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3D Path-Following Using MRAC on a

Millimeter-Scale Spiral-Type Magnetic Robot
Haoran Zhao , Julien Leclerc , Maria Feucht , Olivia Bailey, and Aaron T. Becker

Abstract—This letter focuses on the 3D path-following of a spiral-
type helical magnetic swimmer in a water-filled workspace. The
swimmer has a diameter of 2.5 mm, a length of 6 mm, and is
controlled by an external time-varying magnetic field. A method
to compensate undesired magnetic gradient forces is proposed and
tested. Five swimmer designs with different thread pitch values
were experimentally analyzed. All were controlled by the same
model reference adaptive controller (MRAC). Compared to a con-
ventional hand-tuned PI controller, their 3D path-following per-
formance is significantly improved by using MRAC. At an average
speed of 50 mm/s, the path-following mean error of the MRAC
is 3.8 ± 1.8 mm, less than one body length of the swimmer. The
versatility of this new controller is demonstrated by analyzing path-
following through obstacles on a helical trajectory and forward &
backward motion.

Index Terms—Medical robots and systems, model learning for
control.

I. INTRODUCTION

M
AGNETICALLY actuated and steered robots are

promising for various biomedical applications ranging

from in vitro to in vivo diagnosis and therapy [1]–[4].

In 1973, the biologist Berg found that micro-organisms such

as Escherichia coli (E. coli) bacteria can swim in various liquids

by rotating their helical-shaped flagella as molecular motors

[5]. In 1976, Purcell showed that helical swimming is one

of three main swimming methods for microorganisms in low

Reynolds number (Re) environments [6]. Inspired by nature,

in 1996, Honda et al. proposed the first magnetic helical-type

centimeter-scale swimmer [7]. The swimmer was wirelessly

driven by an external rotating magnetic field and had mobil-

ity in low Re environments. Since then, magnetically actu-

ated micro-machines have been investigated by scientists and

engineers. Representative surveys and reviews are [4], [8], [9].
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Gravity compensation, mechanical design analysis, and motion

control of helical robots in 2D are reported in [2], [9]–[14].

Path-following using centimeter-scale helical robots in 3D has

been shown in [15], [16].

A variety of actuation methods are used for helical robots.The

minimum number of magnetic sources for remote magnetic

manipulation was examined in [18]. Currently, the most common

external magnetic sources are Helmholtz coils [15], [16], [19]

or rotating permanent magnets as in [11], [20], [21]. Helmholtz

coils produce a homogeneous magnetic field which has no gradi-

ents, but for a given maximum coil size, the workspace is smaller,

and the controllable degrees of freedom is the number of coils

divided by two. A five-degree-of-freedom static electromagnetic

system called OctoMag was presented in [22] for controlling an

untethered micro-robot in a 3D workspace. The workspace for a

magnetic system is usually constrained to the enclosed volume

of the coils, but systems with robotically actuated coils, such

as [23], enable enlarging the workspace.

The survey [8] categorized the three base shapes for

magnetically-actuated rotating robots as helix, spiral, and twist.

Spiral-type magnetic swimmers have not been investigated as

much as helix-shaped micro- and nano-robots, perhaps due to

manufacturing challenges at those scales. Spiral-type robots are

composed of magnets and a cylindrical body with spiral-shaped

fins, as shown in Fig. 1. The magnets can be the main body of

the swimmer or inserted into the cylindrical body. The magneti-

zation vector of the magnet must be perpendicular to the central

axis of the cylindrical body. A torque can then be applied to rotate

the swimmer and make the helical fins produce thrust; thus,

swimmers can swim in fluid and agar [24]. As shown in [24],

[25], because of the corkscrew-like shape, spiral-shaped micro-

machines can drill through bovine tissue, which shows great

potential for biomedical and in vivo applications such as blood

clot removal and cyst fenestration. Also in [26], Ishiyama et al.

proved that spiral-type swimmers having multiple functions can

be useful for medical applications. Zhou characterized a magnet-

ically actuated spiral-type medical robot based on an endoscopic

capsule [27]. Those related works focused on spiral-type helical

robots demonstrated in 2D environments or in limited channels.

In [16], Wu et al. presented a helical millimeter-scale swimmer

(1.5 mm diameter and 15 mm length) using a radial basis

function network to perform 3D path-following along arcs or

straight line paths at 0.6 mm/s.

The present letter focuses on spiral-type swimmers with a

2.5 mm diameter and 6 mm length following multi-part paths at

average speeds of 50 mm/s, as shown in Fig. 1(c). The magnetic
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Fig. 1. External magnetic field and spiral-type helical magnetic swimmer. The
(a) experimental setup, (b) schematic cross section of the lab-built magnetic
manipulator, and (c) schematic diagram of the spiral-type helical magnetic
swimmer. Image (b) is from our previous letter [17].

manipulator shown in Fig. 1(a) and (b) was developed in our pre-

vious work [17], [28]. This coil arrangement has the advantage

of providing a larger workspace than a similar-sized Helmholtz

coil configuration, but the magnetic field is less uniform.

