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Abstract1

There is a substantial interest in detailed models of viral infection and antiviral drug2

kinetics in order to optimize the treatment against viruses such as HIV. In this paper, we3

study within-viral dynamics under general intracellular distributed delays and periodic4

combination antiviral therapy. The basic reproduction number R0 is established as a5

global threshold determining extinction versus persistence, and spectral methods are6

utilized for analytical and numerical computation of R0. We derive the critical matu- 17

ration delay for virus and optimal phase difference between sinusoidally varying drug8

efficacies under various intracellular delays. Furthermore, numerical simulations are9

conducted utilizing realistic pharmacokinetics and gamma-distributed viral produc-10

tion delays for HIV. Our results demonstrate that the relative timing of the key viral11

replication cycle steps and periodic antiviral treatment schedule involving distinct12

drugs all can interact to critically affect the overall viral dynamics.13

Keywords Antiviral therapy · Intracellular delays · Virus model · Basic reproduction14

number · Spectral analysis15

Mathematics Subject Classification 92B05 · 37N2516

1 Introduction17

Modeling within-host virus dynamics has been an extensive area of research in math-18

ematical biology. For example, models of HIV dynamics under antiretroviral therapy19

(ART) have been utilized to gain insight on the kinetics of HIV infection and promising20

treatment strategies (Adams et al. 2005; Wei et al. 1995; Perelson et al. 1996; Rong21
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_####_ Page 2 of 29 C. J. Browne et al.

et al. 2007). ART typically consists of a combination of antiviral medications acting22

at different stages of the viral replication stages. In particular, reverse-transcriptase23

inhibitors (RTIs) block reverse transcription (RT) after cell infection and before viral24

production, whereas protease inhibitors (PIs) target the cell’s production of viable25

viral particles. Although ART has been remarkably successful in controlling HIV,26

ongoing viral replication can persist during therapy, and drug side effects and adher-27

ence continue to be issues. Thus, an important motivation for mathematical models28

is optimization of combination drug therapies acting on distinct phases of the viral29

replication cycle.30

Viral infection is most simply captured by the standard virus model (Perelson and31

Nelson 1999); a nonlinear system of three ordinary differential equations (ODEs)32

incorporates target cells, infected cells and free virus particles as the state variables.33

A more detailed description involves consideration of the replication stages between34

virus-cell entry and new (mature) viral production by the infected cell. To account35

for the time lag between viral entry of a target cell and subsequent initiation of viral36

production from the newly infected cell, known as the eclipse phase, Perelson et al.37

included discrete and distributed delays in the standard model (Nelson and Perelson38

2002). Building upon the delay model, many authors consider virus models with age39

structure in the infected cell compartment where the death (lysis) and viral production40

rate can vary with age since the infection of the cell (Browne and Pilyugin 2013;41

Nelson et al. 2004; Rong et al. 2007; Huang et al. 2012).42

Given that cell infection and viral production are the fundamental steps in the repli-43

cation cycle, perhaps the most effective way to incorporate heterogeneity in infected44

cell processes is to assume that both the eclipse and viral production phases are dis-45

tributed delays (Shu et al. 2013). Here, we extend previous models by generalizing46

an age-structured system, with eclipse and virus-producing stages, to an infinite-delay47

system with probability distributions describing the time taken in each of these stages.48

In this way, recent experimental estimates of these distributions (Beauchemin et al.49

2017) can be accurately quantified in the virus models. Also, the kinetics of distinct50

classes of drugs can be incorporated in relation to their timing with respect to the51

key viral replication stages, building upon previous virus models with antiviral ther-52

apy (Rong et al. 2007; Wang et al. 2016). In addition, the probability distributions of53

eclipse and viral production stage are convenient for threshold dynamics analysis in54

the case of periodic antiviral therapy.55

Periodicity in antiviral efficacies occurs as a consequence of the discrete nature of56

drug intake for patients. The magnitude of fluctuations in antiviral drug efficacy within57

patients depends upon dosing regimen, adherence and pharmacodynamic properties of58

the medication (Shen et al. 2008; Vaidya and Rong 2017). Several works have explored59

the dynamics of virus models with time-varying combination antiviral therapy, treat-60

ment optimization with respect to minimizing the reproduction number R0 and the61

threshold quantity determining viral extinction versus persistence (De Leenheer 2009;62

Vaidya and Rong 2017; Wang et al. 2014). The phase difference between distinct antivi-63

ral efficacies was found to critically affect R0 for the standard ODE virus model with64

periodic drug efficacy functions as small amplitude perturbations from constant level65

(Browne and Pilyugin 2012), “bang–bang” (Browne and Pilyugin 2016) and more66

realistic pharmacokinetic functions (Wang and Zhao 2013). Furthermore, Neagu et67
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Resonance of Periodic Combination Antiviral Therapy and… Page 3 of 29 _####_

al. (2018) argued that inherent delays in the viral replication cycle can substantially68

affect viral dynamics during periodic (single-drug) antiviral treatment. Here, we fur-69

ther these previous results by rigorous analysis of R0 and resulting threshold dynamics70

in a general distributed delay virus model with periodic antiviral drug efficacies. In71

particular, utilizing the definition of R0 in the periodic infinite-dimensional setting72

(Bacaër and Ouifki 2007; Bacaër and Abdurahman 2008; Bacaër and Dads 2012;73

Posny and Wang 2014; Zhao 2017a), we develop analytical and numerical methods74

to optimize periodic combination therapy for viral infections with a variety of viral75

intracellular delay distributions. Our results demonstrate that the relative timing of76

the key viral replication cycle steps, periodic antiviral treatment schedule and phase77

difference between distinct drugs all can interact to critically affect the overall viral78

dynamics. 279

2 TheModel80

We begin by considering the following extension of an age-structured virus model81

originally proposed by Nelson et al. (2004):82

S′(t) = λ − δS(t) − kS(t)V (t),
(

∂

∂t
+

∂

∂τ

)

j(t, τ ) = −(µ1(τ ) + γ (τ )) j(t, τ ), j(t, 0) = kS(t)V (t),

(

∂

∂t
+

∂

∂a

)

i(t, a) = −µ2(a)i(t, a), i(t, 0) =

∞
∫

0

γ (τ ) j(t, τ )dτ,

V ′(t) =

∞
∫

0

q(a)i(t, a)da − dV (t).

