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Abstract—Growing mobile data usage has led to end users
paying substantial data costs, while Internet service providers
(ISPs) struggle to upgrade their networks to keep up with de-
mand and maintain high quality-of-service (QoS). This problem
is particularly severe for smaller ISPs with less capital. Instead
of simply upgrading their network infrastructure, ISPs can pool
their networks to provide a good QoS and attract more users.
Such a vISP (virtual ISP), for example, Google’s Project Fi,
allows users to access any of its partner ISPs’ networks. We
provide the first systematic analysis of a vISP’s economic impact,
showing that the vISP provides a viable solution for smaller ISPs
attempting to attract more users, but may not maintain a positive
profit if users’ data demands evolve. To do so, we consider users’
decisions of whether to defect from their current ISP to the vISP,
as well as existing ISPs’ decisions on whether to partner with
the vISP. We derive the vISP’s dependence on user behavior and
partner ISPs: users with very light or very heavy usage are the
most likely to defect, while ISPs with heavy-usage customers can
benefit from declining to partner with the vISP. Our analytical
results are verified with extensive numerical simulations.

Index Terms—Virtual ISP, Network economics, Shared mobile
network, Data market dynamics.

I. INTRODUCTION

Mobile users today are charged high prices for data plans
from Internet service providers (ISPs), with an expensive base
payment per month for a data quota and steep overage fees
above this cap [2]. Most users desire cheaper data plans, but
still expect to receive reasonable quality-of-service (QoS) and
coverage. Meanwhile, current cellular and WiFi infrastructure
are insufficient to support growing user demand [3], making
it difficult for ISPs to maintain high QoS. New network tech-
nologies (e.g., 5G networks) can increase network capacity, but
upgrading cellular networks is a long-term, expensive project.

An option for users to lower data costs is to subscribe to
a mobile virtual network operator (MVNO), which resells
wireless capacity from an infrastructure-owning ISP, often
at lower costs. Given that they restrict to a single network,
MVNOs may not meet users’ QoS expectations. Thus, to
satisfy both cost and QoS concerns, we propose leveraging
existing network infrastructure through a cross-carrier data
plan in which users can access multiple ISPs’ networks.
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A. A Virtual ISP Data Plan

A cross-carrier data plan would allow users to subscribe to
a “virtual” ISP (VISP) that combines the resources of multiple
partner ISPs. Traffic from vISP users can then be handled by
the partner ISP’s network. While this infrastructure sharing
approach is technologically feasible [4], its economic viability
remains an open question. Anti-trust regulations can restrict
efforts to merge operators [5]. Instead, a third party is required
to handle this sharing; for instance, in the U.S., Google has
introduced a cross-carrier data plan called Project Fi [6] that
pools T-Mobile, Sprint, and US Cellular mobile infrastructure.

However, it is unclear whether a third party vISP can earn
a positive profit, while satisfying anti-trust regulations.

o ISPs who can maintain a high throughput for their users
are less likely to partner with the vISP, and thus become
non-partner ISPs. On the other hand, the VISP may decide
not to partner with some ISPs if they e.g., charge high
fees, which can also be viewed as non-partner ISPs. If
the VISP charges too much, users of these non-partner
ISPs may not wish defect to the vISP.

o Smaller ISPs may join the VISP as partner ISPs to gain
some revenue from leasing their capacity. However, if
they lose users to the VISP, it will decrease their revenue.

« If the VISP offers a very low price in order to attract users,
too many partner ISPs’ users may defect, increasing the
price charged by the partner ISPs and jeopardizing the
VvISP’s profit. The VISP can use extra WiFi capacity to
further lower its cost; however, WiFi is not available
everywhere. Even if the vISP can make a profit, it may
attract too many partner ISPs and users, violating the anti-
trust regulations it is supposed to protect.

To conclude the interactions between users, ISPs, and the
VISP: users of both partner and non-partner ISPs must decide
whether to defect to the vISP, while ISPs must decide whether
to partner with the vISP. The viability and impact of a vISP
therefore depend on the complex interactions between the
decisions of the VISP, partner ISPs, and users. In this work,
we quantify the circumstances of user demands under which
the VISP, partner ISPs, users, and even non-partner ISPs will
benefit from the vISP’s data plan. Our results show that while
the vISP can make a profit and benefit both users and ISPs
in the short term, it may not remain viable in the long term
as users’ data demands increase. Rather than cannibalizing
the mobile data market, the VISP is better understood as an
interim solution for ISPs until they upgrade their networks to
accommodate growing user demand.



B. Related Work

Some have considered the economic impact of pricing
different WiFi access points [7] or joint pricing of different
network technologies, e.g., cellular and WiFi, offered by one
ISP [8], [9]. Others have gone further in using prices to
incentivize users to offload their data onto WiFi networks
[10], [11] or allowing users to trade leftover data among
each other [12]. Still other works consider inter-ISP pricing
in a hierarchical model of transit and local ISPs for wireline
networks [13], as well as the tiered pricing often offered by
transit ISPs selling capacity to local ISPs [14]. Our work, in
contrast, considers a non-hierarchical setting in which a vISP
combines the infrastructure of multiple partner ISPs. We focus
on the impact of inter-ISP pricing (i.e., the vISP’s payment to
partner ISPs) on the price that the VISP charges end users, and
users’ subsequent decisions of whether to defect to the vISP.

Other works have focused on technological aspects of a
shared mobile network infrastructure. In [15]-[17], vertical
handoff decision algorithms are proposed that consider users’
mobility, device switching cost and the quality of connection.
The authors in [4], [18] study network switching to maximize
user throughput, while [19] proposes a framework for “ser-
vice” ISPs to use multiple network infrastructures. However,
while some works have either considered the economics of ISP
spectrum sharing agreements [20] or proved the expansion of
network capacity with MVNO [21], existing works generally
do not consider the economics of users’ decisions of whether
to subscribe to a single or shared network.

C. Economic Impact of the vISP

We suppose each VISP user’s device can switch between
partner ISP networks following policies specified by the VISP.!
We assume the VISP charges users in proportion to their usage
volume, as Google Fi does, while the partner and non-partner
ISPs offer a data cap with overage plan. We consider a user
population with heterogeneous “natural” usage levels, which
we define as the user demands when they are not charged
for data. For instance, some users are rarely interested in
streaming videos and thus consume little data. We refer to
users as “light” or “heavy” depending on their natural usage
levels. In our analysis, we answer three major questions:

How many users subscribe to the vISP? (Section II)
Users decide whether to defect to the VISP or remain with
their current ISP, depending on the achievable throughput and
the usage-based price charged by the vISP. Their decisions are
not made independently: the number of users on each network
influences each user’s throughput, leading to a feedback loop.
We develop a user model that incorporates the throughput
feedback effects on users, and show that users’ defection
rates for each ISP always reach an equilibrium. This model
is applied to consider the existence of open WiFi capacity
(discussed in Section V). While we would expect light users
to defect, as they can save money by doing so [22], we find
that heavy users may also defect from partner ISPs if the vISP
charges a sufficiently low price.

'Google requires its Project Fi users to choose from selected smartphone
models, allowing such policies to be implemented on the device.

Which ISPs should partner with the vISP? (Section III)
Given the equilibrium user defection rates, ISPs must decide
whether or not to partner with the vISP. We find that ISPs with
lighter users are more likely to partner with the vISP. These
ISPs will experience more user defections, since lighter users
(who do not fully utilize their data caps) can save money by
switching to the vISP. Partnering with the vISP allows these
ISPs to limit the resulting loss of revenue through payments
from the vISP. These results cast doubt on the long-term
viability of the vISP: increasing mobile data traffic [3], [23]
may result in fewer ISPs that are motivated to join the vISP.

