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perspective for determining whether an infection is extinct or persistent. Under the assumption of

spatial homogeneity, various functions of different tissues and organs may be overlooked. Given the

complexity of the human body, it is essential to regard the host body as composed of multiple

compartments and to explore the effect of connection between compartments on the infection [4–6].

Viral propagation in human immunodeficiency virus (HIV) infection occurs mainly in lymphoid

tissues [5, 7], which are composed of primary and secondary lymphoid organs. The primary lymphoid

organs include the thymus and bone marrow, which are where lymphocytes are generated; the lymph

nodes and the spleen constitute the secondary lymphoid organs, which maintain mature naive

lymphocytes and initiate adaptive immune response [8]. Between these tissues, connections are

constructed through afferent or efferent lymphatics (or both) [9–11], by which cluster or

differentiation 4 (CD4)-positive or CD8-positive T lymphocytes and other cells can migrate to execute

their functions. This gives rise to the need to explore how the connection of various tissues influences

the viral dynamics and curative effect of treatment.

To analyze the spatiotemporal patterns of viral progression, the authors in [12] proposed a

reaction-diffusion model by fitting the data to a radially symmetric propagation and numerically

identified the initial propagation of the infection front followed by a state of stagnation due to an

antiviral response. Infected CD4 T cells can actively migrate over different lymph nodes [13].

Accordingly, another scenario for studying the spatial heterogeneity of viral dynamics is using

multi-compartment models to describe the occurrence of infection in various organs. In [14], a

heterogeneous environment with various parameters for several grids was constructed, wherein the

virus randomly spreading between the grids was modeled as local diffusion. The main result showed

that the local dispersion of a virus can reduce the amplitude of viral oscillation. In a recent study [5],

the spread of HIV infection throughout the lymphoid tissue was considered from a perspective of

network structure. That study numerically determined that HIV infection may persist even under drug

administration because a portion of lymphoid tissues fails to receive a sufficient amount of the dose.

These studies clarify that considering the spatial heterogeneity is essential in studying viral dynamics.

Most within-host virus models assume transmission solely through virus-to-cell infection,

although it is now appreciated that there are multiple infection routes resulting in heterogenous

kinetics. The cell-to-cell transmission process of HIV infection has been explored in a compartment

such as the lymph nodes and the brain, because CD4+ T lymphocytes are densely aggregated and

frequently interact in lymphoid tissues, and the virus can disseminate through direct transmission

from infected cells to uninfected cells through the HIV virological synapse [15, 16]. Among the

studies that have considered the delayed intracellular reaction but without distinction on infection age,

HIV infection was explored in [1] by applying ordinary and delayed differential models, and

sustained oscillations of infection were revealed for certain culture parameters. In [17], the

infection-age-dependent infectivity of individuals was considered and the dynamics of HIV

transmission were studied in a population group. The age-dependent production rate of viral particles

and death rate of productively infected cells were considered in [18], in which an in vivo

age-structured model of HIV infection was constructed. In order to explore distinct intracellular and

extracellular infection kinetics, it is necessary to extend previous virus models by incorporating both

age-since-infection and a multi-compartment environment.

Global convergence in viral dynamics models is crucial for predicting the evolution of viral

infection, and age-structure of infected cells tends to complicate matters. Our single-compartment
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model considered in this paper is related to that in [19], wherein a susceptible-infective (SI) epidemic

model was incorporated with infection-age and an incidence function derived from the law of mass

action. In that study, the system was addressed using an integrated semigroup to determine the

persistence of disease; the results demonstrated global convergence to either disease-free or endemic

equilibrium through the application of Lyapunov functionals. Notably, the probability of disease

transmission was found to depend on the age of infection [19]. Another difficulty in the field arises

because of the multigroup structure of the models. In the recent study [20], the authors investigated a

multigroup (susceptible-infective-recovered) SIR model with age structure and elaborated on the

convergence dynamics when the morality and removal rate were age-independent; because of the

constant total host population, the model involved a constant boundary condition. Furthermore,

in [21], an aged model in a network environment was considered, and both the age-dependent

transmission rate and degree of the network connectivity were found to affect the spread of disease;

on the basis of the constant total population, the authors demonstrated that global convergence to the

endemic equilibrium occurs when it exists. In [22], a two-group model was adopted to investigate the

globally asymptotic behavior of a SI epidemic model incorporating the age of infection. The

Lyapunov functional employed in that study was skillfully constructed for the two-group structure.

The age-dependent infectivity of infected cells renders it impossible to rewrite the viral infection

model as the classic (without aged-structure) SIS or SIR epidemiological models or variant

predator-prey models, and it increases the difficulty of exploring the global convergence dynamics,

especially in deriving convergence to the endemic equilibrium state.

In this paper, we construct and analyze a virus model consisting of multiple compartments with

distinct cell infection-age structured infectivity kernels describing infection spread through various

organs. In section 2, we detail the model formulation, along with establishing boundedness and

compactness of the generated semiflow. In sections 3 and 4, we derive the basic reproduction number,

and show that it is a global threshold determining the viral persistence or extinction. Section 5

concerns extending analysis to non-strongly connected networks through a sequence of threshold

values controlling the infection pattern in the whole system. Finally in Section 6, we numerically

investigate the viral dynamics for different connection topologies, along with examples of distinct cell

infectivity kernels based on data for cell-free and cell-to-cell infection modes.

2. Model formulation and preliminaries

An infected host with n compartments is described by

dTk(t)

dt
= λk − dkTk(t) − αkTk(t)

∫ ∞

0

pk(a)ik(t, a)da

−
∑

j∈N0

m jkTk(t) +
∑

j∈N0

mk jT j(t),

∂ik(t, a)

∂t
+
∂ik(t, a)

∂a
= −δk(a)ik(t, a) −

∑

j∈N0

m jkik(t, a) +
∑

j∈N0

mk ji j(t, a), (2.1)

for k ∈ N0 := {1, 2, · · · , n}, with the boundary condition

ik(t, 0) = αkTk(t)

∫ ∞

0

pk(a)ik(t, a)da, (2.2)
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and the initial condition

Tk(0) = Tk0 > 0, ik(0, a) = ik0(a) ∈ L1
+((0,+∞),R), (2.3)

where L1
+((0,+∞),R) is the nonnegative cone of L1((0,+∞),R). In the kth compartment, at time t,

Tk(t) denotes the concentration of healthy cells, and ik(t, a) is that of infected cells with age a since

infection. The parameters λk and dk respectively represent the production and death rates of healthy

cells, and αk accounts for the rate of both virus-to-cell and cell-to-cell transmission. Here, we neglect

the virus compartment due to its fast kinetics. The function pk(a) accounts for the net infectivity of

infected cells from both infection routes, variant in the infection age, and δk(a) represents the death rate

of infected cells. All these parameters describe the viral environment in the kth compartment. They

may be different from compartment to compartment because of individual function. For instance, the

infectivity kernel pk(a) may change according to primary transmission mode (cell-to-cell versus viral),

or infection induced death rate, δk(a), may be different in distinct compartments based on predominant

target cell type (e.g. T-cell in blood vs. macrophage in brain). The parameter m jk, j , k, denotes the

migration rate of the cells from the kth compartment to the jth compartment. Assuming no loss in the

process of migration, it satisfies that
∑n

j=1 m jk = 0 and then mkk = −
∑n

j,k, j=1 m jk. As mentioned in

Section 1, the migration may be asymmetric between any two compartments. In addition, there is no

isolated compartments to be considered, however this assumption is relaxed later in Section 5.

Here, we assume that the migration matrix M = (mk j)n×n is irreducible and, for k ∈ N0,

(A1) λk, dk, αk > 0;

(A2) δk(·) ∈ C([0,+∞),R+), dk ≤ δk(a) ≤ δk,max < ∞, for a ≥ 0;

(A3) pk(·) ∈ C([0,+∞),R+), 0 < pk(a) ≤ pk,max < ∞, a ∈ I0, for some finite interval I0 ⊂ [0,+∞), and

pk(a) = 0 for a < I0.

Denoting T (t) = (T1(t), · · · ,Tn(t))τ and i(t, a) = (i1(t, a), · · · , in(t, a))τ, where (·)τ means the

transpose of a vector, the system (2.1) is equivalent to the vector form:

dT (t)

dt
= Λ − DT (t) − Γdiag(T (t))

∫ ∞

0

P(a)i(t, a)da + MT (t),

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −D̃(a)i(t, a) + Mi(t, a), (2.4)

with the boundary condition

i(t, 0) = Γdiag(T (t))

∫ ∞

0

P(a)i(t, a)da

and the initial condition T (0) = T0 > 0, i(0, ·) = i0(·) ∈ L1
+((0,+∞),Rn), where Λ = (λ1, · · · , λn)τ,

D = diag(d1, · · · , dn), Γ = diag(α1, · · · , αn), diag(T (t)) = diag(T1(t), · · · ,Tn(t)),

D̃(a) = diag(δ1(a), · · · , δn(a)), P(a) = diag(p1(a), · · · , pn(a)) and

M =



































−∑

j∈N0, j,1 m j1 m12 · · · m1n

m21 −∑

j∈N0, j,2 m j2 m2n

...
...

. . .
...

mn1 mn2 · · · −∑

j∈N0, j,n m jn



































. (2.5)
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Following the approach proposed in [23], we reformulate (2.4) as a semilinear Cauchy problem. To

this end, we first consider the extended state spaces

X = Rn × Rn × L, L = L1((0,+∞),Rn),

X0 = R
n × {0Rn} × L,

X+ = Rn
+ × Rn

+ × L+, L+ = L1((0,+∞),Rn
+),

X0+ = X0 ∩ X+,

and equip the space X with the norm

‖u‖ =
∑

k∈N0

(

|uk| + |vk| +
∫ ∞

0

|wk(a)|da

)

, (2.6)

for u = (u1, · · · , un, v1, · · · , vn,w1(·), · · · ,wn(·))τ ∈ X. Define the linear operator A : Dom(A) ⊂ X →
X, Dom(A) = Rn × {0Rn} ×W1,1((0,+∞),Rn), by

A





















T

0Rn

i





















=





















(−D + M)T

−i(0)

−i′ − (D̃(·) − M)i





















,

where W1,1 is a Sobolev space, and the operator F : X0 → X by

F





















T

0Rn

i





















=























Λ − Γdiag(T (t))
∫ ∞

0
P(a)i(t, a)da

Γdiag(T (t))
∫ ∞

0
P(a)i(t, a)da

0L























.

By denoting u(t) = (T (t), 0Rn , i(t))τ, we regard system (2.4) as the abstract Cauchy problem:

du(t)

dt
= Au(t) + F(u(t)), for t ≥ 0, u(0) ∈ X0+, (2.7)

and assert, by [23, Theorems 2 and 3], that there exists a unique solution semiflow Ψ(t) : X0+ → X0

related to system (2.7).

