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Abstract—Vehicular mobile crowdsensing (MCS) enables many
smart city applications. Ride sharing vehicle fleets provide
promising solutions to MCS due to advantages of low cost, easy
maintenance, high mobility and long operational time. However,
as non-dedicated mobile sensing platforms, the first priorities
of these vehicles are delivering passengers, which may lead to
poor sensing coverage quality. Therefore, to help MCS derive
good (large and balanced) sensing coverage quality, an actuation
system is required to dispatch vehicles with a limited amount of
monetary budget.

This paper presents PAS, a prediction based actuation system
for city-wide ride sharing vehicular MCS to achieve optimal
sensing coverage quality with a limited budget. In PAS, two
prediction models forecast probabilities of potential near-future
vehicle routes and ride requests across the city. Based on
prediction results, a prediction based actuation planning algo-
rithm is proposed to decide which vehicles to actuate and the
corresponding routes. Experiments on city scale deployments and
physical feature based simulations show that our PAS achieves
up to 40% more improvement in sensing coverage quality and
up to 20% higher ride request matching rate than baselines. In
addition, to achieve a similar level of sensing coverage quality as
the baseline, our PAS only needs 10% budget.

Index Terms—Mobile Crowdsensing, Urban Sensing, Mobile
Computing, Sensing Optimization, Vehicular Network

I. INTRODUCTION

N the past decade, the increasing number of sensing

devices and wireless networks promotes the development
of mobile crowdsensing (MCS), which enables many smart
city applications [1], [2], [3], [4]. With MCS, a group of par-
ticipants spatially distributed across different parts of the city,
collectively sense, share and extract information to measure,
map and infer phenomena of common interest, including air
pollution, traffic congestion, urban fire [5], [6], [7], [8].

The inference accuracy of MCS is affected by two properties
of data collection, as depicted in Fig. 1: (1) the size of
sensed areas and (2) the evenness of spatial distribution [9],
[10]. The former ensures sufficient information for inference,
while the latter prevents inference accuracy bias over different
areas [11]. This is because the local inference accuracy is
decided by the amount of collected data in adjacent areas.
Similar to previous works, we adopt sensing coverage quality
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to represent these two parts and the detailed definition can be
found in Section III-B [10], [12].

Ride sharing vehicle fleets, including taxis, Uber, Lyft, Didi,
offer promising solutions to MCS due to advantages of low
cost, easy maintenance, high mobility and long operational
time [13]. Mobile sensors are pre-installed on these ride
sharing vehicles to provide real-time sensing when vehicles
move around the city. MCS collects and utilizes data from
different participants (i.e. sharing vehicles) to infer and map
the phenomena of common interest [14], [15], [16]. With
different sensors mounted on vehicles, ride sharing vehicular
MCS systems are able to collect various types of information,
such as air pollution, noise, videos, vibrations and etc. For
example, gas sensors can be mounted on taxis to collect gas
concentration including PM2.5 and CO over the city [17],
[18]. The collected gas data can be used to infer the air
pollution field over the entire city for real-time air quality
monitoring [19].

However, in ride sharing vehicular MCS systems, little
data is collected at most areas [20]. This is because the first
priorities of ride sharing vehicles are delivering passengers
as they are non-dedicated mobile sensing platforms. Most of
these vehicles tend to gather around busy areas, like central
business districts, since they have more opportunities to get
new ride orders [13]. As a result, other areas of the city are
barely sensed, hence leading to low sensing coverage quality.
Therefore, to improve sensing coverage quality, actuation sys-
tems are needed to dispatch vehicles with the given monetary
budget.

It is challenging to design an actuation system for ride
sharing vehicular MCS to optimize sensing coverage quality
for the following reasons. (C1) Given a limited budget, which
vehicles should be selected for actuation? The limited budget
only allows small percent of the vehicle fleet being actuated.
Besides the actuated vehicles, the sensing coverage quality of
data collection is also decided by non-actuated vehicles. There-
fore, different vehicle actuation selections lead to different data
collections. (C3) Given selected vehicles, how should each of
them be actuated? For the same vehicle, multiple actuation
routes are available and those who have new ride requests
at the destination are more attractive. Therefore, to ensure
successful actuation, different routes have different monetary
cost. Note that the two challenges are interacted. On the one
hand, the vehicle selection process decides the actuation route
design. On the other hand, the actuation route design process
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(a) 12.5% of entire area is sensed;(b) 25% of entire area is sensed;
Sensed data gathers in the center area.Sensed data gathers in the center area.

&

(c) 25% of entire area is sensed;(d) 50% of entire area is sensed;
Sensed data is evenly distributed. Sensed data is evenly distributed (ideal
situation).

Fig. 1. This figure depicts different data collections with same amount of ride
sharing vehicles. (a) shows a undesirable case, where multiple vehicles gather
in the same grid to collect redundant information and all vehicles gather in
the centered area. (b) shows a larger sensed area than (a) but all vehicles still
gather in the center area. (c) shows a better situation than (b): same sensed
area with (b) but vehicles are distributed over the entire area. (d) shows an
ideal situation, where all vehicles cover largest area and distribute evenly.

decides the actuation cost, which reversely decides how many
vehicles can be actuated.

Many methods have been proposed in the last decade,
which can be categorized into reverse auction-based and
game-theoretical mechanisms [21], [22], [23], [24]. First,
participants need to select and bid the actuation task, which
makes them distracted from driving. Second, these approaches
require many rational participants and incorporate all their
preferences, which is extremely challenging in practice. Con-
sequently, the performances of these methods highly rely
on participants’ involvement and attention. More importantly,
they do not consider the future mobility of the rest non-
actuated vehicles, which leads to high uncertainty of overall
data collection after actuation.

In light of this, we present a prediction based actuation
system (PAS) for city-wide ride sharing vehicular MCS to
achieve optimal sensing coverage quality with a limited
budget. To address the challenge C;, PAS adopts a vehicle
mobility prediction model to forecast probabilities of potential
near-future routes. The prediction helps the system to consider
overall data collection of the entire vehicle fleet, which guides
the system to decide which vehicles to select for actuation
to maximize sensing coverage quality. Intuitively, the system
intends to spend the budget on vehicles, who are predicted
to head for busy areas, and actuate them to sparse areas. To
address the challenge Cb, a ride request prediction model is
incorporated to predict near-future ride requests across the city.
According to the prediction, PAS intends to select routes where
there exist new ride requests at the destination. This not only
improves the motivation of vehicles but also lowers the cost of
actuation [25]. Given the two prediction models, we propose a
prediction based actuation planning algorithm to decide which

vehicles to actuate and corresponding routes.
We summarize our contributions as following:

o Propose a prediction based actuation system to optimize
the sensing coverage quality for ride sharing vehicular
MCS.

o Design a practical prediction based actuation planning
algorithm, which not only improves the actuation effec-
tiveness, but also lowers the average actuation cost.

« Deploy a taxi-based city scale system and physical feature
based simulation for system evaluation within a 15km x
15km area in the city of Beijing, China.