When does the VISP make a profit? (Section IV) Given
its agreements with partner ISPs, the vISP must decide how
much to charge its users so as to obtain a profit, without
cannibalizing the market. We show that the vISP can earn a
positive profit if partner ISP users’ natural usage is sufficiently
light and if the partner ISPs’ market share falls below a given
upper bound. The VISP thus aggregates smaller ISPs who
might need the VISP in order to attract more users. However,
the vISP is unviable if it partners with too many ISPs:
intuitively, it then must pay partner ISPs more, resulting in a
negative profit and preventing the VISP from cannibalizing the
market. Combined with the vISP’s dependence on partner ISPs
with lighter users, this result suggests that a vISP represents
a viable way to benefit users and ISPs when user demand is
close to the available network capacity, fulfilling today’s need
for handling growing user demand.

Then, in Section VI, we simulate the behavior of one million
users to show that the VISP can make a profit under realistic
conditions. We verify Sections II and III’s findings on which
users defect and which ISPs become partner ISPs, empirically
demonstrating the vISP’s viability conditions. We conclude in
Section VII.

Table I summarizes the notation used in the paper. All proofs
can be found in the Appendix.

II. USER DECISIONS

When the VISP joins the mobile data market, users have a
choice of defecting to the VISP from their current ISPs. Their
decisions affect, and are in turn affected by, the demands and
throughputs achieved by other users on each ISP’s network.
Even those users who do not defect may realize different de-
mands due to other users’ defections changing the throughput
on their ISPs. We examine these dynamics by first developing
a model of user demand in Section II-A, and then showing
the implications for their defection decisions in Section II-B.

A. User Demands

Aa a first step, we model user demands for data before and
after the vISP enters the market through utility maximization.

1) Before the vISP: Before the VISP enters the market, we
consider N € Z_, users who subscribe to one of the M &
Zy ISPs (N > M). We suppose that ISP m has a market
share of ¢,, N users (¢, € (0,1) and 2%21 ©m = 1). To
focus on the impact of the VISP rather than the effects of
different ISP data plans, we assume that an ISP charges users
n for up to d GB of data per month with overage fee of p



TABLE I
KEY TERMS AND SYMBOLS
Symbol | Definition
M Number of ISPs who have their own network infrastructure
and offer Internet access for their users.
N Total number of users in the mobile data market who sub-
scribe to one of the M ISPs.
K Number of partner ISPs (1 < K < M).
©m Market share for ISP m, i.e., the percentage of all users who
subscribe to ISP m without the VISP in the market.
Om Defection rate for ISP m’s users, i.e., the percentage of ISP
m’s users who defect to the vISP.
zi User ¢’s natural usage without considering price effects, i.e.,
each user’s maximum demand if they do not need to pay.
d, n, p | Data plan offered by ISPs with a monthly cap d GB data
charged at 7 and overage fee p per GB exceeding the cap.
P Usage-based unit price charged by the vISP.
Cm ISP m’s total network capacity.
c Throughput per user of both partner ISPs’ and vISP’s users.
Tk Unit price paid by the VISP to partner ISP k.

per GB exceeding this cap (n/d < p). We suppose that each
ISP m has in total a fixed amount of available capacity C,,
across all cells (i.e., base stations in different locations) to
support its users’ traffic. We assume that all cells of an ISP
have roughly the same capacity, and users access them with
uniformly random probability.> Over the time scale of one
month, all users on ISP m’s network are assumed to experience
similar average throughputs. Although we do not explicitly
consider users’ access to WiFi hotspots, we briefly study the
impact of supplementary WiFi in Section V.

Suppose that user ¢’s “natural” usage in a month, with free
data usage, is z;. We take z; to be finite to account for the
fact that there is an intrinsic limit to the amount of data most
users wish to consume in a month. Most U.S. consumers,
for instance, use less than 3GB of cellular data per month,
far below many ISP data caps, indicating that they could
have consumed additional data without paying more had they
been so inclined [24]. Since ISPs do charge users for their
data usage, we let z; denote their actual data usage over a
month, and we model their utility, or satisfaction, from this
usage with the standard a-fair utility function 21=%/(1 — )
with @ € [0,1) [12], [25]. The concavity of the «-fair
utility function captures the diminishing increase in utility:
When users consume more data, the utility gained from each
additional unit of data is smaller. By subtracting each user’s
payment to the ISP from this utility, each user i’s utility from
ISP m is then

~,1_0‘

m Zi (
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U:n(';:Z'dvT]?p) =cC Zi _d)+p7 (1
for Z; < z;,> where (%; — d)* indicates that the user pays
no overage for usage under the cap d. The scaling factor ¢]*
represents the user’s desire for hlgh throughput, which we
set to the average throughput, —==-. to capture the fact that
users who experience higher throughputs will likely derive
greater utilities from their data usage. By maximizing the

2Note that the model also takes network coverage into consideration. The
users of the ISPs with poor coverage have a higher probability to experience
outage, i.e., zero throughputs. Their average throughputs are thus smaller.

3Since users’ natural usage is their maximum consumption without being
charged, we assume that they consume no more than z; when actually charged.

utility function in (1), user ¢’s maximum utility and optimal
demand from ISP m are:

m L
7nap)1 if z; < (%) “,
cT,d,n,p), otherwise.

2)

To derive (2), we assume c¢;* > pd®, i.e., the throughput is

high enough so that users still receive positive marginal utility

at their data cap d, unless their natural usage z; < d. We can

see from (2) that user usage are non-deceasing in the average
throughput, i.e., users consume more data with better QoS.

We suppose that the natural usage z of each user on each

ISP m is i.i.d. on the heavy-tailed Pareto distribution whose

probability density function is f,,,(z) = zxi’il with param-

eter A\,, > 1 and a minimum usage &,,; Pareto distributions
are commonly used in human dynamics [26]. A smaller \,,
means that this ISP has a higher percentage of heavy users. To
ensure that all users receive positive utilities from using data
(otherwise they would not subscribe to the ISP), we assume
O = (“Cﬁ)”)l =, where 6,, < (n/p) due to ¢ > pd®.

2) User Demands with the vISP: We use 6, € [0,1] to

denote the fraction of ISP m’s users who defect to the VISP,

, the defectzon rate. Thus, the total number of VISP users
is N Zm 10memN. 4 The VISP then connects each of
these NV users to one of its partner ISPs’ networks. We assume
that partner ISPs are not allowed to prioritize or reserve any
capacity for their own users over the vISP’s. There are K < M
partner ISPs, k = {1,2,..., K}, and M — K non-partner ISPs,
m={K+1,...,M}.

We also suppose that there are nj out of N users who
are assigned to partner ISP k’s network by the vISP. If
the VISP always selects the best cellular network among all
partner ISPs’ networks for its users, eventually, the through-
puts of each of the K partner ISPs would be averaged
out to equal each other, ie., Cy/((1 —0r)orN +7y) =
C;/ (1 —85)¢p;N+n;), Vk,j = 1,2,...,K. More for-
mally, we have the following:

Lemma 1: Suppose that the VISP has sufficiently many

users, i.e., N > Zszl (—, (1= 0p)opr) — (1 — Gk)gak) N,

where k' = argmaxy—;1 . x {w . If the VISP al-
ways selects the partner ISP network with the best throughput
for its users, VISP users’ average throughput is given by
K
é= 2= Cl : 3)
M
(1= SZhsers (1= Om)om ) N

From (3), we can see that ¢ is calculated by using the total
network capacity of all partner ISPs divided by the total
amount of VISP and partner users. With a sufficient number
of users, since the VISP users share resources at the partner
ISPs, VISP users would tend to be assigned to partner ISPs

- Uzm(zl | C;n?d
UMz | e dom, p)= |
[

4In practice, N could be time-varying, e.g., when users enter or leave the
system. We assume that the value of N changes on a timescale longer than
the one for the user defection dynamics reaches an equilibrium. Although
our model does not explicitly consider the new smartphone users or the user
defection between partner and non-partner ISPs, such new users must still
consider in deciding whether to defect to the vISP. We suppose N is large
enough that 6 can be approximated as continuous on [0, 1].



who would otherwise have higher throughputs, lowering the
effective throughput at those partner ISPs and eventually
equalizing their achieved throughputs. Thus, ¢ is also the
throughput of partner ISPs’ users. We term ¢ users’ shared
throughput, and assume c;* > pd®.

Proposition 1: Although the shared throughput is lower
than the maximum throughput of partner ISPs before the vISP

.....

larger than some of them ¢ > ¢}".

