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Abstract

There is a substantial interest in detailed models of viral infection and antiviral drug
kinetics in order to optimize the treatment against viruses such as HIV. In this paper, we
study within-viral dynamics under general intracellular distributed delays and periodic
combination antiviral therapy. The basic reproduction number Ry is established as a
global threshold determining extinction versus persistence, and spectral methods are
utilized for analytical and numerical computation of Ry. We derive the critical matu-
ration delay for virus and optimal phase difference between sinusoidally varying drug
efficacies under various intracellular delays. Furthermore, numerical simulations are
conducted utilizing realistic pharmacokinetics and gamma-distributed viral produc-
tion delays for HIV. Our results demonstrate that the relative timing of the key viral
replication cycle steps and periodic antiviral treatment schedule involving distinct
drugs all can interact to critically affect the overall viral dynamics.

Keywords Antiviral therapy - Intracellular delays - Virus model - Basic reproduction
number - Spectral analysis

Mathematics Subject Classification 92B05 - 37N25

1 Introduction

Modeling within-host virus dynamics has been an extensive area of research in math-
ematical biology. For example, models of HIV dynamics under antiretroviral therapy
(ART) have been utilized to gain insight on the kinetics of HIV infection and promising
treatment strategies (Adams et al. 2005; Wei et al. 1995; Perelson et al. 1996; Rong
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et al. 2007). ART typically consists of a combination of antiviral medications acting
at different stages of the viral replication stages. In particular, reverse-transcriptase
inhibitors (RTIs) block reverse transcription (RT) after cell infection and before viral
production, whereas protease inhibitors (PIs) target the cell’s production of viable
viral particles. Although ART has been remarkably successful in controlling HIV,
ongoing viral replication can persist during therapy, and drug side effects and adher-
ence continue to be issues. Thus, an important motivation for mathematical models
is optimization of combination drug therapies acting on distinct phases of the viral
replication cycle.

Viral infection is most simply captured by the standard virus model (Perelson and
Nelson 1999); a nonlinear system of three ordinary differential equations (ODEs)
incorporates target cells, infected cells and free virus particles as the state variables.
A more detailed description involves consideration of the replication stages between
virus-cell entry and new (mature) viral production by the infected cell. To account
for the time lag between viral entry of a target cell and subsequent initiation of viral
production from the newly infected cell, known as the eclipse phase, Perelson et al.
included discrete and distributed delays in the standard model (Nelson and Perelson
2002). Building upon the delay model, many authors consider virus models with age
structure in the infected cell compartment where the death (lysis) and viral production
rate can vary with age since the infection of the cell (Browne and Pilyugin 2013;
Nelson et al. 2004; Rong et al. 2007; Huang et al. 2012).

Given that cell infection and viral production are the fundamental steps in the repli-
cation cycle, perhaps the most effective way to incorporate heterogeneity in infected
cell processes is to assume that both the eclipse and viral production phases are dis-
tributed delays (Shu et al. 2013). Here, we extend previous models by generalizing
an age-structured system, with eclipse and virus-producing stages, to an infinite-delay
system with probability distributions describing the time taken in each of these stages.
In this way, recent experimental estimates of these distributions (Beauchemin et al.
2017) can be accurately quantified in the virus models. Also, the kinetics of distinct
classes of drugs can be incorporated in relation to their timing with respect to the
key viral replication stages, building upon previous virus models with antiviral ther-
apy (Rong et al. 2007; Wang et al. 2016). In addition, the probability distributions of
eclipse and viral production stage are convenient for threshold dynamics analysis in
the case of periodic antiviral therapy.

Periodicity in antiviral efficacies occurs as a consequence of the discrete nature of
drug intake for patients. The magnitude of fluctuations in antiviral drug efficacy within
patients depends upon dosing regimen, adherence and pharmacodynamic properties of
the medication (Shen et al. 2008; Vaidya and Rong 2017). Several works have explored
the dynamics of virus models with time-varying combination antiviral therapy, treat-
ment optimization with respect to minimizing the reproduction number Ry and the
threshold quantity determining viral extinction versus persistence (De Leenheer 2009;
Vaidyaand Rong 2017; Wang et al. 2014). The phase difference between distinct antivi-
ral efficacies was found to critically affect Ry for the standard ODE virus model with
periodic drug efficacy functions as small amplitude perturbations from constant level
(Browne and Pilyugin 2012), “bang—bang” (Browne and Pilyugin 2016) and more
realistic pharmacokinetic functions (Wang and Zhao 2013). Furthermore, Neagu et
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al. (2018) argued that inherent delays in the viral replication cycle can substantially
affect viral dynamics during periodic (single-drug) antiviral treatment. Here, we fur-
ther these previous results by rigorous analysis of R and resulting threshold dynamics
in a general distributed delay virus model with periodic antiviral drug efficacies. In
particular, utilizing the definition of Ry in the periodic infinite-dimensional setting
(Bacaér and Ouifki 2007; Bacaér and Abdurahman 2008; Bacaér and Dads 2012;
Posny and Wang 2014; Zhao 2017a), we develop analytical and numerical methods
to optimize periodic combination therapy for viral infections with a variety of viral
intracellular delay distributions. Our results demonstrate that the relative timing of
the key viral replication cycle steps, periodic antiviral treatment schedule and phase
difference between distinct drugs all can interact to critically affect the overall viral
dynamics.

2 The Model

We begin by considering the following extension of an age-structured virus model
originally proposed by Nelson et al. (2004):

S'(t) = »—88(t) —kS()V (1),

d d
(5 + E) jt, )= =) +y@)jit,t), j, 0 =kSEV(),

A . . T
<— + —>l(t,a) = —p2(a)i(t,a), i(t,0) =/V(T)J(t, T)dr, (D

Jat da

0
V() = /q(a)i(t,a)da —dV ().
0

Here, S(¢) is the population size of healthy cells, j (¢, 7) is the density of infected cells
in eclipse phase (before viral production begins) with respect to age since cell infection
7,i(t, a) is the density of productively infected cell concentration with respect to time
elapsed since initiation of viral production, a, and V (¢) is the viral load concentration.
The healthy cells replenish with constant recruitment rate A and per capita death rate
8. In the absence of viral infection, the healthy cells will reach at the equilibrium
S = A /8. The infection of healthy cells is modeled by a mass action term kSV, where
k is the infectivity rate. The death rate of infected cells in the eclipse phase is ©1(7),
and the rate at which infected cells transition to viral production stage is y (), and
both depend on time since cell infection t. Additionally, x> (a) and g (a) are the age-
dependent death rate and viral production rate for productively infected cells. System
(1) directly extends the ordinary differential equation virus model with infected cells
to be divided into eclipse and virus-producing stages (Buonomo and Vargas-De-Le6n
2012), by introducing continuous age structures in each class. We are interested in
a detailed description of the progression of infected cells during typical replication
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9 cycle; thus, we do not consider the small fraction of infected cells, which are in the
w0 resting state, and form the latent reservoir (Rong and Perelson 2009).

10 Next, we incorporate time-varying combination antiviral treatment into (1):
G
o
E 102 ') =r=8850t)— (1 —nm@E)kSOV (@), 2)
— 0 0
é 103 (5 + a—f) J, 1) =—=(ui() +y@)j, ), j,00=0—=-—m@)kSOV (@),
= [ee)
< a9\, _ . :

104 (— + —) i(t,a) = —u2(a)i(t,a), i(t,0)= /]/(‘L’)](I, 7)dr,

ot  da
0
105 V() =0 —na() f q(a)i(t,a)da — dV (1), 3)
106 0

w7 where 11 (¢) and 1, (¢) are the efficacies of reverse-transcriptase inhibitors (RTIs) and
s protease inhibitors (PIs), respectively. An extension of system (3) with more detailed
1o model of the action of the RTI is discussed at the end of this section, in Remark 1.

