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Abstract—The dynamic response of power grids to small
transient events or persistent stochastic disturbances influences
their stable operation. This paper studies the effect of topology
on the linear time-invariant dynamics of power networks. For
a variety of stability metrics, a unified framework based on the
Hz-norm of the system is presented. The proposed framework
assesses the robustness of power grids to small disturbances
and is used to study the optimal placement of new lines
on existing networks as well as the design of radial (tree)
and meshed (loopy) topologies for new networks. Although
the design task can be posed as a mixed-integer semidefinite
program (MI-SDP), its performance does not scale well with
network size. Using McCormick relaxation, the topology design
problem can be reformulated as a mixed-integer linear program
(MILP). To improve the computation time, graphical properties
are exploited to provide tighter bounds on the continuous
optimization variables. Numerical tests on the IEEE 39-bus
feeder demonstrate the efficacy of the optimal topology in
minimizing disturbances.

I. INTRODUCTION

The electric power system is continually changing. It
is expected that the grid of the future will have higher
variability due to renewables, changing load patterns, and
distributed energy sources [1]. This paradigm shift will pose
an enormous challenge for design and stable operation of
power networks. The inherent uncertainty associated with
renewable energy sources and active loads is likely to pro-
duce more frequent and higher amplitude disturbances [1].
In addition, owing to the lower aggregate inertia of systems
with high penetration of renewables, the capability of power
networks to handle such disturbances may be significantly
reduced [2].

Thus, improving the dynamic performance of the power
grid is of importance and has received greater attention
from academia and industry. Efforts in this direction include
development of payment structures and novel markets, as
well as analysis of techniques to incentivize load-side partic-
ipation [3], [4], [5], [6]. The benefits of load-side controllers
has motivated a series of recent works to understand how
different system parameters and controller designs impact
the transient response of the network [7], [8]. Recent work
in [9] has also explored the optimal placement of virtual
inertia to improve stability.
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Compared to the previously mentioned system parameters,
the effect of network topology on transient stability is less
well understood. Without detailed simulations, it is usually
hard to infer how a change in network topology influences
the overall grid behavior and performance. Recent work in
[8] shows that the impact of network topology on the power
system can be quantified through the network Laplacian
matrix eigenvalues. In addition, grid robustness against low
frequency disturbances is mostly determined by network
connectivity [8], further motivating this study. Past studies
in the power and control systems communities have also
looked at designing network topologies for specific goals
using system theoretic tools. Such goals include reduction
of transient line losses [1], improvement in feedback con-
trol [10], [11], coherence based network design [12] and
augmentation [13]. Semidefinite programming (SDP) based
tools have also been utilized to design and augment network
topologies for dynamic control [14], [12], [15].

While the primary focus here is topology design, we
recognize that there is line of related work dealing with
learning network topologies and line parameters [16], [17],
[18]. Schemes that rely on passive data have been used in
[18] and [16] for learning radial topologies. Different from
them, the work in [17] actively probes the grid to recover
radial topologies and verify line statuses.

In this paper we are interested in studying the effect
of topology on the power grid dynamics. For a variety of
objective functions, such as line loss reduction, fast damping
of oscillations, and network coherence, our previous work
[19] presented a unified framework to study topology design
based on the Ho-norm. In [19], the focus was on topology
reconfiguration rather then topology design. Further, the
work in [19] developed suboptimal algorithms, albeit with
guarantees on optimality gap, to tackle the combinatorial
design problems involved. Here, we present reformulations
of the topology design task that allow us to solve the problem
to optimality.

Our contributions are as follows. First, we provide a
comprehensive modeling and analysis framework for the
topology design problem to optimize a Hs norm based
performance metric subject to budget constraints in Sec-
tion II. Second, in Section III we show that although the
topology design task is inherently non-convex, it is possible
to exactly reformulate the problem in tractable form using
McCormick relaxation (or linearization). This can then be
used with off-the-shelf solvers to determine the optimal
solution. Further, we show that exploiting graph-theoretic
properties to tighten bounds on the continuous optimization



variables yields significant improvements in computation
time. Section V discusses numerical tests based on the
IEEE 39—bus test case followed by conclusions and future
directions in Section VI.