The remainder of the paper is organized as follows: Sec-
tion II presents related work. Section III introduces problem
definition. Section IV presents our system overview, key parts
in the system, as well as the key algorithm. Section V intro-
duces how the system is evaluated by city scale deployment
and physical feature based simulation. Section VI concludes
the paper respectively.

II. RELATED WORK

In this section, we give a literature review of related work
from two aspects, i.e., taxi behaviors and, incentives as well
as mobile crowdsensing.

A. Taxi Behaviors and Incentives

Taxis are playing an irreplaceable role in a city’s trans-
portation system by providing reliable and customized travel
services for passengers. Compared with other transportation
modes including subway and bus service, taxi has no fixed
routes, making it flexible and accessible from almost every
corner of a city.

For the safety of passengers, taxis are required to be
equipped with GPS trackers by law in many countries [26].
Smart phones also make it easy to record the traces of taxis.
These GPS trajectories can be regarded as digital footprints
of human mobility. Based on open taxi GPS dataset including
Geolife [27], previous studies have addressed various research
topics, including road map making [28], [29], urban mobility
understanding [30], [31], [32], [33], [34], [35], city region
function identification [36], [37], [10], traffic estimation and
navigation [38] and location-based social networks [39], [40].

Due to uncertain and time-variable traffic and ride request
demand, mobility prediction and ride request prediction are
still two challenging tasks for researchers. Human mobility
is believed to have limits of predictability [41]. However,
with more available data and the usage of state-of-art machine
learning and deep learning models, the prediction accuracy of
taxi mobility has been improved remarkably in the past few
years [42]. Previous study has also shown that ride requests
follow the well-known densification power law, which may be
used to predict or even synthesize ride request [43].

Driven by the selfishness of taxi drivers, the taxis are un-
evenly distributed in different areas and the overall efficiency
is heavily harmed by the competition in over-supplied areas
and supply-demand imbalance in under-supplied areas. To help
to improve the performance of taxi drivers and shorten the
waiting time of passengers, online taxi-hailing service [44] and
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dynamic taxi dispatch system [45] are proposed to improve the
scheduling efficiency of taxis. Ride-sharing service [46] is also
proposed to increase the delivery capacity.

B. Mobile Crowdsensing

Under different names like participatory sensing or com-
munity sensing, crowdsensing has been proposed as a new
scheme of collectively sharing data and extracting information
to measure and map phenomena of common interest, by
individuals with sensing and computing devices [20]. As
smart phones become more powerful and equipped with GPS
trackers and accelerometers, crowd sensing becomes widely
adopted as a flexible and low-cost method of collecting sensing
data.

Usually the system’s objective is to maximize sensing qual-
ity, which might have different metrics in different studies, e.g.,
k-depth coverage [47], and the system may have different con-
straints, e.g., budget of rewards for participants. Used in many
previous studies including place-centric crowdsensing [48] and
people-centric sensing [49], [50], sensing coverage has been
a major metric of evaluating sensing quality. While there are
some previous studies that aim to maximize sensing quality
under budget constraints [51], they design the scheme from a
systematic view and do not consider the motivations of users,
who may be selfish and strategic.

Auction-based mechanisms and game-theoretical models,
e.g., reverse auction [52] and Stackelberg game [21], are
used to fix this problem. Furthermore, budget-feasible mech-
anism [53] and proportional share rule based compensa-
tion determination scheme [54] are proposed to guarantee
strategy-proofness and budget feasibility. More discussion
about auction-based mechanisms, as well as other incentive
mechanisms, which may include lotteries, trust and reputation
systems, can be found in previous surveys [55], [5], [56].

Auction-based incentive mechanisms can be well designed
to possess a bunch of desirable theoretical properties. In
real implementations, the strong assumptions of participants
being rational and strategic, the obscure theories, and the
complex payment rules make them less attractive and practical.
The time sensitivity of allocating sensing tasks also make it
less likely for the participants to think about every possible
situation and give a bid that accurately reflects their utility.

Compared with previous works, the major novelties of
this work lie on three aspects. First, our PAS optimizes the
sensing coverage quality for ride sharing based MCS, which
considers both the size and the balance of sensed area over
spatial and temporal domain. Second, our prediction based
actuation planning algorithm considers both the upcoming ride
requests over the city and the future mobility of vehicles
to make actuation decisions, which not only improves the
actuation effectiveness, but also lowers the average actuation
cost. Finally, when optimizing the sensing coverage quality,
our PAS tries to match ride requests for ride sharing vehicles,
which avoids the conflict of the tasks of mobile crowdsensing
and carrying passengers.

III. PROBLEM DEFINITION

This section introduces how the actuation planning problem
is formulated to optimize sensing coverage quality for ride
sharing vehicular MCS. We present preliminary definition and
background in Section III-A. Subsequently, we discuss the
objective of actuation planning, sensing coverage quality in
Section III-B. Finally, we formulate the problem of actuation
planning in Section III-C.

A. Definitions and Background

Fig. 2 illustrates the architecture of ride sharing vehicular
MCS, which consists of four systems. The mobile sensing
system is composed of ride sharing vehicles equipped with
sensors and GPS, which keeps on collecting data when vehi-
cles move around the city. The sensors are equipped according
to the application requirement, such as air pollution, tempera-
ture, noise, video, etc. The collected data, as well as location
and time, is sent to the actuation system. In order to derive
“good” data collection for the learning system, the actuation
system decides which vehicles to actuate, the corresponding
actuation routes and incentives. The decision is made based on
the actuation availability and raw data collection from vehicles,
as well as data request from the learning system. The details of
actuation system design will be discussed in Section IV. The
learning system infers and maps the phenomena of common
interest, which can be used by the application system. Our
actuation system is independent of any particular applications
and suits multiple types of learning and application systems.

Given the spatial resolution rg, the area of interest is
discretized into N, by N, congruent grids with size of r, by
rs. Each grid is represented by (x;,y;), where ¢, j are index of
longitude and latitude. Similarly, given the temporal resolution
r¢, time is discretized into time slice t;, where k is the index
of time. To be noticed, according to average vehicle speed,
and r; are set so that a vehicle covers at most r, within r;.
The key definitions in the paper are defined as follows.

Participant: A participant is a ride sharing vehicle equipped
with sensors, which is denoted as p and belong to the ride
sharing vehicle fleet P, i.e. p € P. Each participant moves
inside the area of interest and keeps collecting data along the
trajectory. The location of p at time slice ¢ is represented as
(zf,,yr.) and derived from GPS.

Actuation Period: The actuation period is decided by the
learning system and application system, which is the time
length for selected vehicles to finish actuation tasks (routes).
One actuation period 7' is composed of N, minimum time
slice T' = N,r,. Different actuation period is expressed as 7;,
where [ € N.

Actuation Task: An actuation task refers to a route that the
actuation system gives to a participant p to cover within the
actuation period 7. The route is composed of a sequence of
coordinates for each r; and denoted as

{(1’5.), yf)a (xf-&-n » yf—i—r,)a ) (fcﬁJﬁN{,’rt ) y£+NaTt)} )

where (22, yP) is the original location of the participant p and
T is starting time of the actuation period.
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Fig. 2. The figure illustrates the architecture of ride sharing vehicular crowdsensing (MCS), which is composed of four systems. The mobile sensing system
keeps on sensing data when vehicles move around the city. The actuation system selects vehicles from available ones (in orange) for actuation and plans their
routes to improve sensing coverage quality of data collection. The learning system infers and maps the phenomena of common interest, which can be used

by the application system.

