare rather than network revenue for the sake of
long-term user engagement. As such, we study the winner
determination problem with the intent of optimizing social
welfare and evaluate the achieved revenue via simulation in
Section VIIIL. Thus, in this Multi Unit Combinatorial Auction
(MUCA), the network maximizes the declared user valuations
vy in auction A; subject to the resource capacity constraints
over time slots, yielding the optimization problem:

I
sz‘t%‘t
{=i1€{0,1}}

max
i=1
) (1)
s.t. Z Mo (t4-1) Lit < Ct(T)a T=1,..., Pmax-
i=1

We recognize this MUCA formulation as the NP-hard multi-
dimensional knapsack problem (MKP) [26]. The dimension-
ality stems from the combinatorial nature of the bids, wherein
they span multiple time slots (generalizable to multiple base
stations and flows needing uplink/downlink capacity). Solving
(1) is thus prohibitive for real-time network use. Many existing
algorithms for fast MUCA winner determination [27]-[29]
rely on assumptions such as bidder multi-mindedness, sub-
modularity and low number of dimensions in the MKP, which
do not apply to our auction model. Using approximation algo-
rithms or other heuristics [30] to find a solution could result
in significant loss of network revenue when the number of
users or the bid duration increases, especially with frequently
repeated auctions. More importantly, an exact solution to the
MKEP is required to incentivize users to bid truthfully in the
auction [31]. We instead exploit the nature of real-time flow
demands to reduce the complexity of (1) by considering a
series of conditions on bid quantities, durations and resource
availability. We show the simplification of (1) for each case,
gradually leading up to more realistic and less restrictive
conditions. The MKP mostly reduces to the knapsack problem
solvable in pseudo-polynomial time [32].

A. Bundle Generation Policy

Our first task is to define the network operator’s policy for
generating the set S;; of bundles in response to a resource
request I?;;. The operator constructs a bundle B;; with re-
sources at time ¢ + 7 given by p;;y,) = min (nitth(T)P
for 7 = 1,...,¢i, corresponding to the highest possible
resource level not exceeding the request 7;;, based on projected
availability. If p;;4,) = 0 for any 7, no bundle is offered to
that user due to severe lack of resource availability. Hence the
bundle a user receives comes closest to what the user requested
for the specified duration, given capacity constraints. Given
this construction of B;;, a bundle submitted to the auction
may have different resource demands at different time slots,
while the original request R;; does not. Note that if R;; is
feasible, then B;; perfectly satisfies it by construction above,

and gets submitted immediately to the auction A;. Constructed
bundles may have the features defined below.

Definition 1 (Upswitch). A bundle B;; exhibits an upswitch
if 31 € (1,05 — 1] 8.t pligt4r) < Mi(t4r+1)- The number of
upswitches in By is denoted by Up,,. Bundle B;; has an a/b-
upswitch if 37 € [1, ¢ir—1] s.t. @ = li(r47) < fi(t+r41) = O

Definition 2 (Downswitch). A bundle B;; exhibits a down-
switch if 37 € [1, ¢y — 1] 8.t flit4r) > Hit4r41)- The
number of downswitches in By is denoted by Dp,,. Further,
bundle By has an a/b-downswitch if 37 € [1, ¢y — 1] s.t.

a = fi(t+r) > Hi(t+r+1) = b

B. Reduction to Tractable Optimization Problems

We first consider a network capacity projection that in-
creases monotically over time. That is, if the resource avail-
ability projection Ct(T) for future timesteps 7 € [1, Pmax]
shows no decline within that time period, then the auction
round A; satisfies this condition and is said to exhibit property
P, (¢). This would hold, for instance, in any time slot ¢ where
no sessions carry over from previous auctions. The entire
network’s resource capacity is then available equally at ¢ for
all future time slots. If A; exhibits 1 (¢), then there can be no
downswitches in any bundles submitted to this auction given
our bundle generation policy, i.e., Dp,, = 0 Vi. We now show
several simplifications possible to (1) when Py (¢) holds, and
also determine conditions under which Py (¢) is guaranteed to
hold.

Definition 3 (Uniform quantity bid). A bid b;; is a uniform
quantity bid on a bundle B;; if the corresponding resource
levels iy are all equal, i.e., if V7 € [1,¢i — 1], pie4r) =
Hi(t+7+1)-

Theorem 1. If Py (t) holds and each bid to auction A; is a
uniform quantity bid, then the outcome {x;:} that solves (1)
with only the capacity constraint at T = 1 is the solution to
(1), reducing it to a knapsack problem. Further, P1(t 4+ 1) is
guaranteed to hold.

