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Abstract

Due to construction costs, the human effects of innovations in architectural design can be
expensive to test. Post-occupancy studies provide valuable data about what did and did not
work in the past, but they cannot provide direct feedback for new ideas that have not yet
been attempted. This presents designers with something of a dilemma. How can we harness
the best potential of new technology and design innovation, while avoiding costly and
potentially harmful mistakes? The current research use virtual immersion and biometric data
to provide a new form of extremely rigorous human-response testing prior to construction.
The researchers’ hypothesis was that virtual test runs can help designers to identify potential
problems and successes in their work prior to its being physically constructed. The pilot study
aims to develop a digital pre-occupancy toolset to understand the impact of different interior
design variables of learning environment (independent variables) on learning performance
(dependent variable). This project provides a practical toolset to test the potential human
impacts of architectural design innovations. The research responds to a growing call in the
field for evidence-based design and for an inexpensive means of evaluating the potential
human effects of new designs. Our research will address this challenge by developing a
prototype mobile brain-body imaging interface that can be used in conjunction with virtual
immersion.
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INTRODUCTION

The idea of studying behavioral patterns to investigate
human responses to architectural design has been around
for many years, but it is only recently that this approach
has consolidated into the widely recognized paradigm
known as evidence-based design (EBD). This approach to
architectural design relies on the careful empirical study of
human responses and outcomes to inform design
decisions (Cama, 2009; Edelstein & Macagno, 2012;
Hamilton & Watkins, 2009). Many previous investigations
have provided evidence that EBD practices can
successfully improve the overall perceived quality of the
architectural environment as well as specific measures of
building performance (Ulrich, 2001, 2006; Hamilton &
Watkins, 2009; Sailer, 2009; Lawson, 2010). The EBD
approach has become particularly influential in healthcare
settings, where it has been associated with improvements
in the quality of care, greater patient satisfaction, and a

decrease in the number of medical errors (Ulrich et al.,
2008).

Current technology encourages designers to introduce
more innovation into their work. While this innovation
often leads to exciting and effective results, it also takes
us away from tried-and-true solutions, into relatively
uncharted territory. Scholars have demonstrated that the
characteristics of the built environment can have a
significant effect on human well-being. Specific design
components have been strongly correlated with health
outcomes (Truong & Ma, 2006; Wheaton et al., 2015), as
well as with human efficiency and productivity (Day,
2017). Renewed interest in human-centered design in
recent decades has led researchers to document the
contributions of architectural design for reducing stress,
improving mood, and enhancing visual memory, among
other benefits (Ulrich et al., 1991; Sallis et al., 2006).
Numerous studies have investigated different architectural
styles and design-choices and how they affect human
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experiences (Choo et al., 2017; Vecchiato et al., 2015;
Vartanian et al., 2013; Roe et al., 2013; Banaei et al.,
2015; Shin et al., 2014; Kiiller et al., 2009).

Unfortunately, when innovative designs are created, it is
difficult to accurately evaluate their full human effects,
positive or negative, until after the buildings are
constructed and put into use. This presents contemporary
designers with a dilemma. How can we harness the best
potential of the innovation allowed by today’s technology,
while avoiding costly and potentially harmful mistakes?

The goal of this research was to examine the effects of
building-design on human factors (stress, anxiety, visual
memory, etc.), by measuring the responses of participants
as they interact with different architectural designs using
Virtual Reality technology. The researchers’ hypothesis
was that virtual “test runs” can help designers to identify
potential problems and successes in their work prior to its
being physically constructed.
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Arial 8. Lee and Lee (1991) rated the paper as “the best in its
field” (p.14)