We propose a method to compensate for the gradient force

applied on the swimmer when the matrix is ill-conditioned

during 3D path-following. Additionally, a Model Reference

Adaptive Control (MRAC) that does not require tuning was

implemented for 3D path-following and compared to a con-

ventional proportional-integrator (PI) controller. A technical

solution for integrating MRAC and gradient compensation with

a magnetic manipulator is presented. The method to perform

inverse magnetics calculations and gradient force compensation

is explained and demonstrated in Section II-A&B (using our

method from [17], [28]). The Model Reference Adaptive Control

for 3D path-following is described in Section II-C. Section III

presents the experimental setup, results of the path-following

controller comparisons, path-following performance on a heli-

cal trajectory using MRAC, and forward & backward motion.

Finally, future works are discussed in Section IV.

II. METHODOLOGY

The necessary magnetics equations (II-A)-(6) were described

in our previous works [17], [28]. The inverse magnetics calcula-

tion is briefly discussed based on these equations in Section II-A.

Section II-B presents a method for gradient force compensa-

tion and experimental results to show the effectiveness of the

method. The MRAC structure for path-following is explained in

Section II-C.

A. Inverse Magnetics Calculation

A cylindrical NdFeB magnet was inserted into the swimmer

such that the magnetization of the magnet is perpendicular

to the rotation axis of the swimmer. Thus, when a rotating

external magnetic field is applied, the swimmer rotates to align

its magnetization axis with the external magnetic field. This

rotation makes the spiral-type fins produce thrust and propels

the swimmer forward.

The global inertial frame of the magnetic field XYZ is defined

with a right-handed coordinate system, and the origin is at

the center of the workspace. A local body frame linked to the

swimmer UVW is defined to simplify the calculations of the

forward kinematics and inverse magnetics as shown in Fig. 1(c);

the origin is at the center of the swimmer and the W -axis is

oriented perpendicular to the rotational plane of the magnetic

field.

Future implementations of helical robots in 3D environments

(using ultrasound or X-ray imaging) may rely on low-resolution

state feedback. For this reason, the control laws and experi-

ments in this letter only use measurements of the swimmer’s

3D position. Accordingly, the two cameras in our setup only

measure the swimmer’s 3D position. The swimmer’s magnetic

orientation is not measured. Experimental observations confirm

the swimmer follows the magnetic input and tracks the desired

path, if the magnetic rotation frequency is below the step-out

frequency of the swimmer. The control laws in this letter assume

that the swimmer rotation axis aligns with the W axis and that

the swimmer’s magnetic orientation lags the applied magnetic

field by a small amount. While this is a simplification (the two

axes have small misalignments) and the lag angle is unknown,

this solution has the advantage of not requiring measuring the

swimmer’s orientation.

The inverse magnetics equations compute the current to apply

to each electromagnet (EM) to produce the desired flux density.

The total flux density at any position is the sum of the flux

densities produced by each of the six EM. The current vector I

containing the currents circulating inside each EM coil is:

I =
[

I1 I2 I3 I4 I5 I6

]�

,

The flux density is calculated using the following equations:

Bxyz(P) =

⎡

⎢

⎢

⎣

B̃x(P)

B̃y(P)

B̃z(P)

⎤

⎥

⎥

⎦

· I = AB(P) · I, (1)

where Bxyz(P) is the total flux density at position P.

B̃x(P) =
[

B̃1x(P) B̃2x(P) B̃3x(P) B̃4x(P) B̃5x(P) B̃6x(P)

]

,

B̃y(P) =
[

B̃1y(P) B̃2y(P) B̃3y(P) B̃4y(P) B̃5y(P) B̃6y(P)

]

,

B̃z(P) =
[

B̃1z(P) B̃2z(P) B̃3z(P) B̃4z(P) B̃5z(P) B̃6z(P)

]

.

where B̃ia(P) corresponds to the flux density produced per unit

of current (T/A) by electromagnet i along thea-axis wherea isx,

y, or z. The coefficients B̃ia(P) are derived from the Biot-Savart

law as calculated in [29].
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The gradient force Fxyz(P) is calculated with:

Fxyz(P) =

⎡

⎢

⎢

⎣

Fx(P)

Fy(P)

Fz(P)

⎤

⎥

⎥

⎦

= ∇(m ·Bxyz(P)), (2)

where Fa(P) is the force at Position P along a-axis, m is

the swimmer’s magnetization vector. ma, shown below, is the

magnetization along a-axis. Equation (2) can be rewritten as:

Fxyz(P) =

⎡

⎢

⎢

⎢

⎣

mx
∂B̃x(P)

∂x
+my

∂B̃y(P)

∂x
+mz

∂B̃z(P)

∂x

mx
∂B̃x(P)

∂y
+my

∂B̃y(P)

∂y
+mz

∂B̃z(P)

∂y

mx
∂B̃x(P)

∂z
+my

∂B̃y(P)

∂z
+mz

∂B̃z(P)