While Theorem 1 simplifies the winner determination sig-
nificantly by reducing the MKP to a single knapsack problem
in one time slot, it only applies when all bids are of uniform
quantity. Consider the following instance. The network has
no active sessions at time ¢ and projects C{ = 10, V7. At ¢,
it admits two flows that consume 3 Mbps for 5 minutes and
5 Mbps for 7 minutes, respectively. At ¢ 4+ 1, the projected
availability is C7,; = 2,7=1,...,5and C{, | = 5,7 = 6,7,
and C7,; = 10,7 = 8,9, and so on. A user requesting 4 Mbps
for 10 minutes at ¢ + 1 would thus receive a bundle granting
2 Mbps for the first 4 minutes and 4 Mbps thereafter. This
bundle exhibits an upswitch and is therefore not uniform. The
network may be able to force the construction of suboptimal
uniform bundles if this is a reasonable restriction for some
applications or use cases. However, upswitches are likely
due to varying availability constraints and data consumption
patterns.



Lemma 1. If a bundle B;; exhibits an a/b-upswitch at time
T, then any bundle in A; corresponding to a request R;; with
nire > b exhibits an a /b -upswitch with b > b at time T.

Proof. Given a bundle B;; with a = p¢y7) < Higrri1) =
b, the bundle generation policy implies C’t(T) =a, N > b,
Ct(TH) > b. Hence, for any other bid b,y with n;y > b, we
have f;s(¢4741) = min <77i’t7 Ct(T+1)) 2 b, pirrr) =a. O

We now derive results that guide the network operator
in defining its operating bitrate modes such that the MKP
can be simplified even with upswitches. First, if the quantity
expressed by each supported mode is equally spaced, we called
these evenly dispersed modes.

Definition 4 (Evenly dispersed). A set
{mi,...,mn} is evenly dispersed if Ty, =
my, = z(n+y), Yne {1, M}.

of modes
€ N st

Theorem 2. If the auction modes are evenly dispersed, then
the outcome {x;} that solves (1) with only the capacity
constraint at T = 1 is the solution to (1), reducing it to a
knapsack problem. Further, P1(t) holds for all t if auction
modes are evenly dispersed.

Theorem 2 allows the network operator to support different
operating bitrates while solving (1) with a single knapsack.
Specifically, if the supported modes were evenly dispersed,
e.g., 2, 4 and 6 Mbps, then it is sufficient in every auction to
solve (1) in the first time slot. The operator can choose the
exact operating modes by examining those required by target
applications and its ability to reserve resources. However,
certain real-time applications may not lend themselves to this,
e.g., Skype has discrete modes with unevenly dispersed bitrate
requirements®, and the network may therefore offer arbitrary
modes to serve these applications. We first note that even in
this case, the upswitch count Up,, cannot exceed M — 1 as
long as Py (¢) holds.

Theorem 3. [f P1(t) holds, modes are not evenly dispersed,
and upswitches occur at time slots Ti,To,...,T, (as in
Lemma 1), where k < M — 1, then restricting the capacity
constraint in (1) to these time slots, along with the first time
slot, yields the overall optimal solution. However, P1(t + 1)
need not hold.

Theorem 3 shows that even with arbitrarily defined modes,
the complexity of the winner determination scales only with
the number of modes supported and not the number of time
slots, as long as the availability projection at t increases
monotonically. However, there is no guarantee that capacity
projections will continue to be monotonically increasing for
future auctions. We can simplify the MKP without P; if bids
are uniform quantity.

Theorem 4. If P (t) does not hold, but bids are of uniform
quantity, solving (1) in only the time slots given by Algorithm 1
vields the optimal solution. Further, if all bids are of equal
duration, then Algorithm 1 reduces to a single knapsack

Shttp://download.skype.com/share/business/guides/skype-connect-
requirements- guide.pdf

Algorithm 1 Pruning time slots under uniform quantity bids
(it = ;) when Py (t) does not hold. W is set of bids

1: procedure COMPUTECONSTRAINEDTIMES-
LOTS(W, C, t, dmax)

2 slots|0,:] < [0]

3 consSlotInInterval < 0

4: consValue < 0

5: for 7 < 1,..., max do

6: sumAllAsks < 0

7 endInterval <+ 0

8

: for : € W do

9: sumAllAsks < sumAllAsks + p;
10: if ¢; == (t + 7) then

11: endRegion < 1

12: currSlotConstraint < %

13: if currSlotConstraint > consValue then
14: consValue < currSlotConstraint
15: consSlotInInterval < T

16: if endInterval == 1 then

17: slots = [slots, T]

18: consSlotInInterval < 0

19: consValue < 0
20: return slots

problem, solved for the time slot with the largest ratio of
requested to available capacity (i.e, D,y o pit/ Ct(l) ).

Algorithm 1 iterates over each time-slot 7 < ¢ 4+ Pupaz. If
a submitted bid(s) is scheduled to finish consumption at 7,
it finds the time-slot with the largest ratio of requested to
available capacity between 7 and the last time-slot when a
submitted bid ended. These timeslots are used to solve (1).
Hence, if bids are uniform quantity, the dimensionality of (1)
scales with the variance in bid durations, not the number of
time slots, leading to relatively fast solutions even for large

¢mam .