Notation: Column vectors (matrices) are denoted by
lower- (upper-) case letters and sets by calligraphic symbols,
unless noted otherwise. The cardinality of set X is denoted
by |X|. Given a real-valued sequence {z1,za,..., 2N}, * €
RY is the vector obtained by stacking the scalars z; and
dg({x;}) is the corresponding diagonal matrix. The operator
()T stands for transposition. The N-dimensional all ones
vector is denoted by 1y; Iy is the N x N identity matrix;
and e; is the canonical vector with a 1 at the i-th entry
and zero everywhere else. The notation 6; denotes its time

derivative 569; .

II. GRID MODELING AND NETWORK COHERENCE

This section presents a linearized power system model,
defines network coherence metrics, and reviews their connec-
tion to studying the stability of a linear dynamical system.

A. Dynamic Power System Model

A power network having N + 1 buses can be modeled
as a connected graph G = (V,&), whose nodes V :=
{0,1,..., N} correspond to buses, and edges £ C V x V
to undirected lines. Bus 7 = 0 is selected as the reference;
all other buses constitute set V,. := V\{0}. Let b;; > 0 be the
susceptance of line (4, j) € £ connecting nodes ¢ and j € V.
Then, the susceptance Laplacian matrix L € R(N+x(N+1)
associated with the grid graph G can be defined as

_bij , if (27.7) €&
Lij = Z(i,j)ef bij y lf] =3
0 , otherwise.

Each node 7 € V is associated with a phase angle
0;, frequency w; = 91 inertia constant M;, and damping
coefficient D;; see [20]. Since bus 7 may host an ensemble of
devices such as synchronous machines, renewable or energy
storage sources, frequency-dependent or actively controlled
frequency-responsive loads, the parameters M; and D; char-
acterize their aggregate behavior [9].

Focusing on small-signal stability, the quantities (6;,w;)
will henceforth refer to the deviations of nodal voltage
angles and frequencies from their nominal values. The grid
dynamics at bus 7 can then be described by the linearized
swing equation [20]

M;w; + Diyw; = P — Pf + u; (D

where P" denotes the mechanical power input; P? is the
electric power flowing from bus ¢ to the grid; and wu; is
the power consumed at bus 7. Again, the aforementioned
quantities refer to the deviations from their scheduled values.
Under the linearized DC model, the power flowing from bus

1 to the grid can be approximated as [20]
Pie ~ Z b”(@ - 0]) (2)

(i,4)€€

Combining (1) and (2), the state-space representation of
the power grid is

{ﬂ:{—ﬂ;‘% _Aj&D] [i]+@u 3)

A= B:=

where M := dg({M;}) and D := dg({D;}) are diagonal
matrices containing the inertia and damping coefficients; the
states w € RN+ and § € RV*! are accordingly the stacked
vectors of nodal frequencies and angles; and . € RV is the
vector of local power disturbances. The subsequent analysis
relies on the ensuing assumption.

Assumption 1. The inertia coefficients are strictly positive
and damping coefficients are identical for all buses, that is
M; >0and D; =d forall i € V.

The non-zero inertia assumption is not necessary, but
simplifies our presentation. If M; = 0 for a bus 7 € V,
then a Kron-reduced network containing only nodes with
inertia can be obtained. The second assumption of constant
damping has been previously used in [1], [10]. When it is
not satisfied, the stability metric defined in the next section
does not enjoy a closed-form expression, and only bounds
can be derived. In our future work, we plan to extend our
approach to the case with variable D.

B. Generalized Network Coherence Metrics

Given the state-space model in (3), our goal is to design
network topologies or augment existing ones to minimize
the voltage angle deviations caused by load disturbances.
These angle deviations are formally captured by the met-
ric of network coherence [21]. The latter is defined as
lim;, o0 E[fc(t)] where f.(t) is the steady-state deviation of
the angles from their grid-average
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In other words, network coherence quantifies how tightly bus
angles drift together. Larger variances in angle deviations
reflect a more disordered network [1].