To understand Proposition 1, let us consider a spe-
cial case, where all ISPs are partner ISPs and then
¢ = Zle Cr/N. Based on the mediant inequality,
we have ming—; g {Ci/(pxN)} < b, Ci/N <
maxg=1,.. x {Ck/(prN)}: Intuitively, some partner ISPs, due
to their larger network capacities, would receive more users
from the VISP, reducing their average throughput; Conversely,
for the users defecting from the partner ISPs whose through-
put was below the average of all partner ISPs, they could
experience a better throughput with the vISP. We further
observe from (3) that ¢ is not affected by the number of users
defecting from partner ISPs. However, if we consider the users
defecting from the non-partner ISPs, too many users joining
the vISP from the non-partner ISPs and sharing the partner
ISPs’ network would reduce the average throughput for each

of them and even harm the shared throughput:

Corollary 1: Users’ minimum throughput among partner
ISPs before the vISP exceeds the shared throughput, i.e.,
¢ < kf{linK{C"'/(@’fN)}’ if the number of users de-

fecting from non-partner ISPs satisfies Zf\r{: ki1 OmPm >

K
(s (/@MY pin O/ (@O} =1) 3

From Lemma 1, we <can also find the number
of VISP users in partner ISP j’s network: 7,; =

s (DH fh+ T O ) = (L= 6))05 ) N.
The vISP pays partner ISP j for these 7; users’ traffic.

User ¢’s utility from the VISP data plan then consists of the
user’s usage utility for consuming Z; amount of data, and a
usage-based payment of p per GB for their usage:

. sl
Ui(zi|¢,p) = 511 o

- 2ip7 (4)

where Z; < z;, user ¢’s natural usage. We note that in (4),
the scale factor for usage utility is replaced with the shared
throughput ¢. We thus find user 7’s maximum utility and
optimal data demand £} if user 7 defects to the vISP:

. L
~ Ul(zz‘éap)7 lfzi S (%)aa
= A AL
Gi((2)"
where ¢/p > ¢é/p > d* due to the assumption p < p and
¢ > pd®. Comparing (5) with users’ utility without the VISP,
(2), we observe that partner or non-partner users consume at
1 .
most (c"/p)= amount of data, while vISP users consume at

1
a

most (¢/p)=. Thus, users can realize higher demands for data

(&)
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Fig. 1. A comparison of network performance (i.e., average rates) of (a) the
vISP and (b) a non-partner ISP [27].

at the VISP if ¢/p > ¢ /p. We next compare users’ utilities
with and without the vISP to determine users’ defection rates.

B. User Defection Rates

We can now move on to characterize the users who defect
to the vISP. We make the following two assumptions:

o Partner ISPs originally have lower average throughput

than non-partner ISPs: (pi’}v < w(ij"N, vk =1,....K
and Ym = K +1,..., M, resulting in ¢ < <= In
Figure 1, we use crowd-sourced data to estimate cellular
signal strength from a 10 km x 10 km area in downtown
San Francisco [27]. We observe from Figure 1 that AT&T,
which is not a Google Fi partner, has average through-
put 34.32 Mbps, exceeding the maximum throughput of
partner ISPs T-Mobile and Sprint, which is 34.07 Mbps.

o The vISP’s unit price is higher than the unit price offered

by the data plan with a monthly quota: n/d < p < p.
For example, Google Fi offers p = $10/GB, while T-
Mobile, Sprint, AT&T, and Verizon offer n/d ~$7/GB,
and Verizon’s overage fee p = $15/GB.

We suppose that users defect from their current ISPs to
the VISP if they can obtain a better utility with the vISP.
Figure 2 depicts users’ utilities when subscribing to the VISP,
partner and non-partner ISPs. Since the VISP employs usage-
based pricing, the VISP users’ utilities are nonnegative and
increase from z; = 0 but are eventually exceeded by both
the utilities for non-partner and partner ISPs’ users. Since
the vISP users and partner users, sharing the same network
infrastructure, have the same average throughput, their relative
utilities depend heavily on the vISP’s price p.

Compounding the difficulty of our analysis is the fact that
users’s defection decisions are not made independently. As
more users defect to the vISP, for instance, the vISP’s shared
throughput will decrease, potentially driving some users to
switch back to their original ISPs. We thus derive users’
defection decisions in terms of the aggregate defection rates
0., and then analyze the resulting time dynamics.

1) Defections from Partner ISPs: As discussed above, the
partner ISPs’ users have the same shared throughput as the
VISP users. Thus, users who do not defect obtain utility
Uk (zr|é,d,m, p). Users defect if they can gain more utility
from the VISP, i.e., UF(zr|¢,d,n, p) < U;(27|é,p). Partner
users’ decisions then depend entirely on the VISP price p.

Proposition 2: Users of partner ISP & defect to the VISP iff

1L
2 < ifp<p—(dp—n)(5) *
zi < otherwise.

orzizdff%;

(6)
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In Proposition 2 and the rest of the paper, we suppose that
N is sufficiently large that the (expected) number of users for
which (6) holds can be approximated by N0 (p). If the VISIP
charges a relatively high price, i.e., p > p — (dp — 1) (%)_E,
only users with natural usage less than 7/p will defect (cf.
Figure 2(b)); otherwise, users with natural usage more than
4= ill also defect (cf. Figure 2(a)). Users with a lower
natural usage that is well below the partner ISP’s data cap can
always save money with the VISP compared to the partner ISP,
since they can avoid the flat-rate fee for the partner ISP’s cap.
Those with higher natural usage z; will need to pay the partner
ISP more than the VISP, as long as d < z; < ” p . However,

if d"fg < (%)é, or equivalently p < p — (dp — 77)(;) é,
the VISP users pay less than the partner ISP’s users for usage
above %, inducing heavier users to defect to the vISP.

2) Defections from Non-partner ISPs: We also consider
a non-partner ISP m and suppose that a fraction 6,, of the
original ¢, N non-partner users defect to the VISP, increasing
its average throughput to ¢ = = HC’)” ~ - Substituting ¢
into (2), we find that user i’s ut111ty from ISP m and the vISP
respectively are U™ (2} | W,d,n,p) and U; (27| &, p).
As with non-partner ISPs, we would expect light users to
defect in order to avoid the non-partner ISP’s flat data cap fee.

Moreover, since non-partner ISPs provide better throughputs

Cm rn
than the vISP ((kam)me > Y > ¢, heavy users who

are sensitive to throughput changes are less likely to defect:

Lemma 2: No non-partner user with z; > d defects.

The VISP is unable to provide higher throughput to attract non-
partner users, so it can only attract light users with z; < d,
who may pay a higher unit price for their usage with the non-
partner ISP than the unit price offered by the vISP.

By comparing users’ utilities from the vISP and non-partner
ISP m, and recalling that users’ natural usage follows a Pareto
distribution, we identify the users who would defect and derive
the defection rate for non-partner ISP m.

Proposition 3: If the VISP provides sufficient throughputs

satisfying ¢ > 5*7" f > users defect from non-partner ISP

m to the vISP if and only if

1— N —1.1 =,
zig(( a)NPm )1 ( o (p ¢ )+1) _
Cm L—a\(1-a)y

®)

The defection rate for non-partner ISP m is then

brn(p) =1 - ( a _f()f a)n>1 T 9

Intuitively, as p decreases and the VISP charges users less,
more users will defect to the vISP. Mathematically, we see
that both 6,,(p) in (9) and 0y (p) in (7) decrease with p.

3) Defection Rate Equilibria: We now show that users’
defection decisions converge to a long term equilibrium. The
defection conditions derived in Propositions 2 and 3 assume
that users make their decisions based on the fixed defection
rates 6,,, but these user decisions can themselves change the
defection rate. We address these dynamics in this section.