∂z

⎤

⎥

⎥

⎥

⎦

· I,

Fxyz(P) = AF (P) · I (3)

The current needed to produce the desired flux density on

the swimmer can be calculated by inverting (1). The matrix

AB(P) ∈ IR3×6 in (1) is called the actuation matrix of flux

density and the matrix AF (P) ∈ IR3×6 in (3) is called the

actuation matrix of force. The system is under determined and

has an infinite number of solutions. Because both actuation ma-

trices have linearly independent rows, the right Moore-Penrose

pseudoinverse is performed to find a solution:

A
+ = A

∗ (A ·A∗)−1
, (4)

where A is an actuation matrix. A+ and A
∗ are defined as

the inverse and conjugate transpose of the matrix. The desired

current can be computed by substituting the inversed AB(P)
using (4) into (1).

The power PL lost in the system via Joule heating can be

calculated as PL = R · ‖I‖2, where R is the electric resistance

of the EMs and ‖I‖ is the Euclidean norm of the current vector.

The losses are proportional to ‖I‖2. The Moore-Penrose pseudo

inverse returns the solution that minimizes the Euclidean norm

of the current vector and therefore minimizes the power lost via

Joule heating [22].

B. Gradient Force Compensation

In our previous work [28], only the magnetic flux density

was controlled through the least squares solution of (1). This

solution produces a non-zero gradient in the general case, and

the force produced by the gradient was neglected. As in [17],

the actuation matrix is selected as (5) to reduce the effect of the

undesired gradient force:

ABF (P) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B̃x(P)

B̃y(P)

B̃z(P)

mx
∂B̃x(P)

∂x
+my

∂B̃y(P)

∂x
+mz

∂B̃z(P)

∂x

mx
∂B̃x(P)

∂y
+my

∂B̃y(P)

∂y
+mz

∂B̃z(P)

∂y

mx
∂B̃x(P)

∂z
+my

∂B̃y(P)

∂z
+mz

∂B̃z(P)

∂z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

Fig. 2. Numerical study on the effect of angle between actual swimmer
magnetization and approximated swimmer magnetization on the maximum
gradient force of the simulated workspace. Acronyms: “app” is “approximated”;
“act” is “actual”.

Here ma is the magnetization vector along a-axis. Thus, the flux

density and force are equal to:
[

Bxyz(P)

Fxyz(P)

]

= ABF (P) · I. (6)

One way to minimize the gradient force produced with the

desired current is to set the forces equal to zero in the left term

of (6). Because the actuation matrix ABF (P) is ill-conditioned,

it can saturate the control input, cause I to oscillate rapidly,

and trigger the safety protection of the power supplies. To fix

this problem, Tikhonov regularization was implemented. As

described in [30], if there are zero eigenvalues, the matrix is

impossible to invert. As eigenvalues approach zero, the matrix

tends toward rank-deficiency, and inversion becomes less sta-

ble. Tikhonov regularization suppresses the influence of small

eigenvalues in computing the inverse, filtering out the undesired

components. The pseduoinverse (4) with Tikhonov regulariza-

tion can be rewritten as:

A
+
BF

(P) = ABF
∗(P) (ABF(P) ·ABF

∗(P) + Γ · Γ∗)−1
,

where Γ = αI, α scales the regularization, and I is a identity

matrix. For our setup, I ∈ IR6×6 and α = 10−7 was selected so

that ABF ·ABF
∗ and ΓΓ∗ have the same order of magnitude.

The magnitude of α is small because the computations are in

meters (103 millimeter) and tesla (103 millitesla).

The magnetization vector of the swimmer was approximated

as a vector perpendicular to the heading of the control signal.

A numerical study on the gradient force was performed to

analyze the effect of approximating the swimmer magnetization

orientation. To simplify the numerical study in a 3D workspace,

the desired flux density vector and swimmer magnetization

vector were set to match the black arrow in Fig. 2(a). Below

the step-out frequency, the angle difference between the swim-

mer’s magnetization and the external magnetic field is less than

90◦, so the angle range in this numerical study is [−90◦, 90◦].
The coil currents were computed once using the approximated

magnetization vector, while AF(P) was calculated over the full
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Fig. 3. Gradient force along a circular path. The figures present the uncom-
pensated and compensated gradient force of 3 radii (0.02 m, 0.04 m, and 0.06 m)
magnitude of circle trajectory and 5 z-axis magnitudes (0 m, ± 0.02 m, and
± 0.04 m).

[−90◦, 90◦] range. This study simulated a 2 mT magnetic field,

and computed a total of 12.5 × 104 points in a 0.15 m cube

workspace. As shown in Fig. 2(b), the magnitude difference

for the uncompensated gradient force between approximated

and actual is about 8%, and the magnitude difference for the

compensated gradient force between approximated and actual

is about 5%.

To experimentally demonstrate the proposed method, the PI

controller from our previous work was implemented [17], [28].

The approximated gradient forceFxyz(P)was computed during

3D path-following. The desired circle trajectories used in the

experiments have five z-axis magnitudes (0 m, ± 0.02 m, and

± 0.04 m) and three radii magnitudes (0.02 m, 0.04 m, and

0.06 m). For each of these 15 cases, 10 trials were conducted.