Actuation Availability: The actuation availability refers to
whether a participant p is available for actuation in the next
actuation period. An available participant means the vehicle
has no delivering task, e.g. no passengers on the vehicles
(orange vehicles in Fig. 2), and the participant is willing to
follow the assigned trajectory given the monetary incentive. At
the beginning of each actuation period, each participant reports
its actuation availability. A participant is called an “actuated
participant” when it is selected for an actuation task, or “non-
actuated participant” otherwise.

Budget & Monetary Incentive: The budget B; is the total
amount of money available to incentivize participants for the
actuation period 7;. When a participant p is allocated an
actuation task, a monetary incentive bf is also assigned. Within
each actuation period 77, total monetary incentives should not
exceed the given budget B;.

Sensing Coverage: The sensing coverage C; denotes all the
data points collected by all participants during the actuation
period 1, which includes both “actuated” and “’non-actuated”
participants.

B. Actuation Objective

The objective of the actuation system is to derive data
collection of large areas and even spatial distribution by
dispatching part of the vehicle fleet with the given budget.
In this paper, the objective function sensing coverage quality
within actuation period T; is denoted as ¢(C}), which consists
of the total amount of sensed areas and the evenness level of
the sensed data distribution. The evenness level represents how
uniformly the sensed data is distributed over space. According
to [10], information entropy of sensed area spatial distribution
is adopted to measure the evenness level. Larger information
entropy value means higher evenness level. Therefore, the
overall sensing coverage quality is defined as the weighted
sum of the size of sensed areas and the information entropy
of sensed area spatial distribution, and calculated as

¢(C1) = BE(C1) + (1 — B)logQ(Ch), (D

where E(C}) and Q(¢;) denote the information entropy of
sensed area spatial temperol distribution and the size of sensed

areas within actuation period 7;. The log function is applied on
Q(C}) to make two parts range in similar order of magnitude.
B € (0,1) is a parameter, which tunes the importance of two
parts.

E(C)) gets the maximum value of log(N,*N,+T;) when all
vehicles are evenly distributed over the entire space of interest
within the actuation period 7;, and gets the minimum value
of 0 when all vehicles gather at the same grid. Q(C) gets the
maximum value of N, * N, xT; when all grids are covered by
at least one vehicle, and gets the minimum value of 1 when
all vehicles gather at the same grid. Therefore, E(C;) and
logQ(C) have the same value range of [0, log(N, * Ny xT7)].

C. Problem Formulation

In order to optimize the sensing coverage quality ¢(Cj)
given the budget B; within actuation period 7j, the actu-
ation system needs to decide 1) which participants should
be selected for actuation and 2) how should each of the
selected participant be actuated (actuation route)? Therefore,
the mathematical formulation of the actuation problem within
actuation period 7 is defined as

max o(C1)
L) { @5y ) @ W ) )

0 < zPi < Nyrg

0< yfl < Nyrs

Pi

o, — 2| <y 2)
s.t. |y'rih"t — Y <7 s
|P|

Y0 I(pi) < B
i=1
Ti+7r <7 <Ty+ Nori,LEN

where I(p;) is an indicator function. I(p;) = 1 represents
the participant p; is selected for actuation and vice versa.
The first two lines constrain that the actuation system only
considers the data collection within the area of interest, while
the third and fourth constraints show that each participant
cover at most rg within r;. The fifth constraint shows that
total monetary incentives of all selected participants should
not exceed the given budget B;.
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Fig. 3. The figure shows the architecture of our actuation system, which is mainly composed of five modules: pre-processing, vehicle mobility prediction,
ride request prediction, monetary incentive calculation, and prediction based actuation planning algorithm.

IV. SYSTEM DESIGN

This section presents how the actuation system is designed
to address two major challenges for optimal sensing coverage
quality. Section IV-A provides an overview of the system
architecture, which integrates a vehicle mobility prediction
model and a ride request prediction model. The vehicle
mobility prediction model guides the system to select vehi-
cles with higher actuation effectiveness and is presented in
Sections IV-B. The ride request prediction model, discussed
in IV-C, helps the system select routes with new ride requests
at the destination, thus lowering incentive cost and improving
motivation. Then, we present how the monetary incentive
is calculated based on the ride request prediction model in
Sections IV-D. Finally, our prediction based actuation planning
algorithm is introduced in IV-E.

A. System Overview

To address two major challenges for sensing coverage qual-
ity optimization, we design our actuation system based on two
key observations. /) The sensing coverage quality depends on
data collection from both actuated and non-actuated vehicles.
Spending the budget actuating vehicles that plan to head for
sparse areas is wasteful, since changing their trajectories does
not bring sensing coverage quality improvement. In contrast,
actuating vehicles that plan to head for busy areas and dis-
patching them towards sparse areas improves sensing coverage
quality more. Therefore, the information of the vehicles’ near
future mobility is essential for effective actuation planning. 2)
The monetary incentive of actuating one vehicle depends on
whether the system can find a new ride request for the vehicle.
Given a new ride request at the destination, a vehicle is willing
to accept a lower monetary incentive since it can earn money
from the new ride [25]. Therefore, the information of new ride
requests helps lowers the incentive cost, thus increasing the

number of vehicles to be actuated and improving the sensing
coverage quality.

Based on the two key observations, two prediction models
are integrated in our actuation system. A vehicle mobility
prediction model forecasts vehicles’ recent trajectories, which
guide the system to wisely select vehicles to actuate. To be
specific, the actuation system intends to spend the budget
on vehicles who are predicted to head for busy areas, and
actuate them to sparse areas. A ride request prediction model
forecasts near future ride requests over the area of interest,
based on which the actuation system designs actuation routes
for selected vehicles. By matching the ride request with an
actuated vehicle, the individual incentive cost is lowered. As
a result, more vehicles can be actuated for better sensing
coverage quality with same amount of the given budget.

Fig. 3 shows the detailed architecture of our actuation
planning system. At the beginning of each actuation period
Tj, each vehicle automatically sends the collected information,
including vehicle id, current location, and actuation availability
for the coming actuation period and sensing data. Based
on the information, the actuation system decides 1) which
vehicles to be actuated, 2) the corresponding actuation routes,
3) the potential ride requests for actuated vehicles, and 4)
monetary incentives for actuated vehicles, which are sent back
to vehicles in the mobile sensing system. Unavailability is
caused by two reasons: occupied by vehicles, or vehicles’
unwillingness to be actuated. We assume vehicles follow the
actuation task routes until the end of the actuation period if
they set their status as ’available’.