Next, by employing the boundary condition and the initial condition, we write (2.4) into the

Volterra-type equation,

dT (t)

dt
= Λ − DT (t) − Γdiag(T (t))

∫ ∞

0

P(a)i(t, a)da + MT (t),

i(t, a) =















exp
(

−
∫ a

a−t
(D̃(s) − M)ds

)

i0(a − t), if a > t,

exp
(

−
∫ a

0
(D̃(s) − M)ds

)

Q(t − a), if a ≤ t,

where Q(t) = i(t, 0) and satisfies

Q(t) = Γdiag(T (t))

∫ t

0

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

Q(t − a)da +

Γdiag(T (t))

∫ ∞

t

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

i0(a − t)da. (2.8)
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Denote

Ω(a0, a) =
(

Ωk j(a0, a)
)

n×n
= exp

(

−
∫ a

a0

(D̃(s) − M)ds

)

.

First, we show a priority about the matrix Ω(a0, a).

Lemma 2.1. For fixed a0 ≥ 0, there exists a constant γ > 0 such that

0 ≤ Ωk j(a0, a) ≤ γe−d(a−a0) (2.9)

for all k, j ∈ N0 and a ≥ a0, where d = mink∈N0
{dk/2} > 0.

Proof. Denote d̃ = maxk∈N0
{δk,max}+maxk∈N0

{−mkk} and I as the n×n identity matrix. Then, for a ≥ a0,

the matrix −
∫ a

a0
D̃(s)ds + d̃(a − a0)I + (a − a0)M is nonnegative and

Ω(a0, a) = exp

(

−d̃(a − a0)I −
∫ a

a0

D̃(s)ds + d̃(a − a0)I + (a − a0)M

)

= exp
(

−d̃(a − a0)I
)

exp

(

−
∫ a

a0

D̃(s)ds + d̃(a − a0)I + (a − a0)M

)

≥ 0.

In addition,

Ω(a0, a) = exp

(

−d(a − a0)I −
∫ a

a0

(D̃(s) − dI)ds + (a − a0)M

)

= exp
(

−d(a − a0)I
)

exp

(

−
∫ a

a0

(D̃(s) − dI)ds + (a − a0)M

)

≤ exp
(

−d(a − a0)I
)

exp
(

(a − a0)(−dI + M)
)

,

where the last inequality holds since the fact that the quasi-positive matrices A = (ak j) ≤ B = (bk j)

with 0 ≤ ak j = bk j for all k , j implies exp(A) ≤ exp(B). Since the matrix −dI + M is strictly

diagonally dominant and each diagonal entry is negative, all its eigenvalues, say µ j, j = 1, 2, · · · ,m,

m ≤ n, have negative real parts [24, Theorem 6.1.10]. We write −dI + M in its Jordan canonical form,

J, with −dI + M = PJP−1, J = diag(J1, · · · , Jm) and each J j is a standard Jordan block related to the

eigenvalue µ j. Obviously,

exp((a − a0)(−dI + M)) = P exp((a − a0)J)P−1,

exp((a − a0)J) = diag(exp((a − a0)J1), · · · , exp((a − a0)Jm)).

Since the real part of µ j is negative,

exp((a − a0)J j) =







































e(a−a0)µ j 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 e(a−a0)µ j







































exp







































0 a − a0 · · · 0

0
. . .

. . .
...

...
. . . a − a0

0 0 · · · 0







































→ 0,

as a− a0 → +∞. Thus, there exists a positive constant γ such that exp((a− a0)(−dI +M)) ≤ γI for all

a ≥ a0, where I is the matrix with a value of 1 for all entries, and the assertion is true. �
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Denote

Y = Rn × L, Y+ = Rn
+ × L+, Y0 = {0Rn} × L,

and equip the space Y with the norm

‖(T, i(·))‖ =
∑

k∈N0

(

|Tk| +
∫ ∞

0

|ik(a)|da

)

.

Then the semiflow generated by (2.1) is point dissipative, as demonstrated in the following lemma.

Lemma 2.2. The solution semiflow generated by (2.1) is point dissipative. Explicitly, the subset of

phase space

Ξ =















(T (t), i(t, a)) ∈ Y+

∣

∣

∣

∣

∣

∣

∣

∑

k∈N0

Tk(t) +
∑

k∈N0

∫ ∞

0

ik(t, a)da ≤
∑

k∈N0

λk/dmin















,

is positively invariant and attracts all nonnegative solutions, where dmin = mink∈N0
{dk}.

Proof. It is easy to show that all solutions of (2.1) are nonnegative. Denote the total infected cells by

I(t) =
∫ ∞

0
i(t, a)da and the total cells by N(t) = T (t) + I(t). Integrating the i-equation in (2.4) with

respect to a leads to

dI(t)

dt
= Γdiag(T (t))

∫ ∞

0

P(a)i(t, a)da −
∫ ∞

0

D̃(a)i(t, a)da + MI(t).

Obviously,

dN(t)

dt
= Λ − DT (t) −

∫ ∞

0

D̃(a)i(t, a)da + MT (t) + MI(t),

and then

d
∑

k∈N0
Nk(t)

dt
=

∑

k∈N0

λk −
∑

k∈N0

dkTk(t) −
∑

k∈N0

∫ ∞

0

δk(a)ik(t, a)da

≤
∑

k∈N0

λk − dmin

∑

k∈N0

Nk(t).

By a comparison principle, we derive that

lim sup
t→+∞

∑

k∈N0

Nk(t) ≤
∑

k∈N0

λk/dmin.

Since each solution of (2.1) remains nonnegative, as previously mentioned, the assertion holds true. �

Deriving the uniform persistence and global properties of the solution dynamics is essential in

studying viral infection and it is necessary to show that the semiflow Φ(t) generated by (2.1) is

asymptotically smooth. Denote

P̃k(t) =

∫ ∞

0

pk(a)ik(t, a)da, k ∈ N0.
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By integrating along the characteristic lines and incorporating the boundary condition and the initial

condition of the model, we write equation (2.1) in the following equivalent Volterra integral equation,

dTk(t)

dt
= λk − dkTk(t) − αkTk(t)

∫ ∞

0

pk(a)ik(t, a)da −
∑

j∈N0

m jkTk(t) +
∑

j∈N0

mk jT j(t),

ik(t, a) =

{
∑

j∈N0
Ωk j(a − t, a)i j0(a − t), if a > t,

∑

j∈N0
Ωk j(0, a)α jP̃ j(t − a)T j(t − a), if a ≤ t.

(2.10)

Few studies have investigated asymptotically smooth semiflows in a system incorporating both the age

structure and the migration of a population. Here, we show the property in the semiflow Φ(t) by using

Lemma 2.1 and a result reported in [25, Lemma 3.2.3].

Lemma 2.3. The semiflow Φ(t) generated by (2.10) ((2.1)) is asymptotically smooth.

Proof. It is easy to check that each function P̃k(·) is bounded, say with the bound P̄k, and Lipschitz

continuous on R+, say with the Lipschitz constant lk (see [26]). Define Φ(t) = Λ1(t) + Λ2(t), where

(Λ1(t)x)(a) =

{

(0Rn , 0L), t > a,

(0Rn , i(t, a)), a ≥ t;
(Λ2(t)x)(a) =

{

(T (t), i(t, a)), t > a,

(T (t), 0L), a ≥ t,

for x ∈ Y. From (2.10) and Lemma 2.1,

‖Λ1(t)x‖ =
∑

k∈N0

∫ ∞

t

|ik(t, a)|da =
∑

k∈N0

∫ ∞

t

∑

j∈N0

Ωk j(a − t, a)i j0(a − t)da

≤
∑

k∈N0

∫ ∞

t

∑

j∈N0

γe−dti j0(a − t)da

≤ nγe−dt‖x‖.

Define ∆(r, t) = nrγe−dt. Then ∆(r, t)→ 0 as t → +∞ and ‖Λ1(t)x‖ ≤ ∆(r, t) for ‖x‖ ≤ r.

Let B ⊂ Y be a bounded subset such that Φ(t)B ⊂ B. Choose r0 > 0 such that ‖x‖ ≤ r0 for all x ∈ B.

Note, from Lemma 2.2, that ∪(T0,i0(·))∈B{T (t)} is bounded in Rn and then is precompact in Rn. Hence, in

order to show that Λ2(t)B is precompact, it suffices to verify that the set Λ̃2(t)B is precompact for

(Λ̃2(t)x)(a) =

{

i(t, a), t > a,

0L, a ≥ t.
(2.11)

From [27], it is sufficient to verify the following conditions:

(i) limh→0

∑

k∈N0

∫ ∞
0
{|ik(t, a) − ik(t, a + h)|}da = 0 uniformly for i(t, a) ∈ Λ̃2(t)B.

(ii) limh→+∞
∑

k∈N0

∫ ∞
h
{|ik(t, a)|}da = 0 uniformly for i(t, a) ∈ Λ̃2(t)B.

From (2.11),
∑

k∈N0

∫ ∞
h
{|ik(t, a)|}da = 0 for h ≥ t, and then the criterion (ii) holds for the set Λ̃2(t)B. To

show the criterion (i), we directly calculate for k ∈ N0 and h ≤ t

∫ ∞

0

|ik(t, a) − ik(t, a + h)|da
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=

∫ t−h

0

∣

∣

∣

∣

∣

∣

∣

∑

j∈N0

Ωk j(0, a)α jT j(t − a)P̃ j(t − a) −
∑

j∈N0

Ωk j(0, a + h)α jT j(t − a − h)P̃ j(t − a − h)

∣

∣

∣

∣

∣

∣

∣

da

+

∫ t

t−h

∣

∣

∣

∣

∣

∣

∣

∑

j∈N0

Ωk j(0, a)α jT j(t − a)P̃ j(t − a)

∣

∣

∣

∣

∣

∣

∣

da

≤
∑

j∈N0

∫ t−h

0

γe−da

∣

∣

∣

∣

∣

∣

α jT j(t − a)P̃ j(t − a) − α jT j(t − a)P̃ j(t − a)
Ωk j(0, a + h)

Ωk j(0, a)

∣

∣

∣

∣

∣

∣

da

+
∑

j∈N0

∫ t−h

0

γe−da
Ωk j(0, a + h)

Ωk j(0, a)
|α jT j(t − a)P̃ j(t − a) − α jT j(t − a − h)P̃ j(t − a − h)|da

+
∑

j∈N0

∫ t

t−h

|Ωk j(0, a)α jT j(t − a)P̃ j(t − a)|da

=: C(Φ(t)x, h) + D(Φ(t)x, h) + E(Φ(t)x, h). (2.12)

Note that

C(Φ(t)x, h) =
∑

j∈N0

∫ t−h

0

γe−daα jT j(t − a)P̃ j(t − a)

∣

∣

∣

∣

∣

∣

1 −
Ωk j(0, a + h)

Ωk j(0, a)

∣

∣

∣

∣

∣

∣

da

≤
∑

j∈N0

∫ ∞

0

γe−daα jr0P̄ j

∣

∣

∣

∣

∣

∣

1 −
Ωk j(0, a + h)

Ωk j(0, a)

∣

∣

∣

∣

∣

∣

da, (2.13)

and

E(Φ(t)x, h) ≤
∑

j∈N0

γα jr0P̄ jh. (2.14)

According to the assumption (A2), there exists a positive constant h0 such that
Ωk j(0,a+h)

Ωk j(0,a)
< 2 for |h| < h0

since that Ωk j(0, a) is continuous in a. Hence,

D(Φ(t)x, h) (2.15)

≤
∑

j∈N0

∫ ∞

0

2γe−dada sup
s∈[h,t]

[

α jT j(s)|P̃ j(s) − P̃ j(s − h)| + α jP̃ j(s − h)|T j(s) − T j(s − h)|
]

Solve the equation (2.10) to obtain, for j ∈ N0,

T j(t) = T j(0) +

∫ t

0

















λ j − d jT j(ξ) − α jT j(ξ)P̃ j(ξ) +
∑

l∈N0

m jlT j(ξ)

















dξ.