Instead of network coherence, the system operator may
be interested in minimizing the expected steady-state value
of a generalized function combining both voltage angle and
frequency excursions [19], [9]

£ =3 wi(Bit) — 0;(0)° + Y siwk(t) ()
Vitj i€V
where w;; and s; are given non-negative scalars. The weights
w;; induce a connected weighted graph G, that is not
necessarily identical to G; see Fig. 1. Let W be the Laplacian
matrix of graph G,, and S := dg({s;}). Then, it is not hard
to verify that f(t) = ||y(t)||3 where

v =" o] [0

—————
C:=

(6)



Fig. 1. Illustration of power grid and its associated coherence graph. [19]

Being a Laplacian matrix, matrix W is positive semidef-
inite, and so its matrix square root W'/2 is well-defined.
The matrix S'/2 is well-defined too. The importance of
the generalized coherence metric of (5) is that for different
choices of (W, S), one can represent different grid perfor-
mance metrics and study them in a unified manner [19]:
For instance, if the system operator is only interested in
minimizing frequency excursions, one can set W = 0 and
S = In41. Similarly, if the goal is to reduce transient line
losses, one can choose W = L and S = 0. Lastly, the
network coherence metric of (4) corresponds to the case of
W = IN+1—ﬁ1N+1 1341 and S = 0. Figure 1 shows the
physical power network and its associated coherence graph.
Note that the choice of (W, S) for network coherence penal-
izes global deviations, whereas that for line loss reduction
penalizes local deviations.

C. Relation to Stability Analysis

The expected steady-state value of f(t) can be interpreted
as the squared Ho-norm of the linear time-invariant (LTT)
system described by (3) and (6). This system will be com-
pactly denoted by H := (A, B, (). Leveraging this link, the
generalized network coherence is amenable to a closed-form
expression [19].

The H2 norm is widely used as a stability performance
metric and has several interpretations [22]: For unit-variance
stochastic white noise u(t), the Ho-norm of an LTI system
equals the steady-state output variance [22, Ch. 5], [1], [9]

|H13, = lim B [ly(6)]3] @
For unit-impulse disturbances w;(t) = e;0(t) for i =
1,..., N, the Ho-norm can be equivalently written as
N oo
11 =3 [ (o) e ®
—Jo

where y;(t) is the system output corresponding to distur-
bance vector u;(t). Instead of evaluating the expectation
in (7) or the time integral in (8), the Ho-norm for system H
can be expressed as [22, Ch. 5]

IH|3, = Tr(BTQB) 9)

where Q = [J° eAtCTCeAtdt is the observability
Gramian matrix of the LTI system H. In fact, the matrix
(@ can be computed as the solution to the linear Lyapunov

equation [22, Ch. 5]
ATQ+QA=-C"C. (10)

Matrix () is known to be symmetric positive semidefinite, so
it can be partitioned as

Q — Q_}, QO
Qo Q2
Based on the reformulation in (9), we next design topologies
attaining minimum generalized network coherence.

Y

III. OPTIMAL GRID TOPOLOGY DESIGN

Among other criteria, the topology of a grid can be
designed to minimize the generalized network coherence
metric of (5). Given a graph G = (V,é'), where € is the
set of candidate lines weighted by their susceptances, the
goal is to find the subset & C & of cardinality || < K
with K > N attaining the minimum generalized network
coherence. Given the equivalences of the previous section,
this task can be posed as the optimization problem

argmin Tr(B'QB) (12a)
geé

sto || <K (12b)

(Q satisfies (10) (12¢)

& is connected. (124d)

The constraint in (12b) reflects the budget on the number
of edges. For K = N, the problem in (12) yields a tree
topology, which is important for typically radially operated
distribution grids. Interestingly, leveraging the problem struc-
ture under Assumption 1, it can be shown that the objective
of (12) simplifies as [9], [19], [1]

Tr(WLT) + Tr(SM—1)
2d '

If Assumption 1 is not met, i.e., the damping coefficients
are not identical (D # dIy), then it may not be possi-
ble to find a closed-form expression for the objective in
(12). If the damping coefficients are known to lie within

[dmin, dmax), then the objective of (12) can be bounded as
+ r—1 + -1

Tr(WL 2)dt:i(SM ) < Te(BTQB) < Tr(WL Q)JT:(SM );

see [1], [9]. Therefore, as the range [dmin, dmax] becomes

narrower, minimizing the numerator of (13) approaches the
optimal solution to (12). From Assumption 1, we consider
dmin = dmax here.