The Pre-Processing module discretizes the area of inter-
est and the time according to the spatial resolution 7y and
temporal resolution r;. The data from the mobile sensing
system is separated into two parts: 1) data from unoccupied
vehicles, who are looking for new passengers; and 2) data from
occupied vehicles, who are currently delivering passengers.
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Since the upcoming trajectories of unoccupied vehicles are
unknown, their current locations are extracted for vehicle
mobility prediction. Meanwhile, the historical trajectories of
unoccupied vehicles can be used for vehicle mobility predic-
tion model training. In contrast, the upcoming trajectories of
occupied vehicles are deterministic, which is usually suggested
by navigation Apps according to origins and destinations.
Therefore, the ride request information can be extracted from
occupied vehicles’ trajectories, which can be used for ride
request prediction model training. The upcoming trajectories
of occupied vehicles are important information for prediction
based actuation planning algorithm.

The Vehicle Mobility Prediction module, which is trained
by historical trajectories of unoccupied vehicles, predicts up-
coming trajectories of unoccupied vehicles. The prediction
results, together with the deterministic trajectories of occupied
vehicles, are fed into the prediction based actuation planning
algorithm module, to wisely select vehicles for actuation,
which brings more sensing coverage quality improvement.
To be noticed, different mobility prediction models can be
adopted in PAS. For simplicity but without loss of generality,
a Markov based mobility prediction model is adopted in this
paper, whose details can be found in Section IV-B.

The Ride Request Prediction module forecasts ride requests
over the area of interest, based on which the prediction based
actuation planning algorithm module designs actuation routes
for the selected vehicles. The historical ride request data,
which is extracted from data of occupied vehicles, is used
for model training. Similar to the vehicle mobility prediction
module, different ride request prediction models can be applied
in PAS. For simplicity but without loss of generality, in this
paper, a graph-based ride request prediction model is adopted,
whose details is discussed in Section IV-C.

The Monetary Incentive Calculation module calculates the
monetary incentive for each actuation route based on the ride
request prediction at the destination. The calculation results are
sent back to the Prediction Based Actuation Planning module
for further optimization. The details of Monetary Incentive
Calculation can be found in Section IV-D.

The Prediction Based Actuation Planning module selects
the vehicles to actuate and designs actuation routes based
on three factors: 1) the deterministic upcoming trajectories
of occupied vehicles and the predicted upcoming trajectories
of unoccupied vehicles; 2) the upcoming ride requests at the
destination of actuation routes; 3) the monetary incentive cost
of each selected vehicle and actuation route combination. The
details will be discussed in Section IV-E.

B. Vehicle Mobility Prediction

The vehicle mobility prediction model offers information to
guide the system to select vehicles for actuation. There are a
lot of existing techniques can be integrated into our system for
vehicle mobility prediction [57], [58], [59]. As we introduce
in the previous section, the trajectories built for vehicles are
discrete in both spatial and temporal domains. Therefore, a
Markov Chain (MC) model is adopted, which is widely used
for modeling transitions within discrete states [60]. In an MC

6

ALGORITHM 1: Vehicular Mobility Prediction
Training

Input: Trajectory X = z1,x9,...x,, grid-to-area Map
fE).

Output: Direction Transition Kernel D.

Initialize:
Transfer X into transition directions
d={dy,do,....dn_1}

Set each element of n + «
fori e {1,...,n—1} do
Map grid ID into Area ID a; + f(x;)
L Na;d; < Nayd; + 1
Calculate D using n based on (3)

model, each vehicle corresponds to a transition kernel C' that
describes its mobility pattern. The entry Cj; represents the
probability that the vehicle moves from location ¢ to location j.
Each row C; of the transition kernel represents the probability
distribution of the vehicle moving from location ¢ to its next
location.

As for the training of an MC model, given a trajectory of a
vehicle, the maximum posterior estimation of Cj; is as follow:

é“ N+

Tl e 3
T Xy ta @

where n;; represents the number of times the vehicle moves
from location ¢ to location j, and « is a smoothing coefficient
to avoid being divided by zero.

Once the estimated transition kernel C' is acquired, it is
used to predict the vehicle’s future movements. The process
can be formulated as: given a vehicle’s current location Z,
the estimated transition kernel C, and a possible trajectory
T (1:n)» the probability p(l) that the vehicle moves along this
trajectory in the future is calculated as:

=[] C». .=, &)

i=1,2,..,n

However, we note the size of transition kernel correlates
with the number of distinct locations visited by each vehicle,
which means the computation complexity drastically increases.
Also, we discover that most transitions happen within two
connected grids, due to the speed limit in the city. Therefore,
in order to reduce the computational work, we assume that
each vehicle either moves to adjacent grids or stays in its
current grid. This assumption decreases the length of each
row C; of the transition kernel to nine, representing the nine
possible directions that a vehicle can move to. We denote the
new transition kernel as the direction transition kernel D.

Moreover, we notice that vehicles within adjacent grids
tend to follow similar mobility patterns [61]. Thus, to further
limit the computation complexity while keeping the same
spatial resolution, we first partition the city into several non-
overlapping sub-areas that are larger than a grid, and then let
grids within the same area share the same transition probability
distributions, i.e. the same row of D.
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ALGORITHM 2: Vehicular Mobility Prediction

Input: Direction Transition Kernel D, Current location
xo, Fixed trajectory | = {1, ..., T, },grid-to-area
Map f(-)

Output: Probability p.

Initialize:

Transfer [ into transition directions
d ={dp,d1,...,dm—1} (including current location
o)

Lp=1

for i € {0,....,m — 1} do

Map grid ID into area ID a; < f(z;)

| P Dp* D a;d;

Return p

Based on this mobility model, we design the mobility
prediction module as having two parts, namely training and
predicting. In the training parts, as shown in Alg. 1, a function
f(-) that maps the grid ID into sub — area ID is required. In
general, the training part takes a vehicle’s historical trajectory
X = x1, 9, ...x, and the grid-to-sub-area map f(-) as inputs,
and generates the direction transition kernel D as output.
For each location of the trajectory, it maps the grid ID to
sub — area ID, and then counts the transition direction in
a count matrix n. Based on n, it uses Eq. 3 to estimate the
direction transition matrix D. In the prediction parts, as shown
in Alg. 2, a probability is calculated to describe that a vehicle
travels along a fixed trajectory [ given its transition kernel
D and current location xy. The probability is calculated as
product of the probability of each single transition in the fixed
trajectory.

It is noticed that in practical situation, vehicle mobility can
be affected by many factors, such as time, location, holiday,
special events and etc. For example, the average driving speed
can be very slow during rush hours. And special events like
sports game make the traffic very crowd nearby the stadium.
The mobility prediction model we adopt in this paper is
robust to common factors like time and location. This model
considers the different mobility pattern at different locations
and time. However, influences of non-common factors like
holidays and special events are not considered in this paper.
In our future work, we will try to integrate more influential
factors in the mobility prediction model to further improve its
accuracy, which will make our actuation system more robust
to non-common factors.

C. Ride Request Prediction

Our actuation system requires a model to predict ride re-
quest numbers over locations and time in a city. The prediction
enables the system to match ride requests with vehicles, which
makes vehicles willing to accept lower incentives. As a result,
more vehicles can be actuated for better sensing coverage
quality with the same budget.

The ride requests in the city can be predicted based on the
discovery that spatial and temporal ride request patterns tend
to repeat on a weekly basis [43]. But even for the same city,

ride request numbers vary across different days in a week, at
different time periods in a day, and across different areas.