Accordingly, we have that

|T j(s) − T j(s − h)| ≤
∫ s

s−h

















|λ j − d jT j(ξ)| + α jT j(ξ)P̃ j(ξ) +
∑

l∈N0

|m jl|T j(ξ)

















dξ

≤ max
η∈[0,r0]

















|λ j − d jη| + α jηP̄ j +
∑

l∈N0

|m jl|η
















h =: C∗jh. (2.16)

Mathematical Biosciences and Engineering Volume 17, Issue 1, 538–574.



547

From (2.15), (2.16) and the Lipschitz constant, lk, of P̃k, it holds that

D(Φ(t)x, h) ≤
∫ ∞

0

2γe−dada
∑

j∈N0

(α jr0l j + α jP̄ jC∗j)h. (2.17)

By (2.12)-(2.14) and (2.17), it concludes that the criterion (ii) holds for the set Λ̃2(t)B, and then Λ̃2(t)B

is compact. From [25, Lemma 3.2.3], the assertion is true. �

From Lemma 2.2, the semiflow Φ(t) is point dissipative and then there exists a positively invariant

absorbing set under the semiflow Φ(t), and then Φ(t) maps any bounded subset of Y+ to a precompact

set in Y+ and is then compact for any t > 0. From Lemma 2.3, the semiflow is asymptotically smooth.

Combining these properties and the result on the existence of global attractors in [25, Theorem 3.4.6]

(or see [28, Theorem 2.6]), the following lemma is implied.

Lemma 2.4. The solution semiflow Φ(t) generated by system (2.1) in Y+ admits a compact global

attractorA ⊂ Y+.

3. Basic reproduction number

First, we demonstrate the existence of infection-free equilibrium by examining the convergence

dynamics of the no-infection model.

Lemma 3.1. ( [29, Sec. 2]) Consider the no-infection model

dT̃k(t)

dt
= λk − dkT̃k(t) −

∑

j∈N0

m jkT̃k(t) +
∑

j∈N0

mk jT̃ j(t), T̃k(0) = Tk0. (3.1)

There exists a positive equilibrium (T̄1, · · · , T̄n) that is globally asymptotically stable with respect to

R
n
+.

Hence, the model (2.1) admits an infection-free equilibrium Ē = (T̄ , 0Rn)τ = (T̄1, · · · , T̄n, 0, · · · , 0)τ.

The linearization of (2.4) at the equilibrium Ē is the system

dT (t)

dt
= −Γdiag(T̄ )

∫ ∞

0

P(a)i(t, a)da − DT (t) + MT (t),

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −(D̃(a) − M)i(t, a),

i(t, 0) = Γdiag(T̄ )

∫ ∞

0

P(a)i(t, a)da. (3.2)

To determine the basic reproduction number of (2.1), we consider the decoupled i-equation in (3.2):

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −(D̃(a) − M)i(t, a),

i(t, 0) = Γdiag(T̄ )

∫ ∞

0

P(a)i(t, a)da,

i(0, ·) = i0(·) ∈ L+((0,+∞),Rn). (3.3)
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Define the operators Â : L+ → L+ by

Â(a)i(a) = (−D̃(a) + M)i(a),

and

A
(

0

f

)

=

(

− f (0)

− f ′ + Â(·) f

)

, B
(

0

f

)

=

(

Γdiag(T̄ )
∫ ∞

0
P(a) f (a)da

0

)

. (3.4)

Let Φ̃ = A + B and Φ̃0 be the restriction of Φ̃ in Y0; that is, Dom(Φ̃0) = {(0, f )τ : Φ̃ f ∈ Y0}. It is easy

to see that (0, f )τ ∈ Dom(Φ̃0) if it holds that f (0) =
∫ ∞

0
P(a) f (a)da. From the argument in [30, Sec.

6], the basic reproduction number of system (2.1) is

R0 = ρ(−BA−1),

where ρ(·) denotes the spectral radius of an operator (also for that of a matrix). In fact, for

(−A−1)(x, g)τ = (0, f )τ, it holds that

f (a) = exp

(

−
∫ a

0

(D̃(s) − M)ds

)

x +

∫ a

0

exp

(

−
∫ a

ν

(D̃(s) − M)ds

)

g(ν)dν,

and then

−BA−1(x, g) =












Γdiag(T̄ )
∫ ∞

0
P(a)

[

exp
(

−
∫ a

0
(D̃(s) − M)ds

)

x +
∫ a

0
exp

(

−
∫ a

ν
(D̃(s) − M)ds

)

g(ν)dν
]

da

0













.

Note that the operator −BA−1 has the same spectral radius on Y and Rn × {0L}. Hence,

R0 = ρ(Θ), where

Θ = Γdiag(T̄ )

∫ ∞

0

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

da. (3.5)

By the result in [30] (Theorems 3.16, 3.17), R0 plays the threshold value to determine local stability

of the infection-free equilibrium, as stated in the following theorem.

Theorem 3.1. The infection-free equilibrium Ē is locally asymptotically stable (unstable) in (2.1) if

R0 < 1 (R0 > 1).

Now, as a concrete example we consider a two-compartment system, n = 2, with δk(·) = δ(·) for

k = 1, 2. Then Θ = Θ2, where

Θ2 =

(

α1T̄1 0

0 α2T̄2

) ∫ ∞

0

(

p1(a) 0

0 p2(a)

)

exp

(

−
∫ a

0

(

δ(s) + m1 −m2

−m1 δ(s) + m2

)

ds

)

da.

Through a direct calculation, we derive that

Θ2 =

(

α1T̄1 0

0 α2T̄2

)

×
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∫ ∞

0















p1(a) exp
(

−
∫ a

0
δ(s)ds

)

(1 − η1(a)) p1(a) exp
(

−
∫ a

0
δ(s)ds

)

η2(a)

p2(a) exp
(

−
∫ a

0
δ(s)ds

)

η1(a) p2(a) exp
(

−
∫ a

0
δ(s)ds

)

(1 − η2(a))















da,

where

ηk(a) =
mk

m1 + m2

(1 − e−(m1+m2)a), k = 1, 2.

Since the matrix Θ2 is nonnegative and irreducible, ρ(Θ2) is real and positive [24]. Denote ρ(Θ2) = eξ

for ξ ∈ R. Then

det
(

I − e−ξΘ2

)

= 0. (3.6)

To explore the effect of the migration rate on the dynamics of (2.1), we choose pk(a) = e−pa,

δk(a) = δ, mk = m, k = 1, 2, for positive p, δ and nonnegative m. Then (3.6) is equivalent to

Gm(ξ) :=

[

1

2
α1T̄1e−ξ

(

1

p + δ
+

1

p + δ + 2m

)

− 1

]

×
[

1

2
α2T̄2e−ξ

(

1

p + δ
+

1

p + δ + 2m

)

− 1

]

− 1

4
α1α2T̄1T̄2e−2ξ

(

1

p + δ
− 1

p + δ + 2m

)2

= 0. (3.7)

Referring to [31–33], we choose λ1 = λ2 = 1, d1 = d2 = 1, α1 = 0.00065, α2 = 0.00035, p = 0.15,

δ = 0.4 and adjust m to determine the root of the function Gm. Figure 1 shows that (3.7) admits a

positive root, which indicates that ρ(Θ2) > 1, when m = 0, and there is no nonnegative root to (3.7),

which indicates that ρ(Θ2) < 1, when m = 2. Hence, different values of migration rate m may affect the

extinction or persistence of virus in (2.1). Explicitly, in this case, strong circulation facilitates clearing

the virus. In Section 6, we shall discuss the effect of the migration rate on the viral dynamics in more

cases.

−3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

G
m

(ξ)

ξ

 

 

m=0

m=2

Figure 1. The graph of function Gm, m=0, 2.

4. Threshold dynamics

4.1. Extinction of virus

When the reproduction number R0 < 1, we will demonstrate that the virus becomes extinct. First,

the following lemma claims that infection can not occur under non-viable initial infection.
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Lemma 4.1. Consider the virus equation in an environment with a constant vector of healthy cells, T0,

∂ik(t, a)

∂t
+
∂ik(t, a)

∂a
= −(D̃(a) − M)i(t, a),

i(t, 0) = Γdiag(T0)

∫ ∞

0

P(a)i(t, a)da, (4.1)

with i0(·) ∈ L+ and
∫ ∞

0
P(a)i0(a)da = 0. Then i(t, ·) = 0(·) for all t ≥ 0.

Proof. The well know result in [34] of linear age-structured models reveals that

i(t, a) =















exp
(

−
∫ a

a−t
(D̃(s) − M)ds

)

i0(a − t), if a > t,

exp
(

−
∫ a

0
(D̃(s) − M)ds

)

Q̃(t − a), if a ≤ t,

where Q̃ satisfies

Q̃(t) = Γdiag(T0)

∫ t

0

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

Q̃(t − a)da +

Γdiag(T0)

∫ ∞

t

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

i0(a − t)da.

The initial condition, with
∫ ∞

0
P(a)i0(a)da = 0, leads to

Q̃(t) = Γdiag(T0)

∫ t

0

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

Q̃(t − a)da.

Since Q̃(0) = 0, we have that Q̃(t) = 0 for all t ≥ 0, and then i(t, ·) = 0(·) for all t ≥ 0. �

With both the multi-compartmental structure and infection-age, it is a challenge to demonstrate the

global dynamics in (2.1) by constructing a Lyapunov function [20]. However, the following theorem

shows that the virus goes to extinction in system (2.1) when the basic reproduction number is less than

or equal to unity.

Theorem 4.1. When R0 ≤ 1, the infection-free equilibrium Ē is globally asymptotically stable in (2.1).

Proof. We first show the assertion for the case with R0 < 1. By the standard comparison theorem, the

solution of (2.1) satisfies that

Tk(t) ≤ T̃k(t), (4.2)

where T̃k(t) is the solution to (3.1). From the assumption R0 < 1, there exists a sufficiently small ε > 0

such that ρ(Θε) < 1, where

Θε = Γ(T̄ + εI)

∫ ∞

0

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

da.