From Lemma 1, we note that the shared throughput ¢ in (3)
depends only on the defection rates 6y41,...,05; from non-
partner ISPs; it does not depend on the partner ISPs’ defection
rates. Thus, from (7) and (8), the defection rates 6,, from
each partner ISP are completely determined by fixed system
parameters and ¢, while the defection rates from each non-
partner ISP do not depend on the rates for partner ISPs. We
therefore focus on the non-partner ISPs’ defection rates. For
case of notation, we write the shared throughput as &(6(t))
with () = [0r11(t),...,0n(t)]T representing a vector of
the non-partner ISPs’ defection rates at a given time .

Given defection rates 6, (¢) and the shared throughput ¢( ),
we define h,, (6) to be the time derivative of 6:

A0t _ |y n(l = a) e
" pl=E(0)5 + (1—a)y (10’)

for each non-partner ISP m. The quantity h,, represents the
fraction of users who wish to defect, as derived from (8), as
a function of the fraction who have already defected, 6,,(t).
Our goal is now to show that the dynamics (10) converge to
a long-term equilibrium. Note that if 6,,(0) € [0, 1] for all m,
then each 6,,, € [0, 1] at any time #: the unit cube [0, 1]M ¥ is
a positively invariant set for these dynamics. This sanity check
ensures that 6, can always be interpreted as a defection rate.

We observe that these equations form a nonlinear dynamical
system with state variables given by g. Proposition 3 gives a
set of fixed-point equations that any equilibrium point of (10)

1—L1 .1
ap aCa




must satisfy, namely, (9). We show that there is a unique point
satisfying (9), and that (10) always converges to it:

Proposition 4: There exists a unique limit point g <
[0, 1]M =K of (10). Moreover, (10) converges to §*.

We can thus take (9) as determining the unique equilibrium
defection rates for non-partner ISPs’ users. These rates can
then be substituted into (7) to determine the partner ISPs’
equilibrium defection rates.

III. IMPACT ON PARTNER AND NON-PARTNER ISPS

Given users’ defection rates for partner and non-partner
ISPs, we now turn to analyzing the vISP’s impact on both
types of ISPs. In particular, we examine the implications for
their revenue, using our results to understand which ISPs are
more likely to partner with the vISP.

A. Partner ISP Revenue

Suppose the partner ISP k charges the vISP a usage-
based price 7. After losing 0y N users to the vISP, ISP
k experiences the following expected change in revenue:

ARk(0k7p) =

(R () () ™ )

—&m) @R,
(1)
where y is given by
PNtV v —L1

(Z]Z:Z + 1) (dpp:;)_)\kﬂ, otherwise.

These equations are derived in the proof of Proposition 5. We
can see that the revenue change of the partner ISPs decreases
with higher defection rate 6, but the case eases when shared
throughput ¢ increases and the vISP charges its users a higher
usage-based price p. This point will be further discussed in
Section V when we consider ¢ becoming larger due to WiFi
supplementing the network.

By partnering with the vISP, the partner ISP not only loses
some of its own users, but may also decrease its average
throughput (cf. Corollary 1) and thus user demands, leading
to a decrease in revenue:

Proposition 5: If the shared throughput is less than the
average throughput originally offered by partner ISP k, i.e.,
¢ < </>C;;I§V’ then ARy (0k,p) < 0, i.e., the partner ISP’s revenue
decreases after sharing its network infrastructure with the vISP.

As discussed in Corollary 1, Proposition 5 is likely to occur if
too many users from non-partner ISPs are attracted to the vISP.
To compensate its revenue loss, a partner ISP should charge
the VISP a sufficiently high price for accessing its network
to ensure that it does not lose any revenue. The partner ISP
thus charges the vISP the minimum amount for which it is
incentivized to partner with the vISP. We suppose that the vISP
will refuse to pay more than this amount, knowing that the ISP

will still partner with it for a lower payment. In what follows,
we derive this price, which we denote as my, by dividing the
partner ISP’s loss in revenue by its VISP traffic.

By Lemma 1, 2 of the vISP’s expected traffic goes through
partner ISP k’s network, and the total VISP traffic is:

K M
D(p) = (; Pk /zk sfu(z)dz+ Y @m/z zfm(2)dz

m=K+1
K oo
“10) Y e / .
k=1 )

. <z (;)) fk(z)dz> N,
(13)

where 1(p) is an indicator function that equals 1 if d/f%: <

(%)é, and 0 otherwise. We use Zj, to denote the users who
defect from ISP k, integrating over their Pareto natural usage
distributions. To understand (13), we recall from (5) that a
vISP user ¢ does not change his or her data consumption if
2z < (f})i but otherwise reduces his or her usage to (%)é

Thus, when dp"%; < (%)%, the partner users for whom z; >
dpp__p" would defect (Proposition 2), but those with z; > (ﬁ)é
would only add (£)= amount of traffic each to VISP. The

partner ISP k thus sells data to the vISP at a price:
T = —ARk(Gk,p)
Tk :
“%£D(p)
Partner ISPs neither lose nor gain revenue from partnering

with the vISP. Non-partner ISPs, however, may lose revenue,
driving some ISPs to partner with the vISP.

(14)

B. Non-partner ISP Revenue

Although non-partner ISPs lose some users to the VISP,
they may experience greater traffic in their networks as their
remaining users increase their demands due to higher through-
puts. Non-partner ISP m’s change in revenue is then:

ARy (Om,p) =
1—Am—«

((77(1,\; i))lj (plfmeN) e (1 —(1- em)*";”)

_97r1,77) @mN7

15)
where \,, is the parameter of the Pareto distribution for
its users’ natural usage. We derive (15) in the proof of
Proposition 6:

Proposition 6: If the parameter )\, of users’ natural usage
distribution for non-partner ISP m satisfies

(1 — )(log(dp) — log(an))
log(dp) — log (1 — a)n) } - (19

then ISP m’s revenue increases after the VISP enters the
market.

A <min{1+a,

Proposition 6 implies a lower bound on the minimum natural
usage for ISP m’s users:

Corollary 2: If (16) holds for ISP m, the minimum usage
of its users’ natural usage distribution satisfies d,, > (an/p).
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Fig. 3. Market dynamics and payments between users and ISPs. The top
rectangles represent the number of users on the VISP and each ISP, while the
bottom rectangles represent each ISP’s revenue. An arrow from A to B means
that party A pays party B for their data traffic. The shaded areas in the bottom
rectangles represent the change in revenue when the VISP joins the market.

Since a smaller parameter \,,, and a larger minimum usage &,
for a Pareto distribution indicate a CDF with more moderate
increase at the beginning and longer tail at the end, Proposi-
tion 6 and Corollary 2 indicate that ISPs with heavier users are
more likely to increase their revenue by not partnering with the
vISP. Since lighter users are more likely to defect to the vISP
(Proposition 3), these ISPs will experience fewer defections
and a lower revenue loss, which can be compensated with an
increase in demand from heavier users.

These results cast doubt on the long-term viability of the
VvISP: the increase in data usage predicted in [3], [23] can
be modeled as an increase in users’ natural usage, as it is
driven by an increase in ways to use mobile data, not by the
price or throughput of data consumption. Thus, over time we
would expect A, to decrease and J,,, to increase, resulting in
more ISPs with heavier users who can gain more revenue by
declining to partner with the VISP. In the long run, ISPs may
adjust their data plan fees and caps (p, d, and 7) to better align
with new distributions of user demand. However, given that
there has been little significant change in the cost of mobile
data over the past several years, we leave a full investigation
of their incentives for doing so, and thus subscribing to the
vISP, for future work. In the next section, we examine the
vISP’s profit and show that it can remain viable even as fewer
ISPs are willing to partner with it.

IV. OPTIMAL VISP STRATEGY AND ITS VIABILITY

Building on our analysis of user behavior and ISPs’ will-
ingness to partner with the vISP in Sections II and III, we
can now derive the vISP’s optimal strategy, i.e., the price it
charges its users, which we denote as p. Figure 3 summarizes
our findings, with the top row of rectangles representing
users’ defections, and the bottom row representing VISP profit
and ISP revenue before and after the VISP joins the market.
Intuitively, the VISP can maximize its profit by offering a lower
price, thus attracting more users. Yet, as more users defect
from partner ISPs, the VISP needs to pay the partner ISPs
more to compensate their loss in revenue. Thus, the VISP’s
goal is to simultaneously attract more users from non-partner
ISPs’ and pay as little to partner ISPs as possible.