VI. INCENTIVE COMPATIBILITY

We have shown several ways for the network to simplify the
winner determination in (1), making it feasible to optimize
for social welfare in real time. This allocation objective, in
conjunction with carefully designed payment schemes, can
induce strong properties. We first consider a single auction
Ay in isolation, and induce a myopic notion of truthfulness
using the VCG mechanism. We then frame A; in the context
of repeated auctions, where we account for the impact of
decisions made in A; on subsequent auctions. In both cases,
we ensure dominant strategy incentive compatibility while
inducing desirable properties that are often challenging to
achieve simultaneously, such as revenue monotonicity and ex
post individual rationality.

A. Myopic Truthfulness

The VCG mechanism has gained wide popularity in its
ability to guarantee socially optimal results through dominant
strategy incentive compatibility (DSIC); i.e., every bidder’s
best interest is to bid truthfully, regardless of the strategies of
other bidders [23]. Since the network maximizes social wel-
fare, it can implement the VCG mechanism by charging auc-
tion winners their social cost. The social cost of each bidder @



is computed as the difference between the maximum feasible
welfare without ¢ and the welfare to others given i’s presence,
ie., max,,,co,1 Z’Zi‘k# Vet Tht — ZZZk# Ukt Where
a7, represents the optimal solution with 7 present.

When applied in combinatorial auctions, however, the VCG
mechanism is known to exhibit undesirable failures in bidder
revenue monotonicity [33], meaning the network’s revenue
from VCG payments may in fact decrease when some bids
enter the system. An auction is said to be robust for a set of
bidders A under VCG payments p;; if

Vi€ AN pu(vin, ) > Y pulvi, A\N{H. Q)

i€A i€A\{j}

See Rastegari et al. [33] for a more formal treatment of
revenue monotonicity. Another type of VCG failure in com-
binatorial auctions is goods revenue monotonicity failure [34],
when the operator could increase revenue by not auctioning
certain goods (in our case, resource quantities and time slots),
hence acquiring an incentive to hide goods from bidders.
Most prior work on combinatorial auction frameworks does
not address the issue of VCG-induced monotonicity failures,
which are especially challenging to manage in MUCA settings
such as ours. We show, however, that under certain conditions
applying VCG payments is guaranteed to result in revenue
monotonicity. To do this, we rely on the property of bidder
submodularity [33], [35] which builds on the maximum social
welfare V(A) of a set of bidders A, corresponding to the
objective in (1) restricted to A. Bidder submodularity holds
for bidder sets A and A’ with A C A’ if and only if
i V(AU - V(A) = V(A UG - V(A),

Theorem 5. If (1) can be solved in a single time slot t' (e.g.,
as in Thm 1), and p;py = ppp Vi’ € [1,1;], then Ay is
guaranteed to be revenue monotonic in bidders under VCG
payments.

In this scenario, winner determination is a knapsack problem
where bids request the same resources but potentially different
valuations. Then, all bids compete equally for capacity, and
therefore, removing a bid cannot increase another’s social cost,
resulting in revenue monotonicity.

Lemma 2. In our auction, bidder revenue monotonicity im-
plies goods revenue monotonicity.

In our auction, bidders desire and bid on exactly one bundle,
a property referred to as single mindedness. When single-
minded bidders exhibit bidder revenue monotonicity, they are
goods revenue monotonic as well [34]. Thus, by exploiting the
structure of users’ real-time resource requests, we have shown
that under reasonable conditions, users have an incentive to
bid truthfully and the network operator has no incentive to
discourage bids from users or hide resources, as doing so will
not increase its revenue. However, we also note the following
limitation.

Lemma 3. As long as the auctioneer solves (1) for winner
determination of A; and charges winners their social cost,
bidders may have an incentive to submit a false session
duration ¢;y.

Consider a case where P;(t) holds and all bids in A; are
uniform quantity. The auctioneer then only solves the knapsack
problem in the first time-slot (Thm. 1), and users’ choice of ¢;;
has no impact on their bid allocations or payments. Indeed,
as seen in Section V, even when P;(¢) does not hold and
results in arbitrary up/downswitches, the winner determination
and hence payments depend only on the time slots of these
switches. Hence, maximizing the social welfare at A, only
with respect to A; does not directly incentivize truthfulness in
declaration of ¢;;.

B. Truthfulness Amidst Temporal Correlations

In our setting, the true social cost of a bit b;; is not only
a function of other bids submitted to the current auction
(as discussed earlier). Selecting a bid b;; as a winner of
auction A(t) directly reduces available capacity in the next
¢;+ time slots, which impacts the bids that can be accepted in
subsequent auctions A, j € [t + 1,¢ + ¢;]. To account for
this temporal correlation between these periodic auctions, we
are faced with the challenge of factoring in the uncertainty
in future bids in admitting the present bids. We thus develop
mechanisms to push this uncertainty either to the user or the
network, inducing different properties accordingly.