The ride request pattern in a city can be modeled as a
time-evolving graph, called a ride request graph (RRG). For
each time interval, a directed graph is constructed as follows.
Each grid of the city containing the source or destination of a
ride request is considered as a node. Each source-destination
pair is connected by a directed edge. The weight of the edge
represents the ride request frequency between the same source
and destination nodes. It is proven that for each time interval
t, the number of edges e(t) and the number of nodes n(t)
follow the Densification Power Law (DPL):

e(t) = Kn(t)?, (5)

where K and v € [1,2] are constant. The number of edges
grows linearly according to the number of nodes if v = 1.0,
while the RRG becomes fully connected if v = 2.0.

To predict the ride requests over time and location with the
RRG, two attributes need to be learned: 1) the DPL factors
(K and ~) which represent the temporal evolution property
and 2) the spatial distribution of nodes in the RRG. The DPL
factor can be calculated the ride request history data used to
construct the RRG. The spatial property can be obtained with
the help of OSM Points of Interest (Pol) such as traffic signals,
businesses, schools, hospitals etc [62], which are used to infer
the ride request popularity in different areas. This model has
been shown to be accurate in [43] by comparing it to real-
world dataset. More details can also be found in [43].

Similar to the vehicle mobility, in practical situation, ride
requests can be affected by many factors, such as time,
location, holiday, special events and etc. For example, there
will be much more ride requests nearby the stadium when
a sports game ends. In addition, ride requests also reveal
different spatial and temporal patterns during weekdays and
weekends. The ride request prediction model we adopt in this
paper is robust to common factors like time and location. It is
noticed that influences of non-common factors like holidays
and special events are not considered in the current model.
These factors will be integrated in the ride request prediction
model in our future work to improve the prediction accuracy,
as well as the robustness of the entire actuation system.

D. Monetary Incentive Calculation

The core idea of our monetary incentive mechanism is
to lower the monetary incentive of actuating one vehicle
by finding a new ride request for the actuated vehicle. To
be specific, the higher chances that a vehicle can get new
passengers at the destination of the assigned route, the lower
monetary incentive the vehicle is willing to accept. With lower
incentive cost, more vehicles can be actuated given the same
amount of budget, thus bringing more improvement on sensing
coverage quality.

As shown in Fig. 4, the spatial distribution of vehicles
differs a lot from the spatial distribution of ride requests
in the city of Beijing. By comparing Fig. 4(a) and (b), we
found that the vehicles’ estimation on ride request distribution
may be incorrect. For example, in the area of longitude of
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Spatial Distribution of Taxi Trajectories in One Week
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(a) Spatial distribution of 3000 taxis in the center of Beijing
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(b) Ride request distribution in the center of Beijing

Fig. 4. (a) The distribution of 3000 taxis’ trajectories in central area of the
city of Beijing during 10min time interval; (b) The distribution of historical
ride request in central area of Beijing City during the same 10min time
interval with (a);

2km ~ 5km, latitude of Okm, there are a lot of ride requests,
but very few vehicles. At the same time, in the area of
longitude of 10km and latitude of 11km, where a lot of
vehicles gather, the ride request number is not high. Based
on the observation, it is promising to find new ride request for
vehicles in sparsely sensed area. If a vehicle can be actuated to
a sparsely sensed area with high ride request probabilities, the
cost for actuating that vehicle can be decreased and the sensing
coverage quality will be improved. Therefore, the monetary
incentive bf * offered to vehicle p; for actuation period 7; is
calculated as follows:

bfl = maX(Tmar*Tu'R(x%_;'_Na”a y%_,_Nan 5 E+Nart)7 Tmin)
(6)
where 7,4, and r,,;, are upper and lower bound of
monetary incentive to actuate one vehicle respectively. The
maximum incentive 7,4, equals the maximum cost of deliv-
ering a passenger with the vehicle for the same route, which
includes the gas, time and service cost. The incentive cost is
reduced if the system finds a new ride request for the vehicle
since it can earn additional money from taking the new ride
and compensate the net cost of following our route. R(i, j,t)
denotes the predicted ride request distribution at location (4, j)
and time ¢, which is estimated by the prediction model in
Section IV-C. 7, represents the unit monetary incentive for
one ride request, while r,,;, denotes the minimum monetary
incentive for actuating one vehicle, which equals to the gas
cost of the route.

ALGORITHM 3: Prediction Based Actuation Plan-
ning

Input: Current location X, budget B;, vehicles
availability, ride request model R, mobility prediction
model D

Output: Actuated vehicles IDs, planned trajectories
and monetary incentives for actuated vehicles

Initialize:

Select vehicles and trajectory randomly until the
budget is used up
Output the initial feasible solution S based on

L actuated vehicles and D for non-actuated vehicles

while ¢ not converges do

Select the grid z,, with maximum expected
vehicles passing through

Get the set of vehicles Sy, which expect to pass
through &,

Compute and rank contribution to sensing coverage
quality for vehicles in Sy,

Select the vehicle with minimum contribution and
update its trajectory with monetary incentive

Keep updating the trajectory until the budget
constraint Bj is satisfied

Update S and calculate the updated sensing

| coverage quality ¢

Return S* = S

E. Prediction Based Actuation Planning

Since the optimization problem in Eq. 2 is NP-hard [19],
we propose a fast, near-optimal heuristic-based algorithm to
find an approximate solution. The core idea of the prediction
based actuation planning algorithm is 1) utilizing the vehicle
mobility prediction to select vehicles with higher actuation
effectiveness and 2) utilizing ride request prediction to select
actuation routes with lower incentive cost. To be specific, the
algorithm finds the time slices and grids that expect to have
many vehicles passing through in the near future. From these
vehicles, the algorithm selects some and dispatches them to
areas, where few or no vehicles expect to pass through.

Algorithm 3 shows the details of our prediction based actu-
ation planning algorithm, which is based on Complementary
Constructive Procedure (CCP). The algorithm first initializes
a feasible solution S, which satisfying the constraints. This
is easy to implement by randomly selecting vehicles until the
budget is used up. Then, the algorithm finds the corresponding
grids that expects to collect maximum data points, based on
which the set of vehicles Si,,;, that expects to pass through
the grid is extracted. For vehicles in Si,,, their expected
contributions to the objective function ¢ is calculated based
on the vehicle mobility prediction. The vehicle who expects
to contribute least in Sy, is assigned a new actuation route,
which usually covers sparse area for sensing coverage quality
improvement. This process will iteratively continue until the
objective function ¢ converages.
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V. EVALUATION

This section evaluates our PAS on three aspects: 1) opti-
mizing sensing coverage quality, which is the objective of the
actuation system; 2) matching ride requests with actuated ve-
hicles, which is essential to vehicles’ motivation and incentive
cost; 3) lowering the average incentive cost, which decides
the number of actuated vehicles as well as sensing coverage
quality given the budget. We first introduce the evaluation
setup for experiments on city scale deployment and physical
feature based simulation in Section V-A. Then, the details of
city scale deployment is presented in Section V-B. Finally, we
show and analyze the experiment results on physical feature
based simulation in Sections V-C respectively.

