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Abstract we apply the double-beamforming tomography to a monthlong temporary dense seismic array
to obtain high-resolution images of the San Jacinto Fault's damage zone. We obtain Rayleigh waves between
0.3- and 0.8-s periods via vertical-vertical noise cross correlation, apply double beamforming to obtain
phase velocities, and apply a piecewise 1-D least squares inversion to obtain shear velocities in the top 300 m.
We observe a ~200-m-wide low-velocity zone that narrows with depth, which we interpret as the main
damage zone in addition to two other ~100-m-wide subsidiary zones corresponding to secondary damaged
structures, agreeing with the distribution of fault zone trapped waves produced by local earthquakes. The
primary damage zone asymmetry indicates that materials on the northeast side of the fault are stiffer at
seismogenic depth and suggests that large San Jacinto earthquakes tend to nucleate to the southeast and
propagate to the northwest.

1. Introduction

1.1. Fault Zone Structure

Near-surface fault zone geometry is highly important for earthquake source locations, seismic hazard assess-
ment, subsurface reservoir imaging, crustal hydrology, and so forth. The structure of damage zones—regions
of highly fractured rocks surrounding faults—is particularly critical. Low-velocity fault damage zones can
trap seismic energy and significantly amplify the ground motion (Ben-Zion & Aki, 1990; Qin et al., 2018;
Qiu et al., 2017; Share et al., 2017). Coseismic wavefields can dynamically interact with damage zones to pro-
mote or inhibit earthquake ruptures (Weng et al., 2016). The dense fracture networks within damage zones
can increase material permeability and influence fluid flow (Martel & Boger, 1998; Sibson, 1996; Wechsler
et al., 2009). Damage zone width positively correlates with fault displacement (Faulkner et al., 2011;
Mitchell & Faulkner, 2009; Savage & Brodsky, 2011), and damage zone asymmetry is strongly associated
with preferred rupture propagation directions of large earthquakes (Ben-Zion & Shi, 2005; Dor et al.,
2006; Perrin et al., 2016). Damage zone width decreases with depth (Allam et al., 2014; Sibson, 2003;
Twiss & Moores, 2004) due to increasing normal stress, with the widest portion near the surface (Mitchell
& Faulkner, 2009). Shear deformation within damage zones can accommodate a significant proportion of
the slip during large earthquakes (Kaneko & Fialko, 2011; Milliner et al., 2015), which can lead to an under-
estimate of coseismic slip measured geodetically in damaged regions (Segall & Harris, 1986; Ryder &
Burgmann, 2008). Thus, it is critical to properly characterize the shallow damage zone structure in order
to accurately assess earthquake properties (Roten et al., 2017; Xu et al., 2015).

Passive body wave tomography can only resolve structures deeper than 2 km due to the distribution of seis-
mic sources (e.g., Allam et al., 2014). Ambient noise tomography can potentially resolve near-surface fea-
tures, but vertical and horizontal resolutions are often limited by interstation distance and the frequency
content of coherent propagating signals (e.g., Lin et al., 2009). Resolving shallow structures with ambient
noise requires dense seismometer networks and high-frequency surface waves that are usually more compli-
cated due to scattering, multipathing, attenuation, and inhomogeneous noise sources. In this work, a
recently developed double-beamforming tomography method (Wang et al., 2019) is applied, which can sig-
nificantly enhance coherent signals and simultaneously retrieve velocity information. We measure Rayleigh
wave phase from 1 to 3 Hz and invert for shear wave velocities in the upper 300 m with ~50-m resolution.
This marks the first time this method has been used on a linear dense local array (Figure 1) to retrieve
high-frequency surface waves and resolve local-scale structures at shallow depth.
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Figure 1. The San Jacinto Fault and station map. (a) The regional map of faults (red lines and black text; Treiman et al., 1999), geographic units (blue text),
the 83 local earthquakes used in the trapped wave analysis (gold circles), and the M2.5 example earthquake shown in Figure 4a (blue star). (b) A zoomed
view of the RR array, showing the stations used in this study (white triangles), unused stations (blue triangles), and the central station (orange star) of
the record sections shown in Figure 2. The dashed line is the projected cross section shown in Figure 4, and the red lines show all mapped fault traces,
though the Clark fault is the only major segment.