110 We assume that the drug efficacies, 1 (f) and 12 (¢), are at least piecewise continuous
i periodic functions with a common period 7', representative of a periodic therapy, and
n1(t), n2(t) € [0, 1] for all t € R. Two particular examples of periodic drug efficacies
13 we consider in this paper for explicit analytical and numerical results are:

~

ns 1. Sinusoidal perturbations from constant efficacy (Browne and Pilyugin 2012)

s ni (t) = e; + €a; cos wt, (@)
116 where ¢; is the constant (mean) drug efficacy, €a; is amplitude of small amplitude
17 oscillation, and w = 2w /T with T being the period of drug administration.

ns 2. Classical dose—response with impulse and exponential decays (Shen et al. 2008)

o0
119 ni(t) = e\ D;(t) = C; <e—ri(t mod T) + 250 _ I’ZT)) . (5)
1+ (T(tl)) n=1
120 where D; (¢) is the drug concentration in the blood, ICs, is the concentration at
121 50% target inhibition, m; is a slope parameter analogous to the Hill coefficient,
122 Ci = Chmax, /(1 —e7”" iT) with Chmax; 1s the maximal concentration achieved in
123 the blood, r; is the decay rate of drug concentration, and §(¢) is the Dirac delta
124 function.

125 The first example, small amplitude sinusoidal drug efficacies, will allow for analytic
s approximation of Ry and also can resemble small variations in antiviral drug effi-
127 cacy under daily periodic dosing. The second example has been utilized to model
s pharmacodynamics of antiviral medications (Vaidya and Rong 2017).

1

o

1

~
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The equations in model (3) can be converted to a delay differential equation system.
By standard application of method of characteristics, we obtain

JE 1) = k(L= it =TS — )V (¢t — 1) Jo ©FrNds,

o
i(t,a) = f Y(OBt—a—1)S(t —a—1)V(t —a— r)e Jo 1EFVENs gy
0
e~ Jo ma()ds

where () = k(1—n1(¢)). Define p(¢) = 1 —n2(¢). Substituting this into the equation
for V/(¢) yields

V(1) =p(t) //q(a))/(f)ﬂ(t —a—-1)St—-—a—-1)V(it—a—1)
00
e~ Jo (1 () +y ())ds o= IS m2()ds 4z dgq — dv (r). (6)

Equations (2) and (6) together with the initial conditions for viral load V (¢) on (—oo0, 0]
can formulate a closed system with time delay. Assuming that V (—o0) is bounded,
we rewrite (6) as an integral equation

00 00 00
Vi(t) = fe‘dsp(t —9) //q(a)y(r)ﬂ(t —s—a-7)
0 0 0
St—s—a—1)V(t—5s—a—r1)
o= Jo (1 ©+y ) ds o= [ m2)ds 47 44 ds. (7

We now seek to extend the viral model by allowing more general distributed delays
with respect to the key stages in the viral replication cycle. Several previous works
(Culshaw and Ruan 2000) have assumed there is a fixed intracellular delay 7p, so
that y () = 6(t — 19) where 6(7) is the Dirac delta function. Others have assumed
an exponentially distributed eclipse phase, in particular the extended classical virus
ODE model with additional eclipse (or latent) infection compartment (Buonomo and
Vargas-De-Ledén 2012). A more general approach that has been studied is to consider
a distributed delay according to a kernel, which we denote here by 7 (7), describing
the probability density function for the age 7 that a (surviving) infected cell becomes
productive (Shu et al. 2013). If P(7) is the survival rate during the eclipse phase,

o0
then 6 := [ P(t)m(r)dt is the probability of an infected cell becoming produc-

0
tive and f(r) = (P(r)m(r))/0 is the conditional probability density for the age
T that a cell becomes productive. Note that this description of the eclipse phase
generalizes the age-structured model which considers the exponential distributions

(1) = y(r)e” Jov®1ds and p(r) = e~ Jo m)ds Similarly, we can generalize the
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productively infected cell kinetics by assuming an arbitrary survival probability distri-

bution o (a) with g(a) = (g(a)o(a))/N corresponding to the conditional probability

of producing infectious virus arising a units of time after the cell becomes productively
oo

infected where N = f q(a)o (a)dais the burst size (average # of virus produced during
0

infected cell life). For the age-structured model (3), we choose o (a) = e~ Jo m2(s)ds
With these features in mind, we extend the delay differential system (2)—(6) as

S'(1) =1 —388(t) — BB)S(OHV (1), (®)

V(1) =9Np(t)//g(a)f(r)ﬁ(t—a—r)S(z—a—t)V(t—a—t)dtda —dv ().
0 0

©)

The integral equation (7) can then be generalized by writing (9) as follows:

V() =6N / f f e ¥ p(t —s5)gla) f(r)
0 0

0
Bt—s—a—1)St—s—a—1)V(t —s—a— t)drdads. (10)

It is obvious that any PDE in the age-structured model can be converted into the
above DDE by setting

o
0 = / y([)e_ fJ[V(S)+Ml(S)]deT f(T) — ly(‘[)e_ for[)/(s)-i-ul(s)]ds
s 9 ,
0

o0
N = /q(a)e*fél /Lz(s)dsda, g(a) = %q(a)eff(;l ,uz(s)ds.
0

However, the above relation is not necessarily invertible in the sense that any DDE
(8), (9) can be converted into the PDE with age structure. Besides being more general,
the DDE formulation in terms of probability distributions, f(7) and g(a), has also
advantages in the spectral analysis to come in this paper. Furthermore, from a biological
point of view, itis convenient to formulate the kinetics of the main phases of the infected
cell cycle as distributions which can be matched to experimental data.

Another generalization of model (1) was proposed in Wang and Dong (2018). Our
model differs from that in Wang and Dong (2018) in the sense that we incorporate
periodic antiviral treatment and our model system is nonautonomous. In general, it is
a challenge to compute the basic reproduction number and study the model dynamics
for periodic systems with time delays.
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The dynamics of (8), (9) (equivalently (10)) will be analyzed in what follows;
however, we also remark here that the system can be extended with respect to modeling
reverse transcription (RT) in infected cells as described below.

Remark 1 A more detailed description of antiviral action with respect to infected cell
life can take into account that RT inhibitors act during the eclipse phase interfering
with RT transcriptase, a necessary step for viral replication. In “Appendix A”, we
extend the age-structured model by adding an extra compartment explicitly tracking
the process of RT during the eclipse phase of infected cell. In the special case that
RT occurs at a fixed time, r, after viral entry, then the delay differential equation for
the virus, V(t), reduces to (9) with B(¢) shifted by r units of time, i.e., (¢t + r).
In particular, all of the formulae we will derive in Sect. 4.2 concerning reproduction
number dependent on the periodic forcing hold in the extended model with the RT
delay r shifting the effective infection rate as S(t + r).

3 Threshold Analysis of Model
3.1 Boundedness

Throughout this paper, we assume that g(a) and f (t) are probability density functions
on R with exponentially decay rate at infinity.

(H) There exists ag > 0 such that both g(t)e* — 0 and f(t)e*’ — 0 ast — oo.

To study the model system with the infinite delay, we first introduce the weighted
continuous function space. For a given « € (0, «p), we define C,, to be the subspace
of C(R_, R) such that ¢ (6)e®? is uniformly continuous on R_ = (—o0, 0] and the
norm

Iplle := sup |p(6)e™|
OeR_

is finite. It is easily seen that C,, is a Banach space equipped with the norm || - ||, and
system (8), (9) is well-posed in Cy x Cy.