From Lemma 3.1 and (4.2), there is a t1 > 0 such that Tk(t) ≤ T̄k + ε, k ∈ N0, for t ≥ t1. Since

the matrix Θε is nonnegative and irreducible, ρ (Θε) is a positive eigenvalue which corresponds to a

positive eigenvector, say v = (v1, · · · , vn), with vτΘε = ρ(Θε)v
τ. Define

W(t) = vτ
∫ ∞

0

P(a)

∫ a

0

exp

(

−
∫ a

s

(D̃(r) − M)dr

)

i(t, s)dsda.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 538–574.



551

We calculate the derivative of W(t) along the solution of (2.4) and derive, for t ≥ t1,

dW(t)

dt
= vτ

∫ ∞

0

P(a)

∫ a

0

exp

(

−
∫ a

s

(D̃(r) − M)dr

)

∂

∂t
i(t, s)dsda

= vτ
∫ ∞

0

P(a)

∫ a

0

exp

(

−
∫ a

s

(D̃(r) − M)dr

) (

− ∂
∂s

i(t, s) − (D̃(s) − M)i(t, s)

)

dsda

= −vτ
∫ ∞

0

P(a)

[

exp

(

−
∫ a

s

(D̃(r) − M)dr

)

i(t, s)

]s=a

s=0

da

= vτ
{∫ ∞

0

P(a) exp

(

−
∫ a

0

(D̃(r) − M)dr

)

i(t, 0)da −
∫ ∞

0

P(a)i(t, a)da

}

= vτ
{

Γdiag(T (t))

∫ ∞

0

P(a) exp

(

−
∫ a

0

(D̃(r) − M)dr

)

da − I

}∫ ∞

0

P(a)i(t, a)da

= vτ
[

Γdiag(T (t))diag(T̄ + εI)−1Γ−1Θε − I
]

∫ ∞

0

P(a)i(t, a)da

≤ (ρ(Θε)v
τ − vτ)

∫ ∞

0

P(a)i(t, a)da ≤ 0,

and the equality holds if and only if
∫ ∞

0
P(a)i(t, a)da = 0 for t ≥ t1. We claim that the largest positively

invariant subset M0 of {dW(t)

dt
= 0} is {(T, 0(·))|T ∈ Rn}. For X̃(t) = (T̃ (t), ĩ(t, a)) ∈ M0, a solution of

(2.4), there is a t̃1 > 0 such that
∫ ∞

0
P(a)ĩ(t, a)da = 0 for t ≥ t̃1. Denote q̃0(·) = ĩ(t̃1, ·) and consider the

time-rescaled solution Ỹ(t) = X̃(t + t̃1), but remain the symbol Ỹ(t) = (T̃ (t), ĩ(t, a)). Then

ĩ(t, a) ≤ î(t, a), for t ≥ 0, (4.3)

where î(t, a) satisfies (4.1) with T0 = T̄ + εI and î0(·) = q̃0(·). Note that
∫ ∞

0
P(a)q̃0(·)da = 0. From

Lemma 4.1, î(t, ·) = 0(·) for all t ≥ 0. From (4.3), M0 is in fact the set{(T, 0(·))|T ∈ Rn}. In addition, by

using the theory of asymptotically autonomous systems [35, Theorem 2.3] and [36], we show that Ē is

globally asymptotically stable in system (2.1), when R0 < 1.

When R0 = 1, we show it by contradiction. Suppose there is a k0 ∈ N0 such that

lim supt→+∞
∫ ∞

0
ik0

(t, a)da > 0, then by Lemma 4.1 we have

ε0 := lim sup
t→+∞

P̃k0
(t)

(

= lim sup
t→+∞

∫ ∞

0

pk0
(a)ik0

(t, a)da

)

> 0.

From T -equation in (2.1),

dTk0
(t)

dt
= λk0

− dk0
Tk0

(t) − αk0
P̃k0

(t)Tk0
(t) −

∑

j∈N0

m jk0
Tk0

(t) +
∑

j∈N0

mk0 jT j(t).

We claim that lim supt→+∞ Tk0
< T̄k0

. Denoting P̃(t) = diag(P̃1(t), · · · , P̃n(t)), we rewrite the

T -equation in system (2.1) into the vector form

dT (t)

dt
= Λ + (−D + M − ΓP̃(t))T (t). (4.4)
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From the variation of constant formula, the solution to (4.4) satisfies

T (t) = e−t(D−M)T (0) +

∫ t

0

e−(t−s)(D−M)Λds −
∫ t

0

e−(t−s)(D−M)ΓP̃(s)T (s)ds. (4.5)

From Lemma 3.1, we have limt→+∞(e−t(D−M)T (0) +
∫ t

0
e−(t−s)(D−M)Λds) = T̄ . We next estimate the third

term in (4.5). Since the assumption ε0 > 0, there exist sequences of positive numbers {t(k0)

l
} and {τl}

with liml→∞ t
(k0)

l
= +∞ such that P̃k0

(t) ≥ ε0

2
for t ∈ [t

(k0)

l
− τl, t

(k0)

l
+ τl].

We claim that P̃′
k0

(t) is a bounded function. From the assumption (A3), it holds true whenever
∫ ∞

0

∂ik0
(t,a)

∂t
da is a bounded function of t. In fact, (2.1) and (2.2) imply that

∫ ∞

0

∂ik0
(t, a)

∂t
da = −ik0

(t, 0) −
∫ ∞

0

δk0
(a)ik0

(t, a)da

−
∑

j∈N0

m jk0

∫ ∞

0

ik0
(t, a)da +

∑

j∈N0

mk0 j

∫ ∞

0

i j(t, a)da

= −αk0
Tk0

(t)

∫ ∞

0

pk0
(a)ik0

(t, a)da −
∫ ∞

0

δk0
(a)ik0

(t, a)da

−
∑

j∈N0

m jk0

∫ ∞

0

ik0
(t, a)da +

∑

j∈N0

mk0 j

∫ ∞

0

i j(t, a)da.

It shows that
∫ ∞

0

∂ik0
(t,a)

∂t
da is a bounded function of t due to the assumptions (A2) and (A3) and Lemma

2.2. Hence P̃′
k0

(t) is a bounded function and then the sequence {τl} can be chosen such that liml→∞ τl >

0. It is easy to show that T (t) has a positive lower bound. In addition, since the matrix e−(D−M) is

positive and irreducible, the k0-th component of
∫ t

0
e−(t−s)(D−M)ΓP̃(s)T (s)ds has a positive lower bound.

Therefore, there exist ε1 > 0 and t1 > 0 such that Tk0
(t) < T̄k0

− ε1 for t > t1.

From the monotonicity of the spectral of nonnegative matrices ( [37, Corollary (1.5) in Ch2]), and

the assumption R0 = 1, we have ρ(Θε1
) < 1, where

Θε1
= Γdiag(T̄1, · · · , T̄k0−1, T̄k0

− ε1, T̄k0+1, · · · , T̄n) ×
∫ ∞

0

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

da.

In addition, since the spectral of a matrix is continuous on each component, there exists a sufficiently

small ε2 > 0 such that ρ(Θε1,ε2
) < 1, where

Θε1,ε2
= Γdiag(T̄1 + ε2, · · · , T̄k0−1 + ε2, T̄k0

− ε1, T̄k0+1 + ε2, · · · , T̄n + ε2) ×
∫ ∞

0

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

da.

By using the method in case of R0 < 1, we can show that ik(t, ·) → 0(·) as t → +∞ for each k ∈ N0.

This contradicts to the assumption on ik0
(t, ·). Therefore, we conclude that Ē is globally asymptotically

stable in system (2.1), when R0 = 1. �
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4.2. Uniform persistence

In this subsection, we study the uniform persistence for the model (2.4) when R0 > 1, by using the

persistence theory developed in [38] (or see [19]). Recall that the semiflow Ψ(t) is generated by the

Cauchy problem (2.7) which is equivalent to (2.4). Define

U = Rn × {0Rn} × Û,

Û =















(w1(·), · · · ,wn(·))τ ∈ L+

∣

∣

∣

∣

∣

∣

∣

∑

k∈N0

∫ ∞

0

wk(a)da > 0















,

∂U = X0+ \ U, ∂Û = L+ \ Û.

Lemma 4.2. The subsets U and ∂U are positively invariant under the semiflow Ψ(t). Furthermore,

limt→+∞Ψ(t)u = ū = (T̄ , 0Rn , 0L)τ for each u ∈ ∂U.

Proof. First, we show the positive invariance of the set U. Let u0 = (T0, 0, i0(·))τ ∈ U. Denote

Ψ(t)(u0) = (T (t), 0, i(t))τ

and define

Υ(t) =
∑

k∈N0

∫ ∞

0

ik(t, a)da.

Since u0 ∈ U, Υ(0) > 0. Through a direct calculation, we have

Υ′(t) =
∑

k∈N0

∫ ∞

0

















−∂ik(t, a)

∂a
− δk(a)ik(t, a) −

∑

k∈N0

m jkik(t, a) +
∑

k∈N0

mk ji j(t, a)

















da

=
∑

k∈N0

(

ik(t, 0) −
∫ ∞

0

δ(a)ik(t, a)da

)

≥ −δmax

∑

k∈N0

∫ ∞

0

ik(t, a)da = −δmaxΥ(t),

where δmax = max1≤k≤n{δk,max}. Hence, we obtain that

Υ(t) ≥ e−δmaxt

n
∑

k=1

∫ ∞

0

ik0(a)da > 0

for t ≥ 0, and then Ψ(t)U ⊂ U.

Next, in order to show the positive invariance of the set ∂U, we consider u0 ∈ ∂U. It is clear from

Lemma 2.2 that T (t) ≤ T̂ for some T̂ > 0. Then the comparison theorem implies that

i(t, ·) ≤ î(t, ·), (4.6)

where î(t, a) is the solution of the following system

∂î(t, a)

∂t
+
∂î(t, a)

∂a
= −(D̃(a) − U)î(t, a),
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î(t, 0) = Γdiag(T̂ )

∫ ∞

0

P(a)î(t, a)da,

î(0, ·) = i0(·). (4.7)

Since
∫ ∞

0
i0(a)da = 0 and the assumption (A3), it holds that

∫ ∞
0

P(a)î(0, a)da = 0. From Lemma 4.1,

we obtain that î(t, a) = 0(·) for all t ≥ 0. The comparison in (4.6) implies that i(t, a) = 0(·) for all

t ≥ 0 and then ∂U is positively invariant under the semifolw Ψ(t). In addition, from Lemma 3.1, it is

clear that for the solution remaining in ∂U we have T (t) → T̄ . Hence, limt→+∞Ψ(t)u = ū for each

u ∈ ∂U. �

Next, we demonstrate uniform persistence of system (2.7).

Theorem 4.2. When R0 > 1, the semiflow Ψ(t) generated by (2.7) is uniformly persistent with respect

to (U, ∂U); that is, there exists a constant ς > 0 such that for each u ∈ U,

lim inf
t→+∞

d(Ψ(t)u, ∂U) ≥ ς,

where d(·, ·) is the distance associated to the norm in (2.6). Furthermore, there exists a compact subset

A0 ⊂ U which is a global attractor for {Ψ(t)}t≥0 in U.