1.2. Geologic Setting

The San Jacinto fault is the most seismically active component of the Southern California plate boundary
(Hauksson et al., 2012) and has produced at least 21 major earthquakes (Mw > 7) in the last 4,000 years
according to paleoseismic studies at Hog Lake (Figure 1b; Rockwell et al., 2006; Rockwell et al., 2015).
The significant hazard potential and complexity of the San Jacinto fault have motivated many geological
and geomorphic observations (Dor, Rockwell, & Ben-Zion, 2006; Wechsler et al., 2009), regional-scale tomo-
graphy with local body wave and ambient noise data (Allam et al., 2014; Allam & Ben-Zion, 2012; Fang et al.,
2016; Zigone et al., 2015), bimaterial interface and damage zone imaging with small-aperture (up to ~2 km)
linear nodal arrays (Lewis et al., 2005; Li & Vernon, 2001; Li et al., 2019; Qin et al., 2018; Qiu et al., 2017
Share et al., 2017; Share et al., 2019; Yang & Zhu, 2010; Yang et al., 2014; Zigone et al., 2019), and a rectan-
gular single-component nodal array (Ben-Zion et al., 2015; Hillers et al., 2016; Roux et al., 2016; Qin et al.,
2018; Mordret et al., 2019).

Our linear array of 71 three-component nodal seismometers (Figure 1a) is located 1 km from the Hog Lake
paleoseismic site (Rockwell et al., 2015). The array straddles the Clark fault, one of the major slip-
accommodating segments of the San Jacinto system and the only major active strand near Anza
(Rockwell et al., 1990) (Fig 1b). The fault separates two geological units in the shallow crust: the high-
velocity Cretaceous granite rocks of Thomas Mountain to the northeast and the low-velocity Pleistocene
Bautista Formation and terrace deposits to the southwest (Rockwell et al., 2015; Sharp, 1967). Salisbury
et al. (2012) estimated that this segment experiences the largest displacement during major earthquakes,
with peak slip decreasing in both along-strike directions away from Hog Lake. Thus, the damage zone struc-
ture of this location is critical to understanding the behavior of large earthquakes on the San Jacinto fault.
However, previous seismic imaging efforts have not fully characterized the damage zone structure due to
either insufficient station spacing (Allam et al., 2014) or array aperture (Zigone et al., 2019).

In this work, we provide high-resolution shear wave velocity cross sections. In section 2, we describe the
array configuration, data, and the procedures to measure Rayleigh wave phase velocities (section 2.2); invert
for shear velocities (section 2.3); and calculate the energy of local earthquake trapped waves (section 2.4).
Next, we present and discuss the phase and shear velocity results in section 3 and finally summarize the sig-
nificance and implications of the results in section 4.
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Figure 2. Vertical-vertical cross correlations from a source station (orange star in Figure 1b) to all receiver stations (white triangles in Figure 1b) at three period
bands, with reference velocities shown in red.

2. Data and Methods

We deployed 94 three-component 5-Hz Fairfield geophones near Anza across the Clark segment of the San
Jacinto fault (Figure 1b) from 16 September to 24 October 2016. The array had three parts: (1) an ~2.2-km
line perpendicular to the fault trace, (2) an ~1-km line along the fault trace, and (3) a circular portion with
~0.5-km radius. In this study, we use ambient noise data and earthquake waveforms from 83 local events
with magnitude >1.5 within 50-km distance. We only use the data of the 71 stations along the perpendicular
line (Figure 1b), since we only aim to image high-resolution structures along this line in this study. Resolving
structural variation along the fault using all stations but with lower resolution is beyond the scope of this
study and will be the subject of future investigation. The portability, ease of use, and rugged durability of
these seismic instruments made this work possible in single-day deployment and retrieval field trips.

2.1. Ambient Noise Cross Correlations

We follow Wang et al. (2019) to obtain monthlong stacked cross correlations from ambient noise data in
5-min windows. Clear fundamental Rayleigh waves are observed (Figure 2) on both positive and negative
time lags at shorter periods (<0.6 s), but only on the positive time lag at longer periods (0.8 s), suggesting
noise source distributions are period dependent. The stronger signals on the positive lags indicate the noise
wavefield is likely dominated by the Pacific coastline. To further suppress the noise level, we stack the posi-
tive and negative time lags and construct the symmetric cross correlations used in the following analysis.