(1)83

Here, S(t) is the population size of healthy cells, j(t, τ ) is the density of infected cells84

in eclipse phase (before viral production begins) with respect to age since cell infection85

τ , i(t, a) is the density of productively infected cell concentration with respect to time86

elapsed since initiation of viral production, a, and V (t) is the viral load concentration.87

The healthy cells replenish with constant recruitment rate λ and per capita death rate88

δ. In the absence of viral infection, the healthy cells will reach at the equilibrium89

S̄ = λ/δ. The infection of healthy cells is modeled by a mass action term kSV , where90

k is the infectivity rate. The death rate of infected cells in the eclipse phase is µ1(τ ),91

and the rate at which infected cells transition to viral production stage is γ (τ ), and92

both depend on time since cell infection τ . Additionally, µ2(a) and q(a) are the age-93

dependent death rate and viral production rate for productively infected cells. System94

(1) directly extends the ordinary differential equation virus model with infected cells95

to be divided into eclipse and virus-producing stages (Buonomo and Vargas-De-León96

2012), by introducing continuous age structures in each class. We are interested in97

a detailed description of the progression of infected cells during typical replication98
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_####_ Page 4 of 29 C. J. Browne et al.

cycle; thus, we do not consider the small fraction of infected cells, which are in the99

resting state, and form the latent reservoir (Rong and Perelson 2009).100

Next, we incorporate time-varying combination antiviral treatment into (1):101

S′(t) = λ − δS(t) − (1 − η1(t))kS(t)V (t), (2)102

(

∂

∂t
+

∂

∂τ

)

j(t, τ ) = −(µ1(τ ) + γ (τ )) j(t, τ ), j(t, 0) = (1 − η1(t))kS(t)V (t),103

(

∂

∂t
+

∂

∂a

)

i(t, a) = −µ2(a)i(t, a), i(t, 0) =

∞
∫

0

γ (τ ) j(t, τ )dτ,104

V ′(t) = (1 − η2(t))

∞
∫

0

q(a)i(t, a)da − dV (t), (3)105

106

where η1(t) and η2(t) are the efficacies of reverse-transcriptase inhibitors (RTIs) and107

protease inhibitors (PIs), respectively. An extension of system (3) with more detailed108

model of the action of the RTI is discussed at the end of this section, in Remark 1.109

We assume that the drug efficacies, η1(t) and η2(t), are at least piecewise continuous110

periodic functions with a common period T , representative of a periodic therapy, and111

η1(t), η2(t) ∈ [0, 1] for all t ∈ R. Two particular examples of periodic drug efficacies112

we consider in this paper for explicit analytical and numerical results are:113

1. Sinusoidal perturbations from constant efficacy (Browne and Pilyugin 2012)114

ηi (t) = ei + εai cos ωt, (4)115

where ei is the constant (mean) drug efficacy, εai is amplitude of small amplitude116

oscillation, and ω = 2π/T with T being the period of drug administration.117

2. Classical dose–response with impulse and exponential decays (Shen et al. 2008)118

ηi (t) =
1

1 +
(

IC50i

Di (t)

)mi
, Di (t) = Ci

(

e−ri (t mod T ) +

∞
∑

n=1

δ(t − nT )

)

, (5)119

where Di (t) is the drug concentration in the blood, IC50i
is the concentration at120

50% target inhibition, mi is a slope parameter analogous to the Hill coefficient,121

Ci = Cmaxi
/(1 − e−ri T ) with Cmaxi

is the maximal concentration achieved in122

the blood, ri is the decay rate of drug concentration, and δ(t) is the Dirac delta123

function.124

The first example, small amplitude sinusoidal drug efficacies, will allow for analytic125

approximation of R0 and also can resemble small variations in antiviral drug effi-126

cacy under daily periodic dosing. The second example has been utilized to model127

pharmacodynamics of antiviral medications (Vaidya and Rong 2017).128
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Resonance of Periodic Combination Antiviral Therapy and… Page 5 of 29 _####_

The equations in model (3) can be converted to a delay differential equation system.129

By standard application of method of characteristics, we obtain130

j(t, τ ) = k(1 − η1(t − τ ))S(t − τ )V (t − τ )e−
∫ τ

0 (µ1(s)+γ (s))ds,131

i(t, a) =

∞
∫

0

γ (τ )β(t − a − τ )S(t − a − τ )V (t − a − τ )e−
∫ τ

0 (µ1(s)+γ (s))dsdτ132

e−
∫ a

0 µ2(s)ds,133
134

where β(t) = k(1−η1(t)). Define p(t) = 1−η2(t). Substituting this into the equation135

for V ′(t) yields136

V ′(t) =p(t)

∞
∫

0

∞
∫

0

q(a)γ (τ )β(t − a − τ )S(t − a − τ )V (t − a − τ )137

e−
∫ τ

0 (µ1(s)+γ (s))dse−
∫ a

0 µ2(s)dsdτda − dV (t). (6)138
139

Equations (2) and (6) together with the initial conditions for viral load V (t) on (−∞, 0]140

can formulate a closed system with time delay. Assuming that V (−∞) is bounded,141

we rewrite (6) as an integral equation142

V (t) =

∞
∫

0

e−ds p(t − s)

∞
∫

0

∞
∫

0

q(a)γ (τ )β(t − s − a − τ )143

S(t − s − a − τ )V (t − s − a − τ )144

e−
∫ τ

0 (µ1(s)+γ (s))dse−
∫ a

0 µ2(s)dsdτdads. (7)145
146

We now seek to extend the viral model by allowing more general distributed delays147

with respect to the key stages in the viral replication cycle. Several previous works148

(Culshaw and Ruan 2000) have assumed there is a fixed intracellular delay τ0, so149

that γ (τ ) = δ(τ − τ0) where δ(τ ) is the Dirac delta function. Others have assumed150

an exponentially distributed eclipse phase, in particular the extended classical virus151

ODE model with additional eclipse (or latent) infection compartment (Buonomo and152

Vargas-De-León 2012). A more general approach that has been studied is to consider153

a distributed delay according to a kernel, which we denote here by π(τ ), describing154

the probability density function for the age τ that a (surviving) infected cell becomes155

productive (Shu et al. 2013). If P(τ ) is the survival rate during the eclipse phase,156

then θ :=
∞
∫

0

P(τ )π(τ )dτ is the probability of an infected cell becoming produc-157

tive and f (τ ) = (P(τ )π(τ ))/θ is the conditional probability density for the age158

τ that a cell becomes productive. Note that this description of the eclipse phase159

generalizes the age-structured model which considers the exponential distributions160