The temporal trickle effect of a winning bid may in fact ex-
tend beyond its duration; for instance, allocating resources for
a bid b;; might preclude allocation for a bid b;(;4,, —1), which
might in turn allow for the allocation of a bid at t + ¢;; + 1
that would have been infeasible had j’s bid been allocated.
We argue, however, that it is unreasonable to charge users
their social cost beyond the duration ¢;; (unlike the treatment
by Parkes et al. [36]). First, it is extremely challenging to
predict and model the trickle effects starting from allocation of
a bid until the last auction in the system, leading to significant
computational overhead and possible infeasibility. Second,
since mobile network use is dense and diversified, the extended
effects of a single bid in the system would arguably be too little
to cause a significant impact in the overall social welfare and
hence not worth accounting for. Hence we propose to hold user
1 accountable for their “first-order” social cost with respect
to arriving bids during [¢,t + ¢max]. hence capturing direct
impact during ¢’s consumption and any immediate ripples until
t+ Pmax-

We now formulate strategies that induce desirable properties
despite this temporal correlation amongst auctions and future
uncertainty. We first provide definitions of these properties
(see [23] for a thorough treatment). Individual Rationality
is achieved when no bidder receives a negative utility from
participating in the auction, i.e., no winning bid is charged
more than its reported value v;; and no losing bid is charged.
The winner determination is Allocatively Efficient when
social welfare is maximized in the allocation outcomes. If
the sum of all payments charged by the auctioneer is non-
negative, i.e., the auctioneer does not suffer a net loss, then
the mechanism is (weakly) Budget Balanced. A property
is said to hold ex ante if it holds in expectation over the
private and unknown information of all bidders, ex interim
if it holds when a bidder knows their private information but



others only in expectation, and ex post if it is guaranteed to
hold even when all bidder parameters are revealed. We now
develop allocation and payment schemes that navigate trade-
offs in these properties by factoring in future bid uncertainty
differently.

1) Maximize Expected Social Welfare: Let us consider an
allocation strategy alternate to (1) to determine winners of
auction A;. Let O; be the set of all feasible allocations of A;.
Then

It t+¢max

o] = argmavalt 0t) Z ED(J) Z Vg (045)]

O 4= j=t+1

3)

where I; is the number of bidders placing bids in the system at
time j and E%) ) denotes the expectation at time ¢ taken over
the distribution D(j) of bids at j (consisting of bid arrivals,
requested mode in the bid, duration and valuation). With this
allocation rule, the network maximizes the expected social
welfare of the next ¢,,,x time steps in deciding the allocation,
rather than maximizing only for the welfare of bidders at
A;. This is implicit in the dependence between o; and oy,
wherein the latter captures the allocation decision taken at time
t for the timestep j in the estimated look-ahead model. Point
estimates derived from, for example, Monte Carlo sampling of
outcomes starting from ¢ can be used for unknown parameters
of future timesteps [37]. The approach in (3) presumes that
the network has learned this distribution of bids spanning the
next ¢max time steps. Indeed, computing a deterministic ¢y ,x-
step look-ahead model is far more feasible than computing the
optimal solution for the multi-stage stochastic programming
problem of expected welfare maximization for all remaining
auctions [37], [38]. Models requiring computation of the
optimal value function at every time-step [36] pose severe
feasibility challenges. Further, the time period ¢, intuitively
lends itself as a reasonable look-ahead period since all user
allocations starting at ¢ must end by then, providing a standard
and relatively short time window for computing prices.

2) Charge Expected Social Cost: We now design payment
rules which operate in conjunction with the allocation rule in
(3) to induce desirable auction properties. First, we consider
a rule similar to above wherein a winning bidder 7 is charged
its expected social welfare cost p;; as the difference between
maximum welfare without ¢ and welfare to others given ’s
presence, i.e.,

I t+¢7nat I'

P =W = D oo+ D D Eblows(e)] |

1=1,1#i j=t+1 k=1
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where W, represents the welfare without i as
, Iy ) t+dmax 1j )

Wit=max | D o)+ D ) B lue(or;)]

=1, j=t+1 k=1

®)
o; " represents an allocation outcome at time ¢ without i in
the system, and o is the optimal solution with ¢ present, with
look-ahead model decisions o;;. Note that we assume users
have quasi-linear utility functions, as ubiquitously done [23].

Theorem 6. The mechanism implementing the allocation
rule in (3) and the payment rule in (4) is DSIC in all bid
parameters. Further, it is ex post individually rational and
budget balanced.

By simply maximizing social welfare in expectation of
[t,t + dmax| and charging winning bids their expected social
cost, the network can not only incentivize dominant strategy
truthfulness in 7;¢, ¢;; and v;;, but also ensure that no bidders
are charged more than what they bid for. We now introduce a
new property to evaluate this payment scheme.

Definition 5 (Payment Efficient). A mechanism is said to
exhibit Payment Efficiency if it charges winners their social
cost. For instance, the VCG mechanism is payment efficient,
since winning bids are charged the difference in social welfare
to others due to their presence.