Proof. In the following, we will prove that

W s({ū}) ∩ U = ∅,where W s({ū}) = {u ∈ X0+| limt→+∞Ψ(t)u = ū}. Recall from Lemma 4.2 that the

infection-free equilibrium ū is GAS in ∂U. It is sufficient to show that there exists σ > 0 satisfying for

each u ∈ {v ∈ U |‖v − ū‖ ≤ σ} there exists t̃0 ≥ 0 such that ‖Ψ(t̃0)u − ū‖ > σ. Suppose by contradiction

that for each integer m ≥ 0 there is a um ∈ {v ∈ U |‖v − ū‖ ≤ 1
m+1
} such that ‖Ψ(t)um − ū‖ ≤ 1

m+1
for

t ≥ 0. Denote Ψ(t)um = (T m(t), 0Rn , im(t, a))τ = (T m
1

(t), · · · ,T m
n (t), 0Rn , im

1
(t, a), · · · , im

n (t))τ then

|T m
j
(t) − T̄ j| ≤ 1

m+1
, j ∈ N0, for all t ≥ 0. Consider

∂im(t, a)

∂t
+
∂im(t, a)

∂a
= −D̃(a)im(t, a) + Mim(t, a),

im(t, 0) = Γdiag(T m(t))

∫ ∞

0

P(a)im(t, a)da,

T m(0) = T m
0 , im(0, ·) = im

0 (·),

with T m
0
= (T m

10
, · · · ,T m

n0
)τ ≥ 0, im

0
(·) = (im

10
(·), · · · , im

n0
(·))τ ≥ 0(·) and

∑

k∈N0

∫ ∞
0

im
k0

(a)da > 0. From the

comparison theorem,

im(t, ·) ≥ ĩm(t, ·), (4.8)

for t ≥ 0, where ĩm(t, ·) is the solution of the following system

∂ĩm(t, a)

∂t
+
∂ĩm(t, a)

∂a
= −D̃(a)ĩm(t, a) + Mĩm(t, a),

ĩm(t, 0) = Γdiag

(

T̄ − 1

m + 1
I

) ∫ ∞

0

P(a)ĩm(t, a)da,

ĩm(0, ·) = im
0 (·),
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or equivalently
dx

dt
= (Â + L̂m)x(t), (4.9)

for t ≥ 0, x(0) ∈ D̂(Â), the closure of D̂(Â) = {0Rn} × (W1,1)n, where x(t) = (0Rn , ĩm(t, ·))τ and the

operators Â, L̂m are defined as

Â

(

0

ĩm(a)

)

=

( −ĩm(0)

−dĩm(a)

da
+ (−D̃(a) + M)ĩm(a)

)

,

L̂m

(

0

ĩm(a)

)

=













Γdiag
(

T̄ − 1
m+1

I
) ∫ ∞

0
P(a)ĩm(a)da

0













.

Since R0 > 1, there is a m0 > 0 large enough such that, for m ≥ m0,

Rm
0 := ρ

(

Γdiag

(

T̄ − 1

m + 1
I

) ∫ ∞

0

P(a) exp

(

−
∫ a

0

(D̃(s) − M)ds

)

da

)

> 1.

The dominant eigenvalue λ∗m of system (4.9) satisfies the characteristic equation ∆m(λ) = 0, where

∆m(λ) := I − Γdiag

(

T̄ − 1

m + 1
I

) ∫ ∞

0

P(a) exp

(

−
∫ a

0

(λI + D̃(s) − M)ds

)

da.

Note that Rm
0
> 1 implies the existence of λ∗m > 0 such that ∆m(λ∗m) = 0. Denote the solution semiflow

of (4.9) by {Ψ̂m(t)}t≥0 and let Π̂m(x̂) : X̂ → X̂, X̂ := Rn × L, be the projection of given x̂ ∈ X̂ on the

eigenspace associated to the dominant eigenvalue λ∗m. By the result in [19, Section 2.3], we see an

explicit expression for the following projection

Π̂m(Ψ̂m(t)x̂0) = eλ
∗
mtΠ̂m(x̂0) = eλ

∗
mt lim
λ→λ∗m

(λ − λ∗m)(λI − Â − L̂m)−1x̂0, (4.10)

for x̂0 = (0Rn , im
0

(·), )τ and

(λI − Â − L̂m)−1 = (λI − Â)−1(I − L̂m(λI − Â)−1)−1. (4.11)

By using (4.11) and directly calculating (λI − Â)−1, (I − L̂m(λI − Â)−1)−1 respectively, we obtain that

(λI − Â − L̂m)−1(0Rn , %(a))τ = (0Rn , ϑ(a))τ

if and only if

ϑ(a) = ρ1 exp

(

−
∫ a

0

(λI + D̃(s) − M)ds

)

+

∫ a

0

exp

(

−
∫ a

0

(λI + D̃(r) − M)dr

)

ρ2(s)ds,

and

ρ1 = ∆(λ)−1Γdiag

(

T̄ − 1

m + 1
I

) ∫ ∞

0

P(a)

∫ a

0

exp

(

−
∫ a

s

(λI + D̃(r) − M)dr

)

%(s)dsda

ρ2(·) = %(·).
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Since ∆m(λ∗m) = 0, we have

lim
λ→λ∗m

λ − λ∗m
∆m(λ)

=

(

d∆(λ∗m)

dλ

)−1

. (4.12)

By using Re λ∗m > 0,(4.10), (4.11) and (4.12), it deduces that limt→+∞ ‖ĩm(t)‖ = +∞. The comparison

(4.8) implies limt→+∞ ‖vm(t)‖ = +∞, which is a contradiction to the boundedness of the solution.

Hence, W s({ū}) ∩ U = ∅. Accordingly, we derive from [38, Theorem 4.1, Theorem 4.2] that the

semiflow {Ψ(t)}t≥0 is uniform persistence with respect to (U, ∂U). In addition, the result

in [28, Theorem 3.7] implies that there exists a compact global attractor A0 ⊂ U for {Ψ(t)}t≥0 in

U. �

Remark 1. According to Theorem 4.2, the uniform persistence of (2.4) indicates that there exists a

constant ζ > 0 such that for each solution in (2.4) satisfies

lim inf
t→∞

∑

k∈N0

∫ ∞

0

ik(t, a)da ≥ ζ. (4.13)

We further note that there exists a constant ζ0 > 0 such that

lim inf
t→∞

∫ ∞

0

ik(t, a)da ≥ ζ0, (4.14)

for each k ∈ N0. Otherwise, there is a k0 ∈ N0 such that limt→∞
∫ ∞

0
ik0

(t, a)da = 0, which contradicts to

the ik0
-equation in (2.1) and the fact (4.13).

5. Non-strongly connected within-host structure

The dichotomy of viral persistence or extinction within a host is based on the assumption of

irreducible migration matrix. However, the migration matrix may be reducible due to functions of

afferent or efferent lymphatics. In this case, the theory of direct graphs developed in [39] provides a

method to describe directional connections between all within-host compartments (see also [40]). By

building n vertices and assigning a directed edge from vertex j to vertex k when a flow from the j-th

compartment to k-th compartment is available, we can associate the matrix M with a direct graph.

Then the graph of M reflects the connection structure within a host, and the matrix M is irreducible if

and only if for any pair of two compartments there is a path from one compartment to the other. In

such a case, we say that the viral environment assumes a strongly connected within-host structure,

whereas the case with a reducible matrix M is referred to non-strongly connected structure.

When the within-host structure in non-strongly connected, that is, the matrix M is reducible, one

can use a permutation operator to reach a triangular block form, still denoted by matrix M,

M =



































M11 0 · · · 0

M21 M22 0
...

...
. . .

...

Mp1 · · · · · · Mpp



































, (5.1)

where p ≤ n and each Mll, 1 ≤ l ≤ p, is a rl× rl irreducible square matrix. We denote P0 = {1, 2, · · · , p}
and write N0 = ∪l∈P0

N
(l)

0
, where N

(l)

0
= {Σl−1

s=1
rs + 1,Σl−1

s=1
rs + 2, · · · ,Σl

s=1
rs}. By this way, we divide
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the whole within-host environment into p parts of which each part consists of strongly connected

compartments. We indicate, by block-l, the part consisting of k-th compartment for k ∈ N
(l)

0
. Explicitly,

given l ∈ P0 with rl ≥ 2, the compartments in block-l are strongly connected, whereas rl = 1 means

that the block-l consists of a single compartment. For later convenience, we denote N
(l)

0
= {ξl, · · · , ξl},

that is, ξl = Σ
l−1
s=1

rs + 1 and ξl = Σl
s=1

rs. Notably, under the form of (5.1), there is a connection from the

block-l1 into the block-l2 only for 1 ≤ l1 < l2 ≤ p. Denote P
(l)

0
= {l̃|1 ≤ l̃ < l, Mll̃ , 0} for 1 < l ≤ p

and P̄
(l)

0
= {l̃|l < l̃ ≤ p, Ml̃l , 0} for 1 ≤ l < p. P

(l)

0
is the set of indexes of blocks where each one

is connected to block-l through a directional pathway, whereas P̄
(l)

0
is that of blocks where each one is

connected by a directional pathway from block-l.

Now, for l ∈ P0, we say that the block-l is infection free if

lim
t→∞

ik(t, ·) = 0(·), for k ∈ N
(l)

0
,

for all solutions, and is infected if the infected population is uniformly persistent, that is, from

Remark 1, there exists a constant ζ0 > 0 such that

lim inf
t→∞

∫ ∞

0

ik(t, a)da > ζ0, for k ∈ N
(l)

0
.

We set the order of the blocks according to (5.1) and employ mathematical induction to analyze the

virus dynamics in (2.1). We first introductorily define a sequence of basic reproduction numbers. In the

system with only block-1, the basic reproduction number can be formulated as in (3.5) via replacing

the matrix M by M11. However, when there are more than one block, it is necessary to reformulate the

threshold value to determine the viral dynamics. Explicitly, for k ∈ N
(1)

0
, we have

dTk(t)

dt
= λk − dkTk(t) − αkTk(t)

∫ ∞

0

pk(a)ik(t, a)da

−
∑

j∈N(1)

0

m jkTk(t) −
∑

j∈∪
l̃∈P̄(1)

0

N
(l̃)

0

m jkTk(t)

+
∑

j∈N(1)

0

mk jT j(t),

∂ik(t, a)

∂t
+
∂ik(t, a)

∂a
= −δk(a)ik(t, a) −

∑

j∈N(1)

0

m jkik(t, a) −
∑

j∈∪
l̃∈P̄(1)

0

N
(l̃)

0

m jkik(t, a)

+
∑

j∈N(1)

0

mk ji j(t, a). (5.2)

Denote X(t) = (T1(t), · · · ,Tξ1(t))τ, y(t, a) = (i1(t, a), · · · , iξ1(t, a))τ, L(1) = (λ1, · · · , λξ1)τ,

D(1) = diag(d1, · · · , dξ1), G(1) = diag(α1, · · · , αξ1), diag(X(t)) = diag(T1(t), · · · ,Tξ1(t)),

D̃(1)(a) = diag(δ1(a), · · · , δξ1(a)), P(1)(a) = diag(p1(a), · · · , pξ1(a)) and

M(1) =





































m̄
(1)

11
m12 · · · m1ξ1

m21 m̄
(1)

22
m2ξ1

...
...