π(τ ) = γ (τ )e−
∫ τ

0 γ (s)ds and P(τ ) = e−
∫ τ

0 µ1(s)ds . Similarly, we can generalize the161
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_####_ Page 6 of 29 C. J. Browne et al.

productively infected cell kinetics by assuming an arbitrary survival probability distri-162

bution σ (a) with g(a) = (q(a)σ (a))/N corresponding to the conditional probability163

of producing infectious virus arising a units of time after the cell becomes productively164

infected where N =
∞
∫

0

q(a)σ (a)da is the burst size (average # of virus produced during165

infected cell life). For the age-structured model (3), we choose σ (a) = e−
∫ a

0 µ2(s)ds .166

With these features in mind, we extend the delay differential system (2)–(6) as167

S′(t) = λ − δS(t) − β(t)S(t)V (t), (8)168

V ′(t) = θ N p(t)

∞
∫

0

∞
∫

0

g(a) f (τ )β(t−a−τ )S(t−a−τ )V (t−a−τ )dτda − dV (t).

(9)

169

170

The integral equation (7) can then be generalized by writing (9) as follows:171

V (t) = θ N

∞
∫

0

∞
∫

0

∞
∫

0

e−ds p(t − s)g(a) f (τ )172

β(t − s − a − τ )S(t − s − a − τ )V (t − s − a − τ )dτdads. (10)173
174

It is obvious that any PDE in the age-structured model can be converted into the175

above DDE by setting176

θ =

∞
∫

0

γ (τ )e−
∫ τ

0 [γ (s)+µ1(s)]dsdτ, f (τ ) =
1

θ
γ (τ )e−

∫ τ
0 [γ (s)+µ1(s)]ds,177

N =

∞
∫

0

q(a)e−
∫ a

0 µ2(s)dsda, g(a) =
1

N
q(a)e−

∫ a
0 µ2(s)ds .178

179

However, the above relation is not necessarily invertible in the sense that any DDE180

(8), (9) can be converted into the PDE with age structure. Besides being more general,181

the DDE formulation in terms of probability distributions, f (τ ) and g(a), has also182

advantages in the spectral analysis to come in this paper. Furthermore, from a biological183

point of view, it is convenient to formulate the kinetics of the main phases of the infected184

cell cycle as distributions which can be matched to experimental data.185

Another generalization of model (1) was proposed in Wang and Dong (2018). Our186

model differs from that in Wang and Dong (2018) in the sense that we incorporate187

periodic antiviral treatment and our model system is nonautonomous. In general, it is188

a challenge to compute the basic reproduction number and study the model dynamics189

for periodic systems with time delays.190
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The dynamics of (8), (9) (equivalently (10)) will be analyzed in what follows;191

however, we also remark here that the system can be extended with respect to modeling192

reverse transcription (RT) in infected cells as described below.193

Remark 1 A more detailed description of antiviral action with respect to infected cell194

life can take into account that RT inhibitors act during the eclipse phase interfering195

with RT transcriptase, a necessary step for viral replication. In “Appendix A”, we196

extend the age-structured model by adding an extra compartment explicitly tracking197

the process of RT during the eclipse phase of infected cell. In the special case that198

RT occurs at a fixed time, r , after viral entry, then the delay differential equation for199

the virus, V (t), reduces to (9) with β(t) shifted by r units of time, i.e., β(t + r).200

In particular, all of the formulae we will derive in Sect. 4.2 concerning reproduction201

number dependent on the periodic forcing hold in the extended model with the RT202

delay r shifting the effective infection rate as β(t + r).203

3 Threshold Analysis of Model204

3.1 Boundedness205

Throughout this paper, we assume that g(a) and f (τ ) are probability density functions206

on R+ with exponentially decay rate at infinity.207

(H) There exists α0 > 0 such that both g(t)eα0t → 0 and f (t)eα0t → 0 as t → ∞.208

To study the model system with the infinite delay, we first introduce the weighted209

continuous function space. For a given α ∈ (0,α0), we define Cα to be the subspace210

of C(R−, R) such that φ(θ)eαθ is uniformly continuous on R− = (−∞, 0] and the211

norm212

‖φ‖α := sup
θ∈R−

|φ(θ)eαθ |213

is finite. It is easily seen that Cα is a Banach space equipped with the norm ‖ · ‖α , and214

system (8), (9) is well-posed in Cα × Cα .215

Let C+
α be the nonnegative cone collecting all nonnegative functions in Cα . We216

intend to show that if the initial profile is contained in the C+
α × C+

α , so is the solution217

for any t > 0. It can be proved by contradiction that S(t) ≥ 0. If t0 ≥ 0 is the infimum218

of all t with S(t) < 0, then S(t0) = 0 and S′(t0) ≤ 0, which obviously contradict Eq.219

(8). Actually, we have S(t) > 0 for all t > 0. Next, we integrate (9) to obtain220

V (t) = e−dt V (0) + θ N

∫ t

0

∫ ∞

0

∫ ∞

0

e−d(t−s) p(s)g(a) f (τ )221

β(s − a − τ )S(s − a − τ )V (s − a − τ )dτdads,222
223

from which nonnegativity of V (t) follows. If, further, V (0) > 0, it is easy to show224

that V (t) > 0 for all t > 0.225
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_####_ Page 8 of 29 C. J. Browne et al.

We also want to show that the solution of the model system with nonnegative initial226

conditions is bounded above. From (8), we have S′(t) ≤ λ − δS(t). By comparison227

principle, we obtain lim supt→∞ S(t) ≤ λ/δ. Furthermore, if S(t) ≤ λ/δ for some228

t = t0, then S(t) ≤ λ/δ for all t ≥ t0. Define an auxiliary function229

U (t) = θ N

∫ ∞

t

∫ ∞

0

∫ ∞

0

e−d(t−s) p(s)g(a) f (τ )β(s − a − τ )230

S(s − a − τ )V (s − a − τ )dadτds.231

It is readily seen that U (t) ≥ 0 for all t ≥ 0, and232

U ′(t) = −θ N p(t)

∫ ∞

0

∫ ∞

0

g(a) f (τ )β(t − a − τ )233

S(t − a − τ )V (t − a − τ )dadτ − dU (t).234

Add this equation to (8) and (9) yields235

S′(t) + U ′(t) + V ′(t) = λ − δS(t) − β(t)S(t)V (t) − dU (t) − dV (t).236

By comparison principle, we have lim supt→∞[S(t) + U (t) + V (t)] ≤ λ/ min{δ, d}.237