Lemma 4. The mechanism implementing the allocation rule in
(3) and the payment rule in (4) is ex ante allocatively efficient
and ex ante payment efficient at t for the time-period [t,t +

¢max] .

While this mechanism maximizes expected social welfare,
it may well be the case that the auctioneer under-predicts
demand between [t,t 4+ dmax] in retrospect which makes the
allocation and payment decisions made earlier suboptimal. The
auctioneer’s revenue would then be higher if winning bids at
t were charged their social cost at t + ¢pax after observing
the actual demand.

3) Charge Realized Social Cost: The allocation decision
for A; must be made in real-time for immediate session needs.
However, we realize that payments need not be computed or
charged in real time for users to start their sessions. Consider
the payment rule given by the actual after-the-fact difference
between welfare without and with ¢ after ¢ + ¢, time steps
have elapsed:

t+Pmax I;
pfj%‘”‘ = max Z Z (vj(07") —vgj(0")), (6)
j=t k=1,k#i

where o* is the optimal allocation of users other than ¢ given
by
t+Pmax L

0" = argmax Z Z v;(0),

O J=t k=1 ki

)

and Oy, is the set of all feasible allocations given ¢ is allocated.
Admitted users are now charged at time ¢ 4+ ¢,.x, by Which
time all bids starting consumption at ¢ are guaranteed to end.
The auctioneer may now use its retrospective knowledge of
bids that came in from ¢ to ¢+ ¢p,ax to calculate the exact first-
order social cost for each bid at t. Before analyzing the unique
properties that this rule yields, we first define a modified notion
of DSIC.

Definition 6 (DSICE). Consider bidders that maximize ex-
pected utility. If truthful revelation maximizes the expected
utility of bidders, regardless of the strategy of other bidders,
then the mechanism is said to be Dominant Strategy Incentive
Compatible in Expectation.



Theorem 7. The mechanism implementing the allocation rule
in (3) and the payment rule in (6) is DSICE in all bid
parameters, ex interim individually rational and ex post budget
balanced.

By charging bidders their true social cost at t 4+ ¢max
based on actual bids that arrived after ¢, the mechanism
essentially shifts the risk of demand under-prediction to the
bidder. However, winning bidders now bear the risk of being
charged more than their bid.

Lemma 5. The mechanism implementing the allocation rule
in (3) and payment rule in (6) is ex ante allocatively efficient
and ex post payment efficient with respect to bids at t for
[tv t+ ¢max}-

As we allocate using (3), ex ante allocative efficiency holds.
By design of (6), winning bids pay their true social cost at
t + ¢max and hence the network is also payment efficient.
However, if the auctioneer over-predicts resource demand
between [t + 1,t + dmax], charging users their actual social
cost at t + ¢ax yields less revenue than charging them their
expected cost at ¢.

We have proposed three distinct payment mechanisms for
our auction model: traditional VCG (Section VI-A), paying
the expected social cost, and paying the realized social cost
(Section VI-B). Since the latter two mechanisms require
knowledge of future bids, the network would likely introduce
VCG payments first. By evaluating each A; in isolation (i.e.,
using (1) and VCG payment), the network can learn users’
true bid valuations and required bitrates. By estimating bid
durations with historical usage, the network may use this
distribution of future bid parameters it has learned to offer the
latter mechanisms. This would likely increase social welfare
in the system, since the network now accounts for the impact
of allocation decisions between multiple rounds of auction
as in (3). In choosing between the two payment rules as in
Table I, the network must make a design choice. It may either
guarantee individual rationality by choosing (4) and assume
the risk of under-predicting resource demand, or it may choose
(6) and ensure payment efficiency while allowing winners to
be charged higher than their bids. However, in the latter case,
the network now assumes the risk of over-predicting resource
demand.

VII. USABILITY CONSTRAINTS

In Sections V and VI, we developed practical allocation and
payment strategies for our auctions that achieve spontaneous
resource guarantees for real-time applications. We now turn
to challenges faced by end users of this system. Most data
plans in the US provide known and fixed up-front pricing for
the month [39], so engaging spontaneously in auctions may
add uncomfortable expense uncertainty for the average mobile
user. Further, explicitly conveying an app’s resource needs and
bid parameters every time the user desires guaranteed data
access can be a significant deterrent. To address these usabil-
ity issues, we propose to have automated agents on users’
devices that act on their behalf, abstracting them away from
resource specification and bidding overhead. We first formulate
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a user-parameterized utility framework using which agents can
discover user valuations transparently for resource guarantees
of specific sessions. We then propose a reinforcement learning
strategy to enforce users’ daily budgets.