2.2. Double-Beamforming Tomography

We follow closely to the double-beamforming tomography method described by Wang et al. (2019) to mea-
sure Rayleigh wave phase velocities between 0.3- and 0.8-s periods across the array. Here, different from the
previous study, the double beamforming process is performed in the frequency domain to avoid the preci-
sion limitation imposed by the sampling rate. In the time domain, uninterpolated waveforms can only be
shifted by integer multiples of the sampling rate (in unit of seconds per point), but this limitation does not
exist in the frequency domain. Because most of the stations used in this study follow line A-A’, we assume
a single plane wave propagating between the source stations and the receiver stations to simplify the beam-
forming process. Tests with different assumed wavefronts (e.g., circular) showed no visible effect on the
beamforming results.

For a source-beam center s. and a receiver-beam center r,, we select stations within 0.1 km of the source- and
receiver-beam centers as sources s; and receivers r;, respectively. We require the interstation distance
between every source-receiver pair to be longer than one wavelength of the Rayleigh waves to satisfy the
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far-field approximation (Wang et al., 2017; Yao et al., 2006). We use period-dependent velocity thresholds
(0.5-1 km/s between 0.3- and 0.8-s periods; Figure 2) to cut and taper the cross correlations to suppress
the body-wave/higher-mode contamination (Wang et al., 2019). Next, we normalize the cross correlations
by their maximum amplitudes, transform them to the frequency domain, and stack them based on
equation (1).
_ ; N; N, - —icu(r,-ﬁrr,.)
F(us, uy, ) NN honl Flf(s,, rj,w)e il (1)
stvr

where f(s;, rj, w) represents the cross-correlation function between stations s; and r; in the frequency domain,
w is angular frequency, Ny and N, are the numbers of source and receiver stations, 7, and 7, are time shifts
relative to the source and receiver beam centers defined by equations (2) and (3), u; and u, are the assumed
Rayleigh wave phase slowness at the source and receiver sides, and F(us, u,, w) is the beam-stacked cross
correlation.

Ty, = Us(Xs;—Xs.)sinb; + ug(Ys;—Ys.)cosb, @)
Ty, = Uy (Xrj—Xr.)sinG, + u,(Yrj—Yr,)cosé, 3)

Here, (Xs; — Xs.) and (Ys; — Ys.) represent the west-east and north-south distances between source
station s; and the source-beam center s., (Xr; — Xr.) and (Yr; — Yr.) represent the west-east and
north-south distances between receiver station r; and receiver-beam center r., and 6 and 6, are the
propagating azimuths of the plane wave at the source beam center and the receiver beam center,
respectively. In principle, the azimuthal terms can be solved along with the slowness parameters using
2-D distributed stations (e.g., Nakata et al., 2016). However, the 1-D configuration of the array used in
this study limits us to assume a plane wave propagating along the great circle path to reduce the num-
ber of free parameters and avoid trade-off.

We next transform the beam-stacked cross-correlation F(ug, u,, w) back to the time domain and measure the
beam power based on the maximum amplitude of the envelope function. A 2-D grid search of u, and u, is
performed to find the highest beam powers at source and receiver beam centers. We require the signal-to-
noise ratios (Lin et al., 2008) of the stacked waveforms to be higher than 12 to reject spurious measurements.
At each beam center, we obtain repeated slowness measurements using multiple source/receiver beam com-
binations and calculate the mean slowness and the standard deviation of the mean (STDM) as the final slow-
ness and its uncertainty, respectively. We compute the STDM as the standard deviation (STD) divided by the
square root of the number of independent measurements (Wang et al., 2019). To obtain robust statistical
results, we require the number of measurements to be larger than 10 at each location after removing outliers
beyond two STD.

To account for the potential effect of topography, we fit the topography along the cross-section A-A’ within
each beam with a straight line. Then we use the slope of the line to represent the average slope of the topo-
graphy within that beam. Next, we correct the measured slowness and uncertainty using equations (4)
and (5).