Let C; be the nonnegative cone collecting all nonnegative functions in C,. We
intend to show that if the initial profile is contained in the C; x C;, so is the solution
for any ¢t > 0. It can be proved by contradiction that S(¢) > 0. If 79 > 0 is the infimum
of all t with §(r) < 0, then S(79) = 0 and S’(f9) < 0, which obviously contradict Eq.
(8). Actually, we have S(r) > 0 for all + > 0. Next, we integrate (9) to obtain

t o0 o
vio=e v ron [ [T [T g
0 JO 0
Bs—a—1)S(s —a—1)V(s —a — t)drdads,

from which nonnegativity of V(¢) follows. If, further, V(0) > 0, it is easy to show
that V(t) > O forall t > 0.
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We also want to show that the solution of the model system with nonnegative initial
conditions is bounded above. From (8), we have S’'(z) < A — §S(r). By comparison
principle, we obtain lim sup,_, ., S(#) < A/§. Furthermore, if S(#) < A/§ for some
t = 1o, then S(¢#) < A/6 for all t > #¢. Define an auxiliary function

Uty = 6N / ” / - / " 909 p(5)g(a) (DB — a 1)
t 0 0
S(s—a—1)V(s —a — t)dadzds.

It is readily seen that U (t) > 0 for all # > 0, and

o0 o0
U'(t) = —ONp(1) / f g(@) f(DBGt —a—1)
o Jo
St —a—1)V(t—a—rt)dadt —dU(¢).
Add this equation to (8) and (9) yields
SO +U @) +V()=r—850) — BOSEHV(E) —dU @) —dV ().

By comparison principle, we have lim sup,_, . ,[S(¢) + U(¢) + V()] < A/ min{$, d}.
Note that system (8), (9) is a nonautonomous with a periodic solution semiflow
U(t,s) on Cy x Cy satisfying U(t,t) = I, U(t,s)U(s,r) = U(t,r) and U(t +
T,s+ T) = U(t,s). To construct an equivalent autonomous semigroup, we use the

idea in Saperstone (1981) (see also Rebelo et al. 2014; Zhao and Hutson 1994) to
introduce the compact metric space

Rr ;:R/TZ:{VERZHNVZ@(VI_VZ)/TEZ}

2imr /T __

equipped with the distance d(r1, r2) = |e e2imra/T |. Define a semigroup W (¢)

on X =Cy x Cy X Ry as
V() (p,r)=U@E+r,r)g,t+r), ¢=w,v)eCyxCqy reRyr.
W (r) is well-defined since

Vi), r+T)=WUt+r+T,r+ T, t+r+T)=UE+r,r)p,t+r)
= W()(@, 7).

It is also easy to verify that W (0) = / and

YOV, r) =U@+s+r,s+r)Us+r,r)g, t+s+r)
=WUi+s+r,reg,t+s+r)=V+s)(¢p,r).

The argument in the preceding paragraph indicates that W(¢) is point dissipative.
Moreover, for any constant C > X/ min{é, d}, the bounded region I'c := {(u, v,r) €
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D lulle < C, |lv]le < C} is absorbing in the sense that it contains all possible
attractors of W(z).
Finally, we show that the set of trajectories y T (I'¢c) = U¢erc yT(¢) is also

bounded. To see this, we consider the auxiliary system with (8) replaced with
S'(t) = »—88(1). (11)

The differential equation for V (¢) is still (9). Any initial condition (¢, 7) in I'c is
bounded by (So, Vo, ) with So(0) = Vp(0) = Ce 2 for 0 € R_. Thus, by compar-
ison principle, U (t,r)¢ < U (t,r)(So, Vo). We can use a similar argument as in the
proof of point dissipativeness of W(¢) to find a constant C > 0 (which depends on C)
such that y 7 (I'c) C T¢.

3.2 Basic Reproduction Number

Following Bacaér and Ouifki (2007), Bacaér and Abdurahman (2008), Bacaér and
Dads (2012), Zhao (2017a), we can define the reproduction number for the renewal
type Eq. (10) as the spectral radius of the next-generation operator, Ry = p(L), where

(Lo) (1) =QNS'///e_dsp(t—s)g(a)f(t),B(t—s—a—r)d)(t—s—a—r)drdads,
0 0 0

(12)
acting on the space of continuous 7 —periodic functions on R, denoted as Py. For any
infinite sequence of continuous and uniformly bounded ¢, € P7, we can show that
both L¢, and (L¢,) are uniformly bounded (since g, f are probability distributions
and B(¢), p(t) are periodic functions). By the Arzela—Ascoli theorem, L is a compact
operator on P7. Obviously, L is a positive operator on the cone of nonnegative functions
in P7. If p(t) > 0 and B(¢) > O forall ¢ € R, then L is strongly positive and Krein—
Rutman theorem (Du 2006, Theorem 1.2) implies that Ry = p (L) is an eigenvalue of
the operator L with a corresponding positive eigenfunction u(¢); that is,

Rou(t) = ONS

//efdsp(t_s)g(a)f(‘[)ﬁ(t—s—a—‘[)u(l—s—a—l')dl'dads.
00

(13)
Observe that the definition of R in (13) involves an eigenvalue equation for an infinite-
dimensional operator. In Sect. 15, we investigate a formulation of Ry amenable to
analytical methods, and we will develop different numerical methods to compute Ry
in Sect. 4.3.
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3.3 Extinction and Persistence of Infection

In the following theorem, we state that the basic reproduction number is the threshold
parameter for the model dynamics. First, we demonstrate that if Ry < 1, then the
disease-free equilibrium Ey = {S, 0} with § = 1/§ is globally attractive in X.

Theorem 2 Assume (H). If Ry < 1, there exists 1 € (0, ag) such that, for any a €
(0, a01), the disease-free equilibrium Eog = {S, 0} is globally attractive in C} x C}.

Proof Recall that P7 is the Banach space of continuous 7 —periodic functions on R
equipped with the supremum norm. We introduce the following parametrized compact
operator on Pr:

(Lu¢)(t) =6ONS / / / MOt~ b (p 5)g(a) f(T)
0 0 0

Bt —s—a—1)p({t —s—a— t)drdads, (14)

for all real © < min{d, ap}. Obviously, p(Lg) = p(L) = Ry < 1; see (12). More-
over, p(L,,) is continuous (Degla 2008, Theorem 2.1) and increasing (Burlando 1991,
Theorem 1.1) in p. Hence, there exists a small v > 0 such that p(L,) < 1. Krein—
Rutman theorem implies that the principal eigenfunction ¢ € Pr is positive. Let
e=S/p(L,) — S >0and v(r) = e V¢ (1). It follows that

v(1) =ON(S + ) / /‘/e_d‘vp(t —s)g(@) f(t)pt —s —a —7)
0
vt —s —a—

Differentiating both sides gives a periodic renewal equation

V() = —dv(t)—i—@N(S'—i—e)p(t) /00 /OO Bt—a—1)g(a) f(r)v(t —a — t)dadr.
0 0

The above equation is also a perturbation of the linearization of (7). Now, we choose
o1 = min{v/2, ap/2} and let {S(¢), V(¢)} be any solution of (8), (9) with the initial
condition in Cy X Cq, where @ € (0, 7). Since lim sup,_, o, S(¢) < S, there exists
to > O such that S(r) < S+ ¢ forall r > . In view of 2« < v, the functions V (r)e"!
and S(¢)V (¢t)e"" are uniformly bounded for all # € R_. Consequently, there exists
C > O such that Cv(t) > V(¢) and (S + &)Cuv(r) > S(1)V (¢) for all t < to. Denote

F(t) =6ON(S + 8)p(t)/ Bt —a—1)gla)f(t)Cv(t —a — t)dadr.