A. Bundle Utility

We determine user ¢’s valuation of a resource bundle R;; =
(nit, dit)- Let 1 denote the utility per unit of time consump-
tion for the mode 7;; requested, normalized between [0, 1]
across applications and pre-configured by the user. We use
an «-fair model [40] to capture diminishing returns in utility
over longer session durations ¢;;. The user’s utillit}; associated
with request R;; is thus given by U (R;;) = diia . If the
network responds with an alternate bundle B;; that returns a
mode below that requested in R,;;, we impose a penalty to rep-
resent the dissatisfaction in receiving a lower mode. We model
this penalty for each affected time slot £+ 7 as a multiplicative
factor &;,, such that a higher penalty corresponds to a smaller
mode. We denote &z = 1/(1 + i — 1], ), where 17,
denotes user i’s valuation of the mode corresponding to the
offered p;(;4-). Since users may be especially dissatisfied if
their session experiences a downswitch, we further apply a
downswitch penalty that grows with the magnitude (a — b)
of an a/b-downswitch. We model this penalty for each 7 as
a multiplicative factor (ir = pi/(Ki(t4+) — Mi(t+r+1)) When
Hi(t4+7) > Mi(t+r+1)> Where p; € [0,1] is user-specific. The
utility of B;; relative to that of R;; is then given by

¢1—a Pit

it *

- Z §irGirVi(e4r)-
=1

Ui(Bit|Rit) = ¥

B. Budget Constraints

Building on (8), we develop an algorithm for the user agent
to satisfy a daily budget constraint while placing bids that are
proportional to the user’s true utility U;. If agents distribute
budgets poorly (as some of the naive algorithms demonstrated
in Section VIII do), users consistently lose in their auctions
of interest, hence forming the false impression that the market
rate is prohibitively high and exiting the system. The budget
distribution problem relies on a policy to select a valuation v;;
to declare on a given bundle B;; (interchangeably R;;) that
maximizes the user’s total expected future utility, subject to
the budget constraint. Without loss of generality, we collapse
the distinction between B;; and R;; by considering a virtual
round where the network offers B;; = R;; if R;; is perfectly
available. To discover the optimal policy, we model the user
environment as a Markov Decision Process (MDP) wherein
actions correspond to placing bids, and the user receives a
reward equal to the utility U;(B;:|R;;) if the bid wins and
zero otherwise. As seen in Figure 6, the state of user ¢ in
time slot ¢ is defined as o;; = (¢, Bit, Bit, Rit), where B
is the remaining budget at time ¢ (with ;1 as the total daily
budget). The overall system state determines the probability of
winning the bid Pyin(04t, vt ), which also represents the state



Payment DSIC Payment Individual  Allocative Budget
Scheme Efficiency Rationality  Efficiency Balance
Exp © cted v Ex Ante Ex Post Ex Ante Ex Post
Social Cost
Rea.llzed In Expectation  Ex Post Ex Interim Ex Ante Ex Post
Social Cost

TABLE I: We summarize trade-offs between charging expected social cost at ¢ and realized social cost at ¢ + @pax.

Per-Bid State Transition

Policy Improvement
Bid v; Actlon Vit

End of
Day/Episode

Policy Evaluation

Fig. 6: The MCPI agent bids based on the current policy.
Rewards from the states encountered and the actions taken
during the day are used to update the policy end of day.

transition probabilities. The optimal budget distribution policy
is then given by:
max Uy (Bit| Rie) Pin(0ie; vie)+

T
k=t+1
T
s.L. Zpikpwin(a'ik7 vir) < Bit.
k=t

1( 1k|Rzk:) wm(Ulkavzk)

©))

However, users cannot solve (9) as the environment is only
Partially Observable (yielding a POMDP); they only observe
their own actions and rewards and therefore cannot compute
the transition probabilities Pyin(0t, vi¢). We hence employ a
model-free reinforcement learning mechanism to determine
the optimal user actions under uncertainty. The offline and
episodic Monte Carlo Policy Iteration (MCPI) technique [18]
is particularly suitable here as users typically exhibit period-
icity in daily mobile activities and resource needs, allowing
us to consider a day as an episode. MCPI seeks the optimal
bidding policy 7}, = v} (o) by iteratively evaluating a
candidate policy 7 and updating the action value function
Gr (04, v;1) from episodes sampled from the POMDP. We
define ¢, (04, vi¢) as the return obtained by placing bid v;; in
state o;; and then following policy 7, averaged over all future
states and actions. The return G;; = Zjlt NU;(B;j|R;j) for
a given series of states is the total future discounted reward,
where A is a discount factor representing how much present
value a user assigns to future rewards. This captures a degree
of uncertainty about the future that stems from the environment
as well as the user’s estimate of their future session desires. At
the end of each episode (e.g., day), the action-value function
is updated using
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Or(Cit, Vit) < G (i, vie) + X(Git — qn(Tit,vie)),  (10)

where x is the learning rate. We follow the well-known
e-greedy approach [18] to balance the trade-off between
exploring the environment further to know it better (i.e.,
choose v;; randomly with probability €) and exploiting current
knowledge of the environment to maximize current returns
(i.e., chooses v;; to maximize ¢,). A bid v;; cannot exceed
Bit, the current available budget. We anneal epsilon to even-
tually always exploit after the environment has been explored
sufficiently, which yields the optimal policy if the environment
is periodic [18]. We set ¢ 1/N(s), where N(s) is the
number of times state s is visited, resulting in continuous
reduction of exploration from a state as it is visited further
and guaranteeing that 7;; approaches the optimal v}, (c;t) as
N(s) — oo. In Section VIII, we show that this exploration
leads to convergence in relatively few iterations and study its
performance under increasing complexity.