Ucorr = ummn~cos(;o) (4)
corr = €-cos(¢) (5)

Here g is the angle of inclination of the line, u,,.q,, and e are the mean slowness and its uncertainty, and uc.,
and e.,,, are the corrected slowness and uncertainty. We note that the differences between u,,,0q, and ucoy,
are not significant as the angles of inclination are mostly smaller than 20°. The final phase velocity cross sec-
tion and its associated uncertainties are summarized in Figure 3.

2.3. Shear Velocity Inversion

A piecewise 1-D uncertainty weighted iterative least squares inversion (Herrmann, 2013) with a constant
velocity starting reference model is used to obtain shear velocities from the phase dispersions. We closely fol-
low Wang et al. (2019) to perform the inversion at each location along the cross section. During the inversion
process, we fix the Vp/Vs ratio as 1.75 and determine density based on the Vp value and the empirical rela-
tionship of Brocher (2005). To stabilize the inversion, we first impose a monotonicity constraint, which
rejects models with reverse Vs with depth. We stop the inversion when changes in Vs models between
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Figure 3. Rayleigh wave phase velocities and their associated uncertainties determined by double beamforming along the
cross-section A-A’.

iterations are no longer visible. Then we perform a second round of inversion without the monotonicity
constraint for locations where the reduced )(2 misfit (Taylor, 1997) is greater than four. In the end, we
combine piecewise 1-D Vs models (Figure S1 in the supporting information) from the first and second
rounds of the inversion and accept models with reduced y* misfit smaller than four to construct the 2-D
Vs cross section (Figure 4c). Limited by the surface wave frequency range, we cut the Vs models at 300-m
depth due to the lack of sensitivity at greater depth (Figure S2).

The model-predicted Rayleigh wave phase velocity cross section (Figure S3) is overall consistent with the
measured phase velocity cross section (Figure 3a). Higher misfits are observed mostly at few locations and
periods where uncertainties (Figure 3b) are relatively high (e.g., 0.5-s period at —0.2 km, 0.7-s period at 0
km, and 0.3- to 0.5-s periods at 0.4 km) and on the northeastern end of the profile (>0.8 km) where the array
is no longer linear. The predicted phase velocity cross section is generally smoother than the observation,
mainly due to the regularization (smoothing and damping) imposed in the inversion.

2.4. Trapped Wave Analysis

Coherent fault damage zones can produce trapped waves resulting from constructive interference of criti-
cally refracted seismic waves in a low-velocity layer (Ben-Zion, 1998; Ben-Zion & Aki, 1990). In this study,
we analyze trapped waves from 83 local earthquakes occurred at different epicentral distances and with dif-
ferent magnitudes (Figure 1a) to validate the tomography results. Figure 4a shows the vertical-component 3-
Hz low-passed waveforms from a M2.5 event (blue star in Figure 1a) as an example. We calculate the energy
of the 3-Hz low-passed trapped waves as the integral of the squared envelope of the waveforms within 90 s of
the event origin time. Although other phases are present in the earthquake wavefield (e.g., P and S), their
contribution to the energy calculation is minimal. We then normalize the energy by the median energy
across the array for each event and calculate the mean energy and the STD of the 83 events, after removing
outliers beyond two STD. To eliminate significant contamination to trapped wave energy from human activ-
ity in this area (e.g., hiking and horse-riding), we remove stations with energy higher than 10 times the mean
energy across the array for each event. Figure 4b presents the mean and the STD of the energy, as well as the
energy of the example M2.5 event.

3. Results
3.1. Phase Velocities and Uncertainties

Figure 3 presents the variations in Rayleigh wave phase velocities and uncertainties with periods (0.3-0.8 s)
and fault-normal distance. The most prominent low-velocity area is at 0 to 0.2 km between 0.3- and 0.5-s per-
iods, while the highest velocities are near the northeast end of the array (>0.7 km). The phase velocities
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Figure 4. Shear wave velocities and trapped wave analysis. (a) The vertical component of the trapped waves from the
example earthquake (Figure 1a) low-pass filtered at 3 Hz. (b) The energy of the trapped waves from the example M2.5
earthquake (red curve); averaged energy (blue dots) and STD (gray) of 83 local events. (c) The shear wave velocities along
the cross-section A-A’.
generally increase with period except for a few anomalous regions (e.g., ~0.4 and ~0.8 km) where the
uncertainties are relatively high. For example, very high uncertainties are observed at ~0.4-km distance
between 0.3- and 0.5-s periods, due to abnormally low signal-to-noise ratios of the observed Rayleigh
waves. Though it is unclear why the Rayleigh waves are weak in this zone, it could be related to the
transition from low-velocity damage zone material to high-velocity intact material to the northeast
(Figure 2) and/or affected by the interference of opposite-propagating waves (i.e., due to reflections).
Since we weight the phase velocities by their uncertainties during the Vs inversion, the effects of these
suspicious measurements on the final results are minimal.
WANG ET AL. 6
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3.2. Shear Wave Velocities