The evaluation focuses on the following aspects:

o Validate the effectiveness of our system’s integration of
the two prediction models. This is done by comparing
the performance of our PAS with several baselines.

o Evaluate the performance of our prediction based actua-
tion planning algorithm on three aspects: 1) optimizing
sensing coverage quality, 2) matching ride requests with
actuated vehicles, and 3) lowering the average incentive
cost.

o Characterize the system performance of three aspects
under different system setting up. Two key factors are
discussed: the total number of vehicle fleet and the total
budget amount. The former one represents the scale of
actuation candidates, while the latter one decides the scale
of actuated vehicles.

A. Evaluation Setup

Our PAS is evaluated by experiments on a city-scale deploy-
ment and a physical feature based simulation in the center area
of Beijing China. The evaluation area occupies a size of 15km
by 15km, as shown in Fig. 5. The city-scale deployment is
based on a taxi-based testbed, which checks how our PAS
performs in real world. The physical feature based simulation
is based on a historical Beijing taxi trajectory dataset, which
is used to run large scale experiments for system performance
characterization. Major evaluation setups are listed as follows.

General System Setup: The spatial resolution rs and
temporal resolution 7, are set as lkm and 2min, since the
average taxi speed in Beijing is ~ 30km/h and the vehicle
covers one grid within 2mins. The actuation period is set
as 5r; (10min). The default number of whole vehicle fleet
is set as 500, while the default budget is set as 1000 US
dollars (USD). For incentive cost, we set r, = 2(USD),
Tmin = 2(USD) and 7,4, = 20(USD). This is because
2 USD equals the flag-down fare of Beijing taxis and 20 USD
is enough to cover the cost for one trip (~ 10km) in one
actuation period (10min) even with serious traffic jams.

Performance Metric: Three metrics are introduced to
measure three aspects of the system performance: optimizing
sensing coverage quality, matching ride requests with actuated
vehicles, and lowering the average incentive cost. 1) The
ability to improve sensing coverage quality is measured by
¢, which is the objective of the actuation system and defined
as Eq. 1. The f is set as 0.5, which means equal importance
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Fig. 5. Our PAS is evaluated at the center of Beijing, which occupies an area
of 15km by 15km. The evaluation area is discretized into grids of 1km by
1km.

between the size of sensed area and the evenness of spatial
distribution, which is the case for most applications. Therefore,
the sensing coverage quality in the evaluation is calculated as

$(C) = 0.5E(C) + 0.5logQ(C), (7

where C' is the all data points collected bby all participant
vehicles in one actuation period. 2) The ability to match ride
requests with actuated vehicles is measured by ride request
matching rate 7,4, Which is calculated as

Nimat
Tmat = n 5 (8)
all

where ng;; is the total number of vehicles in one actuation
period and m,,4; is the total number of vehicles who find
new passengers at the end of the same actuation period. 3)
The ability to lower the average incentive cost is measured by
average inventive cost b, which is calculated as

_ 1 Nact
b=— ) b ©))
Nact Zz:;

where bP% is the incentive cost to actuate vehicle p; in one
actuation period and n,. is the total number of actuated
vehicles.

Baselines: Three baselines are adopted to validate different
parts of our PAS on improving sensing coverage quality. These
parts include mobility prediction model, ride request prediction
model and our prediction based actuation planning algorithm.

o No Actuation (NA): This method does not spend the
budget actuating vehicles and all vehicles follow their
original trajectories. By comparing NA with our PAS,
we investigate the performance improvement from our
entire system, which includes two prediction model and
prediction based actuation planning algorithm.

o Random Actuation (RND): This method randomly selects
vehicles and corresponding routes for actuation until the
budget is used up. The improvement brought from the two
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Fig. 6. We evaluate our system with a city scale deployment on taxi-based
testbed. An Android App, GPS Logger [63], is used to collect real-time
trajectories of taxis.

prediction models is checked by comparing RND with our
PAS.

e Random Actuation with Ride Request Prediction (RN-
DRQ): This method randomly selects vehicles but tries
to match ride requests for vehicles when deciding actua-
tion routes. Therefore, the cost to actuate each vehicle
is expected to be lower than RND. The improvement
from the ride request model is checked by comparing
RNDRQ with RND. Meanwhile, the improvement from
the mobility prediction model is checked by comparing
RNDRQ with our PAS. This method is similar to state-
of-the-art methods used by ride sharing companies like
Uber, Lyft, and Didi, which dispatch their ride sharing
vehicles according to real time ride requests [64], [65].
Since we have no access to their data and model details,
we use this similar model to represent the state-of-the-art
method. In our future work, when their data and model
details are open to public, these models can be integrated
in our system framework, which will further improve the
performance of the entire actuation system.

B. City Scale Deployment

To test how our PAS work in realistic environment, we
deploy a city scale taxi-based testbed in the city of Beijing at
five representative time periods. Besides the 0:00am, 6:00am,
12:00pm and 6:00pm, 9:00am is also considered since it is
a peak time in a day. Our PAS first decides which vehicles
to actuate and the corresponding actuation routes. Then the
results are sent to selected vehicles, where a researcher stayed
inside and suggested routes for the driver. For unactuated
vehicles, the drivers are free to decide their routes. As shown
in Fig. 6, during the whole actuation period, an Android App
GPS Logger was fixed on vehicles for real-time trajectory data
collection [63]. The routes from 230 actuated vehicles over 14
days were collected. Our deployment was approved under the
university IRB STUDY2017_00000342.

Since the city scale deployment is affected by a lot of
real world factors, which is not included in the simulation.
To check the difference between city scale deployment and
physical feature based simulation, we compare their sensing
coverage quality values in Fig. 7(a). In order to check the
sensing coverage quality improvement by our PAS, the sensing
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Fig. 7. (a) The figure shows the sensing coverage quality from city scale
deployment, physical feature based simulation and no actuation. Deployment
results show improvements similar to but slightly lower than simulation
results. Both of them show advantages over no actuation at different times;
(b) The figure shows the ride request matching rate from real deployments,
physical feature based simulation, and no actuation. Deployment results are
similar to simulation results. Both figures show that the physical feature based
simulations are close to real world deployments and can be used for large scale
evaluations on system performance characterization.

coverage quality without actuation is also plotted. First, at all
time periods, the trend of sensing coverage quality of three
methods are same: simulations are similar but slightly larger
than deployments and both of them are larger than no actu-
ation. This validates our PAS’s consistent ability to improve
sensing coverage quality at different time. Second, sensing
coverage quality values from deployments and simulations are
similar. This shows that the physical feature based simulation
is close to real world situation and can be used for large
scale evaluations on system performance characterization.
Finally, sensing coverage quality values from deployments
are a little bit lower than those from simulations. This is
because simulations show theoretically near-optimal results,
while deployments are influenced by many practical factors,
such as traffic jams, temporary road closure, lack of direct
routes to follow the designed trajectories, etc., which prevent
deployments from achieving exactly same performance as
simulations.

Fig. 7(b) shows the ride request matching rate from real
deployment, physical feature based simulation and no ac-
tuation. The similar ride request matching rate at all rep-
resentative times in deployment and simulation proves that
physical feature based simulation can be used to analyze
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Statistics of Ride Request in A Week
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(b) Active taxi number within 10 minutes time interval on different days in a
week.