VIII. EVALUATION OF BUDGET DISTRIBUTION STRATEGY

Setup: We simulate a network of 100 users that participate
in auctions for performance guarantees over the course of 80
days and have predetermined schedules of resource requests
R;; to place during the day. To allow all users to have a
reasonable chance of acquiring at least some of their desired
resources, we set uniform daily budgets as 3;; = . Note
that the MCPI strategy can only help each user achieve the
maximum utilities for their given budget and is of little help
if market rates are prohibitively high (see Section IX).

Baseline strategies: To assess the performance of MCPI-
based budget distribution, we introduce two alternative strate-
gies to compare against. Bidders of the greedy bidding strategy
bid as much of their remaining budget as needed to achieve the
desired utility in each auction as vy = min(U;(Bj|Rit), Bit)-
Bidders of the rationed bidding strategy spread their daily
budgets evenly over their (known) daily resource requests,
setting v;; to the minimum of the bid utility U;(B;¢|R;) and
the session budget. Any residual session budget rolls over to
the next session. The maximum realizable daily utility subject

to a user’s daily budget is
zt|R1t Yit S.t. Zeltyzt < ﬂll?

ZU
t=1
(11)

where 0;; is the critical price of the auction Ay, i.e., the social
cost of admitting the bid in this allocation. Since our auctions
incentivize truthfulness, 6;; is also the payment charged to user
1 if their bid wins. Note that users themselves cannot compute
Ui max due to partial observability. We use this value as the

max

{yie€{0,1}} ¥

i,max —



theoretical maximum to evaluate the MCPI generated utility
against.

Performance of MCPI-based bidding: We first study a
deterministic setting where we ensure resources are available
for every auction, meaning every request elicits a viable
bundle. Four scenarios are simulated, with the first two using
the greedy and rationed strategies for all users, respectively.
In these cases, we measure the fraction of U; max that bid-
ders achieves at the end of each day and show the mean
and standard deviation across bidders in Figure 7(a). In the
third and fourth scenarios, we introduce one bidder using
MCPI amongst the greedy and rationed users, respectively,
then measure the MCPI bidder’s U;. As Figure 7(a) shows,
the MCPI bidder succeeds at exploring various actions and
reaching 100% U; max by day 40 (even sooner against the
rationed bidders), while neither of the naive strategies achieves
more than 40%. In the presence of MCPI bidders, greedy and
rationed bidders continue to have poor mean performance but
marginally higher deviation until the MCPI agent converges
(not shown). Hence, a bidder that previously realizes no more
than 40% of the maximum utility achievable with their budget
(potentially believing that the market rate is prohibitively
high), now wins more by bidding per the MCPI-based budget
distribution algorithm. To increase realism, we next consider
a congested setting wherein some resource requests may not
elicit any bundles. This is done by increasing session durations,
which also increases the likelihood of a resource request
being turned away due to ongoing consumption of previously
admitted flows. Hence, in addition to budget constraints, MCPI
learning must implicitly account for resource availability. For
instance, if resources are typically unavailable at 6:00PM, then
the optimal strategy might be to distribute the budget to other
times of day, since the agent will likely not get a chance
to express a bid for resource needs at 6:00PM. Figure 7(b)
shows the resulting increase in the time for the strategy to
stabilize. The MCPI bidder still outperforms the naive bidders
and converges, but only 85% of U; max 1s reached by day
30. In this case, exploration has a ripple effect on returned
bundles in subsequent auctions, which affects budget changes
and slows convergence.

We increase uncertainty in the environment by offsetting re-
source request schedules by a random time period w;; for frac-
tion f of the user population. Hence a user’s resource request
times are no longer perfectly periodic. Resource availability as
well as critical prices during [t,t + ¢+ + w;z] are affected by
this variance, making the MCPI learning more challenging.
However, as Figure 7(c) shows, the MCPI bidder’s utility
does not decrease as a function of wy.x or f, even as these
vary from 1-3 hours and 1-100% respectively, indicating that
MCPI is beneficial to deploy in realistic network scenarios. We
also study the impact of MCPI bidding on network revenue.
Figure 7(d) shows the network revenue increasing marginally
with the number of MCPI bidders (never decreasing). This is a
direct effect of combining our budget distribution strategy with
an auction payment and allocation scheme that incentivize
truthfulness. Users, in their best interest, request resources
only when needed and have no incentive to misrepresent their
valuation (and no value for leftover budget end of the day).

MCPI bidding then serves only to spend the budget in ways
that simultaneously best represents users’ utilities and the
chances of winning. More results from our simulation study
are provided in our extended report [19].

I1X. DISCUSSION

We now discuss practical considerations around deploying
our system.