The final Vs cross section is presented in Figure 4c with fault-normal distance and depth. In general, velo-
cities increase with distance from the fault trace, though the most prominent low-velocity zone is offset to
the northeast of the Clark fault. There are two distinct smaller-scale low-velocity zones potentially associated
with smaller-scale damaged structures. All of the low-velocity zones narrow with depth, featuring both mini-
mum width and velocity reduction in the deepest portions imaged. In contrast to the low-velocity zones, the
highest velocities are observed to the northeast within the intact Thomas Mountain Granite (Rockwell et al.,
2015; Sharp, 1967), which has Vs > 1.5 km/s within the top 300 m.

3.3. Earthquake Trapped Waves

The waveforms for a single M2.5 event (Figure 4a) represent a clear example of fault zone trapped waves; the
longest-duration and highest-amplitude arrivals are present in the central portion of the array and weaken
with fault-normal distance in either direction. This pattern has been repeatedly observed both in real fault
zones (e.g., Eccles et al., 2015; Ellsworth & Malin, 2011; Li & Vernon, 2001; Peng et al., 2003; Rovelli
etal., 2002) and numerical simulations (e.g., Allam et al., 2015; Jahnke et al., 2002). The overall trapped wave
energy pattern of 83 local events (Figure 4b) is extremely similar to that of a single event, with the highest
energy present in the central portion of the array to the northeast of the surface trace of the Clark fault.
In addition, there are two zones of elevated seismic energy (at —0.65 and 0.6 km), which spatially correspond
to the subsidiary low-velocity zones that are presented in section 3.2.

4. Discussion

A complicated history of interaction between large seismic events and earth structure is recorded in the zone
of damaged rock surrounding an active fault. Damage zones are the cumulative result of past earthquakes,
which also control the properties of future events. Consequently, damage zone structures provide valuable
insight into the earthquake behavior of a particular fault.

4.1. Damage Zone Width

Fault damage zone width scales with the cumulative displacement of the fault but usually only increases up
to a few hundred meters (Faulkner et al., 2011), although exceptions exist (e.g., Cochran et al., 2009, claimed
a 1.5-km-wide damage zone of the Calico fault in eastern California). The large range of variation in fault
width can potentially be explained by the roughness properties of a given fault, which has been shown to
affect normal stress both statically (e.g., Dieterich & Smith, 2009) and dynamically (Fang & Dunham,
2013). Therefore, a single fault even with homogeneous elastic properties can have significant along-fault
variation in fault zone width simply due to changes in slip surface geometry (Johri et al., 2014).
Specifically, regions of relatively simple fault geometry tend to have narrower damage zones, while regions
with fault bends or step overs experience increased stresses resulting in more widespread damage (e.g., Finzi
et al., 2009).

The present shear velocity results (Figure 4c) and fault zone trapped wave distribution (Figures 4a and 4b)
are in strong agreement with respect to the width of the damage zone structure of the Clark fault near
Anza. The ~200-m-wide primary damage zone is relatively narrow for a large-scale mature plate-
bounding fault with >20-km cumulative slip (Kirby et al., 2007; Rockwell et al., 1990) given the expected
scaling relationship (e.g., Mitchell et al., 2011). The relative narrowness of the damage zone here can be
explained by the simplicity of the Anza segment of the Clark fault; large earthquakes tend to be confined
to a single slip surface here (e.g., Rockwell et al., 2015) resulting in a relatively straight and geometrically
simple segment (Sharp, 1967). This is in contrast to previous studies of the San Jacinto fault on the Hemet
step over to the northeast (Li et al., 2019; Share et al., 2017; Share et al., 2019) and the Trifurcation to the
southeast (Hillers et al., 2016; Qin et al., 2018; Mordret et al., 2019); both sites feature wider and more
complicated damage zones and are located in regions with multiple major fault strands. Together with
paleoseismological work showing that the Anza segment of the Clark fault experienced the largest coseis-
mic slip during past M > 7.5 earthquakes (Rockwell et al., 2006; Rockwell et al., 2015; Salisbury et al.,
2012) and numerical results examining the interaction of damage zone structures with earthquake rup-
tures (Dieterich & Smith, 2009; Fang & Dunham, 2013; Xu & Ben-Zion, 2017), our results support the
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interpretation that large earthquakes do not nucleate within the Anza segment and ruptures propagate
smoothly at relatively high rupture velocity.