. . .
...

mξ11 mξ12 · · · m̄
(1)

ξ1ξ1





































(5.3)
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with

m̄
(1)

kk
= −

∑

j∈N0, j,k

m jk −
∑

j∈∪
l̃∈P̄(1)

0

N
(l̃)

0

m jk.

We rewrite (5.2) into

dX(t)

dt
= L(1) −D(1)X(t) − G(1)diag(X(t))

∫ ∞

0

P(1)(a)y(t, a)da +M(1)X(t),

∂y(t, a)

∂t
+
∂y(t, a)

∂a
= −D̃(1)(a)y(t, a) +M(1)y(t, a), (5.4)

with

y(t, 0) = G(1)diag(X(t))

∫ ∞

0

P(1)(a)y(t, a)da.

In order to determine the threshold value to conclude viral persistence or extinction in (5.2), we denote

R(1)

0
= ρ(Θ(1)), where

Θ(1) = G(1)diag(T̄ (1))

∫ ∞

0

P(1)(a) exp

(

−
∫ a

0

(D̃(1)(s) −M(1))ds

)

da, (5.5)

and T̄ (1) satisfies L(1) −D(1)T̄ (1) +M(1)T̄ (1) = 0. Note that R(1)

0
is not the basic reproductive number for

isolated block-1 except that P̄
(1)

0
= ∅.

Next, we start the process to determine the viral dynamics from the first block and the following is

a straightforward result from Theorem 4.1 and Theorem 4.2.

Proposition 5.1. The first block is infection free when R(1)

0
≤ 1, whereas it is infected when R(1)

0
> 1.

For given l ∈ P0, we suppose that from block-1 to block-(l − 1) are all determined to be infected or

infection free. In an infection free block, it satisfies limt→ Tk(t) = T̄k for constants T̄k > 0 derived as

in Lemma 3.1 and the virus goes extinction. Next, we check on the connection from these l − 1 blocks

to the block-l. Explicitly, we say that the block-l is susceptible from an infected block if there exists

l̃ ∈ {1, 2, · · · , l − 1} such that the block-l̃ is infected and Mll̃ , 0.

Here, we denote by an index to determine whether the block-l is susceptible from an infected block.

First, we denote

S(Mll̃) =

{

0, if ellements of Mll̃ are all 0′s,

1, if one ellement of Mll̃ is nonzero.

Then there is a (no) connection from the block-l̃ to the block-l when S(Mll̃) = 1 (S(Mll̃) = 0). We

further denote

χ(l) = max
1≤l̃<l

{

sign
(

max{R(l̃)

0
− 1, 0}

)

× S(Mll̃)
}

.

Then the block-l is susceptible from an infected l̃ block with l̃ < l if χ(l) = 1, whereas it is not

susceptible from any infected block-l̃ with l̃ < l if χ(l) = 0.

Suppose that the block-l is not susceptible from any infected block-l̃ with l̃ < l, i.e. χ(l) = 0. Then

the subsystem with k ∈ N
(l)

0
has the limit system

dTk(t)

dt
= λk − dkTk(t) − αkTk(t)

∫ ∞

0

pk(a)ik(t, a)da
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−
∑

j∈N(l)

0

m jkTk(t) −
∑

j∈∪
l̃∈P̄(l)

0

N
(l̃)

0

m jkTk(t)

+
∑

j∈∪
l̃∈P(l)

0

N
(l̃)

0

mk jT̄ j +
∑

j∈N(l)

0

mk jT j(t),

∂ik(t, a)

∂t
+
∂ik(t, a)

∂a
= −δk(a)ik(t, a) −

∑

j∈N(l)

0

m jkik(t, a) −
∑

j∈∪
l̃∈P̄(l)

0

N
(l̃)

0

m jkik(t, a)

+
∑

j∈N(l)

0

mk ji j(t, a). (5.6)

Denote X(t) = (Tξl
(t), · · · ,Tξl(t))τ, y(t, a) = (iξl

(t, a), · · · , iξl(t, a))τ, L(l) = (λ̄ξl
, · · · , λ̄ξl)τ,

λ̄k = λk +
∑

j∈∪
l̃∈P(l)

0

N
(l̃)

0

mk jT̄ j, (5.7)

D(l) = diag(dξl
, · · · , dξl), G(l) = diag(αξl

, · · · , αξl), diag(X(t)) = diag(Tξl
(t), · · · ,Tξl(t)),

D̃(l)(a) = diag(δξl
(a), · · · , δξl(a)), P(l)(a) = diag(pξl

(a), · · · , pξl(a)) and

M(l) =







































m̄
(l)

ξlξl
mξlξl+1 · · · mξlξl

mξl+1ξl
m̄

(l)

ξl+1ξl+1
mξl+1ξl

...
...

. . .
...

mξlξl
mξlξl+1 · · · m̄

(l)

ξlξl







































with

m̄
(l)

kk
= −

∑

j∈N0, j,k

m jk −
∑

j∈∪
l̃∈P̄(l)

0

N
(l̃)

0

m jk.

We rewrite (5.6) into

dX(t)

dt
= L(l) −D(l)X(t) − G(l)diag(X(t))

∫ ∞

0

P(l)(a)y(t, a)da +M(l)X(t),

∂y(t, a)

∂t
+
∂y(t, a)

∂a
= −D̃(l)(a)y(t, a) +M(l)y(t, a), (5.8)

with

y(t, 0) = G(l)diag(X(t))

∫ ∞

0

P(l)(a)y(t, a)da.

In order to determine the threshold value to conclude viral persistence or extinction in (5.8), we denote

R(l)

0
= ρ(Θ(l)), where

Θ(l) = G(l)diag(T̄ (l))

∫ ∞

0

P(l)(a) exp

(

−
∫ a

0

(D̃(l)(s) −M(l))ds

)

da, (5.9)

and T̄ (l) satisfies L(l) − D(l)T̄ (l) +M(l)T̄ (l) = 0. Note that R(l)

0
is not the basic reproductive number for

isolated block-l except that P
(l)

0
∪ P̄

(l)

0
= ∅.

Accordingly, the virus dynamics in the block-l can be determined as the following.
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Theorem 5.2. For 1 < l ≤ p, if χ(l) = 1, that is, the block-l is susceptible from an infected block-l̃ with

l̃ < l, then the block-l is infected; if χ(l) = 0, that is, the block-l is not susceptible from any infected

block-l̃ with l̃ < l, then the block-l is infection free when R(l)

0
≤ 1, whereas it is infected when R(l)

0
> 1.

Proof. Consider the block-l with X(l) = 1. It holds that, for k ∈ N
(l)

0
,

∂ik(t, a)

∂t
+
∂ik(t, a)

∂a
≥ −δk,maxik(t, a) −

∑

j∈N0

m jkik(t, a) +
∑

j∈N0

mk ji j(t, a).

Also note that there exists t0 and Ťk such that Tk(t) ≥ Ťk for all k ∈ N
(l)

0
for t ≥ t0. Hence, we consider

an auxiliary system

∂ĩk(t, a)

∂t
+
∂ĩk(t, a)

∂a
= −δk,maxĩk(t, a) −

∑

j∈N0

m jk ĩk(t, a) +
∑

j∈N0

mk jĩ j(t, a), k ∈ N
(l)

0
,

with ĩk(t, 0) = αkŤk

∫ ∞
0

pk(a)ĩk(t, a)da and ĩk(0, a) = ik0(a). By a comparison theory, it reveals that

ik(t, a) ≥ ĩk(t, a) for a ≥ 0 and t ≥ t0. Denote Ĩk(t) =
∫ ∞

0
ĩk(t, a)da for k ∈ N

(l)

0
, then it satisfies that

dĨk(t)

dt
= ĩk(t, 0) − δk,max Ĩk(t) −

∑

j∈N0

m jk Ĩk(t) +
∑

j∈N0

mk j Ĩ j(t)

≥ −δk,max Ĩk(t) −
∑

j∈N0

m jk Ĩk(t) +
∑

j∈N(l)

0

mk jĩ j(t, a) +
∑

j∈∪l−1

l̃=1
N

(l̃)

0

mk j Ĩ j(t)

≥ −δk,max Ĩk(t) −
∑

j∈N0

m jk Ĩk(t) +
∑

j∈N(l)

0

mk j Ĩ j(t) + ζ̃k,

where ζ̃k :=
∑

j∈∪l−1

l̃=1
N

(l̃)

0

mk jζ
(l̃)

0
and ζ

(l̃)

0
is the lower bound in (4.14). Note that the assumption X(l) = 1

implies ζ̃k > 0. We further consider the auxiliary system

dǏk(t)

dt
= −δk,max Ǐk(t) −

∑

j∈N0

m jk Ǐk(t) +
∑

j∈N(l)

0

mk j Ǐ j(t) + ζ̃k, k ∈ N
(l)

0
,

Since the matrix Mll is irreducible, there exists a positive equilibrium which is globally asymptotically

stable as in Lemma 3.1. Thus we reveal that

lim inf
t→∞

Ĩk(t) ≥ lim inf
t→∞

Ǐk(t) ≥ ζ̌k, k ∈ N
(l)

0
,

for some positive constants ζ̌k. In addition, since ik(t, a) ≥ ĩk(t, a) for a ≥ 0 and t ≥ t0, we see that
∫ ∞

0
ik(t, a)da ≥

∫ ∞
0

ĩk(t, a)da and then

lim inf
t→∞

∫ ∞

0

ik(t, a)da ≥ lim inf
t→∞

∫ ∞

0

ĩk(t, a)da ≥ ζ̌k, k ∈ N
(l)

0
,

which concludes that the virus population uniformly persists in block-l.

Next, we suppose that the block-l is not susceptible from any infected block-l̃ with l̃ < l, that is

X(l) = 0. Then in the block-l we obtain a limit system as in (5.4) for k ∈ N
(l)

0
. Therefore, the value of

R(l)

0
will determine the viral dynamics and it completes the proof. �
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Remark 2. Note that, for k ∈ N
(l)

0
, the value of λ̄k in (5.7) may depend on the connection from block-l̃

with l̃ < l. From Theorem 5.2, we see that even if the block-l is not susceptible from any infected block-l̃

with l̃ < l, the involved viral dynamics may be affected by the connection from an infection free block.

6. Effects of connection structure and distinct compartments

Considering each compartment with or without afferent and efferent lymphatics, there are several

different connection structures to build the whole system. In this section, we investigate the viral

extinction and persistence in the model (2.1) in cases of strongly and non-strongly connected structures,

along with compartments containing distinct infection characteristics.

6.1. A strongly connected circular chain

Deep lymph nodes of the head and neck are arranged in a vertical chain along the internal jugular

vein and a circular chain consisting of occipital nodes, submental nodes, submandibular nodes, buccal

or facial nodes and parotid nodes [41]. Hence, it is necessary to consider the group as a circular chain

and to study the influence of removing one connection between lymphoid tissues on the viral infection.