The learning environment includes social, -cultural,
temporal, physical (built and natural), and sometimes
virtual aspects (McGregor, 2004; OECD, 2014). Student
performance has been shown to have a significant
relationship to the quality of the learning environment
(Chan & Richardson, 2005). Poor-quality environments
can create barriers such as impaired concentration,
boredom, and claustrophobia (Mendell & Heath, 2005),
and thereby lead to poorer educational outcomes. A high-
quality learning environment, in contrast, supports
engagement and inquiry, and accounts for a diverse
range of developmental needs, learning styles, and
abilities (Martin, 2010). Despite the well-established link
between learning environments and student outcomes,
the specific elements within these environments that
affect students have not been rigorously broken down and
empirically investigated. This is especially true in relation
to the architectural environment. Temple (2007) notes
that, “Where connections between the built environment
and educational activities are made, the basis for doing so
tends to be casual observation and anecdotes rather than
firm evidence.” Further research is needed to help identify
the individual elements of the physical environment that
might be important from a design perspective in order to
help support student achievement. (Kaup et al., 2013;
Barret et al., 2015). The work that has been done in this
area suggests, at best, a number of general themes
regarding the optimal design of learning spaces. Perhaps
the most dominant theme is that these spaces need to be
flexible, both pedagogically and physically, so that they
can be adjusted to reflect the nuances of different

knowledge areas and specializations, as well as different
learning styles (Butin, 2000). This awareness reflects the
growing understanding among teachers of the importance
of active and collaborative learning, student-faculty
interaction, enriching educational experiences, and
opportunities for intellectual creativity. Along with this
emerging new pedagogy comes an increased interest in
transforming traditional classrooms to a new learning
environment that can more easily accommodate
collaborative and active learning in a technology-rich
setting (Brooks et al., 2012).

Other specific factors that have been associated with
higher student performance in the existing literature
include the incorporation of naturalness (in light, sound,
temperature, air quality, and links to nature) (Crandell &
Smaldino, 2000; Daisey et al., 2003; Wargocki & Wyon,
2007; Barret et al., 2015); learning environments that
create a greater sense of individuality, ownership, and
flexibility (Zeisel et al., 2003; Ulrich, 2004; Barret et al.,
2015); and environments that provide greater stimulation
and sensory impact (Kuller et al., 2009; Fisher et al.,
2014; Barret et al., 2015). As can be seen in the dating of
these citations, this is a relatively new area of study, and
there is a lot of hope in the literature that future
investigations can help to further isolate the relevant
factors and contribute to learning outcomes by
implementing these concepts and techniques.

EXPERIMENTAL DESIGN AND
PROCEDURE

The researchers’ primary objective was to create a
standardized and intuitive toolset that can be used by
designers to help evaluate their work.
Electroencephalography (EEGs) will be used, along with
other noninvasive biophysical measurements and self-
reporting, to objectively analyze the participants’
conscious and subconscious responses to different
building designs.

We collected brain activity and relative spatial location
from the participants that elect to wear the EEG headset.
We also collected voluntarily self-reported non-identifiable
information such as age, gender, race, ethnicity, whether
the participants consume caffeine, alcohol or recreational
drugs, whether they have, or have had in the past stroke,
concussion, seizures, movement disorders or other
neurological or physical conditions, the participant's
current occupation.

Our intention with the various measurements was two-
fold: to quantify the human stress response and assess
performance on a number of cognitive tasks. Based on
previous studies examining the first of these (Healey and
Picard, 2005), we incorporated three biometrics
associated with the highest correlation to self-reported
stress—electrocardiography  (ECG), galvanic  skin
response (GSR), and electroencephalography (EEG).
Additionally, an accelerometer and electrooculography
(EOG) sensors were attached to or near the EEG cap to
track head and eye movement in each environment. All
data was collected at 500 Hz and synchronized using the
64-channel ActiCHamp module (Brain Products GmbH,
Germany) with Ag/AgCI active electrodes. A total of 63
electrodes were used (57 for EEG arranged according to
the international 10-20 placement system, 4 for EOG and
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Figure 2: The experimental setup for data recording: (a) EEG electrode locations, (b) EOG electrode locations, and (c) all sensor

equipment as worn by a study participant. Source: authors.