Note that system (8), (9) is a nonautonomous with a periodic solution semiflow238

U (t, s) on Cα × Cα satisfying U (t, t) = I , U (t, s)U (s, r) = U (t, r) and U (t +239

T , s + T ) = U (t, s). To construct an equivalent autonomous semigroup, we use the240

idea in Saperstone (1981) (see also Rebelo et al. 2014; Zhao and Hutson 1994) to241

introduce the compact metric space242

RT := R/T Z = {r ∈ R : r1 ∼ r2 ⇔ (r1 − r2)/T ∈ Z}243

equipped with the distance d(r1, r2) = |e2iπr1/T −e2iπr2/T |. Define a semigroup /(t)244

on X = Cα × Cα × RT as245

/(t)(φ, r) = (U (t + r , r)φ, t + r), φ = (u, v) ∈ Cα × Cα, r ∈ RT .246

/(t) is well-defined since247

/(t)(φ, r + T ) = (U (t + r + T , r + T )φ, t + r + T ) = (U (t + r , r)φ, t + r)248

= /(t)(φ, r).249

It is also easy to verify that /(0) = I and250

/(t)/(s)(φ, r) = (U (t + s + r , s + r)U (s + r , r)φ, t + s + r)251

= (U (t + s + r , r)φ, t + s + r) = /(t + s)(φ, r).252

The argument in the preceding paragraph indicates that /(t) is point dissipative.253

Moreover, for any constant C > λ/ min{δ, d}, the bounded region 0C := {(u, v, r) ∈254
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Resonance of Periodic Combination Antiviral Therapy and… Page 9 of 29 _####_

X : ‖u‖α ≤ C, ‖v‖α ≤ C} is absorbing in the sense that it contains all possible255

attractors of /(t).256

Finally, we show that the set of trajectories γ +(0C ) =
⋃

φ∈0C
γ +(φ) is also257

bounded. To see this, we consider the auxiliary system with (8) replaced with258

S′(t) = λ − δS(t). (11)259

The differential equation for V (t) is still (9). Any initial condition (φ, r) in 0C is260

bounded by (S0, V0, r) with S0(θ) = V0(θ) = Ce−αθ for θ ∈ R−. Thus, by compar-261

ison principle, U (t, r)φ ≤ U (t, r)(S0, V0). We can use a similar argument as in the262

proof of point dissipativeness of /(t) to find a constant C̄ > 0 (which depends on C)263

such that γ +(0C ) ⊂ 0C̄ .264

3.2 Basic Reproduction Number265

Following Bacaër and Ouifki (2007), Bacaër and Abdurahman (2008), Bacaër and266

Dads (2012), Zhao (2017a), we can define the reproduction number for the renewal267

type Eq. (10) as the spectral radius of the next-generation operator, R0 = ρ(L), where268

(Lφ)(t) = θ N S̄

∞
∫

0

∞
∫

0

∞
∫

0

e−ds p(t−s)g(a) f (τ )β(t−s−a−τ )φ(t−s−a−τ )dτdads,

(12)269

acting on the space of continuous T −periodic functions on R, denoted as PT . For any270

infinite sequence of continuous and uniformly bounded φn ∈ PT , we can show that271

both Lφn and (Lφn)
′ are uniformly bounded (since g, f are probability distributions272

and β(t), p(t) are periodic functions). By the Arzela–Ascoli theorem, L is a compact273

operator on PT . Obviously, L is a positive operator on the cone of nonnegative functions274

in PT . If p(t) > 0 and β(t) > 0 for all t ∈ R, then L is strongly positive and Krein–275

Rutman theorem (Du 2006, Theorem 1.2) implies that R0 = ρ(L) is an eigenvalue of276

the operator L with a corresponding positive eigenfunction u(t); that is,277

R0u(t) = θ N S̄

∞
∫

0

∞
∫

0

∞
∫

0

e−ds p(t −s)g(a) f (τ )β(t −s−a−τ )u(t −s−a−τ )dτdads.

(13)278

Observe that the definition of R0 in (13) involves an eigenvalue equation for an infinite-279

dimensional operator. In Sect. 15, we investigate a formulation of R0 amenable to280

analytical methods, and we will develop different numerical methods to compute R0281

in Sect. 4.3.282
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_####_ Page 10 of 29 C. J. Browne et al.

3.3 Extinction and Persistence of Infection283

In the following theorem, we state that the basic reproduction number is the threshold284

parameter for the model dynamics. First, we demonstrate that if R0 < 1, then the285

disease-free equilibrium E0 = {S̄, 0} with S̄ = λ/δ is globally attractive in X .286

Theorem 2 Assume (H). If R0 < 1, there exists α1 ∈ (0,α0) such that, for any α ∈287

(0,α1), the disease-free equilibrium E0 = {S̄, 0} is globally attractive in C+
α × C+

α .288

Proof Recall that PT is the Banach space of continuous T −periodic functions on R289

equipped with the supremum norm. We introduce the following parametrized compact290

operator on PT :291

(Lµφ)(t) = θ N S̄

∞
∫

0

∞
∫

0

∞
∫

0

eµ(s+a+τ )−ds p(t − s)g(a) f (τ )292

β(t − s − a − τ )φ(t − s − a − τ )dτdads, (14)293

for all real µ < min{d,α0}. Obviously, ρ(L0) = ρ(L) = R0 < 1; see (12). More-294

over, ρ(Lµ) is continuous (Degla 2008, Theorem 2.1) and increasing (Burlando 1991,295

Theorem 1.1) in µ. Hence, there exists a small ν > 0 such that ρ(Lν) < 1. Krein–296

Rutman theorem implies that the principal eigenfunction φ ∈ PT is positive. Let297

ε = S̄/ρ(Lν) − S̄ > 0 and v(t) = e−νtφ(t). It follows that298

v(t) = θ N (S̄ + ε)

∞
∫

0

∞
∫

0

∞
∫

0

e−ds p(t − s)g(a) f (τ )β(t − s − a − τ )299

v(t − s − a − τ )dτdads.300

Differentiating both sides gives a periodic renewal equation301

v′(t) = −dv(t)+θ N (S̄+ε)p(t)

∫ ∞

0

∫ ∞

0

β(t−a−τ )g(a) f (τ )v(t − a − τ )dadτ.302

303

The above equation is also a perturbation of the linearization of (7). Now, we choose304