In Fig. 3, the uncompensated force is plotted for five z-axis

magnitudes and for three radii (upper layer of each subplot).

The compensated force values are presented in the lower layer

of each subplot. As shown as Fig. 3, the uncompensated force is

symmetric about the z-axis. Because the mass of the swimmer is

12.4 mg and the weight is 1.22 × 10−4 N, the magnitude of the

uncompensated force ranges from 1.2 to 2.6 times the gravity

force on the swimmer. Moreover, it increases when the radius of

the circle trajectory increases because larger circle trajectories

are closer to the EM. After implementing the Tikhonov regular-

ization, the pseudo gradient force applied on the swimmer along

the path-following trajectories ranges from 0.5 to 0.9 times the

gravitational force on the swimmer. In practice, perhaps due

to poor estimates of the dipole orientation, this compensation

had a modest effect, reducing on average the tracking error by

28% of the uncompensated error for z = 0.04 m and reducing

the error’s standard deviation by 41%. While this compensation

was computationally efficient to implement, the path following

was only modestly improved, so the rest of the experiments in

this letter do not use gradient compensation.

C. Direct Model Reference Adaptive Control (MRAC)

Our previous work used a PI controller to guide the swimmer

in a 3D environment [17], [28]. To improve the tracking mean

error and standard deviation, that controller used a feed-forward

component to compensate for the acceleration of gravity and

drag. However, to control the swimmer and track its trajectory

in 3D, the swimmer mass, thrust coefficient and drag coefficients

were hand-tuned by a trial-and-error approach.

In contrast, the direct MRAC is a technique used for adjusting

an unknown time-variant or time-invariant plant in real-time to

regulate the plant to the desired system dynamics. The desired

system dynamics is called the reference system (or model).

Because our system is a nonlinear time-variant system, MRAC

addresses the robustness issues of nonlinearity and model uncer-

tainty without approximating the dynamic or kinematic parame-

ters. Demonstrations and analysis of direct MRAC performance

on a nonlinear system are presented in [31]. Also, the simulations

and experiments in [32], [33], proved that a MRAC controller can

provide a better convergence speed and tracking performance

than a PI controller. The adaptive adjustment mechanism of

MRAC can be derived from the rules developed in [34] or a

candidate Lyapunov function [35]. The general MRAC structure

is shown as following, and the system plant is defined as:

ẋp(t) = Apxp(t) +Bpup(t),

yp(t) = Cpxp(t),

where Ap, Bp, Cp are the state-space matrix of the plant, and

xp(t), yp(t), up(t) are the states, output and input of the plant.

The reference model is defined as:

ẋm(t) = Amxm(t) +Bmum(t),

ym(t) = Cmxm(t),

where Am, Bm, Cm are the state-space matrix of the reference

model,Am is a Hurwitz matrix (the spectrum ofAm is composed

of eigenvalues with negative real parts). xm(t), ym(t) are the

states, output of the reference model, and um(t) is the trajectory

input for the reference model.

In this letter, the MRAC algorithm is derived based on the

Command Generator Tracker (CGT) from [31]. The derivation

and stability analysis of the adaptive controller is presented and

demonstrated in [31]. The control diagram is shown in Fig. 4(b).

r(t) =

⎡

⎢

⎢

⎣

ey(t)

xm(t)

um(t)

⎤

⎥

⎥

⎦

, (7)

K(t) = Ka(t) +Kn(t) or equivalently, (8)

K(t) =
[

Ke(t),Kx(t),Ku(t)
]

, (9)

up(t) = K(t)r(t), (10)
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Fig. 4. System overview: (a) Identifying the band-pass frequency of one coil. (b) Control system block diagram. (c) Hardware system block diagram.

The adaptive controller is defined by equations (7) to (10),

where r(t) is the input of the adaptive adjustment mechanisms,

ey(t) � ym(t)− yp(t), andK(t) is the sum of the adaptive gains

Ka(t) and the nominal gains Kn(t) as (8), which can also be

represented by gains for each state in r(t) as (9). Finally, the

system input is state feedback on r(t) as (10). The adaptive

adjustment mechanisms of K(t) are:

K̇a(t) = (ym(t)− yp(t)) r
T (t)Υ, Υ > 0 (11)

Kn(t) = (ym(t)− yp(t)) r
T (t)Ῡ, Ῡ > 0. (12)

Here Υ and Ῡ should be positive definite and positive semidefi-

nite adaption coefficient matrices. In this work, Υ = Ῡ = 10I3.