The vISP’s objective in choosing its price is to maximize its
profit, which consists of its income from VISP users, pD(p),

SWe assume that Proposition 6 holds for all non-partner ISPs; otherwise,
they would be partner ISPs.

less its payment to partner ISPs. The VISP pays each partner
ISP k at the rate 7, found in (14), for a total payment
of Ypoy 2 D(p) = — 4, ARk (6x,p). The VISP thus
derives its price by solving the optimization problem:

K
maximize pD(p) + Z ARk (0, p)

P — (17)
subject to g <p<p.

We call the vISP’s business model viable if it makes a
positive profit, i.e., the optimal value of (17) is larger than
zero. We find realistic conditions for the vISP’s viability:

Proposition 7: The price p is a feasible solution to (17) for
which the objective is positive, if the parameters A\ of users’
natural demand distributions for each partner ISP k satisty

Ak —ﬁ
1)

and the total percentage of users for all partner ISPs satisfies
2
T-ar

K
D oS g e
k=1 1-2a ppfpnp—’_ (1ga)2dp

19)

This finding dovetails with our result for non-partner ISPs in
Proposition 6: Non-partner ISPs tend to have heavier users,
while the VISP is more likely to be viable if its partner ISPs’
users have lighter usage distributions with a larger parameter
Ak. The more likely the user profiles of the partner and non-
partner ISPs are to follow these patterns, the larger the vISP’s
space of prices achieving positive profit is. Moreover, the vISP
can actually jeopardize its profit by partnering with too many
ISPs, or with ISPs that have too many users. Thus, the vISP
can serve as a way for smaller ISPs with fewer users to work
together in order to attract more users, as T-Mobile, Sprint, and
US Cellular have done with Google Fi. The limit to the vISP’s
market share further prevents it from cannibalizing the market,
strengthening its viability from a regulatory perspective and
limiting larger ISPs’ incentive to drive the VISP from the
market.

Though Proposition 7 establishes the vISP’s short-term
viability with a positive profit, the condition (18) may not
hold in the long term as usage levels increase. As discussed
in Section III, users’ natural usage is expected to increase over
time, meaning that the \; parameters may decrease as more
users join the “heavy tail” of the natural usage distribution.
Thus, the vISP may eventually be forced out of business;
however, it can still benefit the mobile data market in the
short-term by allowing partner ISPs to attract more users and
allowing some users to increase their utilities.

Although (17) is a nonlinear programming problem, it can
be numerically solved by a line search over all possible values
of p. As data prices are usually rounded to integral values
in practice for ease of users’ understanding, searching over
the integers in [%, p| would generally suffice. In Section VI,
we provide numerical examples of a positive VISP profit
and optimal price. Next, we further discuss the model by
considering open WiFi capacity.
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Fig. 4. Defection rate and revenue changes for partner and non-partner ISPs (K = 1 and M = 2) in terms of VISP price. The partner and non-partner
ISPs have the market share @1 = 0.16 and @2 = 0.30 with A; = 1.3 and A2 = 1.1, and their total network capacities are C'; = 2.56 X 106 Mbps and
C2 = 6.9 x 10% Mbps respectively. The defection rate and non-partner ISP revenue decrease with the VISP price, while the partner ISP revenue increases.

V. EFFECTS OF SUPPLEMENTARY WIFI

Although we have assumed that partner ISPs have lower
average throughput than non-partner ISPs (Section II-B), the
VISP could provide better service by supplementing its current
network with existing WiFi hotspots.® As discussed in Sec-
tion II, the VISP’s users and partner ISPs’ users have the same
throughput since they share the same network infrastructure.
With WiFi, we then rewrite (3) as follows:

Lemma 3: If the VISP always selects the network with the
best throughput among the available WiFi network and the
partner ISP networks, VISP users’ average throughput is

. Yies Cr + E(Cy)
(1 - Z%:K-H(l - 9m)80m> N

where E(Cy,) is the expectation of WiFi capacity over time,
since the WiFi network is often available only in limited areas.

The denominator of (20) represents the number of current
users with the vISP and partner ISPs after some users defect to
the VvISP. If WiFi is available, Lemma 2 no longer holds: there
is a chance such that Im/, é, > W if E(Cy) >
min,,=g+1,...m{Cm}. The VISP’s users may then experience
a throughput that exceeds that offered by the non-partner ISPs.
More users will then defect to the vISP.

As a result, we now analyze how WiFi availability affects
user defection decisions as well as the partnership between the
VISP and partner ISPs. Note that users may achieve greater
utilities by defecting if the vISP’s throughput improves; this
clearly leads to higher defection rates for the users of all ISPs.

Corollary 3: The defection rates of both the partner and non-
partner ISPs increase when the supplementary WiFi networks
lead to a higher average throughput ¢,, > ¢ for the vISP.

Corollary 3 implies that it is possible for partner ISPs
to lose revenue to defections when the supplementary WiFi
network exists. With higher average throughput, however, the
remaining partner ISP users may consume more data due to an
increase in demand, offsetting at least a portion of the revenue
lost and possibly increasing revenue. Moreover, as more traffic
offloaded to the WiFi network, less data goes through the
partner ISPs’ network, meaning that the price derived in (14)
that the vISP needs to pay to each partner ISP could be higher.

; (20)

%Google’s Project Fi automatically connects its users to any available
open WiFi networks, but does not charges WiFi usage. We assume that the
deployment of these open WiFi hotspots takes an upfront cost which leads to
a fixed term in the objective of (17).

Recall that the partner ISPs’ revenue remain the same after
receiving the payment from the vISP. Hence, the WiFi network
does not affect the total partner ISP revenue. On the other
hand, the supplementary WiFi network available on the vISP
drives users to defect from the partner ISP network, which
increases the number of users in the vISP.

VI. NUMERICAL EVALUATION

We now evaluate the market dynamics caused by a vISP on
a total of one million users, whose natural usage is randomly
generated according to the Pareto distribution parameters of
their associated ISPs. We set a = 0.25, p = $15/GB, d =
10GB, and n = $15 for all experiments in the section.

Figure 4 shows users’ equilibrium defection rates and ISP
revenues in a simple example of one partner ISP and one non-
partner ISP. In Figure 4(a), defection rates for both partner and
non-partner ISPs decrease with the VISP price: the defection
rate for the partner ISP decreases sharply with the vISP
price, while the non-partner ISP’s defection rate decreases
more moderately. We also observe that when the VISP price
approaches the overage fee p = $15/GB, almost no partner ISP
users defect to the VISP data plan: users can no longer save
money by defecting, and they experience the same throughput
on the VISP and partner ISP. As expected, the partner ISP
loses revenue without counting the payment received from the
vISP, while the non-partner ISP’s revenue in fact increases
(Figures 4(b) and 4(c)). Surprisingly, as more light users
defect, the non-partner ISP gains more revenue.

In Figure 5(a), we show the increase of defection rates as
the expected WiFi capacity increases from 1 to 6 times that
of the maximum capacity among all partner and non-partner
ISPs. The price charged by the VISP is set to p = $12. We see
that the defection rate for the non-partner ISP increases almost
linearly, while the defection rate for the partner ISP only
experiences a jump (due to the piece-wise expression in (7))
after all non-partner users have defected. Figure 5(b) illustrates
the corresponding changes in VISP profit. We have highlighted
three key turning points in the profit: 1) The marginal increase
of the profit diminishes after the non-partner defection rate
reaches 1, since the profit only increases due to the increase in
user demand driven by higher WiFi capacity; 2) After that, the
marginal change in profit again increases due to the decrease
in the partner ISP’s revenue loss in (11); 3) Finally, the profit
drops, as the sudden increase in the partner ISP’s defection
rate leads to a higher revenue loss for them that is passed
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on to the VISP. After the defection rates of both the non-
partner and partner ISPs become stable, the profit increase for
the VISP largely slows down, again because it is due only
to the higher user demand caused by more WiFi capacity.
This example illustrates that the additional WiFi capacity has a
greater impact on non-partner ISPs, and the partner ISPs may
be affected only after the amount of WiFi capacity reaches
a certain threshold. The profit of the vISP may not increase
with more WiFi capacity. For the ease of illustration, we only
show the case without WiFi in the following.