α1 = min{ν/2,α0/2} and let {S(t), V (t)} be any solution of (8), (9) with the initial305

condition in Cα × Cα , where α ∈ (0,α1). Since lim supt→∞ S(t) ≤ S̄, there exists306

t0 > 0 such that S(t) < S̄ + ε for all t > t0. In view of 2α < ν, the functions V (t)eνt
307

and S(t)V (t)eνt are uniformly bounded for all t ∈ R−. Consequently, there exists308

C > 0 such that Cv(t) ≥ V (t) and (S̄ + ε)Cv(t) ≥ S(t)V (t) for all t ≤ t0. Denote309

F(t) = θ N (S̄ + ε)p(t)

∫∫

τ+a≥t−t0

β(t − a − τ )g(a) f (τ )Cv(t − a − τ )dadτ.310
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Resonance of Periodic Combination Antiviral Therapy and… Page 11 of 29 _####_

It is easily seen that311

Cv′(t) = −dCv(t) + θ N (S̄ + ε)p(t)

∫∫

τ+a≤t−t0

β(t − a − τ )g(a)312

f (τ )Cv(t − a − τ )dadτ + F(t),313

for t ≥ t0. On the other hand, from the choice of C we have314

V ′(t) ≤ −dV (t) + θ N (S̄ + ε)p(t)

∫∫

τ+a≤t−t0

β(t − a − τ )g(a) f (τ )315

V (t − a − τ )dadτ + F(t)316

for all t ≥ t0. By comparison principle, Cv(t) ≥ V (t) for all t ≥ t0. Especially,317

V (t) → 0 as t → ∞. It then follows from (8) that S(t) → S̄ as t → ∞. -.318

Remark 3 Since the delay is not finite, the Poincaré map for the linearization of (7)319

may not be compact on Cα . Thus, one cannot use a similar argument as in the proof320

of Xu and Zhao (2005), Proposition 2.1, to find an upper solution which converges to321

zero as t approaches infinity.322

When R0 > 1, we prove in “Appendix” the following theorem stating that system323

(8), (9) is uniformly persistent.324

Theorem 4 Assume (H) and α ∈ (0,α0). If R0 > 1, then there exists δ0 > 0 such325

that for any initial condition (u0, v0) ∈ Cα × Cα with v0(0) > 0, the solution (S, V )326

of (8), (9) satisfies lim inf t→∞ S(t) > δ0 and lim inf t→∞ V (t) > δ0.327

4 Computing R0328

4.1 Fourier Analysis329

In a similar spirit to Bacaër (2007), we consider Fourier expansions of the T −periodic330

functions u(t), p(t) and β(t):331

u(t) =
∑

j∈Z

c j e
i jωt ,

β(t)

〈β〉
=

∑

j∈Z

β j e
i jωt ,

p(t)

〈p〉
=

∑

j∈Z

p j e
i jωt , (15)332

where ω = 2π
T

, 〈β〉 := 1
T

T
∫

0

β(t) dt and 〈p〉 := 1
T

T
∫

0

p(t) dt . The eigenfunction u(t)333

can also be normalized so that c0 = 〈c〉 = 1. Substituting (15) into (13), the eigenvalue334
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_####_ Page 12 of 29 C. J. Browne et al.

equation expands as follows:335

R0

θ N S̄〈β〉〈p〉

∑

j∈Z

c j e
i jωt =

∑

m∈Z

∑

l∈Z

∑

n∈Z

βl pmcnei(m+l+n)ωt

∫ ∞

0

e−dse−i(m+n+l)ωsds336

∫ ∞

0

g(a)e−i(l+n)ωada

∫ ∞

0

f (τ )e−i(l+n)ωτ dτ.337

=
∑

j∈Z

∑

k∈Z

∑

n∈Z

βk−n p j−kcnei jωt Fk

d + i jω
,338

339
340

where in the last step we make changes of indices j = l + m + n and k = l + n. and341

Fk :=

∫ ∞

0

g(a)e−ikωada

∫ ∞

0

f (τ )e−ikωτ dτ. (16)342

We denote343

γ =
d

θ N S̄〈β〉〈p〉
, H j =

d

d + i jω
. (17)344

345

It is readily seen that346

γ R0c j = H j

∑

k∈Z

∑

n∈Z

Fkβk−n p j−kcn . (18)347

348

Note that Fk is the product of characteristic functions corresponding to probability349

distributions g and f evaluated at − kω and H j is the characteristic function of the350

exponential distribution evaluated at − jω. Also, recall the product of characteris-351

tic functions is equal to the characteristic function of sum of independent random352

variables with corresponding probability distributions. Thus, coefficients determining353

the effect of periodicity on reproduction number are influenced by how the periodic354

drug efficacies interact with the probability kernels describing delays in the replication355

cycle.356

4.2 Perturbation Analysis357

Next, we consider the particular case where the drug efficacies are sinusoidal pertur-358

bations from constant values, ei , given by ηi (t) in (4), along with a possible phase359

difference between the distinct drug administrations. Then, it suffices to let360

β(t)

〈β〉
= 1 + 2εα1 cos ωt,

p(t)

〈p〉
= 1 + 2εα2 cos[ω(t − φ)], (19)361

where αi = − ai

2(1−ei )
, and φ ∈ [0, T ) represents the phase difference between the362

distinct antiviral drug efficacies, i.e., φ = (φ2 − φ1) mod T , where φ1 and φ2 are363

123

Journal: 11538 Article No.: 0704 TYPESET DISK LE CP Disp.:2020/1/30 Pages: 29 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Resonance of Periodic Combination Antiviral Therapy and… Page 13 of 29 _####_

the phases of two drug administrations. The phase difference inherently describes the364

timing between dosages of the two drugs in the periodic schedule. It follows that the365

Fourier coefficients for β(t) and p(t) are as follows:366

β0 = p0 = 1, β1 = β−1 = εα1, p1 = εα2e−iωφ, p−1 = εα2eiωφ,367

and β j = p j = 0 for | j | ≥ 2.368

We assume ε > 0 is small and write γ R0 and c j as power series expansions in ε:369

γ R0 =
∑

k≥0

ρ0kε
k, c j =

∑

k≥0

c jkε
k .370

Since β j = p j = 0 for | j | ≥ 2, we can simply write Eq. (18) as371

γ R0c j = H j [p−1 F j+1(β−1c j+2 + β0c j+1 + β1c j )372

+ p0 F j (β−1c j+1 + β0c j + β1c j−1)373

+ p1 F j−1(β−1c j + β0c j−1 + β1c j−2)] (20)374
375

By substituting these expansions into (20) and comparing the coefficients of εk (with376

k = 0, 1, 2, 3) on both sides, we obtain377

ρ00c j0 = H j F j c j0,378

ρ01c j0 + ρ00c j1 = H j [F j+1α2eiωφc j+1,0 + F j (α1c j+1,0 + c j1 + α1c j−1,0)379