The magnetic swimmer system exhibits overshoot and damping,

so a second-order system was selected as the reference model

for each degree of freedom. Thus, the reference model’sAm and

Bm are defined as:

Am =

[

0 I3

−ωn
2
I3 −2ωnζI3

]

,

Bm =
[

0 ω2
nI3

]T

,

where In is the identity matrix of size n. The state of the

reference model xm is:

xm =
[

Xm Ym Zm Ẋm Ẏm Żm

]T

,

where Xm, Ym, and Zm are displacements along each axis,

and Ẋm, Ẏm, and Żm are the velocity along each axis. The

plant has the same states as the reference model. The position

information can be gained by the top and right-side cameras, and

the velocity can be approximated by the change in the position

measurements multiplied by the frame rate. The damping ratio

of the reference model is selected to be critically damped (ζ =
1), with natural frequency ωn = 5 rad s−1, yielding a 90% rise

time of about 0.8 s. The selected parameters (Υ, Ῡ, ζ, ωn) were

chosen through a trial-and-error approach seeking to minimize

the mean tracking error.

III. EXPERIMENTAL SETUP AND RESULTS

The closed-loop experiments presented in this letter include

three parts: (1) stability studies on swimmer pitch, (2) controller

comparison between PI controller and MRAC, and (3) following

helical and back-and-forth paths.

A. Experimental Setup

The magnetic manipulator is a lab-built robotic system able

to control miniature swimmers in 3D [17], [28]. A picture of

the magnetic manipulator system is shown in Fig. 1. It pro-

duces a magnetic field to apply a torque and/or a force on a

magnetic object. The desired flux density, force, and torque

can be controlled in 3D using the inverse magnetics calculation

described in Section II. The water-filled, cube-shaped workspace

for the spiral-type swimmer is designed with a side length of

150 mm and placed in the center of the manipulator. The external

magnetic field is generated via three pairs of electromagnetic

coils placed along the xyz-axes. The electromagnet pairs are

placed on opposite sides along the same axis and are separated

by 300 mm. Current-mode power supplies are used to power

the whole system. In this mode, each power supply internally

performs a current regulation. Controlling the current rather than

the voltage is preferred because the magnitude of the produced

magnetic field is proportional to the current. Moreover, the

magnetic field has the same frequency as the current. As shown in

Fig. 4(a), the band-pass of the magnetic system is about 100 Hz,

where the output drops by −3 dB. Each coil is connected to a

set of two Kepco BOP 20 − 50 (20 A, 50 V) power supplies

connected in series. The whole power system can provide 20 A

and 100 V to each coil (12 kW total power), and a National

Instruments (NI) Ethercat input/output interface produces six

analog outputs to control the power supplies. A thermocouple

was attached to each electromagnet to detect overheating. An

NI industrial controller IC 3173 is used as the system processor.

Two Basler aCA2040 cameras are placed on two orthogonal

sides of the workspace and measure the position of swimmers

in 3D at 350-400 frames per second. The measurements from
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TABLE I
SWIMMER DESIGNS. ALL SWIMMERS ARE 6 MM LONG AND 2.5 MM IN DIAMETER

Fig. 5. Path-following results of swimmers using PI control.
(a) Path-following error as a function of angle around the circle. (b) Box
and whisker plots of the average error for each swimmer. Each box and whisker
marker represents 15 circular laps.

the two cameras are used as feedback for closed-loop control.

The system hardware diagram is shown in Fig. 4(c).

For the experimental studies presented in the following sec-

tions, the swimmer moved in a workspace filled with water.

Compared to nano or micro helical robots which swim at low

Reynolds number (Re ≤ 10−3), our millimeter-scale spiral-type

swimmer is designed to swim at relatively high Re environment

(e.g, for this case, Rewater ≈ 727). All swimmer designs pre-

sented in Table I are 3D-printed by a ProJet 3510 HD Printer.

The length and diameter of all swimmers are 6 mm and 2.5 mm.

B. Experimental Results

1) Stability Studies: To explore how design affects swim-

ming stability, five thread-pitch values were experimentally

studied. The “stability” is evaluated by the mean and standard de-

viation (std) of path-following error. Lower mean path-following

error corresponds with better stability. All swimmers were con-

trolled by a PI controller to follow a desired circle trajectory

with z-axis = 0mm, radius = 60 mm, which is at the center of

the workspace, and a 68 Hz rotating frequency. The pitches of

the swimmers (shown in Table I) vary from 1 mm to 3 mm with

0.5 mm intervals. 15 trials were conducted for each design. The

path-following tracking error as a function of angular progress

around the circle is shown in Fig. 5(a). From the box and whisker

Fig. 6. PI controller vs. MRAC. (a) The path-following error as a function of
angle around the circle for a 2 mm pitch swimmer. (b) The box and whisker
plots of each swimmer and controller, and each box and whisker contains
15 trials. (c) The path-following error as a function of angle around the circle
for a 3 mm pitch swimmer. (d) The adaption process of MRAC with the 3 mm
pitch swimmer.

plot shown in Fig. 5(b), the 2.0 Swimmer had the best stability

(mean 7.4 mm, std = 2.7 mm), and the 3.0 Swimmer had the

worst stability (mean= 15.4 mm, std = 1.5 mm).