2 for ECG). The impedance of each electrode was kept
below 50 kQ, and often below 20 kQ, at all times. This
was ensured throughout the study with careful placement
of the virtual reality headset. Figure 2 shows the electrode
and equipment placement on a study participant.

The data was recorded using the BrainVision Recorder
software (Brain Products GmbH, Germany) and
synchronized to the participants’ responses and the virtual
reality environment using the Lab Streaming Layer
program (Kothe 2014). Prior to entering each new room
iteration or segment of the experiment, participants were
prompted to press a specific button, programmed to act
as a marker on the recorded biometric data. Screen
recordings were also collected throughout the study.

Following an introductory survey and neutral baseline
recordings, the study was segmented into two main parts.
Experiment “A” shown in blue in Figure 2 consisted of five
memory tasks—the Benton Test, Visual Memory Test,

Stroop Task, Digit Span Task and a mathematical
problem-solving task—followed by self-reported stress
and mental fatigue on a 10-point Likert scale. Each task
was either consistently timed or a pre-determined number
of questions to ensure homogeneity between room
conditions. Instructions were provided prior to beginning
the study for participants unfamiliar with the tasks.
Participants were asked to complete the same tasks in a
real classroom, a VR representation of it, and in nine
other classroom iterations. Experiment “B” shown in red in
Figure 2 initially asked subjects to navigate along a pre-
selected path through a cityscape featuring __ buildings
with unique facades, after which they were asked
questions regarding what they remember of the path they
took. This was repeated once more so that participants
could navigate the cityscape knowing the type of
memorization questions that would be asked of them.
Finally, they were instructed to design the fagade of the
‘ideal landmark in their favorite city” by modifying
characteristics such as height, base geometry and twist
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Figure 3: Experimental timeline with distinct segments of the study indicated by color. Source: authors.

angle in Grasshopper 3D and Rhinoceros. No prior
knowledge of either program was expected of
participants; they were shown how to rotate their view of
the building and instructed to toggle sliders for each of
characteristics. Participants were given a final survey at
the culmination of the study.

The ten classroom designs were selected variations of
significant interior features such as color, height, width,
roundness and incorporation of natural elements. The first
perfectly replicated the real classroom participants
experienced at the beginning of the study.

All analysis of collected signals was conducted using open
source EEGLAB software (Delorme and Makeig, 2004)
and other MATLAB functions related to LSL. The H-«
filtering program (Kilicarslan 2016) was used to initially
pre-process the EEG and EOG signals and eliminate
ocular artifacts. The data was subsequently pre-
processed following a modified PREP pipeline (Bigdely-
Shamlo 2015) and band-pass filtered between 0.1 and
100Hz before processing according to independent
component analysis and dipole fitting.

Each additional biometric signal collected was individually
band-pass or high-pass filtered. From there, values such
as heart rate, heart rate variability, average GSR power
and average magnitude of acceleration were calculated to
be compared.

RESULTS

At this stage, we have completed a pilot study with eight
individual and are working on collecting the data for the
main study. In this section we briefly explain out first data
analysis comparing three learning environment. Our
independent variables in design of this room were height
of classroom, view to nature, and room texture. We
analyzed the effect of these variables on learning
performance of the participants during the scanning
session separately. The SAM Test demonstrated that
change in the design element had a significant effect on
learning performance, Z = —1.32, P < 0.05. Specifically,
participants were more likely to have better learning
performance if they had natural light with view to nature
comparing to the room without windows Z = -1.27, P =
0.021. Following the completion of EEG recording,
participants were presented with all of the stimuli that they
had viewed in the scanner once again, and asked to rate
each stimulus on pleasantness (using a five-point scale
with anchors “very unpleasant” and “very pleasant”) and
on learning (using a five-point scale with anchors “not
learning-friendly at all” and “very learning-friendly”).