Network Requirements: Our choice of WiFi and LTE
for feasibility experiments is motivated by the widespread
proliferation of these RATs. The auction model can, in-fact, be
executed on any topology where resource availability can be
forecasted and reconciled with session needs. Hence, emerging
RATSs like mmWave (5G) and other WiFi versions are candi-
date network topologies. The resource modeling mechanism,
however, depends on the RAT in use. For instance, in a WiFi
network using the MAC-layer point coordination function in-
stead of the distributed coordination function, the access points
has more centralized control of flows and therefore may better
eliminate wireless externalities. This would likely be factored
in the forecast model. In addition, the underlying network
must support real-time flow control, e.g., with software-defined
networking, to ensure flows do not consume more than their
stated bandwidth.

Discovering Session Needs: The app-specific resource
needs of a session are best determined by the app itself.
Hence, wrapper libraries for network access protocols such
as TCP/IP can be used by apps to state the required resources
(e.g., bitrate or latency) as they open a new socket connection.
The user agent may then be a background process that receives
this information. User-specific factors such as intended session
duration or daily budget can be explicitly set by the user or
estimated by the agent based on historical user activity.

Diversity in Budgets: In Section VI, we propose mul-
tiple methods for the network to maximize social welfare
and incentivize truthfulness in users’ resource and valuation
specifications. This ensures a certain notion of competitive
fairness [25]. Since it is not in users’ best interest to lie
about their needs, only users who truly have the highest value
for resources win allocations. However, since this value is
expressed in monetary terms, their budgets play a limiting
role in their winning chances. In this case, the RL strategy
formulated in Section VII will be especially valuable to help
more constrained users place bids in auctions with lower
critical prices and achieve the best utility possible given their
affordability constraints.

X. RELATED WORK

Auctions in wireless networks have been mainly studied
in three contexts: spectrum license allocation, secondary cog-
nitive radio allocation, and QoS-aware resource allocation.
Auctions for long-term spectrum licenses are held over hours
or days with multiple bidding rounds before the auction ends
and winners are determined, like the popular simultaneous
ascending and combinatorial clock auctions [25], [41]. They
do not account for the faster time scales of session-level allo-
cations for spontaneous application sessions. Further, the com-
binatorial nature of our auctions presents significant challenges
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Fig. 7: (a) MCPI far outperforms naive strategies, achieving 100% of the maximum utility. b) MCPI realizes 85% utility despite
high uncertainty in resource availability. (c) Temporal variance in resource requests does not significantly degrade performance.
(d) MCPI bidders increase revenue by driving up critical prices in auctions.

in the context of this prior work. Cognitive radio auctions [42]
do not consider session-level app performance, instead availing
opportunistic spectrum for much shorter time scales. Auctions
have also been employed for QoS-aware real-time channel
allocation to primary users in mobile networks. The goals
of such approaches [5], [9] differ from ours in their focus
on sub-carrier allocation with millisecond granularity and
interference mitigation. Using auctions for short-term resource
allocation does not guarantee session-level performance, which
introduces new combinatorial characteristics that we address.

Our work furthers 5G’s envisioned network slicing capa-
bilities [13], [14]. We verify the premise of RAN slicing
for both LTE and WiFi networks, recently also studied by
Foukas et al. [15] and others [16], [43] in the cellular context,
and provide incentive-compatible mechanisms for modeling
slices and admitting users to them. We also address budget
optimization in the context of repeated auctions, which has
been studied in limited settings and even fewer of them combi-
natorial. Gummadi et al. [44] study budget-constrained bidding
for sponsored search auctions, but with strong assumptions
about the system that guarantee equilibrium. Janssen et al. [45]
study the combinatorial setting, but their work is limited to the
combinatorial clock auction. Almost no work has considered
whether reinforcement learning can inform auction bidding
strategies as we do here.

XI. CONCLUSION

We design an auction model that captures the market for
session-level performance guarantees, decoupling the user-
facing auction from network-facing wireless resource man-
agement. Our model moves away from radio resource auc-
tions and focuses on application-level provisioning, which
is especially useful for emerging real-time multimedia ap-
plications. Through trace-driven LTE simulations and exten-
sive WiFi experiments, we verify that not only can wireless
externalities be minimized with resource-aware admission
control of flows, but more flows can be accommodated by
implementing incentive-compatible auction-based admission
control. We further analyze the winner determination of our
proposed auction model with regard to real-time multimedia
applications and show that there are several realistic conditions
that render the multi-dimensional knapsack problem solvable
in psuedo-polynomial time. These reductions make it feasible
to implement the incentive-compatible VCG mechanism and
even lead to revenue monotonicity in certain cases. We also
analyze the impact of temporal correlations between auctions
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on incentive compatibility and define novel payment and allo-
cation schemes to handle future bid uncertainty and navigate
trade-offs in desirable properties. Finally, we use the Monte
Carlo Policy Iteration technique to show that even budget-
constrained users can achieve high utility from these auctions.
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