T+a>t—1y
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It is easily seen that

CV'(t) = —dCv(t) + ON(S + &) p(t) // Bt —a—r1)ga)

T+a<t—ty

f(@)Cv(t —a — t)dadt + F(1),

for t > ty. On the other hand, from the choice of C we have

V() < —dV (1) + ONG + £)p(0) f / Bt —a =D)g@)f (7)

T+a<t—ty

V(i —a— t)dadt + F(¢)

for all ¢+ > f9. By comparison principle, Cv(t) > V(¢) fo_r all ¢+ > 1y. Especially,
V(t) - 0ast — oo. It then follows from (8) that S(r) — S ast — oo. O

Remark 3 Since the delay is not finite, the Poincaré map for the linearization of (7)
may not be compact on C,. Thus, one cannot use a similar argument as in the proof
of Xu and Zhao (2005), Proposition 2.1, to find an upper solution which converges to
zero as t approaches infinity.

When Ry > 1, we prove in “Appendix” the following theorem stating that system
(8), (9) is uniformly persistent.

Theorem 4 Assume (H) and o € (0, ag). If Ry > 1, then there exists 5o > 0 such
that for any initial condition (ug, vg) € Cy X Cy with v9(0) > 0, the solution (S, V)
of (8), (9) satisfies liminf;_, o, S(¢) > §p and lim inf,_, o, V (t) > do.

4 Computing Ro

4.1 Fourier Analysis

In a similar spirit to Bacaér (2007), we consider Fourier expansions of the 7 —periodic
functions u(¢), p(t) and B(t):

M(f)—ZC t/wt ﬂ(t) —Z:Bj 1/@1’ P(l‘) _Zp ez/wt (15)

JEZ JEL

where w = ZT”, B) =7 f,B(t) dt and (p) == 7 fp(t) dt. The eigenfunction u(t)

can also be normalized so that co=(c)=1. Substltutlng (15) into (13), the eigenvalue
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equation expands as follows:

GNS Zc 1 =335 B el(m+l+n)wt/ o—dsg—ilmtntios g

]eZ meZ leZ neZ

/ g(a)e—i(l+n)wada /oo f(T)e_i(l+n)wTdt.
0

=YY Benp ke

i C()
JEZ k€Z nel + J

where in the last step we make changes of indices j =/ +m +nand k = [ + n. and

o0 X o X
Fy = / g(a)e keadq / f(oye *erdr, (16)
0 0
We denote
- d H =2 (17)
T onSep T dtije’

It is readily seen that

YRocj = H; Z Z FiBk—nDj—kCn- (18)

keZ neZ

Note that Fj is the product of characteristic functions corresponding to probability
distributions g and f evaluated at — kw and Hj is the characteristic function of the
exponential distribution evaluated at — jw. Also, recall the product of characteris-
tic functions is equal to the characteristic function of sum of independent random
variables with corresponding probability distributions. Thus, coefficients determining
the effect of periodicity on reproduction number are influenced by how the periodic
drug efficacies interact with the probability kernels describing delays in the replication
cycle.

4.2 Perturbation Analysis

Next, we consider the particular case where the drug efficacies are sinusoidal pertur-
bations from constant values, e;, given by n;(¢) in (4), along with a possible phase
difference between the distinct drug administrations. Then, it suffices to let

t t
& =1+ 2ewaq cos wt, & =14 2eapcos[w(t — P)], (19)
(B) (p)
where o; = 2(1 o and ¢ € [0, T) represents the phase difference between the

distinct antiviral drug efficacies, i.e., ¢ = (¢ — ¢1) mod T, where ¢ and ¢, are
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the phases of two drug administrations. The phase difference inherently describes the
timing between dosages of the two drugs in the periodic schedule. It follows that the
Fourier coefficients for 8(¢) and p(¢) are as follows:

Bo=po=1, Pi=PB_1=cai, pi=eae*® p_|=car,

and B; = p; =0 for |j| > 2.
We assume ¢ > 0 is small and write y Rp and ¢; as power series expansions in &:

Y Ro = Z,O()kb“k, cj = chksk.

k>0 k>0

Since B = p; = 0 for |j| > 2, we can simply write Eq. (18) as

yRoc; = Hjlp-1Fj+1(B-1cj+2 + Bocj+1 + Bic;)
+ poFj(B-1cj+1 + Bocj + Bicj-1)
+ p1Fi—1(B-icj + Bocj—1 + Bicj—2)] (20)

By substituting these expansions into (20) and comparing the coefficients of ¥ (with
k =0, 1,2, 3) on both sides, we obtain

poocjo = HjFjcjo,

poicjo + poocjt = Hj[Fjp1a2e'®

cjt1,0 + Fi(arcjr1,0 +cj1 +aicj—1,0)
+ Fj_jaze™ ¢y o],
P02¢j0 + Poicj1 + poocja = HilFip100e P (@rcjin,0 + ¢jt1,1 + a1cjo)
+ Fi(aicjt11 +cjp+aicj—11) + Fi-1a0e " (aicjo + cj—1.1 +aicj—2.0)],
po3cjo + poacj1 + poicjz + poocs = Hi[Fjs100e'? (aicji 1 +cjs12 +aicjr)
+ Fiaicji12 +cj3 +aicj—12) + Fimiaae P (aicj1 + cjo12 +aicj—1)].
From the normalization condition cg = 1, we have coo = 1 and cor = 0 fork > 1. It
then follows from the first equation (with j = 0, &1, £2, ...) that pgg = HoFp = 1

and cjo = O for | j| > 1. Substituting these into the second equation (with j = 0, £1)
yields pp; = 0 and

c11 = HiFicy + Hi Frag + Hiaze ™9,
c11=H_jae? + H \F_ja; + H_1F_jc_1 1. 2D

It is easy to obtain from the second equation that c¢;; = 0 for |j| > 2. Next, we set
j = 0 1in the third equation to find

po2 = aaF1e!® (c1y + o) +aren +are_r g + o Foe P (a) +c_11)
= ajop(F1e!”? + F_1e77°?) 4 c11 (2 F1e'®? + ) + c_1.1 (02 F_1e7 ' +-ay)
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Note that H; and H_1, and F and F_ defined in (17) are conjugates. Thus, on account
of (21), we obtain

po2 = 20102 fi + 2(ef + a3) fo, (22)
where

Fiel®® 4 H e—io® _ Acos(wg) + Bsin(wg)

:RC )
fi 1 — Hi Fy |1 — H Fi|?
H\ F Re(H\Fy) — |H F1|?
f>=Re =
1— H Fy 11— H F1 2

Here, we recall that H; = dfﬁ and F| = fooo g(a)e™““da fooo f(r)e~i®*dr, and,

for simplicity, we have denoted

A= —|H ") Re(F) + (1 — |Fi|*)Re(H)),
B =—(—|H ) Im(F) + (1 — |Fi[>) Im(H)).

By choosing j = =1 in the third equation, we further obtain ¢12 = c_1 > = 0. Finally,
it is easy to calculate from the fourth equation with j = 0 that pp3 = 0.

We summarize the above calculation in the following theorem displaying the effect
of sinusoidal drug efficacy perturbations on Ry, along with the optimal phase difference
¢™* between the two drugs.

Theorem 5 If B(t) and p(t) are small perturbations of constants as given in (19), then
the basic reproduction number has the asymptotic formula

_ ONS(B)(p)

T P02 + 0(eh)),

Ro

where pgy is given as in (22). Furthermore, pgy is minimized at the phase difference

¢*—T+ L arctanB mod T
2 2w A
if A >0, and
T B
¢* = — arctan — mod T
2 A
if A <O.