To be consistent with Section III, the partner ISP users’ nat-
ural usage distribution has a larger parameter A than the non-
partner ISP’s users. We further elaborate on the relationship
between ISPs’ partnership decisions and their users’ natural
usage distributions in Figure 6. In Figure 6(a), we fix A = 1.3
for partner users and randomly generate natural usage for non-
partner users based on the A values on the x-axis, while in
Figure 6(b), we fix A = 1.05 for non-partner users and vary
the A parameter for the partner users. In Figure 6(a), the non-
partner ISP’s original revenue decreases as A increases (i.e.,
there are more light users) as shown by the dotted black
curve, and its revenue after more light users defect to the
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vISP decreases even faster as shown by the blue solid curve.
As expected from Proposition 6, the non-partner ISP gains
revenue by not partnering with the VISP when A is small,
while ISPs with greater A values partner with the VISP to
avoid revenue loss. The vISP earns more profit with a greater
A for partner users, verifying Proposition 7; if partner ISPs” A
is too small, the VISP has negative profit.

We finally examine the market dynamics, considering two
different prices charged by the VISP to their users: p = $8
(i.e., p = n/d) and p = $14 (i.e., p — p). We consider two
partner ISPs (ISP 1 and ISP 2) and two non-partner ISPs (ISP 3
and ISP 4) with market shares ¢; = 0.12, py = 0.14, 3 =
0.34, and ¢4 = 0.40 and network capacities C; = 3.36 x 108
Mbps, Co = 2.80 x 106 Mbps, C5 = 1.36 x 107 Mbps, and
Cy = 1.6 x 107 Mbps respectively. Since we abstract away
from user mobility across cells, these capacities are the fotal
network capacity, across all cells. Assuming non-partner ISPs
have more heavy users than partner ISPs, we use A\; = 1.5,
)\2 = 1.6, and )\3 = )\4 = 1.06.

We simulate the dynamics of users switching between their
original ISP and the vISP over 18 months. Users decide to
defect or not at the beginning of each month by estimating
their utilities on each ISP. However, they cannot anticipate
other users’ decisions, so their actual throughputs after defect-
ing may differ from their estimates, possibly leading them to
switch back after a month. We suppose that users who would
gain utility by switching actually switch ISPs with probability
o = 0.3, e.g., if some users may not want to be bothered by
signing up for a different data plan. We calculate the resulting
total user utilities, VISP revenues, partner and non-partner ISP
revenue changes, and market share between ISPs over time in
Figures 7, 8, and 9 respectively.

As shown in Figure 7(a), the VISP has a negative profit
in the first two months since it needs to pay partner ISPs
sufficiently to make up for partner ISPs’ high revenue loss (cf.
Figure 9(b)). Starting from the third month, as some partner
users switch back and more non-partner users defect to the
VISP (cf. Figure 9(c)), VISP profit gradually increases. In both
Figures 7(a) and 7(b), the VISP profit converges to a positive
value over time when it charges users at either $8/GB or
$14/GB. Comparing the converged profit values in Figure 7(a)
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and 7(b), the VISP is viable at both prices but earns more with
p = $14/GB. Figure 8(a) also shows the dynamics of the total
utility for all users in the market. As the original total utility
without the VISP is 8 x 107, users benefit from higher utilities
with more data plan options.

We compare the difference of revenues for non-partner
and partner ISPs in Figures 9(a) and 9(b) respectively. Non-
partner ISPs’ revenues increase as derived in Proposition 6,
and their revenues are stable over time. Conversely, partner
ISPs lose revenue unless they charge the vISP. As the vISP
still earns a positive profit after paying partner ISPs, the vISP
could motivate more ISPs to partner with it by paying them
more. Finally, Figure 9(c) plots the market shares of all ISPs.
Although non-partner ISPs initially dominate (as shown by the
bar at 0), the vISP helps even out this imbalance.

VII. CONCLUSION AND DISCUSSION

We examine the economic viability of a third-party virtual
ISP and its effects on the mobile data market. By investigating
users’ incentives to defect to the VISP and ISPs’ incentives to
partner with the vISP, we find that the vISP can make a positive
profit if its partner ISPs’ market share falls below an upper
bound. Lighter users are more inclined to choose the vISP data
plan, as they can save money by doing so, but heavy users may
also defect if the vISP’s prices are low enough. ISPs with
more light users are correspondingly more likely to partner
with the VISP, as they can lose revenue otherwise, while non-
partner ISPs can benefit from their light users’ defections. Over
time, however, as users’ natural usage increases and there are
fewer lighter users, fewer ISPs will want to partner with the
vISP and fewer users will defect to the VISP, jeopardizing the
vISP’s profit. Thus, the VISP represents an economically viable
interim solution for ISPs to increase user utilities until they
can upgrade their network infrastructure to handle growing
user demands. If demands continue to outstrip infrastructure
growth, the VISP may remain viable in the mobile data market.

Our work does not consider some elements of vISP data
plans that may make them more attractive to users, e.g., higher
spectrum efficiency due to users’ being able to choose the
network with highest throughput. Our model may be extended
by considering user mobility and the access to a greater set
of base stations for the VISP users. This could boost their
signal strength and effective throughput, making the vISP even
more effective. Partner ISPs may prioritize their own users
over the VISP’s users or reserve some capacity, leading to the
decision of the optimal share of the network resources to be
allocated to the vISP. Although billing simplicity from the
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usage-based pricing can incentivize user defection for now,
the ever-increasing user demand may make the VISP lose
its business, hence forcing it to change its pricing structure.
Further strategic planning for the vISP could also include
the decision not to partner with certain ISPs. Although these
ISPs can be regarded as non-partner ISPs, it would introduce
complication to the revenue maximization for the vISP when
evaluating the gain. We also do not consider the long-term
investment incentives for ISPs when the VISP is present. Future
works may evaluate vISPs’ viability with these factors.
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APPENDIX
A. Proof of Lemma 1

Proof: The proof starts from the fact that by sharing
capacity with VISP users, the network performance of any two
partner ISPs k, k' = 1,2,..., K are the same:

Cy B Chr
(1—6k)prN +nr (11— Qk')lipka + A

—~
S
Z

= ((1_0k/)¢k/N+ﬁk’)ch
K =1 K
=Cl > (1= 0N + Crr > i
k:}l{ k=1
Q ¢= k=1 O
21 (1 —Kek)%N +N
(:C>) a— > 5=1Ck

(1 - Z%:K+1(1 - em)ﬁpm) N

where (a) is by summing both sides of the equation for all K’
partner ISPs (b) is due to Z o1 T = N and (c) is due to

B. Proof of Proposition 1

Proof: Supposing ISP &’ provides the highest QoS among
all partner ISPs before sharmg network infrastructure with

Cy
the VISP, ie., b5 = K{LﬂkN}’ we have cT,‘Pk' <
vk, Vk=1,...,K, le adlng to
K
Sy at Y e
=1 m= K+1
ooy
Z < Pk < Z@k + Z em(pm
k=1 m=K+1
Zk 1Ck Cw

= — <
(Zk:l Y+ Zm:K—i—l ‘9m<ﬂm) N PK

The result can also be proved by the mediant inequality. M

C. Proof of Corollary 1

Proof: Similar to the proof of Proposition 1, we suppose
that before sharing network infrastructure with the VISP,

. . . Cu/
partner ISP k' provides the highest QoS, i.e., o s =

ISP k" he 1
k:Hll,a.).{,K{go }. and partner ISP k" provides the least QoS,
. Cprnr . Ci ,
Le., by = k:r{rrrr’K o C PR =

M
op > Cr, Yk =1,..., K with Z Oy o >
m=K+1

K
~1) to find that
(k 1 K{gakN}/k 1,. K{(pkN ;wk o Hnd fha

R . Ck -
T sty ds -

D. Proof of Proposition 2

Proof: Since the optimal utilities for both non-partner
users and VISP users are piece-wise, we prove the result case
by case.