+ F j−1α2e−iωφc j−1,0],380

ρ02c j0 + ρ01c j1 + ρ00c j2 = H j [F j+1α2eiωφ(α1c j+2,0 + c j+1,1 + α1c j0)381

+ F j (α1c j+1,1 + c j2 + α1c j−1,1) + F j−1α2e−iωφ(α1c j0 + c j−1,1 + α1c j−2,0)],382

ρ03c j0 + ρ02c j1 + ρ01c j2 + ρ00c j3 = H j [F j+1α2eiωφ(α1c j+2,1 + c j+1,2 + α1c j1)383

+ F j (α1c j+1,2 + c j3 + α1c j−1,2) + F j−1α2e−iωφ(α1c j1 + c j−1,2 + α1c j−2,1)].384
385

From the normalization condition c0 = 1, we have c00 = 1 and c0k = 0 for k ≥ 1. It386

then follows from the first equation (with j = 0,±1,±2, . . .) that ρ00 = H0 F0 = 1387

and c j0 = 0 for | j | ≥ 1. Substituting these into the second equation (with j = 0,±1)388

yields ρ01 = 0 and389

c11 = H1 F1c11 + H1 F1α1 + H1α2e−iωφ,390

c−1,1 = H−1α2eiωφ + H−1 F−1α1 + H−1 F−1c−1,1. (21)391
392

It is easy to obtain from the second equation that c j1 = 0 for | j | ≥ 2. Next, we set393

j = 0 in the third equation to find394

ρ02 = α2 F1eiωφ(c11 + α1) + α1c11 + α1c−1,1 + α2 F−1e−iωφ(α1 + c−1,1)395

= α1α2(F1eiωφ + F−1e−iωφ) + c11(α2 F1eiωφ + α1) + c−1,1(α2 F−1e−iωφ+α1)396
397
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_####_ Page 14 of 29 C. J. Browne et al.

Note that H1 and H−1, and F1 and F−1 defined in (17) are conjugates. Thus, on account398

of (21), we obtain399

ρ02 = 2α1α2 f1 + 2(α2
1 + α2

2) f2, (22)400
401

where402

f1 = Re
F1eiωφ + H1e−iωφ

1 − H1 F1
=

A cos(ωφ) + B sin(ωφ)

|1 − H1 F1|2
,403

f2 = Re
H1 F1

1 − H1 F1
=

Re(H1 F1) − |H1 F1|
2

|1 − H1 F1|2
.404

405

Here, we recall that H1 = d
d+iω

and F1 =
∫ ∞

0 g(a)e−iωada
∫ ∞

0 f (τ )e−iωτ dτ , and,406

for simplicity, we have denoted407

A = (1 − |H1|
2) Re(F1) + (1 − |F1|

2) Re(H1),408

B = −(1 − |H1|
2) Im(F1) + (1 − |F1|

2) Im(H1).409
410

By choosing j = ±1 in the third equation, we further obtain c12 = c−1,2 = 0. Finally,411

it is easy to calculate from the fourth equation with j = 0 that ρ03 = 0.412

We summarize the above calculation in the following theorem displaying the effect413

of sinusoidal drug efficacy perturbations on R0, along with the optimal phase difference414

φ∗ between the two drugs.415

Theorem 5 If β(t) and p(t) are small perturbations of constants as given in (19), then416

the basic reproduction number has the asymptotic formula417

R0 =
θ N S̄〈β〉〈p〉

d
(1 + ρ02ε

2 + O(ε4)),418

where ρ02 is given as in (22). Furthermore, ρ02 is minimized at the phase difference419

φ∗ =
T

2
+

T

2π
arctan

B

A
mod T420

if A ≥ 0, and421

φ∗ =
T

2π
arctan

B

A
mod T422

if A < 0.423

Note that ρ02 is the first coefficient in the expansion of R0 corresponding to ampli-424

tude, ε, and therefore will control the effect of periodic perturbations on R0. In425

particular, we are interested in the optimal phase difference φ∗ which will minimize426

ρ02 and, in turn, minimize R0.427
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Resonance of Periodic Combination Antiviral Therapy and… Page 15 of 29 _####_

4.3 Numerical Computation428

We first use finite difference method (Posny and Wang 2014) to compute R0, which429

is the principal eigenvalue of the linear operator L in (12). By defining430

K (t, s) = θ N S̄e−dsβ(t − s)

∫∫

a+τ≤s

ed(a+τ )g(a) f (τ )p(t − s + a + τ )dadτ, (23)431

we can rewrite (12) as (Lφ)(t) =
∫ ∞

0 K (t, s)φ(t −s)ds. Given a large integer M > 0,432

we discretize the period [0, T ] as t0 ≤ t1 ≤ · · · tM , where t j = j4t with 4t = T /M .433

For j > M or j < 0, we still denote t j = j4t . The above linear operator can be434

approximated by a matrix of dimension n: (L̂φ̂) j =
∑M

k=1 L̂ jk φ̂k, where φ̂ is the435

numerical approximation of φ(x) and436

L̂ jk = 4t

∞
∑

l=0

K (t j , t j−k+l M ). (24)437

Here, for convenience, we set K (t, s) = 0 if s < 0. The kernel K (t j , tm) in (23) can438

be approximated via a standard quadrature formula:439

K (t j , tm) ≈ θ N S̄e−dtm β(t j−m)4t2
∑

k+l≤m

wkl(m)edtk+l g(tk) f (tl)p(t j−m+k+l),440

where the quadrature weights can be chosen as wkl(m) = 1 and w0l(m) = wk0(m) =441

wkk(m) = 1/2 for 0 < k, l < m; and w00(m) = wm0(m) = wm0(m) = 1/6. To save442

the computation cost, we use the following recurrence relation to calculate the kernel443

function:444

K (t j , tm) = e−d4t K (t j−1, tm−1) + θ N S̄e−dtm β(t j−m)445

∫∫

tm−1≤a+τ≤tm

ed(a+τ )g(a) f (τ )p(tm−1 + a + τ )dadτ,446

447

where the double integral on the right-hand side can be approximated via a standard448

quadrature formula. If the probability density functions g and f decay rapidly at449

infinity, the kernel function K (t, s) in (23) also decays rapidly as s → ∞, and we450

can truncate the series in (24) as a finite sum, say, at lm . In our simulation, we choose451

lm = 5 and do not observe significant differences in the results with larger lm .452

Another numerical method in the computation of R0 is based on the Fourier trans-453

form of periodic functions and spectral decomposition of linear operator L in (12).454

Let M > 0 be a large even integer. Set 4t = T /M and t j = j4t for j ∈ N. We take455

discrete Fourier transforms456

u(t) ≈
M/2−1
∑

j=−M/2

ũ j e
i jwt , β(t) ≈

M/2−1
∑

j=−M/2

β̃ j e
i jwt , p(t) ≈

M/2−1
∑

j=−M/2

p̃ j e
i jwt ,457
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_####_ Page 16 of 29 C. J. Browne et al.