In this subsection, we consider three-compartment models with two types of connection matrices; one

with a complete connection and the other without the path from compartment 3 to compartment 2, see

Figure 2. To explore the effect of the connection topology on the viral infection, we assume identical

compartments, λk = λ, dk = d, αk = α, pk(·) = p(·), and δk(·) = δ(·), k = 1, 2, 3, and an identical

migration rate, mk j = m for k , j. In the case with the complete connection, it yields that

Θ =
λα

d

∫ ∞

0

P(a) exp





















−
∫ a

0





















δ(s) + 2m −m −m

−m δ(s) + 2m −m

−m −m δ(s) + 2m





















ds





















da.

A direct calculation gives

exp





















−
∫ a

0





















δ(s) + 2m −m −m

−m δ(s) + 2m −m

−m −m δ(s) + 2m





















ds





















=





















φ(a)( 1
3
+ 2

3
e−3ma) φ(a)(1

3
− 1

3
e−3ma) φ(a)( 1

3
− 1

3
e−3ma)

φ(a)( 1
3
− 1

3
e−3ma) φ(a)(1

3
+ 2

3
e−3ma) φ(a)( 1

3
− 1

3
e−3ma)

φ(a)( 1
3
− 1

3
e−3ma) φ(a)(1

3
− 1

3
e−3ma) φ(a)( 1

3
+ 2

3
e−3ma)





















,

where φ(a) = exp
(

−
∫ a

0
δ(s)ds

)

. Denoting Q1(m, a) = 1
3
+ 2

3
e−3ma and Q2(m, a) = 1

3
− 1

3
e−3ma, we derive

that

Θ =























λα
d

∫ ∞
0

p(a)φ(a)Q1(m, a)da λα
d

∫ ∞
0

p(a)φ(a)Q2(m, a)da λα
d

∫ ∞
0

p(a)φ(a)Q2(m, a)da
λα
d

∫ ∞
0

p(a)φ(a)Q2(m, a)da λα
d

∫ ∞
0

p(a)φ(a)Q1(m, a)da λα
d

∫ ∞
0

p(a)φ(a)Q2(m, a)da
λα
d

∫ ∞
0

p(a)φ(a)Q2(m, a)da λα
d

∫ ∞
0

p(a)φ(a)Q2(m, a)da λα
d

∫ ∞
0

p(a)φ(a)Q1(m, a)da























.
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



















φ(a)( 1
3
+ 2

3
e−3ma) φ(a)(1

3
− 1

3
e−3ma) φ(a)(1

3
− 1

3
e−3ma)

φ(a)( 1
6
− 2

3
e−3ma + 1

2
e−2ma) φ(a)( 1

6
+ 1

3
e−3ma + 1

2
e−2ma) φ(a)(1

6
+ 1

3
e−3ma − 1

2
e−2ma)

φ(a)( 1
2
− 1

2
e−2ma) φ(a)(1

2
− 1

2
e−2ma) φ(a)(1

2
− 1

2
e−2ma)





















,

and then

Θ =























αT̄1

∫ ∞
0

p(a)φ(a)Q̃11(m, a)da αT̄1

∫ ∞
0

p(a)φ(a)Q̃12(m, a)da αT̄1

∫ ∞
0

p(a)φ(a)Q̃13(m, a)da

αT̄2

∫ ∞
0

p(a)φ(a)Q̃21(m, a)da αT̄2

∫ ∞
0

p(a)φ(a)Q̃22(m, a)da αT̄2

∫ ∞
0

p(a)φ(a)Q̃23(m, a)da

αT̄3

∫ ∞
0

p(a)φ(a)Q̃31(m, a)da αT̄3

∫ ∞
0

p(a)φ(a)Q̃32(m, a)da αT̄3

∫ ∞
0

p(a)φ(a)Q̃33(m, a)da























,

where

Q̃11(m, a) =
1

3
+

2

3
e−3ma,

Q̃12(m, a) =
1

3
− 1

3
e−3ma = Q̃13(m, a),

Q̃21(m, a) =
1

6
− 2

3
e−3ma +

1

2
e−2ma,

Q̃22(m, a) =
1

6
+

1

3
e−3ma +

1

2
e−2ma,

Q̃23(m, a) =
1

6
+

1

3
e−3ma − 1

2
e−2ma,

Q̃31(m, a) =
1

2
− 1

2
e−2ma = Q̃32(m, a),

Q̃33(m, a) =
1

2
− 1

2
e−2ma.

In this circular chain, we choose parameters d = 0.09, λ = 10, p(a) = e−0.15a, δ = 0.4 [42] and

change the value of α to see possible effect of migration rate, m, on the viral persistence. When

α = 0.0046, there is a m∗ > 0 such that R0 < 1 for 0 ≤ m < m∗ and R0 > 1 for m > m∗. Hence

sufficiently slow migration of cells will drives the virus to extinction, whereas faster migration of cells

will lead to viral persistence, which is different from the non-influence of migration in the completely

connected circular chain. Moreover, when α = 0.0042, there exist positive constants m∗∗ < m∗∗∗ such

that R0 < 1 for 0 ≤ m < m∗∗ or m > m∗∗∗ and R0 > 1 for m∗∗ < m < m∗∗∗. It means that the influence

of migration on the viral dynamics is complicated, from eradicating virus in the whole system with

sufficiently small migration rate to initiating viral infection by medium value of migration rate, and

eradicating virus again with sufficiently large migration rate.

6.2. Two non-strongly connected blocks

Consider a host consisting of four compartments as in Figure 4, where the 1st and 2nd compartments

(involved in block-1) are strongly connected and also for the 3rd and 4th compartments (involved

in block-2). The only connection between the two blocks is from the 2nd compartment to the 3rd

compartment, that is, the block-2 may be susceptible from the block-1 when the latter one is infected.

Denote m = m32. Hence, R(1)

0
= ρ(Θ(1)), where

Θ(1) = G(1)diag(T̄ (1))

∫ ∞

0

P(1)(a) exp

(

−
∫ a

0

(D̃(1)(s) −M(1))ds

)

da,
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Figure 3. Influence of the migration rate m on the value of R0. When α = 0.0046, there is a

m∗ > 0 such that R0 < 1 for 0 ≤ m < m∗ and R0 > 1 for m > m∗. When α = 0.0042, there

exist positive constants m∗∗ < m∗∗∗ such that R0 < 1 for 0 ≤ m < m∗∗ or m > m∗∗∗ and R0 > 1

for m∗∗ < m < m∗∗∗.

D(1) = diag(d1, d2), G(1) = diag(α1, α2), D̃(1)(a) = diag(δ1(a), δ2(a)), P(1)(a) = diag(p1(a), p2(a)),

L(1) =

(

λ1

λ2

)

, M(1) =

(

−m21 m12

m21 −m12 − m

)

and T̄ (1) = (T̄
(1)

1
, T̄

(1)

2
)τ = (D(1) −M(1))−1L(1). By direct calculation, it yields that

T̄
(1)

2
(m) =

λ1m21 + λ2(d1 + m21)

(d1 + m21)(d2 + m12 + m) − m12m21

.

The inner integral in Θ(1) is a positive matrix because of the irreducibility of matrixM(1), and then Θ(1)

is positive for all m ≥ 0. We see how the value of m affects that of R(1)

0
in the following. All proofs in

this subsection will be postponed to Appendix.

Proposition 6.1. The value of R(1)

0
is decreasing in m.

On the other hand, R(2)

0
= ρ(Θ(2)), where

Θ(2) = G(2)diag(T̄ (2))

∫ ∞

0

P(2)(a) exp

(

−
∫ a

0

(D̃(2)(s) −M(2))ds

)

da,

D(2) = diag(d3, d4), G(2) = diag(α3, α4), D̃(2)(a) = diag(δ3(a), δ4(a)), P(2)(a) = diag(p3(a), p4(a)),

L(2) =

(

λ3 + mT̄
(1)

2
(m)

λ4

)

, M(2) =

(

−m43 m34

m43 −m34

)

,

and T̄ (2) = (T̄
(2)

1
, T̄

(2)

2
)τ = (D(2) −M(2))−1L(2). Accordingly, we can also see how the value of m affects

that of R(2)

0
.

Proposition 6.2. The value of R(2)

0
is increasing in m.
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6.3. Distinct gamma distributed infectivity kernels with delay

Recent studies show that for HIV the viral production and cell infection kernels are gamma

distributed [43, 44] after an intracellular delay for integration of viral genome. The predominant

infected cell type or infection mode may determine the shape characteristics of the kernels. In

particular, cell-to-cell transmission results in faster infection kinetics [44], and certain tissue

compartments may have cells arranged closer together facilitating this infection model [45]. In order

to model, compartments with distinct infection kinetics, we consider infected cell death rates δk(a)

and infectivity kernels pk(a) of the following piecewise form:

δk(a) =















dk 0 ≤ a < τk

νk τk < a
, pk(a) =















0 0 ≤ a < τk

gk(a − τk) τk < a,
(6.4)

where τk is the intracellular delay, νk is the cell death rate after integration of viral genome, and gk(s)

is the gamma-distributed (gk ∼ Gamma(κk, θk)) infectivity kernel, for compartment k ∈ N
(l)

0
. Note that

the mean of the gamma distribution gk(κk, θk) is µk = κk/θk, representing the mean time of (secondary)

cell infection for an infected cell in the absence of death. In the special case that each compartment has

identical delays τk = τ and gamma p.d.f.s, gk = g(κ, θ), with shape parameter κ = n as a positive integer,

then the linear chain trick can yield the following equivalent system of delay differential equations:

dT (t)

dt
= Λ − DT (t) − Γdiag(T (t))Yn(t) + MT (t),

dY1(t)

dt
= Γ exp(−(D − M)τ) (T (t − τ) ◦ Yn(t − τ)) − (D̃ − M)Y1(t) − θY1(t), (6.5)

dYm(t)

dt
= θ (Ym−1(t) − Ym(t)) − (D̃ − M)Ym(t), m = 2, . . . n,

where Ym(t) :=
∫ ∞

0

θmam−1

(m−1)!
e−θai(t, a + τ)da, m = 1, . . . n, D̃ = diag(νk), and T (t − τ) ◦ Yn(t − τ) refers

to entry-wise product of the vectors. Note that previous examples fall under this scenario with n = 1

and τ = 0. Thus for the previous results on how migration rate affects R0 in Figure 3 and Figure 5, we

can verify extinction versus persistence by transforming to the ODE to obtain numerical solutions. For

the general case of patches with distinct intracellular delays and/or gamma distribution parameters in

(6.4), however the system will be infinite-dimensional as our original PDE model (2.1) and we utilize

a finite-difference method for example simulations below.