The second summand in the right-hand side of (13) is
independent of the grid topology, and can thus be ignored.
Problem (12) can then be reformulated as

Tr(B'QB) = (13)

argmin  Tr(WL™) (14)
gcé
sto |E] <K

rank(L) = N



where the rank constraint ensures that the graph induced by
& is connected. Problem (14) could be tackled with brute-
force algorithms over all the possible topologies of budget K
and below; though that would incur exponential complexity.

The objective in (14) can be written in terms of the inverse
of the reduced Laplacian matrix of G as explained next. The
claim has appeared in [1, Lemma 3.2], albeit for the restricted
case where W and L have the same structure.

Lemma 1. If W and L are the N x N matrices obtained
after removing the first row and column from W and L,
respectively, then

Te(WLY) = Te(WL™Y).

Proof. The Laplacian matrices can be described in terms of
their reduced counterparts as

W =RWR' and L=RLR" (15)

where R := [Ly —Ix]". This is because a Laplacian matrix
satisfies L1ny1 = On41. If we define matrix J := Iy —
ﬁl Nl;, then it is not hard to see that

R'R=1In+1y1k=J"" (16)
Then the pseudoinverse of L can be expressed as
Lt =RJLYJR". a17)

The latter can be shown by simply verifying that LLYL = L
and LT LLT = L*. From (15) and (17), we get that

Te(WL*) = Tr (RWRTRJE—URT) = Te(WL)

where the last equality follows from (16) and the cyclic
property of the trace. ]

To express the optimization in (14) over £ in a more
convenient form, let us introduce a binary variable z,, for
every line m € . This variable is z, = 1 if line m is
selected, i.e., m € &; and z,, = 0, otherwise. If we stack
variables {2, },,.¢ in vector z, then 2 has to lie in the set

Z.= {z:zH‘él <K, ze{o,l}‘é‘}. (18)

Based on the line selection vector z, the reduced suscep-
tance Laplacian of G can be expressed as

E(Z): Z zijbijaija;j
(i.4)€€

19)

where each vector a;; corresponds to line (i,) € £, and its
n-th entry is defined as

+1 ,ifn=1
[aij]n = -1 ) if n 2]
0 , otherwise.

Given Lemma 1 and (19), the optimization in (14) can
be equivalently written as the mixed-integer semidefinite
program (MI-SDP)

Tr(WX) (20a)

arg min
X,zeZ

s.to {X ~IN]> 0. (20b)

IN L(Z)

To see this, the constraint in (20b) is equivalent to X > 0 and
X = lifl(z); see [23, Sec. A.5.5]. Since W = 0, the optimal
X can be shown to be X = L~1(z). In fact, constraint (20b)
waives the possibility of the optimal L being singular, and
thus, ensures the connectedness of the graph.

To overcome the computational complexity of the MI-SDP
in (20), one may relax the binary variables to box constraints
as z € [0,1]/¢! to get an ordinary SDP, which can be handled
by off-the-shelf solvers for moderately-sized networks. Being
a relaxation, the SDP solution provides a lower bound on the
cost of (20). If the obtained solution of the SDP turns out to
be binary, then this z minimizes the MI-SDP in (20) as well.
Otherwise, (randomized) rounding heuristics can be adopted
to acquire a feasible z.

Aiming at an exact solver, we will next show how the MI-
SDP of (20) can be equivalently formulated as an MILP. To
this end, we first rewrite (20) as

(X*,2%) e arg min_ Tr(WX) (21a)

sto L(2)X = Iy. (21b)

Note that for constraint (21b) to hold, i(z*) must be non-
singular and X* = L~'(z*). Although its cost is linear,
problem (21) is non-convex due to the bilinear constraints in
(21b) and because vector z is binary. To handle the former,
we adopt the McCormick relaxation technique [24], which
is briefly reviewed next.