Nonparametric partial correlation was computed to
determine the relationship between design and the
learning performance whilst controlling for pleasure. There
was a positive significant partial correlation between
classrooms with more simple environment comparing to
the one with full texture (p = 0.037). However, classroom
with higher ceiling did not show an impact on theta
activity.

Figure 4: The research participants completed
learning tasks in (a) the real classroom and (b) a
virtual rendering of the classroom. Source: authors.



IMPACT ON SOCIETY AND ON THE
FUTURE OF DESIGN

This study has the potential to provide designers,
educators, and psychologists with an important toolset for
evaluating the relationship between architectural form and
human experience. It can also provide valuable data to
help neuroscientists understand cognitive reactions to
spatial experience. Sociologists may be interested in
using our data to evaluate relationships between
demographic variables (ethnicity, nationality,
socioeconomic background, etc.) and cognitive responses
to architecture. Engineers may be interested in viewing
our prototype as inspiration for the design of next-
generation, context-aware, brain-body imaging (MoBl)
technology.
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Last but not least, the construction of a broad, multi-modal
amalgamated dataset based on comparative design
studies using our system could contribute significantly to
the optimization of architectural design and improvements
in the human quality of our built environment. The ultimate
benefit to the public will be in the form of improved health,
creativity, productivity, and a more satisfying architectural
experience that can come from better human-centered
design (Kalantari, 2017). By including demographic
variables in the analysis, designers can become more
aware of the effects of the built environment on specific
populations, including disabled individuals, women, and
other minority groups.

CONCLUSION
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Figure 7: Data obtained from the pilot study participant for five conditions (indicated in columns): baseline eyes open, baseline eyes
closed, real classroom, virtual classroom, and virtual classroom with added windows. The figure rows show the initial 5s of data from

selected EEG, EOG, EKG and head-acceleration channels.
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Figure 8: Data obtained from the pilot study participant for five conditions (indicated in columns): baseline eyes open, baseline
eyes closed, real classroom, virtual classroom, and virtual classroom with added windows. The figure rows show (top) total alpha
(8-12 Hz) and theta (4—8 Hz) power in all EEG channels, and (bottom) raw and tonic GSR (skin conductivity) signals.
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Figure 9: Correlation analysis between different non-neural biomarkers. Source: authors.

This project provides a practical toolset to test the
potential human impacts of architectural design
innovations. The research responds to a growing call in
the field for evidence-based design and for an and for a
and for an inexpensive means of evaluating the potential
human effects of new designs. Our research will address
this challenge by developing a prototype mobile brain-
body imaging interface that can be used in conjunction
with virtual immersion. This allows participants’ conscious
and unconscious reactions to new architectural designs to
be evaluated before the buildings’ physical construction.

To test the idea, we have conducted several pilot studies.
In these experiments, we evaluated biometric data
obtained from participants who “walked” through an
architectural space in a Virtual Reality construct. We

analyzed the data (which included participant
demographic information), to determine if any broad and
useful conclusions could be drawn about human
responses to different building designs on the basis of a
virtual experience. The results of the experiment indicated
a significant relationship between different virtual
architectural forms and measured stress levels.

Current information technology has allowed many fields to
benefit from “big data” analysis in their optimization of
resources. However, design fields are somewhat lacking
in this area, due to the difficulty of obtaining quantitative
data about human responses to design and the
tremendous investment required to construct and test new
architectural ideas. This study has the potential to provide
designers, educators, and psychologists with an important



toolset for evaluating the relationship between
architectural form and human experience. The
construction of a broad, amalgamated data-set based on
these evaluations could contribute significantly to the
optimization of design and the quality of our built
environment. By including demographic variables in the
analysis, designers can become more aware of the effects
of the built environment on specific populations, including
disabled individuals, women, and other minority groups.

RESEARCH DESIGN
LABS FIRMS

@ @
®

@ RESULTS
UPLOADED

ONLINE DATABASE
DATA COLLECTION &

ANALYZES

Op®
@ J

Figure 10: Broader Impact of the Research.
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