Note that p; is the first coefficient in the expansion of Ry corresponding to ampli-
tude, €, and therefore will control the effect of periodic perturbations on Rp. In
particular, we are interested in the optimal phase difference ¢* which will minimize
po2 and, in turn, minimize Ry.
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4.3 Numerical Computation

We first use finite difference method (Posny and Wang 2014) to compute Rg, which
is the principal eigenvalue of the linear operator L in (12). By defining

K(t,s) =0NSe ¥ Bt —s) // e @ e (a) f(1)p(t — s +a + )dadr, (23)

a+t=<s

we can rewrite (12) as (L¢)(t) = fooo K(t,s)¢(t—s)ds. Given a large integer M > 0,
we discretize the period [0, T]asty < t; < ---ty,wheret; = jAt with At =T /M.
For j > M or j < 0, we still denote #; = jAt. The above linear operator can be
approximated by a matrix of dimension n: (lA,qg) j = Z,iw: 1 L jkcﬁk, where ¢ is the
numerical approximation of ¢ (x) and

o
Ljx= Aty K(tj,tjksim). (24)
=0

Here, for convenience, we set K (¢, s) = 0if s < 0. The kernel K (¢;, ;) in (23) can
be approximated via a standard quadrature formula:

K (tj, tw) ~ ONSe™ " B(tj ) AL* > wgg (m)e™ g () f (1) p(tj —mir i),
k+l<m

where the quadrature weights can be chosen as wy;(m) = 1 and wo;(m) = wio(m) =
wik(m) = 1/2 for 0 < k, 1 < m; and woo(m) = wpo(m) = wye(m) = 1/6. To save
the computation cost, we use the following recurrence relation to calculate the kernel
function:

K(tj,tm) = MK (tj—1,tn-1) +ONSe™ " B(t; )

et g(a) f (1) p(tw—1 + a + t)dadr,

tm—1=a+1t =<ty

where the double integral on the right-hand side can be approximated via a standard
quadrature formula. If the probability density functions g and f decay rapidly at
infinity, the kernel function K (¢, s) in (23) also decays rapidly as s — oo, and we
can truncate the series in (24) as a finite sum, say, at /,,,. In our simulation, we choose
I, = 5 and do not observe significant differences in the results with larger [,,,.

Another numerical method in the computation of Ry is based on the Fourier trans-
form of periodic functions and spectral decomposition of linear operator L in (12).
Let M > 0 be a large even integer. Set At = T /M and t; = jAt for j € N. We take
discrete Fourier transforms

M/2—1 M/2—1 M/2—1
uty~ Y el gy Y Bl piyx Y pel,
j=—M)2 j=—M/2 j=—M)2
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®

finite difference method

1.4371 finite difference method|
- - - spectral method

m

g 1437 'g 16+ — — — spectral method
[ [8] 144
3 14369 o
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Fig.1 Comparison of spectral method and finite difference method (Colour figure online)

where the coefficients are given by discrete inverse Fourier transform:

M M M
1 y - 1 Y 1 i
~ —ijwt, . —ijwt s~ —1jwi,
iy = kE_lu(tk)e K, B = —kE_l B)e Wk, p; = " kE_lp(tk)e k.

Itis easily seen that i ;, B j» Pj canbe extended as periodic sequence in N with the same
period M. We use the above Fourier transforms to approximate the linear operator L
in (12) as a matrix L of dimension M:

(Zﬁ)/ — Z GNS //f e—ds+imw(t—s)+ilw(t—s—a—r)+inw(t—s—a—r)

m4n+l=j
m,n,le[—M/2,M/2—1]

PmBriing(a) f (t)dadrds
_ ONS
CdH+ijw

a,7,5>0

FiBk—nPj—kltn,
k—n,j—k.ne[—M/2,M 2=1]

where it = (i—p/2, .- -, dip/2—1)" and Fy is given in (16).
To compare the two numerical methods, we consider a toy model:

=1, N=1, §=0.1, T=2r d=1 ga=e¢9 f(r)=e",

and B(t) = (t — T/2)%, p(t) = t(T —1) fort € [0, T]. It is observed from numer-
ical simulation (Fig. 1) that the spectral method is faster and more accurate than the
finite difference method. Notice that this is only a special case with specific data. A
theoretical analysis is required to justify the advantage of spectral method over finite
difference method. We leave this problem for future investigation.
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4.4 Examples

In the subsection, we consider three examples: (i) bursting viral production model;
(ii) budding with constant delay and viral production rate; and (iii) gamma-distributed
intracellular and viral production.

Example 1 Bursting viral production model

Consider a simple case when the infected cells release all virus particles at a fixed
age 1o, namely y(r) = 8(tr — 10) in the age-structured model, where §(t) is the
Dirac delta mass centered at T = 0. The viral production rate is also a delta function
q(a) = Nd(a). It can be calculated that

—,;Qm(a)da
b=c 0, [O=5c-7), ga)=b@.

The corresponding delay differential system is

§'(t) =1 —385(t) — BO)SHHV (1),
V/(t) = ONp(1)B(t — 10)S(t — 1)V (t — T0) — dV (1).

Upon assuming p(t), B(t) are of the small amplitude sinusoidal type (19), we can
utilize Theorem 5 to obtain the second-order effect on Ry from the amplitude param-
eter, &, of the periodic drug efficacies. In particular, F; = e /™, which implies A =
(1 — |H1|?) cos(wto) and B = (1 — |H{|?) sin(wTp). Note that arctan(B/A) = w1y
mod 7 if A > 0, and arctan(B/A) = m + wtp mod T if A < 0. Thus, the optimal
phase difference between the combination drug treatments with period 7 in the case
of bursting virus model with intracellular delay 7y is ¢* = T /2 + 79 mod T. The
intuition for this result can be related to the previous work on the ODE virus model
(Browne and Pilyugin 2016), which argues that the maximal rates of viral production
and infection should be de-synchronized to antagonize the virus replication cycle.

Here we also bring to attention the recent work by Neagu et al. (2018), exploring
potential viral evolution of its intracellular delay in order to “resist” antiviral treatment
for a single drug with periodic efficacy. To find the critical delay from the virus
perspective in the case of single-drug treatment, consider the special case B(¢) =
1 4+ 2ecoswt and p(t) = 1. Then, it follows that the first term involving ¢ in the
expansion of Ry(¢), the €2 coefficient 002, can be written as:

2d [d cos oty — wsinwto — d| [ w?/(2d) ]‘

- 2d(d — d cos wtg + wsin wTg) +w? -

£02 .
dcoswty — wsinwty — d

which achieves its maximum when d cos wtg — w sinwty = Vd? + w?. Thus, the
critical delay from the virus perspective can be calculated as 7§ = T —arctan(w/d)/w
mod T. At this critical value, ppy = 2d/(~/w? + d* — d). The result concurs with
simulation and informal arguments in Neagu et al. (2018) showing that the critical
intracellular delay for the virus is slightly less than drug dosing period, and when
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w/d is small, the offset is close to the (free) virus generation time (1/d). Note that an
objective function different from Ry was chosen in Neagu et al. (2018) and the offset
was estimated as 1/(2d).

Example 2 Budding with constant delay and viral production rate

Assume the infected cells mature at the age T = 7 and all mature-infected cells have
constant death rate and virus production rate; namely, in the age-structured model, we
have y (t) = §(t — 10) as before, and uy(a) = v, and g(a) = vN. We then have

0

— [ m(a)da
f=e O , f(r)=68(t —19), gla) =ve "%
o0
Denote the number of productively infected cells by 1(¢) = f i(t,a)da, we arrive at
0

the delay differential system

S'(t) =1 —88(1t) — B()SO)V (1),
I'(t) = 0Bt — 10)S(t — 10)V (1 — 10) — v (1),
V') =vNp®)I(t) —dV ().