Constraint (21b) involves the bilinear terms z,,X;; for
m € € and i,7 € V. For each such term, introduce a new
variable
(22)

Ymij = ZmXij-

Suppose that the entries X are known to lie within the

range [X;, X;;]. Since zy, € [0, 1], the ensuing inequalities
hold trivially [24]
Z2m (X5 — Kij) >0 (23a)
(Zm — 1)(X” — Y”) >0 (23b)
Zm(Xij — Yij) < 0 (230)
(zm — 1)(Xy; — X;;) <0. (23d)
Substituting 2, X;; by ¥ms; in (23) provides
Ymij Z Zm&ij (2421)
Ymij > Xij + 2mXij — Xij (24b)
Ymij < 2mXij (24¢)
Ymij < Xij + Zmzij - Kz‘j- (244d)

One can replace the bilinear terms in (21b) by ;s
and enforce (22) and (24) as additional constraints for all
m € & and i,7 € V,. In that case, the constraints (24)
are apparently redundant. However, one may simplify the
problem by dropping (22) to get an MILP reformulation
of (21). Interestingly, this reformulation is exact due to the
binary nature of z. To see this, if 2}, = 1 for some m,



then (24b) and (24d) imply y;,,; = XJ; for all 4,5 € V..
Otherwise, if 2z} = 0, then (24a) and (24c) imply y:‘m-j =0
for all 4,5 € V.

Through the aforementioned process, problem (21) has
been converted to an MILP over the variables {X;;}, {zn},
and {Ym; }. MILPs can be handled by state-of-the-art solvers
such as Gurobi [25], and are known to scale better than MI-
SDPs. Recall that the MILP reformulation of (21) requires
the bounds (X ;;, X ;) on each (i, j)-th entry of X*. Lacking
prior information on X *, one could select an arbitrarily wide
range [X;, X;;]. However, this could slow down the MILP
solver significantly. In the other extreme, if X* is known,
that is X,;; = yl'j for all 7,5 € V,, then the binary vector
z can be recovered by simply solving the linear equations
in (21b). To improve the run time of the involved MILP, we
next derive tighter, non-trivial bounds on the entries of XjJ

IV. BOUNDING THE CONTINUOUS VARIABLES

Depending on the problem structure, different bounds
can be derived on X;s. This section considers two classes
of topology design tasks. In the first task, some lines are
already energized and the operator would like to augment a
connected network by additional lines to further improve its
stability. In the second task, a network topology is designed
from scratch with the additional requirement of a radial grid.

A. Augmenting Existing Networks

Given the graph G = (V, £), this problem setup considers
a pre-existing connected network described by G. = (V, &.),
and the goal is to energize additional lines from £ \ &
to improve its stability. In essence, this corresponds to the
problem in (21) with the entries of z corresponding to the
lines in &, being set to one. Then, based on (19), the reduced
Laplacian matrix of the existing network is obviously

T T
Le = Z bq;ja,;jaij.
(i,5)€€e

Under this setup, the entries of X* minimizing (21) under
the additional constraints z, = 1 for all ¢ € &., can be
bounded as follows.

Lemma 2. The entries of X* are bounded by

L7+ [ffe_l]jj

. [Le
0< X} < 5 , 25)

Y(i,4) € Vr.

Proof. Observe that L. can be written as L(z) by fixing
the entries of z corresponding to the lines in &, to 1. Since
the same entries will remain 1 in z*, it readily follows that
f/(z*) = L. = 0, where L, is non-singular since the existing
network is already connected. Then, it follows that X* <
L;'and o7 (X* — L;Y)w < 0 for any v # 0. Setting v
e;, the diagonal entries of X* can be bounded as X
[L; " for all i € V,.. Since X* > 0 by constraint (21b), we
have that (e; —e;) " X*(e; — e;) > 0 for all i, € V,.. The
latter provides X[, < %(Xz*, + X7;). Upper bounding the
diagonal entries with the bounds obtained earlier proves the
upper bound in (25). The lower bound in (25) can be trivially

IN

obtained since L(z*) is an M-matrix, and so its inverse has
positive entries. |

The reduced Laplacian matrix L. of the existing network
G, is invertible as long as G, is connected. If that is not the
case, one could obtain bounds on X;’s by imposing a radial
structure on the sought topology as discussed next.