Fig. 8. This figure shows the temporal distribution of ride requests and
active taxis in a week. Active taxis have similar trend as ride request, which
corresponds to human daily activity pattern in Beijing.

system performance in real world. Unlike sensing coverage
quality, simulation results for ride request matching rate are
not always higher than deployment results. This is because
optimizing sensing coverage quality is the first priority of
our PAS. The optimal ride request matching rate cannot be
achieved at the same time. In addition, at 0:00am and 6:00am,
no actuation scheme has higher ride request matching rate
than PAS simulation and deployment results. When there are
not many ride requests in the area (0:00am and 6:00am), the
system has to choose the actuation routes that optimize sensing
coverage quality but reduce ride request matching rate. When
there are many ride requests in the area (9:00am, 12:00pm and
6:00pm), the system is able choose the actuation routes that
optimize sensing coverage quality as well as matching ride
requests with vehicles.

C. Experiments on Physical Feature Based Simulation

The physical feature based simulation is based on the
historical taxi trajectories (November 2015) in the city of
Beijing [66]. The dataset includes the information of taxi
id, longitude, latitude, time stamp and occupancy flag. The
occupancy flag infers whether a taxi is occupied by passengers.
The taxi reported the above information every 60 seconds
when they were operating. A ride request can be extracted
according to the transformation of the occupancy flag, i.e.
when and where the occupancy flag transfers from unoccupied
to occupied. Every actuation period, 500 active taxis are ran-
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Fig. 9. This figure shows how sensing coverage quality values of different
methods are affected by the amount of budgets in (a) and total number of
vehicle fleet in (b). Our PAS consistently show advantages over baselines
with variant amounts of budgets and total numbers of vehicle fleet. To achieve
similar sensing coverage quality, our method needs 200 USD while RND and
RNDRQ need 2000 USD.

domly selected as the total vehicle fleet. To keep consistency,
the same five representative time periods as deployments are
selected for simulation. The first 3 weeks’ data is used to train
the mobility prediction and the ride request prediction model,
while data from the rest days of the month is used to test
the actuation system performance. The results are obtained
from average values of 5 time periods in all testing days.
We check the performance variance according to two keys
factors: the budget and total number of vehicle fleet. The
budget decides the potential amount of vehicles that can be
actuated. Larger budget usually means more actuated vehicles
for better sensing coverage quality. Total number of vehicle
fleet decides the size of searching space that system has for
actuation. Larger number of vehicle fleet usually brings more
candidate choices for the system to actuate, which leads to
better sensing coverage quality.

Fig. 8 shows the statistics of ride requests and active taxis
in one week selected from the dataset. The number of ride
requests and active taxis are calculated every 10 minutes.
The active taxi number is calculated from a subset of around
3000 taxis. Ride request and active taxi counts show similar
daily trends, corresponding to common supply and demand
relations. Both show decreasing trends from 0:30am - 5:00am,
when most people are asleep. After that, a increasing trend ap-
pears until 11:30am, as people go to work and school, do some
shopping, etc. Both ride requests and active taxis maintain a
high level from noon to midnight, which corresponds to the
most busy time in Beijing.
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TABLE I
SENSING COVERAGE QUALITY IMPROVEMENT WITH VARIANT AMOUNTS
OF BUDGETS
Budget (USD) 200 500 1000 2000 4000
RND 0.7% 3.3% 6.5% 12.1% 22.2%
RNDRQ 0.9% 3.4% 6.4% 12.0% 20.8%
PAS 10.6% 171% | 26.5% | 40.0% | 60.7%

1) Sensing Coverage Quality: In order to evaluate how
sensing coverage quality values are affected by two influential
factors, we plot sensing coverage quality of four methods
under variant amounts of budget and total numbers of vehicle
fleet in Fig. 9. In addition, since it is difficult to understand
the improvement on sensing coverage quality ¢ from different
methods, the metric sensing coverage quality improvement
(SCQI) is adopted, as shown in Table I and II. This metric
evaluates how close the sensing coverage quality approaches
the ideal-maximum value compared to the sensing coverage
quality before actuation, and is calculated as

" — 9o
(bideal - (bO

where ¢* is the sensing coverage quality of the evaluated
method and ¢q is the sensing coverage quality before ac-
tuation. ¢@;q4.q; denotes the ideal-maximum sensing coverage
quality and is calculated as

¢ideal - ﬁlog(NmNyNart) + (1 - B) ].Og (Nar * A)
A =min (|P|,N;N,),

SCQI = * 100%, (10)

(1)

where N, and N, are the number of grids in longitude and
latitude directions, and 3 is set as 0.5 as mentioned before.
N, is the actuation period and |P| is the total number of
vehicle fleet. It is noticed that SCQIP cannot reach 100%
since @;qeq; 18 the sensing coverage quality in ideal scenario.
In the ideal case, all vehicles uniformly distributed over space
at all time slices. However, since the limitation of initial spatial
distribution of vehicles, this ideal case is usually impossible
to achieve in real practices.

First, our PAS shows consistent advantages over three
baseline with variant amounts of budgets. Especially when
the budget is 4000 USD, our PAS brings 60.7% improve-
ment while RND and RNDRQ only has 22.2% and 20.8%
improvement respectively. Second, for all methods except
NA, sensing coverage quality improves with increasing of the
budget. This is because the higher budget allows more vehicles
being actuated, which leads to higher sensing coverage quality.
The ~ 40% advantage of our PAS comes from two parts. 1)
The mobility prediction model guides our prediction based
actuation planning algorithm to select vehicles which bring
more sensing coverage quality improvement for actuation. 2)
The ride request prediction model helps our prediction based
actuation planning algorithm select routes that have lower
incentive cost by matching the ride requests with vehicles.
Finally, to achieve similar sensing coverage quality improve-
ment, our PAS need 200 USD while RND and RNDRQ needs
2000, which is 10x of our expense. This shows our PAS’s
ability to save incentive cost.

TABLE II
SENSING COVERAGE QUALITY IMPROVEMENT WITH VARIANT TOTAL
NUMBER OF VEHICLE FLEET

Total Number of

Vehicle Fleet 100 200 00 500 800
RND 5.8% 7.4% 6.8% 6.5% 4.9%
RNDRQ 6.0% 7.1% 6.2% 6.4% 5.4%
PAS 19.8% | 36.6% | 30.0% | 26.5% | 18.7%

The effects of vehicle number on sensing coverage quality
are also investigated as shown in Fig. 9(b) and Table II. Com-
paring the sensing coverage quality and its improvement of
different methods, we see that PAS > RND ~ RNDRQ >
NA. The sensing coverage quality of all methods improves
with total number of vehicle fleet increases given the same
amount of budget. In addition, our PAS shows consistent
advantage of sensing coverage quality and improvement over
baseline with variant total number of vehicle fleet. This
proves that our PAS effectively selects “correct” vehicles and
trajectories combinations that bring higher sensing coverage
quality improvement. Recall the definition of sensing coverage
quality $(C), which is the trade-off between the sensed area
Q(C) and the evenness level of the spatial distribution E(C).
For Q(C), more vehicles mean potentially more areas being
sensed. For E(C'), more vehicles increase supply over demand
and cause competition among vehicles, and the competition
forces some vehicles to drive to areas with fewer vehicles to
increase their probability of getting new passengers. Thus, the
distribution of vehicles would be more balanced and E(C)
increases with total vehicle number. Therefore, the sensing
coverage quality increases in all methods. It is noticed that
our PAS still outperforms all baselines. Our PAS achieves up
to 36.6% improvement at the vehicle number of 200, which
is 5.1x and 5.0x higher than that of RND and RNDRQ
respectively. This shows the robustness and advantage of our
PAS under variant uncertainties in vehicle availability.