It is noted that the bursting case in Example 1 is the same as the limiting case of
budding here in Example 2 with v — oo. Itis easily seen that F; = ve '™ /(v +iw).
Recall that H; = d/(d + iw). It is easily seen that

. w? v[v cos(wty) — w sin(wty)] ? d?

T+ V2 4+ w? V4 w? d2+ ot
B w? ~v[w cos(@to) + v sin(wTo)] w? - —do

_d2+w2 v2+a)2 v2+w2 d2+w2'

Consequently, the optimal phase shift of drug treatments is

ot = Z n l arctan v[wcos(wty) + v sin(wtg)] — dw mod T

2 2 v[v cos(wty) — w sin(wty)] + d?

if A >0, and

o = 1 arcg v[w cos(wty) + v sin(wtg)] — dw mod T
T 27 v[vcos(wty) — w sin(wty)] + d?

if A < 0. Especially, when 1y = 0 (which corresponds to the ODE virus model), the
above formula reduces to ¢* = % + % arctan ";g‘:d‘? mod T'. This concurs with the
result of global minimization of Ry at ¢* = T /2 obtained for bang—bang-type drug
efficacies in the case of equal infected cell and viral death rates, v = d (Browne and

Pilyugin 2016).

@ Springer

'é: Journal: 11538 Article No.: 0704 [ TYPESET [__|DISK [_]LE [__| CP Disp.:2020/1/30 Pages: 29 Layout: Small-Ex




G
]
]
S
(=W}
-
o
=
+—
=
<

543

544

545

546

547
548

549

550

551

552

553

554

555

556

v
G
GO

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

Resonance of Periodic Combination Antiviral Therapy and... Page 190f29  _####_

In order to find the critical delay from the virus perspective in the case of single-drug
treatment, consider the special case §(¢) = 1 + 2e coswt and p(t) = 1. We consider
po2 as a function of 7g:

2dv [—dv + (dv — a)z) cos wty — (wd + wv) sin a)ro]
(dv — w? — dv cos wtp)? + (wd + wv + dv sin wt)?
_[ . @ (@* + ? +12)/2dv) ]‘1

P02 =

—dv + (dv — w?) cos wtg — (wd + wv) sin wTy

which achieves its maximum when

(dv — @?) cos 0ty — (wd + ov) sinwty = v ([dv — 0?)? + (0d + ov)2.
Thus, the critical delay can be calculated as:

N T dv — ?
7y = T — —— arccos mod T.
2r V(dv — 0?)? + (wd + wv)?

We will use the following parameter values representative of HIV infection (Perel-
son and Nelson 1999) to conduct numerical simulations:

A=10% §=001, =098, k=8x10",
d=13, =2, T=1 N =300. 25)

For this example, we consider sinusoidal drug efficacies of form (4) with n;(t) =
0.945 — 2¢ cos(wt) and ny(¢t) = 0, where ¢ = 0.01 and w = 27. Now, we choose
different values of v and vary ty to see how the time delay affects the basic reproduction
number, producing the 7 — periodic curves Ry(¢) displayed in Fig. 2. Again note that
when v — o0, the model reduces to the one in Example 1. Observe that the amplitude
of Ro(tp) increases and the critical delay ‘r(’)* shifts closer to being synchronized with
the period T as v — o0.

Next we consider periodic combination drug therapy, setting n;(t) = 0.765 —
2¢ cos(wt) with ¢ = 0.05, and consider the effect of varying phase difference ¢
between drug efficacies, 11(¢) and n2(t — ¢), on Ry. In Fig. 3a, we plot Ry as a
function of the phase shift ¢ with different values of v for the case 7p = 1.9283.
Note that this is the critical viral delay, 7y, when v — oo in the case of single-drug
therapy shown in Fig. 2). Notice that in the viral bursting case (v — 00), the phase
difference ¢ substantially affects Ry. In particular, if the P-inhibitor is introduced at
¢ = 0.5, Rg reduces to below one, as opposed to either the single-drug (maximal Ry)
or in-phase (¢ = 0) scenario. Thus, if the virus optimizes its Ry under single-drug
therapy as discussed in Neagu et al. (2018), it is still possible to effectively antagonize
the virus with a correctly timed distinct antiviral drug. Also, observe in this case, as
we decrease v, the amplitude of Ro(¢) decreases. In Fig. 3b, we consider the case
79 = 1.6. The curves of Ryg(¢) change substantially from the prior case, showing
the sensitivity of Rg to both 79 and ¢. We observe from Fig. 3 that as v increases,
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Fig.2 The basic reproduction number R as a function of the maturation delay 7. The numeric values are
computed using both finite difference and spectral methods with sufficiently many mesh points such that
the graphs obtained from both methods are almost the same. In the subfigure, we set v = 15 and choose
79 = 0.7 (blue dotted curve) and 7 = 0.8 (red dashed curve), respectively, to calculate the viral population

along the time
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Fig.3 The basic reproduction number R as afunction of the phase shift ¢ fora tp = 1.9283 andb ry = 1.6.
The numeric values are computed using both finite difference and spectral methods with sufficiently many
mesh points such that the graphs obtained from both methods are almost the same (Colour figure online)

both average and amplitude of Ry decrease, and the optimal ¢* shifts to the left, even
though the reproduction number corresponding to the case with constant drug efficacy

(e = 0) remains fixed.

Example 3 Gamma-distributed intracellular and viral production
Recent studies have shown for HIV the intracellular and viral production kernels may

be gamma-distributed (Beauchemin et al. 2017). Thus, we let

f( ) .L,kl—le—‘r/Ql ( ) akz—le—a/02
)= —, g a) = ——
T (k;)6}! T (k2)65>
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For illustration, we consider the simple case when k| = ky = 1. Define
o0 o
I1(t) = 992/ / ga)f()Bp(t—a—1)St —a—1)V(t —a — t)drda
0o Jo

and E(t) = 6, fooo f(@)B@E—1)S(t—1)V (t—7)dr. We transform the delay differential
system into an ordinary differential system:

S'(t) =1 —3851) — B(OSHV (1),

E'(t) = B®)SMHV(t) — E(1)/61,

I'(t) =0E() /61 — 1(1) /62,

V'(t) = p)NI(t)/0, — dV (2). (26)

This is equivalent to the age-structured PDE (3) with

(@ =0/61, pi(x)=010-0)/01, qa@)=N/0 ps(a)=1/6,.
Similarly, for any positive integers k; and k>, we can use linear chain trick (Smith
2011) to obtain a system of k; + k» + 2 ordinary differential equations. However, we

assume k1 and k, are positive real numbers, and thus, the model system is in general
still of infinite dimension. It can be calculated that

Fi = (1+i010) ™ (1 + ifhw) ™ = |Fy e~ 1tk

where |Fi| = [1 + 01w)2]7M72[1 + (hr0)?]7%2/2, w; = arctan(9;w) and wy =
arctan(frw). A further computation gives

2 2
@ 2
= Prar |Fil cos(wiki + wakz) + (1 — |F1[7) - o
2 —dw
= . i 1—|F %) —
B = |filsin(@iki + w2ko) + ( e
Consequently, the optimal phase shift of drug treatments is
T T 2| Fy | sin(wk k2) —dw(l — |Fy|?
¢*=_+_arcanwl isin(@iky + wky) —do( —[F]) ) o
2 27 w?|F1| cos(wiky + wrko) +d?(1 — |F1|?)
if A >0, and
T 2| Fy | sin(wik k) —dw(l — |Fy?
o = T etan @ |Fy| sin(wik) + waka) — do(1 — [F1]7) mod T