B. Radial Topology Design

The setup considered here designs a network afresh, but
under the requirement that it is radial. The analysis simplifies
under the following mild assumption.

Assumption 2. There exists a node in V that is incident to
exactly one edge.

To derive bounds on the entries of X* minimizing (21)
for the special case of K = N (radial network), let us first
construct the graph G, = (V7é’r), where &, consists of the
edges in £, but with inverse weights x;; = b;jl for all
(i,§) € £. Based on G,, we define some additional properties
that will be useful later. If one of the nodes in V satisfying
Assumption 2 is selected as the reference node, then the
weight (inverse susceptance) of its incident line is denoted
by xg. Let us also define the minimum of the inverse line
susceptances

Tmin = min_ x;;.
(i,5)€&r

Before solving (21), we find the maximum spanning tree
of graph G,, and denote the sum of its edge weights by
f. The maximum spanning tree can be found efficiently by
finding the minimum spanning tree on G, upon negating its
edge weights [26]. Lastly, for each node 7 € V,, we find its
shortest path to the reference node 0 in G,. The sum of edge
weights along this shortest path will be denoted by #;.

Lemma 3. Under Assumption 2, the entries of X*, minimiz-
ing (21) for K = N, are bounded as

IOSX:} Sffxmina

(262)

Vi, j € V. (26b)

Proof. The bounds rely on a fundamental property of the
inverse Laplacian matrix of a radial network: If L is the
reduced susceptance Laplacian of a radial network and X :=
L~', then the entry X;; equals the sum of the inverse
susceptances that are common to the paths of nodes ¢ and j to
the reference bus; see [27, Lemma 1]. Under Assumption 2,
the common path of any pair of nodes (i,j) € V, must
include at least the line incident to the reference bus, and
hence, X7, > . By the definition of shortest path, the entry
X7 is lower bounded by h; for all ¢ € V,, thus providing
the lower bound in (26a).

Regarding the upper bound in (26a), recall that the (i,%)-
th entry of X* equals the sum of weights on the path from ¢
to the reference node 0. The sum of weights on the longest
such path is still upper bounded by the sum weight f of all
edges in the maximum spanning tree. Because the entry X
for ¢ # j must have at least one less edge than the longest
path, the upper bound in (26b) holds as well. |



Fig. 2. Grid graph G = (V,€) with candidate location of edges. Left
panel: The lower bounds on X,, X}, and X7, can be tightened using
the shortest path weight hj due to the critical edge colored in red. Right
panel: The size-2 cutset shown in red implies the constraint z1 + z2 > 1.

Note that the upper bounds can be tight in the setting
where the maximum spanning and optimum trees are the
same line graph.

C. Model Simplification and Bound Tightening

Exploiting the structure of G = (V,&) can provide
additional information on the bounds of X* matrix entries to
accelerate solving (21) for the special case of K = N (radial
grid). For example, if G gets disconnected upon removing
edge { € &, this edge ¢ belongs to the sought tree topology
and z; = 1 before solving (21). To identify such edges, we
resort to the notion of a graph cutset C C &, defined as a
subset of edges that once removed, splits the graph G into
two or more connected components. The edges in this cutset
will be termed as critical edges. Now, we present a simple
algorithm to enumerate all the single critical edges (|C| = 1)
by initializing the graph G’s weights to unit values.

Step 1: Solve the min-cut problem on G with unit edge
weights by using the standard max-flow min-cut
algorithm [28].

Step 2: Increase the weight for the edge labelled as critical
to 1 + € for some € > 0.

Step 3: If |C| > 1, quit; else, go to Step 1.

The second step ensures that every time we are identifying a

new critical edge. Upon completing this process, the entries

of z* corresponding to the critical edges can be safely set

to 1. This process not only reduces the binary search for z*

in (21), but it further tightens the lower bounds on certain

X;‘j’s as discussed in Lemma 4; see also Fig. 2.