2) Controller Comparison: To better control and guide the

spiral-type swimmer in a 3D environment, a direct model refer-

ence adaptive controller (MRAC) was implemented. In this sec-

tion, we experimentally compared path-following performance

using PI controller and MRAC using both the best and the worst

swimmers. The rotation frequency of both experiments is set as

a constant value of 68 Hz. The radius of the desired circle tra-

jectory is 60 mm, and the magnitude of z-axis is 0 mm. 15 trials

were conducted for each swimmer and controller combination.

To reduce the on-line adaption and convergence process time,

the path-following performances of MRAC shown in Fig 6(a)

and (c) are the results after the initial adaption process, and the

error is defined as the Euclidean distance between the swimmer

position and the closest point on the desired path.

The path-following controller comparison results for a 2 mm

pitch swimmer are shown in Fig. 6(a). Because the 2.0 Swimmer

was more stable than the other swimmers, the curves of both

controllers are close to each other. However, the results of MRAC

are concentrated in a low band rather than oscillating as with the

PI controller. The mean and standard deviation (std) for the PI
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TABLE II
CONTROLLER COMPARISON

Fig. 7. Path-Following on a Helical Trajectory and Forward & Backward
Motion. (a) 10 cycles of path-following on a helical trajectory through six
holes, each 8 mm in diameter. (b) 10 cycles of path-following using forward and
backward motions. (c) Snapshot during forward motion. (d) Snapshot during
backward motion. See video attachment [36], https://youtu.be/U3xE5grzTLc.

controller and MRAC are shown in Table II. Compared to the

PI controller, the MRAC reduced the mean error by 56.75% and

the std by 44.44%, using the 2.0 Swimmer.

The path-following error curves of the 3 mm pitch swimmer

are shown in Fig. 6(c), and the mean ± std for the PI con-

troller and MRAC are shown in Table II. As these results show,

the MRAC significantly improved the tracking performance of

the 3.0 Swimmer. Compared to the PI controller, the MRAC

reduced the mean error by 75.0%. The MRAC path-following

performance of both swimmers is within one body length of the

swimmer (6 mm), considering the mean error ± std. A box and

whisker plot comparing these controllers is shown in Fig. 6(b),

which more intuitively shows the performance gap between two

controllers. The on-line adaption and convergence process of

3 mm pitch swimmer starting from the beginning is shown in

Fig. 6(d). The mean error decreased from 10 mm to 5 mm, and

took about 100 sec.

C. Path-Following on Two 3D Trajectories

See attachment for videos of path-following [36]. The 2.0

Swimmer was used to follow a desired helical path using MRAC.

The swimmer took off from the tank on the bottom left corner,

as shown in Fig. 7(a), and went through three pairs of 8 mm

holes on the transparent acrylic board with three heights. The

swimmer’s path-following trajectory is presented in Fig. 7(a),

which contains 10 trials. The path-following mean error of this

case is 4.2 ± 4 mm.

The ability to swim forwards and in reverse enables maneu-

vering in tight environments. These swimmers have a sharp front

and a blunt back end, so swimming forwards requires different

control values than swimming backwards. To achieve backward

path-following, one additional set of MRAC parameters was

implemented in the program, and the body frame W -axis of the

swimmer was flipped 180◦ during the backward movement. The

forward and backward parameters of MRAC can be switched

according to the desired trajectory and movement direction. The

forward motion is defined with the helix tip leading as shown in

Fig. 7(c), and the backward motion is defined with the tail leading

as shown in Fig. 7(d). As shown in Fig. 7(b), the swimmer started

from Point A, and moved forward to Point B. Then the swimmer

moved backward from Point B to Point A with its tail leading.

The forward motion trajectory of the swimmer is plotted in blue,

and the backward motion trajectory is plotted in red. The plot

shown in Fig. 7(b) contains 10 trials. The mean error of the

forward motion is 2.7 ± 1.6 mm, and the mean error of the

backward motion is 3.5 ± 2.0 mm.

IV. CONCLUSIONS AND FUTURE WORK

This letter reports an efficient on-line method to calculate

and compensate for the gradient force applied on a rotating

magnetic swimmer during 3D guidance. To evaluate the rela-

tionship between pitch and stability of the swimmer design,

five thread-pitch values were experimentally investigated. A

swimmer with a 2.0 mm pitch had the best stability among

all designs tested. Additionally, to improve the path-following

accuracy of the 3D guidance, a direct model reference adap-

tive controller (MRAC) was implemented and compared with

the PI controller proposed in our previous work. Switching

from a PI controller to MRAC significantly improved the path-

following performance. The path-following mean error is 3.8 ±
1.8 mm, which is smaller than one body length of the swimmer

(6 mm). The path-following performance on a complex trajec-

tory, and forward & backward motion using MRAC were also

analyzed.

An L1 adaptive controller may also improve the path-

following in a 3D environment. As analyzed and discussed

in [37], an L1 adaptive controller may provide more stability

margin and better disturbance rejection than MRAC.

Future work could study the implementation of sensors to

measure the orientation of the permanent magnet in real time.