27 w?|Fi| cos(wiki + wrks) +d>(1 — | F1|?)

if A <O.
For numerical simulations in this example, we consider more realistic drug effica-
cies given by the impulsive exponential decay dose—response form (5) as in Vaidya and
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Fig.4 aImpulsive exponential decay dose-response drug efficacies of RTI (blue or red) and PI (black). The
pharmacodynamic parameters used in simulations from formula (5) are m| = 1 (red) or 2 (blue), m, = 3,
and rj = 6In2, Cmax; /ICs0, = 15 fori = 1,2.b Rp as a function of phase difference ¢ for the cases
myp = 1 (red) or 2 (blue). The gamma distribution parameters are k1 = 3.5, k; = 12 and HIV parameters
are given in text. ¢ R as a function of phase difference ¢ when m| = 1 for gamma distribution parameters
k1 = kp = 1 and k1 = 3.5, k> = 12. d Simulations of time-dependent solutions displaying virus level
when k; = kp = 1 for in-phase (¢ = 0) and out-of-phase (¢ = 0.5) drug combination

Rong (2017). The pharmacodynamic parameters chosen are consistent with antiviral
medications (RTTIs and PIs) for HIV studied in Shen et al. (2008). For the RTI drug
class, we consider two different types, NRTIs and NNRTIs, which have different slope
parameters, m1, in (5). In particular, we take m| = 1 or 2 in simulations, with the larger
m value increasing the drug efficacy. Figure 4a displays the periodic drug efficacies
utilized for the RTI, 1 (¢) (for the 2 different m values), and the P1, n2(t — ¢). The
baseline HIV parameter values are kept as (25). Furthermore, we choose the gamma
distribution parameters in line with the recent experimental estimates obtained for SIV
parameters (Beauchemin et al. 2017). In particular,

ki =35, k=12, 0 =1/ki =057, 6, =1/(kv)=0.12.

In Fig. 4b, we plot the basic reproduction number as a function of the phase difference
¢ for m; = 1 and 2. Next for the case where m| = 2, in Fig. 4c, we also plot R for
gamma distribution parameters k; = 1, k» = 1, ) = 190/k1 =2, 6 = 1/(kav) =1,
corresponding to the analogous ODE (26). Observe that the optimal phase shifts are
almost the same and the optimal values of basic reproduction number are nearly
identical. Thus, in terms of Ry, the ODE can be a good approximation of the infinite-
dimensional equations corresponding to fitted parameters. The ODE case also has
the advantage of relative ease in conducting numerical simulations. Thus, we display
time-dependent solutions in Fig. 4d illustrating how the phase difference critically
affects the outcomes of viral persistence versus extinction corresponding to whether
Ry is greater or less than unity.
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5 Discussion

In this paper, we studied within-host viral dynamics under general intracellular dis-
tributed delays and periodic combination antiretroviral therapy. Our formulation
extends previous models by inclusion of eclipse and viral production stages as probabil-
ity distributions, along with time-varying drug treatments. This allows us to incorporate
recent experimentally derived gamma distribution parameters of HIV replication
(Beauchemin et al. 2017) and pharmacodynamic models of drug therapy. Further-
more, to the best of our knowledge, we provide the first rigorous analysis establishing
the basic reproduction number Ry as a global threshold determining extinction versus
persistence in an infinite-dimensional virus model with intracellular delay and periodic
antiviral treatment. Although an explicit formula is not possible, we utilize Fourier
analysis to provide an effective method of analytical and numerical approximation of
Ry . In the proof of persistence theorem, we chose to construct an autonomous semiflow
as in Saperstone (1981). It is worth mentioning that one may use another approach by
considering the associated Poincaré (time-periodic) map (Zhao 2017b).

Motivated by previous results demonstrating large impacts on periodic viral dynam-
ics induced by varying intracellular delays (Neagu et al. 2018) or phase shifts in
combination drug therapy (Browne and Pilyugin 2012), we characterize how the tim-
ing of, both, viral replication cycle and combination antiviral regimen can critically
affect Ro. Our analytical and numerical results show that a combination therapy can
effectively neutralize a virus by optimizing phase difference ¢ between two distinct
antivirals, even in the case that the virus adapts to a single drug through “synchroniz-
ing” its intracellular delay 7o with dosing period, as in Neagu et al. (2018). The phase
difference ¢ between antiviral drug efficacies substantially affects Ry in simulations
with realistic pharmacokinetics and gamma-distributed viral production delays for
HIV (Fig. 4). Thus, consideration of pharmacodynamics and dosing regimen together
with viral replication kinetics may be important for the optimization of treatment.

There are several limitations to our model (9), which can be further addressed. First,
as already mentioned in Remark 1, more detailed models of the viral replication cycle
can allow for the precise mode of action of specific antiviral medications (e.g., RTIs). In
“Appendix A”, we show that assuming a fixed (discrete) intracellular delay for reverse
transcription (RT) simply shifts the action of an RTI by this delay duration in our
analyzed model (9); however, more general RT delay distributions will require analysis
of the extended model. Additionally, although our model predicts the clearance of the
virus when Ry < 1, current treatment for HIV cannot eradicate the virus due to latently
infected cells which are not targeted by antiviral therapy. Recent studies have modeled
HIV persistence and the latent reservoir (Rong and Perelson 2009), which provides
motivation for extending our model to include latency. Finally, drug resistance may be a
barrier to treatment success and will be studied in future research into the optimization
of antiviral therapies.
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A Extended Model with Reverse Transcription

We consider the following generalization of (3) with extra compartment explicitly
tracking the process of reverse transcription (RT) during the eclipse phase of infected
cell. Thus, the infected cells in the eclipse phase, j (¢, T), are separated into two classes
Jji1(t, 1) and j> (¢, 7o) measuring infected cells 7 units of time after cell infection,
before RT, and 1 units of time after RT, respectively. Then, the eclipse phase-infected
cell equation in (3) is modified as follows:

(i + i) Jit,t) = =) +yi()j@t, ), jit,0) =kS(OV (@),
ot aT|

d a
(a— + —) 2@, 1) = —a(1) + 12(2) 2 (2, 7),
t 0t

2,0 =1 —-m©®) f yi(t)j1(t, T)dry,
0

(o]

0 0
(8_ + —> i(t,a) = —pu(a)i(t,a), i(t,0)= f v2(7) jo(2, T)dT.
t  da

0

In the special case that y1(t1) = 8(t1 — r), then we have
20.0) = (1= @)D MOkS@E — V(e — 1),
which implies that

1) =k(1 =01t — 1))e VOISt -1 — V(I — 12— 1)
o= Jo? (2()+y2(9))ds

=k(l =it — 1 +r)e h"1OSE — 1)Vt — ) Jo 20 +nnds

where T := 172 + r. Consequently, the differential equation for V (¢) becomes

00 00 a r T—r
) — [ n(s)ds — [vi@)ds— [ (va(s)+y2(s))ds
V@) =p(t)//q(a)e 0 »n(t)e o 0 Bt —a—T1+7)
0 0

S(t—a—1t)V({t —a—t)dtdrda — dV,

which is the same as Eq. (9) with the effective infection rate (affected by the RT
inhibitor) shifted by r units of time, i.e., f(¢#) = B(t 4+ r). The corresponding
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—frvl (x)ds—rfir vy (s)ds
relation between PDE and DDE is: P(t) = e © 0 and (t) =
- fr)/z(S)dS 00
y(t)e © ,0 = f P(t)n(r)dr, f(r) = (P(r)n(r))/6, along with g(a) =
0
—f/t(s)ds

(g(a)o(a))/N, N = ?q(a)o(a)da where o(a) =e ©
0

B Proof of Theorem 4

We proceed in the following steps.