Lemma 4. Suppose a critical edge ¢ = (i,7) € & partitions
the nodes of G into two disjoint connected components Vy
and its complement Vy. If V; contains node i as well as the
reference bus, then (26b) can be tightened as

hj < Xp, Yk €V,

Proof. The edge (i, j) € £ is the only edge that connects the
nodes in V, to the rest of the network. Hence, the common
path to the reference bus of any two nodes in V, must include
the path of node j to the reference. It follows that the shortest
path weight h; is a valid lower bound for all nodes in ;. W

TABLE I
COST OF DESIGNED GRIDS USING THE IEEE 39-BUS NETWORK.

# of lines  Optimal Topology  Suboptimal Topology
2 0.570 0.585
3 0.564 0.582
4 0.557 0.576
5 0.552 0.570

Identifying cutsets of cardinality larger than 1 offers
additional information to tighten the bounds of entries of
the X matrix. If graph G gets disconnected upon removing
lines /1,45 € 5’ then at least one of these lines should be
active. This logical conclusion translates to the constraint
ze, + 20, > 1, which can be augmented to (21) to tighten the
McCormick reformulation and possibly accelerate the MILP
solver. Cutsets of larger cardinality, say |C| = k,k > 1, can
be identified by iterating Steps 1 through 3 of the algorithm
described earlier. In this case, we assign the weights of k+¢
on the critical edges, where € > 0.

V. NUMERICAL TESTS

All tests were run on a 2.7 GHz Intel Core i5 laptop
with 8GB RAM. The MILP formulations were solved using
Gurobi v8.0.1 optimizer, written in Julia/JuMP [25], [29].

The performance of the MILP in (21) was tested for aug-
menting an existing network as well as for designing a radial
one afresh. For the augmentation setup, the IEEE 39-bus
system benchmark was used as the pre-existing connected
network [30]. The set & was selected by 10 randomly picked
additional lines. From these lines, we solved the restricted
version of (21) for K = {2,3,4,5}. To satisfy Assumption 1,
we assumed M; = 10~ on all buses that did not host
generators, and D; = d = 0.025 for all 7 € V. To grade
an arbitrarily constructed network, we compared its squared
H2 norm to that of the optimal network of the same edge
cardinality. The results are summarized in Table I. Additional
lines are useful in minimizing disturbances, and so the budget
constraint in (21) was always met with equality. For all cases,
the augmentation design problem was solved in less than 5
seconds.

We next considered the radial topology design problem
with £ composed of all edges in the IEEE 39-bus network.
The optimal cost obtained after solving the MILP in this case
was 1.669, and the time required to find the optimal tree
was close to 2 hours. Considering that the problem needs
to be solved once off-line, this running time may not be of
concern. Figure 4 shows the optimal radial topology that was
identified.

Instead of using the bounds of Lemma 3 and the bound
tightening procedure of Section IV-C, we attempted to solve
the same MILP with the relatively looser bounds of 0 <
X;; < 10 for all (7,7) € V. In this case, the solver reached
the optimality gap of 60% after running for 3 hours. Clearly,
having tighter bounds improves the computation time.

For a 1 per unit impulse input at bus 39, Figure 3 compares
the frequency response of the optimal tree (left panel) with
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an arbitrarily selected suboptimal tree (right panel). Notice
that not only is the amplitude of oscillations lower in the left
panel, but the generators also seem to drift together. These
observations indicate that the optimal tree selected is much
more effective at minimizing the effect of small disturbances.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a general framework to study the
effect of network topology on power grid dynamics. Using a
system-theoretic approach, we have shown that the original
topology design problem (MI-SDP) can be reformulated in
tractable form as an MILP. To improve the computation time,
graph-theoretic properties have been exploited to simplify
the model and provide tighter bounds on the continuous
optimization variables involved. Numerical tests on the IEEE
39-bus benchmark suggest that meshed networks exhibit
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Frequency response at generator buses 30—-39 for a impulse input on bus 39: (a) Optimal tree (left panel); (b) Sub-optimal tree (right panel).

improved coherence behavior. Current research efforts are
focused on tackling the topology design task with non-
uniform damping, exploring conditions for submodularity,
and considering the design problem from an H.,-norm
perspective.
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