The estimation of the magnet’s orientation would improve mag-

netic gradient compensation and enable closed-loop torque con-

trol. An array of Hall effect sensors could be used to estimate the

position and orientation of a tetherless magnetic robot [38]. This

solution is challenging to implement because the magnetic field

produced by the EMs must be subtracted from the measurement

to obtain the field produced by the miniature permanent magnet

only. The field produced by this permanent magnet decreases

rapidly with distance. The magnetic field measured at the loca-

tion of the probes will be dominated by the field produced by

the EMs.

Authorized licensed use limited to: University of Houston. Downloaded on April 06,2020 at 23:01:19 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: 3D PATH-FOLLOWING USING MRAC ON A MILLIMETER-SCALE SPIRAL-TYPE MAGNETIC ROBOT 1571

ACKNOWLEDGMENT

All opinions and conclusions or recommendations expressed

in this work reflect the views of authors not our sponsors.

A provisional patent application was filed as U.S. App. No.

62/778,671.

REFERENCES

[1] B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, “Microrobots for minimally
invasive medicine,” Annu. Review Biomed. Eng., vol. 12, pp. 55–85, 2010.

[2] S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and
B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled
swimming, and cargo transport,” Adv. Mater., vol. 24, no. 6, pp. 811–816,
2012.

[3] K. E. Peyer, L. Zhang, and B. J. Nelson, “Bio-inspired magnetic swim-
ming microrobots for biomedical applications,” Nanoscale, vol. 5, no. 4,
pp. 1259–1272, 2013.

[4] F. Qiu and B. J. Nelson, “Magnetic helical micro-and nanorobots: Toward
their biomedical applications,” Engineering, vol. 1, no. 1, pp. 021–026,
2015.

[5] H. C. Berg and R. A. Anderson, “Bacteria swim by rotating their flagellar
filaments,” Nature, vol. 245, no. 5425, 1973, Art. no. 380.

[6] E. M. Purcell, “Life at low reynolds number,” Amer. J. Phys., vol. 45, no. 1,
pp. 3–11, 1977.

[7] T. Honda, K. Arai, and K. Ishiyama, “Micro swimming mechanisms
propelled by external magnetic fields,” IEEE Trans. Magn., vol. 32, no. 5,
pp. 5085–5087, 1996.

[8] K. E. Peyer, S. Tottori, F. Qiu, L. Zhang, and B. J. Nelson, “Magnetic
helical micromachines,” Chemistry–A Eur. J., vol. 19, no. 1, pp. 28–38,
2013.

[9] T. Xu, J. Yu, X. Yan, H. Choi, and L. Zhang, “Magnetic actuation based
motion control for microrobots: An overview,” Micromachines, vol. 6,
no. 9, pp. 1346–1364, 2015.

[10] A. W. Mahoney, J. C. Sarrazin, E. Bamberg, and J. J. Abbott, “Velocity
control with gravity compensation for magnetic helical microswimmers,”
Adv. Robot., vol. 25, no. 8, pp. 1007–1028, 2011.

[11] M. E. Alshafeei, A. Hosney, A. Klingner, S. Misra, and I. S. Khalil,
“Magnetic-based motion control of a helical robot using two synchronized
rotating dipole fields,” in Proc. 5th IEEE RAS/EMBS Int. Conf. Biomed.

Robot. Biomechatronics, 2014, pp. 151–156.
[12] T. Xu, Y. Guan, J. Liu, and X. Wu, “Image-based visual servoing of helical

microswimmers for planar path following,” IEEE Trans. Autom. Sci. Eng.,
vol. 17, no. 1, pp. 325–333, Jan. 2020.

[13] K. Yoshida and H. Onoe, “Soft spiral-shaped micro-swimmer with propul-
sion force control by pitch change,” in Proc. 20th Int. Conf. Solid-State

Sensors, Actuators Microsyst. Eurosensors XXXIII (TRANSDUCERS &

EUROSENSORS XXXIII), 2019, pp. 217–220.
[14] T. Xu, G. Hwang, N. Andreff, and S. Régnier, “Planar path following

of 3-D steering scaled-up helical microswimmers,” IEEE Trans. Robot.,
vol. 31, no. 1, pp. 117–127, 2015.

[15] A. Oulmas, N. Andreff, and S. Régnier, “Closed-loop 3D path following
of scaled-up helical microswimmers,” in Proc. IEEE Int. Conf. Robot.

Autom., 2016, pp. 1725–1730.
[16] X. Wu, J. Liu, C. Huang, M. Su, and T. Xu, “3-D path follow-

ing of helical microswimmers with an adaptive orientation compen-
sation model,” IEEE Trans. Autom. Sci. Eng., pp. 1–10, 2019, doi:
10.1109/TASE.2019.2947071.

[17] J. Leclerc, B. Isichei, and A. T. Becker, “A magnetic manipulator
cooled with liquid nitrogen,” IEEE Robot. Autom. Lett., vol. 3, no. 4,
pp. 4367–4374, Oct. 2018.

[18] A. J. Petruska and B. J. Nelson, “Minimum bounds on the number of
electromagnets required for remote magnetic manipulation,” IEEE Trans.