We explore the dynamics in this general setting by considering parameters representative of the

study [44], where distinct modes of infection produce different infectivity kernels. Here we consider

the case of three compartments connected in a circular chain lacking path from compartment-3 to

compartment-2, as in Figure 2(b), with infectivity kernels as (6.4). In Figure 6, we display

time-dependent solutions for 3 distinct scenarios; all compartments utilize cell-free infection, all

compartments utilize cell-to-cell infection, and finally a mix where the first two compartments display

cell-free while compartment-3 utilizes cell-to-cell infection. We also investigate how varying

intracellular delay, τ3, and gamma distribution mean, µ3, of compartment-3 affect the overall R0. The

fixed parameters utilized are d = 0.09, λ = 100, ν = 0.4, α = 0.0011, mi j = m = 1, and in Figure

6(a)-(c), intracellular delay τ = 2/3 and gamma distribution mean µ1, µ2, µ3 either equal to 4/5

(cell-free infection) or 1/2 (cell-to-cell infection) with shape parameter κ fixed at 4. Shorter values of
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(a) (b)

(c) (d)

Figure 6. Three compartment circular chain lacking path from compartment-3 to

compartment-2 in the case of example (6.4) with intracellular delay and gamma distribution

infectivity kernel. Time-dependent solutions of Ik(t) =
∫ ∞

0
ik(t, a) da are shown for

intracellular delay τk = τ = 2/3 day and gamma distribution mean (a) µk = µ = 4/5,

(b)µk = µ = 1/2, and (c) µ1 = µ2 = 4/5, µ3 = 1/2, consistent with cell-free infection, cell-cell

infection, and mixed compartment infection mode, respectively. For the mixed compartment

case in (c), the intracellular delay τ3 and gamma distribution mean µ3 are varied and the

contour plot of R0 is plotted in (d).

τk and µk result in larger R0, along with faster infection dynamics and larger number of infected cells.

Thus, compartments which facilitate cell-to-cell infection may be important for allowing the virus to

persist and establish reservoirs, which has been found in studies of HIV under drug treatment [46] or

during initial bottleneck of host infection [16].

7. Conclusion and discussion

The assumption of well-mixed viral environment may ignore diversity of viral dynamics, for

example, the existence of viral sanctuary sites and variant viral clearances, and then underestimate the

infection within a host. We propose a multi-compartment model incorporating age-since-infection to

imitate the migration of cells through afferent and efferent vessels between diverse organs. A

threshold, depending on the rate of cell migration, the structure of organic connection and infection

kinetics, was found to determine the extinction or persistence of infection. Accordingly, in this paper,

we theoretically discussed the effect of the connection structure on the extinction or persistence of

infection. Comparing systems with complete connection (with bi-directional connection between any
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two compartments of the system) and only lacking one connection, we see the influence of the

migration rate in latter case. In both strongly connected systems, the influence may

non-monotonously depend on the migration rate. As for a non-strongly connected system, we

constructed a sequence of threshold values to conclude the infection pattern within a host and

revealed that increasing the migration rate from a strongly connected block to another strongly

connected block does not always help to eradicate virus in the whole system. Furthermore our

inclusion of cell infection-age allows for organ-specific infectivity kinetics based on predominance of

cell-free versus cell-to-cell transmission or target cell type. In particular, we demonstrated that

individual compartments dominated by cell-to-cell infection may precipitate viral persistence in a

strongly connected system with distinct gamma-distributed infectivity kernels representative of

experimental studies. These findings complement and extend research on models consisting of a

well-mixed compartment.

In this study, the global convergence to the infection-free equilibrium was demonstrated in the case

when the basic reproduction number is less than or equal to unity. On the other hand, the global

convergence to the unique infection state is a challenging problem. In [20] for studying a multi-group

SIR epidemic model with an age structure, an analogous problem was partially solved by using the

method of Lyapunov functional and graph theory. However, the convergence dynamics to an infection

state in this study remains as an unsolved problem since the model incorporates both the age structure

and the migration behavior of cells. Moreover, the connection topology between a group significantly

affects the evolution dynamics, and hence attracts researchers to contribute toward either theoretical

analysis or application-oriented studies. A portion of a host body can be imitated by a strongly

connected structure in which the viral dynamics holds clearance or uniformly persists in the complete

part. However, biological evidences show that a functional system within a host, for example, the

lymphatic system or the blood circulation system, consists of several such portions which are not

strongly connected. Motivated by the study in [40] for infectious diseases via transportation networks,

we systematically constructed a sequence of threshold values to find out the infection pattern in the

whole system.

We explicitly explored the effect of connection topology or cell infection-age kinetics on the viral

dynamics in two basic structures: (a) a strongly connected circular chain with or without a certain

directional connection, and (b) a system with one pair of two-compartment blocks connected via a

unidirectional pathway. In the first example, either with or without the indicated directional

connection, it remains the type of strongly connected. Nevertheless, in the latter case, it may show

multiple switches between viral eradication and viral infection in the whole system when increasing

the identical migration rate of cells. The second example was devoted to study the connection

topology between two strongly-connected blocks. In particular, we explored the effect of the

unidirectional migration between two compartments, each is located in a strongly-connected block.

An explicit formula shows that increasing the migration rate between two blocks may first change the

viral persistence only in the first block to viral eradication in the whole system, and then, for even

larger migration rate, trigger the infection in only the flow-in block. Biologically, this unidirectional

connection between two blocks benefits the one with exportation in viral eradication but damages the

other one with importation. Although these example structures may be limited in number of

compartments, they reveal the necessity in distinguishing the connection topology within a host.

Finally, we investigated how incorporating intracellular delays and distinct gamma distributed
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infectivity kernels based on cell-free and cell-to-cell infection data [44] can affect viral dynamics in

the strongly connected circular chain. We find that the faster kinetics associated with cell-to-cell

infection promote viral persistence and spread, even when only a single compartment in the chain has

this transmission mode.

Variable time-dependent drug efficacy is another issue that requires consideration. For drug

treatments, such as those administrated through targeted therapy, the treatment focuses on the targeted

organ (the target compartment), and the drug efficacy is constant in each compartment. However,

under several traditional therapies, drugs may spread throughout the entire body of a host via the

circulatory system, in which the drug efficacy would no longer be constant in each compartment.

Therefore, it is necessary to formulate the drug circulation among neighboring compartments along

afferent and efferent vessels. These considerations will be explored in our next research.
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Appendix.

To show the dependence of R(1)

0
and R(2)

0
on the value of m, we begin first from a property of the

following exponential matrix S 0(β).

Lemma A.1.

Given c, d > 0, the value of each component of the matrix

S 0(β) =: exp

(

−c d

c −d − β

)

is decreasing in β, for β > 0.

Proof. The following matrix can be written into with its diagonal form

(

−c d

c −d − β

)

= PDP−1, (7.1)

where

D =













(−
√

(c + d + β)2 − 4cβ − c − d − β)/2 0

0 (
√

(c + d + β)2 − 4cβ − c − d − β)/2













,

P =



















− ψ1(β)+ψ2(β)√
(ψ1(β)+ψ2(β))2+4c2

ψ1(β)−ψ2(β)√
(ψ1(β)+ψ2(β))2+4c2

2c√
(ψ1(β)+ψ2(β))2+4c2

2c√
(ψ1(β)+ψ2(β))2+4c2



















,

with

ψ1(β) =
√

(c + d + β)2 − 4cβ,

ψ2(β) = c − d − β.

Note that ψ1(β) > 0, (ψ1(β))2 − (ψ2(β))2 = 4cd > 0, and then ψ1(β) − ψ2(β) > 0 and ψ1(β) + ψ2(β) > 0.

In addition, direct calculations give

ψ′1(β) = −ψ1(β)

ψ2(β)
, ψ′2(β) = −1. (7.2)

Hence, from (7.1), we have

S 0(β) =

(

S 11 S 12

S 21 S 22

)

,

where

S 11(β) =
e−c

2ψ1(β)

(

e(ψ2(β)−ψ1(β))/2(ψ1(β) + ψ2(β)) + e(ψ1(β)+ψ2(β))/2(ψ1(β) − ψ2(β))
)

,

S 12(β) =
de−c

ψ1(β)

(

e(ψ1(β)+ψ2(β))/2 − e(ψ2(β)−ψ1(β))/2
)

,

S 21(β) =
ce−c

ψ1(β)

(

e(ψ1(β)+ψ2(β))/2 − e(ψ2(β)−ψ1(β))/2
)

,
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S 22(β) =
e−c

2ψ1(β)

(

e(ψ2(β)−ψ1(β))/2(ψ1(β) − ψ2(β)) + e(ψ1(β)+ψ2(β))/2(ψ1(β) + ψ2(β))
)

.

By direct calculations and using (7.2), it yields that

S ′11(β) =
−cd

ψ1(β)3
eψ2(β)/2

(

eψ1(β)/2(ψ1(β) + 2) + eψ1(β)/2(ψ1(β) − 2)
)

S ′12(β) =
de−c

2ψ1(β)3
eψ2(β)/2

(

eψ1(β)/2(2ψ2(β) − ψ1(β)ψ2(β) − ψ1(β)2)+

e−ψ1(β)/2(−2ψ2(β) − ψ1(β)ψ2(β) + ψ1(β)2)
)

S ′21(β) =
c

d
S ′12(β),

S ′22(β) =
e−c

4ψ1(β)2

(

−e(ψ2(β)−ψ1(β))/2(ψ1(β) − ψ2(β))2 − e(ψ1(β)+ψ2(β))/2(ψ1(β) + ψ2(β))2

− 8cd

ψ1(β)
eψ2(β)/2(eψ1(β)/2 − e−ψ1(β)/2)

)

.

Define

k(ψ1(β)) = eψ1(β)/2(ψ1(β) + 2) + eψ1(β)/2(ψ1(β) − 2),

h(ψ1(β), ψ2(β)) = eψ1(β)/2(2ψ2(β) − ψ1(β)ψ2(β) − ψ1(β)2) +

e−ψ1(β)/2(−2ψ2(β) − ψ1(β)ψ2(β) + ψ1(β)2).

It is easy to show that k(x) > 0 for all x > 0 and h(x, y) < 0 for all x > 0. Finally, the fact ψ1(β) > 0

implies S ′i j(β) < 0 for i, j = 1, 2, and it completes the assertion. �

Based on this property, we see the dependence of R(1)

0
on m.

Proof of Proposition 6.1:

Proof. Since the spectral of a positive matrix positively depends on each component, it suffices to show

that, for a fixed a > 0, the value of each component of the matrix

S (m) := exp

(

−
∫ a

0

(D̃(1)(s) −M(1))ds

)

is decreasing in m. For given a > 0, if
∫ a

0
δ2(s)da ≥

∫ a

0
δ1(s)da, we rewrite S (m) into

S (m) = exp

((

−
∫ a

0
δ1(s)ds 0

0 −
∫ a

0
δ1(s)ds

)

+

(

−m1a m2a

m1a −m2a − β(m)

))

= exp

(

−
∫ a

0
δ1(s)ds 0

0 −
∫ a

0
δ1(s)ds

)

exp

(

−m1a m2a

m1a −m2a − β(m)

)

, (7.3)

where

β(m) = ma +

∫ a

0

(δ2(s) − δ1(s))ds.
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