4.2. Damage Zone Asymmetry

Asymmetry of the damage zone with respect to surface trace has often been observed in large strike-slip and
normal faults, which juxtapose materials of different seismic velocity (e.g., Berg & Skar, 2005; Dor et al.,
2006; Mitchell et al., 2011). The asymmetry along these bimaterial interfaces can be explained by dynamic
wave propagation effects: The P wavefront during earthquakes is advanced in the faster material, resulting
in additional tension and thus more damage in the faster material (Ben-Zion & Shi, 2005; Duan, 2008; Ma,
2009). In addition to damage zone asymmetry, bimaterial interfaces also give rise to a preferred rupture
direction: Rupture propagation is promoted in the direction of particle motion of the slower material
(Ben-Zion & Shi, 2005). This bimaterial effect has been observed seismologically (e.g., Folesky et al., 2018;
Kane et al., 2013; Kurzon et al., 2014; LenglinE & Got, 2011; Perrin et al., 2016) and geologically (Dor,
Ben-Zion, et al., 2006; Mitchell et al., 2011; Wechsler et al., 2009).

Previous high-resolution tomographic images show that the Clark fault represents a strong bimaterial inter-
face with the faster material on the northeastern side (Allam et al., 2014). Theoretical considerations predict
a higher concentration of damage on the northeastern side of the fault (e.g., Xu & Ben-Zion, 2017); this is the
exact pattern observed in the present imaging (Figure 4c) and trapped wave (Figure 4b) results. In addition,
our results show that the undamaged rock 800 m to the northeast of the Clark fault trace has much higher
seismic velocity than the material to the southwest, confirming the existence of a local bimaterial interface.
This observed asymmetry in the present results is not likely affected by the uncertainty in the fault location;
extensive paleoseismological work at the Hog Lake site about 1 km to the northwest accurately identified 21
large earthquakes with M > 6.0, allowing precise location of the principal slip surface (Rockwell et al., 2006;
Rockwell et al., 2015). Thus, the present local-scale seismic imaging agrees with geological work (Rockwell
et al., 2015), numerical simulations (Ben-Zion & Shi, 2005), seismic directivity analysis (Kurzon et al., 2014),
and regional-scale tomographic work (Allam et al., 2014). Altogether, these results suggest that the largest
earthquakes on the San Jacinto fault nucleate to the southeast—likely within the Trifurcation Area—and
propagate to the northwest. Some evidence show that these ruptures may propagate through the Hemet step
over and potentially onto the Southern San Andreas (Lozos, 2016; Lozos et al., 2015).

5. Conclusions

We have demonstrated that short-period (0.3-0.8 s) double-beamforming tomography from ambient noise
can revealing complex shallow velocity structures (<300 m). The Vs profile reveals the damage structure
of the Clark fault, including a ~200-m-wide asymmetric low-velocity zone. Compared to previous results
at Blackburn Saddle (Li et al., 2019) to the northwest, we find the damage zone width increases to the north-
west from Anza, reflecting the increase in fault geometrical complexity in this direction. Combined with pre-
vious geophysical, geological, and numerical results, our findings reinforce the idea that large San Jacinto
earthquakes nucleate to the southeast and propagate to the northwest. This rupture direction results in
amplified coseismic ground motion to the northwest due to the directivity effect, which leads to increased
shaking in the highly populous Hemet, Riverside, and San Bernardino communities compared to a southeast
propagating earthquake. Our results contribute to the understanding of earthquake properties and signifi-
cant seismic hazard associated with the San Jacinto fault zone and encourage additional shallow seismic
imaging studies of fault zones using dense seismometer arrays.
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