40 60 80 100 120 140 160 180

number of mesh points

1.4362

1.4363

1.4364

1.4365

1.4366

1.4367

1.4368

1.4369

1.437

1.4371

b
a

s
ic

 r
e

p
ro

d
u

c
ti
o

n
 n

u
m

b
e

r

finite difference method

spectral method

40 60 80 100 120 140 160 180 200

number of mesh points

0

2

4

6

8

10

12

14

16

18

c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

finite difference method

spectral method

Fig. 1 Comparison of spectral method and finite difference method (Colour figure online)

where the coefficients are given by discrete inverse Fourier transform:458

ũ j =
1

M

M
∑

k=1

u(tk)e
−i jwtk , β̃ j =

1

M

M
∑

k=1

β(tk)e
−i jwtk , p̃ j =

1

M

M
∑

k=1

p(tk)e
−i jwtk .459

It is easily seen that ũ j , β̃ j , p̃ j can be extended as periodic sequence in N with the same460

period M . We use the above Fourier transforms to approximate the linear operator L461

in (12) as a matrix L̃ of dimension M :462

(L̃ũ) j =
∑

m+n+l= j
m,n,l∈[−M/2,M/2−1]

θ N S̄

∫∫∫

a,τ,s≥0

e−ds+imw(t−s)+ilw(t−s−a−τ )+inw(t−s−a−τ )
463

p̃m β̃l ũng(a) f (τ )dadτds464

=
θ N S̄

d + i jw

∑

k−n, j−k,n∈[−M/2,M/2−1]

Fk β̃k−n p̃ j−k ũn,465

466

where ũ = (ũ−M/2, . . . , ũM/2−1)
T and Fk is given in (16).467

To compare the two numerical methods, we consider a toy model:468

θ = 1, N = 1, S̄ = 0.1, T = 2π, d = 1, g(a) = e−a, f (τ ) = e−τ ,469

and β(t) = (t − T /2)2, p(t) = t(T − t) for t ∈ [0, T ]. It is observed from numer-470

ical simulation (Fig. 1) that the spectral method is faster and more accurate than the471

finite difference method. Notice that this is only a special case with specific data. A472

theoretical analysis is required to justify the advantage of spectral method over finite473

difference method. We leave this problem for future investigation.3 474
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Resonance of Periodic Combination Antiviral Therapy and… Page 17 of 29 _####_

4.4 Examples475

In the subsection, we consider three examples: (i) bursting viral production model;476

(ii) budding with constant delay and viral production rate; and (iii) gamma-distributed477

intracellular and viral production.478

Example 1 Bursting viral production model479

Consider a simple case when the infected cells release all virus particles at a fixed480

age τ0, namely γ (τ ) = δ(τ − τ0) in the age-structured model, where δ(τ ) is the481

Dirac delta mass centered at τ = 0. The viral production rate is also a delta function482

q(a) = Nδ(a). It can be calculated that483

θ = e
−

τ0
∫

0

µ1(a)da

, f (τ ) = δ(τ − τ0), g(a) = δ(a).484

The corresponding delay differential system is485

S′(t) = λ − δS(t) − β(t)S(t)V (t),486

V ′(t) = θ N p(t)β(t − τ0)S(t − τ0)V (t − τ0) − dV (t).487
488

Upon assuming p(t),β(t) are of the small amplitude sinusoidal type (19), we can489

utilize Theorem 5 to obtain the second-order effect on R0 from the amplitude param-490

eter, ε, of the periodic drug efficacies. In particular, F1 = e−iωτ0 , which implies A =491

(1 − |H1|
2) cos(ωτ0) and B = (1 − |H1|

2) sin(ωτ0). Note that arctan(B/A) = ωτ0492

mod T if A ≥ 0, and arctan(B/A) = π + ωτ0 mod T if A < 0. Thus, the optimal493

phase difference between the combination drug treatments with period T in the case494

of bursting virus model with intracellular delay τ0 is φ∗ = T /2 + τ0 mod T . The495

intuition for this result can be related to the previous work on the ODE virus model496

(Browne and Pilyugin 2016), which argues that the maximal rates of viral production497

and infection should be de-synchronized to antagonize the virus replication cycle.498

Here we also bring to attention the recent work by Neagu et al. (2018), exploring499

potential viral evolution of its intracellular delay in order to “resist” antiviral treatment500

for a single drug with periodic efficacy. To find the critical delay from the virus501

perspective in the case of single-drug treatment, consider the special case β(t) =502

1 + 2ε cos ωt and p(t) = 1. Then, it follows that the first term involving ε in the503

expansion of R0(ε), the ε2 coefficient ρ02, can be written as:504

ρ02 =
2d [d cos ωτ0 − ω sin ωτ0 − d]

2d(d − d cos ωτ0 + ω sin ωτ0)+ω2
=

[

−1+
ω2/(2d)

d cos ωτ0 − ω sin ωτ0 − d

]−1

,505

506

which achieves its maximum when d cos ωτ0 − ω sin ωτ0 =
√

d2 + ω2. Thus, the507

critical delay from the virus perspective can be calculated as τ ∗
0 = T −arctan(ω/d)/ω508

mod T . At this critical value, ρ02 = 2d/(
√

ω2 + d2 − d). The result concurs with509

simulation and informal arguments in Neagu et al. (2018) showing that the critical510

intracellular delay for the virus is slightly less than drug dosing period, and when511
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_####_ Page 18 of 29 C. J. Browne et al.