1. In Sect. 3.1, we have proved that W(¢) is point dissipative and the trajectories of
any given bounded set are uniformly bounded.

2. We show that W (¢) is asymptotically smooth.
Fix C > X/ min{§, d}. It follows from Burton and Hutson (1989), Lemma 3.2 that
the set

Bc == {u € CJ} : supu(9)e*’’? < C}
6<0

iscompactin C;[ . We need to prove that B¢ x Bc xRy attracts all bounded invariant
setIin X = Cf x C} x Rr. Fix any (S;, Vi, r) in T, we denote (S;, Vs, 14r) =
W (t)(Sy, Vi, r)suchthat (S(¢), V(¢)) = (5:(0), V;(0)) satisfies system (8), (9) for
t > r with the initial condition (S(r 4+ 6), V(r +60)) = (S,(0), V,(0)) for6 < 0.
Since the limit superior of S(¢) is bounded above by A /5, we have S(¢) < C for
all large 7. Let 79 > 0 be the largest r > r such that S(#) > C. If S(¢) < C for all
t >r,wesetty=r.Fort > ty, define

S:(6), 1n—1=6=<0,

us(0) := S(tp)e @@—10tD/2 g <4 ¢,

It is readily seen that u; € Bc¢. Now, we intend to show that ||u; — S¢|lo — 0 as
t — o0. For 6 € [ty — t, 0], we have u,(0) = S;(0). Ast — o0, we have
ur (0)e®? = S(19)e®@T0=0/2 < Ce®0= 5 0, 9 <1y —1;

S,(0)e? < St 4+ 0)e* 0D < sup S(s)e* 0 0, 0 € [r —1, 19— 1];

r<s<fty

S;(0)e? = S, (t —r + 0)e?OFHTe=t=) < 15 e7) 50,0 <r—1.
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736 Therefore,
lur = Silla = sup |ur(0) — S;(6)|e*”
— O<to—t
@) to—1) a(ty—t) —a(t—r)
S < Ce®®=D 4 max{ sup S(s)e* 0 ||S,|loe 1 >0,
= 739 r<s<to
S
< 740 as t — o0o. Similarly, we define
=]
<<
o [V h—t<6<0,
741 Ut( ) = V(tl)e*“(9*11+l)/2, P <t -1
742
743 where 1 is the largest ¢+ > r such that V(t) > C;if V(¢) < C forall ¢ > r, then
744 we set t; = r. It can be shown that v, € B¢ and |jv; — V|l — Oast — oo.
745 Therefore, the compact set B¢ x B¢ x Ry attracts all bounded invariantsetI" € X,
746 which proves asymptotic smoothness of system (8), (9).

77 3. By Hale and Waltman (1989), Theorem 2.1, W (#) possesses a nonempty global
748 attractor in X. Denote Xo = {(#,v,7) € X : v(0) > 0} and 90Xy = X\Xo =

749 {(u,v,r) € X : v(0) = 0}. Introduce a generalized distance function p : X — R
750 as p(u, v, r) = v(0). It is readily seen that p~'(0) = 8 X and p~1(0, 00) = Xj.
751 Furthermore, by comparison principle, p(W(f)x) > O for all x € Xg. Hence,
752 the condition (P) in Smith and Zhao (2001), Section 3 is verified; see also Zhao
753 (2017b), Definition 1.3.1.

754 We now prove that the basin of attraction for Ey x Ry does not intersect
755 p_l(O, 00) = Xo. Assume to the contrary that there exists (So, Vo, %) € Xo

756 such that (S(r), V(1)) — (S,0) as t — oo, where (S(¢), V(¢)) = (S,(0), V;(0))
757 with (S;, Vy) = U(t, t9)(So, Vo). Since V(0) > 0, comparison principle shows
758 that V() > O for all + > 0. For any pu, v > 0, we introduce a parametrized
759 operator on Pr:

(Luv)(t) =6ONS / / / e BT =IS b g (a) f(D)B(t —5 —a — 1)
0 0 0
761 ¢(t —s —a — t)drdads.

762 Clearly, p(Lo,0) = Ro > 1. It follows from continuity (Degla 2008, Theorem

763 2.1) and monotonicity (Burlando 1991, Theorem 1.1) of L, , on both x and v
764 that p(Ls,s) > 1 for some small § > 0. Krein—Rutman theorem guarantees that
765 the principal eigenfunction ¢ of Ls s is positive. Sete = S — S/p(Ls,s) > 0 and
766 v(t) = e (). It is easily seen that
o0 00 X0
- v(t) = ON(S — &) / / / e S p(r — 9)g(a) fF(D)B(t —s —a — T)
00 0
768 v(t —s —a — t)drdads.
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769 Differentiating both sides gives a periodic renewal equation
_ o oo

- V(1) = —(d + () + ON(S — s)p(t)f / Bt —a—1)g(a)f (1)
5 o Jo
8 b4} v(t —a — t)dadr.
=W
= - -
_g ) Since S(t) — S ast — o0, there exists g > 0 such that S(r) > S — ¢ for all
5 774 t > ty. Define

775 F(t) =ON(S —)p(1) // Bt —a—1)g(a)f(t)v(t —a — t)dadr.
T4+a>t—1y

776 It is easy to show that () — O ast — oo. On the other hand, v(¢) = e‘”q’:(r) —

7 o0 as t — oo. There exists t; > fg, such that F(r) < Sv(z) for all t > 11.

778 Consequently, we obtain

779 V(1) < —dv(t) + ON(S — e)p(t) // Bt —a—1)gla)f(T)
T+a=<t—ty

780 v(t —a — t)dadt

781 for all ¢+ > t;. On the other hand,

782 V'(t) = —dV(t) +ON(S — &) p(t) /f Bt —a—r1)g(a)f(r)
Tt+a<t—ty

783 V(t —a— t)dadt

784 forallt > #1. Let C = max;e[y,,)[v()/V (¢)]. It follows from comparison prin-

785 ciple that CV (t) > v(z) for all ¢ > ty. This leads to a contradiction because v ()

786 is unbounded but V (¢) vanishes as t — 0.

77 4. We demonstrate that Eg x Rr is isolated and acyclic.

788 Obviously, Eg x Rr is isolated. If to the contrary Eg x Ry is cyclic, namely, there

789 exists a homoclinic orbit {S(¢), V ()} that connects Eg as t — F00. We claim that

790 V() = 0 for all ¢. Otherwise, if V (zy) > 0 for some #y € R, then by (9), V(¢) > 0

791 for all ¢+ > 1y. A similar argument as in the previous step shows that V (¢) cannot

792 converge to 0 at infinity. Hence, V (¢) = 0 for all ¢, which reduces (8) to a single

793 ordinary equation and contradicts to the existence of homoclinic orbit.

79« 5. All the conditions in Smith and Zhao (2001), Theorem 4.7 (see also Zhao 2017b,

795 Theorem 1.3.2) have been verified. Therefore, there exists o > O such that

796 liminf; oo p(W(t)x) > §p for any x € Xj. Let (§, V) be the solution of (8),

797 (9) with the initial condition (ug, vg) € Cy X Cq such that vg(0) > 0. Denote

798 S;(0) = St +6)and V;(f) = V(t +0) forall t > 0 and & < 0. We then have
799 (1o, v0,0) € Xo and (S, Vi, t) = W(t)(uo, vo, 0). The persistent of W (¢) with

800 respect to the distance function p implies that lim inf,_, o V () > 8¢. By choosing
801 8o > O sufficiently small (and still independent of initial condition), we also obtain
802 from (8) that lim inf;_, o, S(¢#) > 8¢. This completes the proof.
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