Robot., vol. 31, no. 3, pp. 714–722, Jun. 2015.

[19] J. Van Bladel and J. Van Bladel, Singular Electromagnetic Fields and

Sources. Oxford, U.K.: Clarendon, 1991.
[20] T. W. Fountain, P. V. Kailat, and J. J. Abbott, “Wireless control of magnetic

helical microrobots using a rotating-permanent-magnet manipulator,” in
Proc. IEEE Int. Conf. Robot. Autom., 2010, pp. 576–581.

[21] A. W. Mahoney and J. J. Abbott, “Managing magnetic force applied to
a magnetic device by a rotating dipole field,” Appl. Phys. Lett., vol. 99,
no. 13, 2011, Art. no. 134103.

[22] M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, and
B. J. Nelson, “OctoMag: An electromagnetic system for 5-DoF wireless
micromanipulation,” IEEE Trans. Robot., vol. 26, no. 6, pp. 1006–1017,
Dec. 2010.

[23] L. Yang, X. Du, E. Yu, D. Jin, and L. Zhang, “DeltaMag: An electromag-
netic manipulation system with parallel mobile coils,” in Proc. Int. Conf.

Robot. Autom., 2019, pp. 9814–9820.
[24] K. Ishiyama, M. Sendoh, A. Yamazaki, and K. Arai, “Swimming micro-

machine driven by magnetic torque,” Sensors Actuators A: Phys., vol. 91,
no. 1/2, pp. 141–144, 2001.

[25] K. Ishiyama, K. Arai, M. Sendoh, and A. Yamazaki, “Spiral-type micro-
machine for medical applications,” in Proc. Int. Symp. Micromechatronics

Human Sci. (Cat. No. 00TH8530), 2000, pp. 65–69.
[26] K. Ishiyama, M. Sendoh, and K. Arai, “Magnetic micromachines for

medical applications,” J. Magnetism Magn. Mater., vol. 242, pp. 41–46,
2002.

[27] H. Zhou, G. Alici, T. D. Than, and W. Li, “Modeling and experimental
characterization of propulsion of a spiral-type microrobot for medical
use in gastrointestinal tract,” IEEE Trans. Biomed. Eng., vol. 60, no. 6,
pp. 1751–1759, Jun. 2013.

[28] J. Leclerc, Z. Haoran, and A. T. Becker, “3D control of rotating millimeter-
scale swimmers through obstacles,” IEEE Int. Conf. Robot. Autom., 2019,
pp. 8890–8896.

[29] J. C. Simpson, J. E. Lane, C. D. Immer, and R. C. Youngquist, “Simple ana-
lytic expressions for the magnetic field of a circular current loop,” , NASA,
Kennedy Space Center, Florida, Tech. Rep., 2001. [Online]. Available:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140002333.pdf

[30] A. N. Tikhonov, A. Goncharsky, V. Stepanov, and A. G. Yagola, Numerical

Methods for the Solution of Ill-Posed Problems, vol. 328. Belrin, Germany:
Springer, 2013.

[31] H. Kaufman, I. Barkana, and K. Sobel, Direct Adaptive Control Algo-

rithms: Theory and Applications. Berlin, Germany: Springer, 2012.
[32] D. Zhang and B. Wei, “Convergence performance comparisons of PID,

MRAC, and PID+ MRAC hybrid controller,” Frontiers Mech. Eng., vol. 11,
no. 2, pp. 213–217, 2016.

[33] S. Xiao, Y. Li, and J. Liu, “A model reference adaptive PID control
for electromagnetic actuated micro-positioning stage,” in Proc. IEEE Int.

Conf. Autom. Sci. Eng., 2012, pp. 97–102.
[34] P. Jain and M. Nigam, “Design of a model reference adaptive controller

using modified mit rule for a second order system,” Advance Electron.

Electric Eng., vol. 3, no. 4, pp. 477–484, 2013.
[35] T. Yucelen, “Model reference adaptive control,” Wiley Encyclopedia of

Electrical and Electronics Engineering, American Cancer Society, 2019,
pp. 1–13, doi: 10.1002/047134608X.W1022.pub2.

[36] H. Zhao, J. Leclerc, and A. T. Becker, “3D path-following using a
millimeter-scale magnetic robot,” 2020. [Online]. Available: https://youtu.
be/U3xE5grzTLc

[37] E. Kharisov, N. Hovakimyan, and K. strm, “Comparison of several adap-
tive controllers according to their robustness metrics,” in Proc. AIAA Guid.,

Navigation, Control Conf., 2012. [Online]. Available: https://arc.aiaa.org/
doi/abs/10.2514/6.2010-8047

[38] D. Son, S. Yim, and M. Sitti, “A 5-D localization method for a mag-
netically manipulated untethered robot using a 2-D array of hall-effect
sensors,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 708–716,
Apr. 2016.

Authorized licensed use limited to: University of Houston. Downloaded on April 06,2020 at 23:01:19 UTC from IEEE Xplore.  Restrictions apply. 