To illustrate the practical meaning of sensing coverage
quality, we take an improvement of 0.05 sensing coverage
quality as an example. Since the default value of 3 is 0.5 in
our experiment, an improvement of 0.05 on sensing coverage
quality is equivalent to the improvement of the () value of
0-05/0-5_1 = 11%. The Q value denotes the size of area being
senses. Given the map of 15km by 15km, a 0.05 improvement
on sensing coverage quality means that 124km? more areas
are sensed within each actuation period.

2) Ride Request Matching Rate: To evaluate how the bud-
get affects the ride request matching rate of different methods,
we plot r,,,; with variant amounts of budgets in Fig. 10(a).
First, a large budget leads to more actuated vehicles for all
methods, but does not ensure large ride request matching
rate, which is different from sensing coverage quality. This
is because the first priority of our PAS is to improve sensing
coverage quality. To the improvement of sensing coverage
quality, PAS sacrifices ride request matching. Second, for
different budgets, our PAS has up to ~ 20% larger ride request
matching rate and than RND and RNDRQ. This shows that
even though our PAS sacrifices ride request matching rate to
guarantee the improvement of sensing coverage quality, it still
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Fig. 10. This figure shows our PAS consistently achieves higher ride request
matching rate than RND and RNDRQ with variant budgets and total number
of vehicle fleet.

keeps a higher matching rate than other methods. This shows
that compared to other methods our PAS are more attractive
to vehicles since our PAS can find them new passengers with
much higher probabilities.

The effect of the number of vehicles on ride request match-
ing rate is also evaluated in Fig. 10(b). For all methods, the
total numbers of vehicle fleet does not affect the ride request
matching rate to much. In addition, our PAS consistently
achieves higher ride request matching rates over baselines with
variant total numbers of vehicle fleet. Our PAS achieves up to
73.8% ride request matching rate with 500 vehicles, which
is 11.6% and 13.7% higher than RNDRQ and RND. This
shows that the ride request prediction model, working with
our prediction based actuation planning algorithm, does help
more vehicles to improve the possibility of finding passengers.
It it noticed that RNDRQ does not achieve similar ride request
matching rate even with the ride request prediction model. This
is because this method randomly select vehicles for actuation,
and the route selection is based on the vehicle selection. This
shows that ride request matching rate is decided by both route
selection and vehicle selection.

3) Average Incentive Cost: To evaluate how the budget
affects the average incentive cost of different methods, we
plot b with variant amounts of budgets in Fig. 11(a). First,
RNDRQ shows consistent lower cost than RND, which shows
that the ride request prediction does help reduces the average
incentive cost. Second, our PAS shows consistent lower cost
than RNDRQ. This shows that only adopting the mobility
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Fig. 11. This figure shows our PAS consistently has consistent lower average
cost than RND and RNDRQ with variant budgets and total numbers of vehicle
fleet.

prediction model can further help lower the average incentive
cost, since it helps our prediction based actuation planning
algorithm select ’correct’ vehicles, which have potentially
lower incentive cost for actuation. Finally, with a higher
budget, the average incentive cost of our PAS increases. This is
because to improve sensing coverage quality, our PAS chooses
the routes with higher average cost, which echoes the analysis
of Fig. 10(a).

The effect of the number of vehicles on average incentive
cost is also evaluated in Fig. 11(b). The average incentive
cost trend of three methods are similar as that in Fig. 11(a),
which validates the effectiveness of both mobility prediction
and ride request prediction models. In addition, different from
Fig. 11(a), the average incentive cost of all method decreases
with higher total number of vehicle fleet. This is because more
vehicles provide more available vehicle and route combina-
tions, which potentially allows routes with lower incentive
cost being selected. Furthermore, the average incentive cost
converges to ~ 3U S D, which is very close to lower bound of
incentive cost 7., (2USD). Therefore, increasing the total
number of vehicle fleet is meaningful by providing higher
flexibility on selecting vehicles and routes combinations with
lower incentive cost.

4) The Impact of 3 Value: In order to check how the
B value in Eq. 1 affects sensing coverage quality and its
components, we plot the values of £ and sensing coverage
quality for our PAS and another two baselines in Fig. 12(a) and
Fig. 12(b) respectively. As shown in Eq. 1, the E value denotes
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Fig. 12. This figure shows our PAS consistently has larger sensed area and
higher sensing coverage quality than RND and RNDRQ with variant (3 values.

the information entropy of sensed area distribution, which
measures how balanced the collected data is distributed. The
maximum value of E is log(IN; * N, * T'), when all vehicles
are evenly distributed over space and time within the actuation
period. First, our PAS consistently derives higher E values than
RND and RNDRQ with different 3 values. This shows that
our PAS is able to achieve more balanced distribution of data
collection than baselines with the help of our prediction based
actuation planning algorithm, which integrating two prediction
models. Second, for all three methods, the £ value increases
with the increase of the 8 value. This is because that larger
B value biases the system to focus more on the balanced
distribution of data collection. Finally, with increase of the
[ value, the improvement of the E value decrease. This is
because with large [ value, the system puts more attentions
on improving E and its value getting closer to saturation value
with larger (.

With variant 3, our PAS shows consistently advantages
over two baseline concerning sensing coverage quality, which
proves the robustness of our actuation system. The advantages
of our PAS come from 1) the mobility prediction model
helping our prediction based actuation planning algorithm to
actuate vehicles with more sensing coverage quality improve-
ment, and 2) the ride request prediction model helping our
prediction based actuation planning algorithm selecting routes
with lower incentive cost by matching the ride requests with
vehicles. In addition, the increasing of 3 leads to improvement
of sensing coverage quality. This is because larger S value
bias the system to focus more on the information entropy

improvement, which mainly comes from the improvement of
data distribution balance (E' value).

VI. CONCLUSION

This paper presents PAS, a prediction based actuation sys-
tem that dispatches the ride sharing vehicle fleet for optimal
sensing coverage quality. A near-optimal prediction based
actuation planning algorithm is proposed which integrates 1) a
mobility prediction model that guides the selection of vehicles
to actuate and 2) a ride request prediction model to help match
ride requests with vehicles, lowers average incentive cost
and improves vehicles’ motivation. Experiments on city scale
deployment and physical feature based simulation shows that
our PAS can achieve up to 40% more sensing coverage quality
improvement and up to 20% more ride request matching rate
than baselines. Additionally, to achieve a similar level of
sensing coverage quality as the baseline, our PAS needs only
10% budget.
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