Case 1: z; <d.

When z; < d, we find UF (27 |é,d,n,p) < Ui (35| ¢é,p) if
2z < g. Thus, users with z; < Z will defect in any case.

Case 2: d < z; < (¢/p)t/°.

When d < Zi < (é/p)l/a’ Uzk (2: | éa da , p)

Ui(35|é,p) = (dp —n) — (p — p)z; is decreasing.
Case 3: zZ > (&/p)t/e.
When z; > (¢/p)V/e, UF(zF|¢é,d,n,p) = apl_%éé -

n + dp, but U;(3} | & p) keeps increasing until U (2f e,
pl ok ek, Since UF(GEE|6,d,m,p) — Us(3E ] 6,) = (
1) — (p — p)z; equals zero at z; = dpp*” if d2=1 < (¢/p

[¢,p)
= p—
1/«

p
11—« d
P - ) i
we discuss the relationship between U, k(zx|¢,d,n,p) and
Ui(27 | ¢,p) in three different cases below for z; > d.
i L
1 dp—n < ( 14 ) @
p—p P

In this case, UF (27 | &, d,n, p) — Ui (27 | &,p) < 0 also holds

for z; > %, so the defection rate is calculated by 6 =
1-— f%dpp%: f¥(2)dz where 6, = ((10‘2%’“]\[) . We then
obtzain ;hei ﬁistdi)ilzrezsi(oén) gl ).
D)“£p20 (_é)%_p; e (£)%, UFGEedin,p) —
P = p—p — \p i\ 1

1
holds for z; < (%) “  and
—aiw — 1 + dp would intersect
,dp%”}. To enable
p—p
® using its Taylor

UF(zf e dn,p) = 250" 1
with U; (27 | ¢ p) at some point in [(%)5

0 always

the analytical result, we approximate zil_

L
series approximation at z; = (%) “ up to the first order terms.

L\ 1l=a i\ — i L
By substituting 7 = (8) T +(1-a)(f) 1(zi (£))+
O(z7) into Us (7 | ) UFGEledn,p) < Ui(3|é,p).
leads to z; > 9= 1 Approximately, the second case yields
the same result as the first case.

9 2= ()"

Due to the convexity of the function g(z) = z'~ &, we
have p! -2+ (1- %)p*% (p—p). Combining this with

= >p



p—p 1 = lfla
ie., UF(Ele,d.n,p) 2 Ui(2] |&,p) for 2 > (5)°
1 1
Furthermore, d":" > (9) > (£)° implies that
P P p

UKz ¢,d,n, p) —
() For z; > (%) , as U (A* | ¢,p) still increases while
U’“( zr | é,d,n, p) remains the same value, UF(ZF | ¢,d,n, p) >
Ui(37 | ¢,p) at z; = (1%)Z ensures that UF(Zf | ¢,d,n,p) is
also larger than U; (27| ¢, p) in (%)% <z < (%)%A

Thus, in the third case, UF(ZF|¢é,d,n,p) > U;(25|¢é,p)
holds for z; > d, and only users with z; < ﬂ will defect, i.e.,

0, = f 5 f¥(2)dz. We obtain the second expression in (7).
Summarlzmg the above discussion, we find (7). [ |

> 0 always holds for z; <

E. Proof of Lemma 2

Proof: Lemma 2 is equivalent to the statement that
if user 7 defects, then this user must have a natural us-
age that is less than monthly cap, ie., z; < d for de-
fected non-partner users. As given in (5), the highest pos-

sible utility for a VISP user is 1fap1 “eéw if this user

has Z; 2 (%)é Since U (Z |W,dnp) 2

7 K2

d\madnp) for 2 > d, we show

that ﬁpl_am is even smaller than the smallest utility
5 Cm A
Ur(zr =d| a— gm)mevdﬂ? p) = A Om)emN 1—a 1 that

a user with a natural usage larger than d can obtain from non-
partner ISP m. Before doing so, we consider the function:

g(d) = =d"* + (L —a)(¢/p)'d + a(é/pﬁ*l
that is non-increasing in terms of d due to ¢ > d, Thus, we
find g(d) < g(( )7) = 0. We now derive that
a(@/p)a "t + (1 —a)(é/p)rd < di™
@ ap'TwEw + (1—a)y <eéd—™
(b) o 11 .1 Cm di—«
= o fa _—m_ _
1-af "¢ omN1—« g
g o l_iéi < Cm di—e B
1-ao? S0 —0m)pmN1—a T
where (a) is due to n/d < p, (b) is due to :nN > ¢, and (c)
is due to 0,, € [0, 1]. |

FE. Proof of Proposition 3
Proof: By Lemma 2, only users with z; < d would defect
to the vISP. Thus, we only need to compare U; (27 | ,p) with
by
l{f”( Z¥ e dyn, p) = mecmﬁ 7 for z; < d. Since
Ui(27 | ¢,p) is piecewise, our calculation consists of two step.

. _ 1.1 11— .
First, from ;2-p'~aca > mef%zf—a —n, we obtain:

1
_ (apl-éaé +(1- a)n) .

__ Cm
(1=0m)emN

ZzSZA’m

which is combined with the Pareto-distributed user natulral
demands 0, = 1 — (£2)* and §,, = (M)ﬁ,
and leads to (9). Substituting (9) back to (21), we "find (8).

Next, we prove that with 6,, given in (9), we also have

s l—a 1 @
e - Zg’ > W Z— —nfor z; < (p) . Due to
A 1 m
¢ o PN We find
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for A\, > 1, i.e.,, -

> —1. Finally, (22) is equivalent to
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G. Proof of Proposition 4

Proof: We first show the existence of a limit point.
Taking a linear combination of the dynamics for each m,

we conclude that Z,A,{:KH ombm = Z%:KJA (SOm -

Am
wm(,ln(l—a)) 1‘““’") at any limit point. Defining
ap’ aéa+(l—-a)n

T = Zm=K+1 ©mbm, we then have
M

>

m=K+1

( 77(1 — a) 1— a:{fxm
Pm—Pm ( 11 . T ) ) )
ap' = é(t) 4+ (1 —a)n

(23)
where we have written ¢ in terms of 7 instead of 6. We now
note that the right-hand side of (23) is monotonically decreas-
ing in 7, while the left-hand side is monotonically increasing.
Thus, to show that (23) has a unique solution 7*, it suffices
to show that the right-hand side is less than Zf\f: K41 Pm at

Z%:K-t—l ©m. Both are true

7 = 0 and larger than 0 at 7 =
by inspection.
Wg thus see that at a limit point, 7 = 7*. We can thus solve
for 6* by writing
n(l—a)

T—a+rm
or, =1— ( > L Q4)
ap'~ + (1 —a)y

for each non-partner ISP m. It is clear that a unique solution to
these equations exists, which determines a unique limit point
of (10). To show that (10) converges to this unique limit point,
we first show that the Jacobian dh/ dd is a negative-definite
matrix for any value of 6. Using the definition of 7 from the
proof of Proposition 4, we see that for m # n,

Fe(r)e

Ohy O (1 - a) =t 9é
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_ Ogm
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where we define g, (7) = — ( T u la) ) :
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Thus, we find that
Ohum {agm on — 1

ifm=n

00, | %=y, if m#n



and the Jacobian dh/ df can be written as

7 09 .

J0)=5"¢

where ¢ is the horizontal vector concatenating the ¢, for

m=K+1,...,M and g is the vertical concatenation of the

gm. It is easy to see that, if p is an eigenvalue of J (5) for

any fixed 6, then 1+ s is an eigenvalue of (0g/01) Z. Thus,

since this matrix has eigenvalues of 0 and ¢ (dg/0T), we see

that J(#) has eigenvalues of —1 and @ (dg/d7) — 1, which
are both negative since 9¢gy, / 01 < 0 and ¢, > 0 for any m.
We have thus shown that .J(6) is negative-definite for any 0.

We now propose the Lyapunov candidate function

M 2
L(0) = 3 ha(9)
m=K+1
It is easy to see that this function is nonnegative on [0, 1] ¥

and that it is zero if and only if h,, = 0 for all m (i.e., at a
limit point). We now take the time derivative of L to find that

—2Zh

m=K+1

_]7

(25)

) (S2160)) = 1@ TIENG, o

which, since J (5) is negative-definite, is negative on
0, 1)K except at the limit points where h(6) = 0. Thus,
L is a Lyapunov function for (10) on [0,1]" % LaSalle’s
invariance principle allows us to conclude that the defection
rates 0 converge to the largest invariant set S contained in
{o1L9)
h = 0. Since we have shown in Proposition 4 that there exists
a unique such limit point, (10) converges to this point, 6. m

=0y, or equivalently the set of points for which

H. Proof of Proposition 5

Proof: Each partner ISP k’s original revenue can be
calculated by different types of user usage:

d pgﬁ G
;=</5knfk<z>dz—/d( )" 4 o= ) ()

_/(OO% )é (’H' ((p(pc;jN)é - d)ﬂ)fk(z)dz> @i N,

where users with usage below the cap d; < z; < d pay the

1
monthly fee, users with natural usage d < z; < (pgﬁ) o
consume the exact amount of their natural usage and pay the

monthly fee plus the overage (z; — d)p, the rest heavy users
1

maximize their utility and reduce their demands to (5k5) ™.
Since the set of users defecting from the partner ISP, (6),
is a piece-wise function, we discuss the two cases that lead

to different revenues for the partner ISP after partnering w1th
the vISP. We start with the simpler one when ”_p” > (p)

d (
Ry = ( / nfi(2)dz + / (n+ (= — d)p) fi(2)dz

RS
Substituting Qk =1 (U*CVC)V%MV)FQ

(M) T into R/ —
an. =

If =1 < (%) , heavy partner users with z; > also
defect to the VISP and thus no loyal parter user needs to reduce
their usage:

(%)7& and 8, =

R, generates the first case in

Q=

dp—n

dp—n

Ry = (/ﬁdnfk(z)dﬁ/dp_

T+ (z— d)p) fk<z>dz> ol

Substituting 6, = 1— ((1—%%)

k
and 0, =
case in (11).
Combining the above two cases together, we can obtain the
result in (11).
When ¢

T (1) (dez) M)

Ak
(U=ednesNY =5 jnto Ry — R, generates the second

< «pc,:’?v’ it is straightforward to see that

1-2 2k
(pcgckN) < (%) for \j >11. Thus, ARk(Qk,p)
is negative for the case dpp__p" > (%)E On the other hand,

o dp— e\ ey ot dp—n\ 1=k

if 2221 < (7)“, then (7) « < (%) . The facts
p—p p P PP

of p > pand dp > 7 lead to (E=! + =) > 1. Thus,

AR (0, p) is negative in this case as well. [ |

1. Proof of Proposition 6

Proof: Similar to the calculation of (11) but with a single
case of user defection, the result in (15) is calculated by

ARTU (G'HL ’ p <fzm nfm
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(=onttemw)
+Ja
+ f __ Cm )
(1 em)/ﬂﬁmN

- fgm nf'm 1
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with the minimum usage of all ISP m’s users,
substituted by 4, = (U=remN)T=s

m

(

N+ (z —d)p) fm(z)dz
(n

_|_
+ (osienn) ™ —

d) p) fm(2)dz

Q=

51’”,7
and zZ™M =

m 1—a
condition derived in (8).
We then show that the condition in (16) leads to a nonneg-

ative AR,,, by transforming it to:

1 11 T
(A=)nem N\ 1= [ _«a (p(l_‘;<;;)+1>1 " following the
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om(( a)n) = p (@MV) >
27

due to —== > pd®. By taking the first-order and second-order
der1vat1ves of AR, (0., p) with respect to 6,,,, we find

>\7n +04 1

Ar 1—a—Am

Mmoo Ay ta—1 a(l—a)
L= a)n) T ()
Am—l—o

X(1=0m) ™=,

OAR
96,, X a



and

PARy o atldn (1 — a)y) T dmtact
m 1—a—Am

x () T =gy

Thus, A < («a + 1) ensures the convexity of AR,, in terms
(1—a)(log(dp)—log(a

of 0,,, and )\, < log(dp)glo’;((l i)n@ (or (27)) ensures

that AR, has a critical point satisfying 6, < 0. Due to

ARlo,,—0 = 0, we conclude that AR, increases and is

nonnegative in 6,, € [0, 1]. [ ]

J. Proof of Corollary 2

Proof: We prove that 6, > (an/p) leads to the same
inequality in (27). Due to \,, > 1, we find that

—Am Am—1

O > amp  E (Con /(P N)) 5
Substituting §,, (M%”N) T% into the above inequality
results in an inequality that is equivalent to (27). [ |

K. Proof of Proposition 7

Proof: To prove the positivity of the optimal value for
(17), we only need to find a feasible point that makes the
objective pos1t1ve Thus, we exam the case when p — p, i.e.,

dp=n > (p) Also, in this case, since only partner users

p—p
with z; < % will defect to VISP, the profit for the vISP can

then be calculated by
PD(p) + Yhey AR (0, p)
— 7/\k 1
= p(Zk 1 )\)\k 6>\h (5k Mt (%) i )@kN
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where 2™ (=0)nemN = a(ﬁ) +1
follows the result derlved in (8). We then rewrite (28) as
K
(p) + Y ARk (0k.p) ng JorN + ¢(p) N
k=1

Ak
with gi(p) = 5p%7p0k — 3= m(n/p) — 1 and
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We find gi(p) > 0 due to the condition in (18) and ¢ <

(n/p). We then prove that ¢(p) is also larger than 0. First,
due to the convexity of z!=* for A > 1, we find

M
60) = Y PAmOp 2 (B — Om)om
m=K+1

(29)

A 1=

Me g, 4
A G\ = ¢ C
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If 19 7n <

, (29) holds; otherwise, due to 2—*“ < (667"'1/@ <
1, We need to prove a necessary condition for (29) that

M

N 1 é é_l Ck é
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m=K+1 k=1 P PPRN P
, (30)
for % < pgmN Combining the condition in (19) with
M i _
Zm:K-H Om = Zk 1 ¢k, and ( ) < % we find

€1y

Tap Z om 2

m=K+1

N
aP(p) ];9%.
Then, due to d,, > (an/p) derived in Corollary 2, (%) o > d,

€ [0,1) and A,, > 1, the left-hand side of (31) is smaller
than the left-hand side of (30). Furthermore, the right-hand
side of (30) is maximized when ¢ = (1 — 2a) ikN, so the
right-hand side of (31) is larger than the right-hand side of
(30). Thus, under the condition in (19), (31) leads to (30)
as well as (29). We conclude that under the conditions in
Proposition 7, the objective in (17) can be positive in its
feasible set. [ ]

L. Proof of Lemma 3

Proof: Let 1., be the number of VISP users assigned to the
WiFi network. Similar to the proof of Lemma 1, the network
performance of the available WiFi network and any partner
ISP’s network are the same:

C E(Cy)

— = Yok=1,...
(1 — Hk)ikN + ng

’ﬁw (Z Ck + E(Cw)>
k=1

—~
]
Z

=
K
— E(Cy) (aw +> (1= 0k)prN + m))
k=1
0 . >t O + E(Cy)

(1 - Z%:K-',—l(l - am)wm) N

where (a) is by summing both sides of the equation for all
K partner ISPs, and (b) is due to the number of all users in
WiFi network and partner ISPs’ networks equals the remaining
users in the non-partner ISPs’ network. [ ]

M. Proof of Corollary 3

Proof: We can see from (7) that the piece-wise expressi?n
of ) has a larger value when p < p — (dp — n)(%)_a.
Moreover, a larger value of ¢,, makes more possible to 1fall into
this category, i.e., the case when p < p—(dp—n) (;) . Thus,
0, increases as ¢,, increases. It is also obvious to see that 6,,, in
(9) increases when ¢,, increases. To conclude, defection rates
for users of both the partner and non-partner ISPs increase
with a larger value of ¢,,. |
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