ω/d is small, the offset is close to the (free) virus generation time (1/d). Note that an512

objective function different from R0 was chosen in Neagu et al. (2018) and the offset513

was estimated as 1/(2d).514

Example 2 Budding with constant delay and viral production rate515

Assume the infected cells mature at the age τ = τ0 and all mature-infected cells have516

constant death rate and virus production rate; namely, in the age-structured model, we517

have γ (τ ) = δ(τ − τ0) as before, and µ2(a) = ν, and q(a) = νN . We then have518

θ = e
−

τ0
∫

0

µ1(a)da

, f (τ ) = δ(τ − τ0), g(a) = νe−νa .519

Denote the number of productively infected cells by I (t) =
∞
∫

0

i(t, a) da, we arrive at520

the delay differential system521

S′(t) = λ − δS(t) − β(t)S(t)V (t),522

I ′(t) = θβ(t − τ0)S(t − τ0)V (t − τ0) − ν I (t),523

V ′(t) = νN p(t)I (t) − dV (t).524
525

It is noted that the bursting case in Example 1 is the same as the limiting case of526

budding here in Example 2 with ν → ∞. It is easily seen that F1 = νe−iωτ0/(ν + iω).527

Recall that H1 = d/(d + iω). It is easily seen that528

A =
ω2

d2 + ω2
·
ν[ν cos(ωτ0) − ω sin(ωτ0)]

ν2 + ω2
+

ω2

ν2 + ω2
·

d2

d2 + ω2
,529

B =
ω2

d2 + ω2
·
ν[ω cos(ωτ0) + ν sin(ωτ0)]

ν2 + ω2
+

ω2

ν2 + ω2
·

−dω

d2 + ω2
.530

531

Consequently, the optimal phase shift of drug treatments is532

φ∗ =
T

2
+

T

2π
arctan

ν[ω cos(ωτ0) + ν sin(ωτ0)] − dω

ν[ν cos(ωτ0) − ω sin(ωτ0)] + d2
mod T533

534

if A ≥ 0, and535

φ∗ =
T

2π
arctan

ν[ω cos(ωτ0) + ν sin(ωτ0)] − dω

ν[ν cos(ωτ0) − ω sin(ωτ0)] + d2
mod T536

537

if A < 0. Especially, when τ0 = 0 (which corresponds to the ODE virus model), the538

above formula reduces to φ∗ = T
2

+ T
2π

arctan ω(ν−d)

ν2+d2 mod T . This concurs with the539

result of global minimization of R0 at φ∗ = T /2 obtained for bang–bang-type drug540

efficacies in the case of equal infected cell and viral death rates, ν = d (Browne and541

Pilyugin 2016).542
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In order to find the critical delay from the virus perspective in the case of single-drug543

treatment, consider the special case β(t) = 1 + 2ε cos ωt and p(t) = 1. We consider544

ρ02 as a function of τ0:545

ρ02 =
2dν

[

−dν + (dν − ω2) cos ωτ0 − (ωd + ων) sin ωτ0

]

(dν − ω2 − dν cos ωτ0)2 + (ωd + ων + dν sin ωτ0)2
546

=

[

−1 +
ω2(d2 + ω2 + ν2)/(2dν)

−dν + (dν − ω2) cos ωτ0 − (ωd + ων) sin ωτ0

]−1

,547

548

which achieves its maximum when549

(dν − ω2) cos ωτ0 − (ωd + ων) sin ωτ0 =
√

(dν − ω2)2 + (ωd + ων)2.550

Thus, the critical delay can be calculated as:551

τ ∗
0 = T −

T

2π
arccos

dν − ω2

√

(dν − ω2)2 + (ωd + ων)2
mod T .552

553

We will use the following parameter values representative of HIV infection (Perel-554

son and Nelson 1999) to conduct numerical simulations:555

λ = 104, δ = 0.01, θ = 0.98, k = 8 × 10−7,556

d = 13, τ0 = 2, T = 1, N = 300. (25)557
558

For this example, we consider sinusoidal drug efficacies of form (4) with η1(t) =559

0.945 − 2ε cos(ωt) and η2(t) = 0, where ε = 0.01 and ω = 2π . Now, we choose560

different values of ν and vary τ0 to see how the time delay affects the basic reproduction561

number, producing the T − periodic curves R0(φ) displayed in Fig. 2. Again note that562

when ν → ∞, the model reduces to the one in Example 1. Observe that the amplitude563

of R0(τ0) increases and the critical delay τ ∗
0 shifts closer to being synchronized with564

the period T as ν → ∞.565

Next we consider periodic combination drug therapy, setting ηi (t) = 0.765 −566

2ε cos(ωt) with ε = 0.05, and consider the effect of varying phase difference φ567

between drug efficacies, η1(t) and η2(t − φ), on R0. In Fig. 3a, we plot R0 as a568

function of the phase shift φ with different values of ν for the case τ0 = 1.9283.569

Note that this is the critical viral delay, τ ∗
0 , when ν → ∞ in the case of single-drug570

therapy shown in Fig. 2). Notice that in the viral bursting case (ν → ∞), the phase571

difference φ substantially affects R0. In particular, if the P-inhibitor is introduced at572

φ = 0.5, R0 reduces to below one, as opposed to either the single-drug (maximal R0)573

or in-phase (φ = 0) scenario. Thus, if the virus optimizes its R0 under single-drug574

therapy as discussed in Neagu et al. (2018), it is still possible to effectively antagonize575

the virus with a correctly timed distinct antiviral drug. Also, observe in this case, as576

we decrease ν, the amplitude of R0(φ) decreases. In Fig. 3b, we consider the case577

τ0 = 1.6. The curves of R0(φ) change substantially from the prior case, showing578

the sensitivity of R0 to both τ0 and φ. We observe from Fig. 3 that as ν increases,579
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_####_ Page 20 of 29 C. J. Browne et al.

Fig. 2 The basic reproduction number R0 as a function of the maturation delay τ0. The numeric values are

computed using both finite difference and spectral methods with sufficiently many mesh points such that

the graphs obtained from both methods are almost the same. In the subfigure, we set ν = 15 and choose

τ0 = 0.7 (blue dotted curve) and τ0 = 0.8 (red dashed curve), respectively, to calculate the viral population

along the time

(a) (b)

Fig. 3 The basic reproduction number R0 as a function of the phase shift φ for a τ0 = 1.9283 and b τ0 = 1.6.

The numeric values are computed using both finite difference and spectral methods with sufficiently many

mesh points such that the graphs obtained from both methods are almost the same (Colour figure online)

both average and amplitude of R0 decrease, and the optimal φ∗ shifts to the left, even580

though the reproduction number corresponding to the case with constant drug efficacy581

(ε = 0) remains fixed.582

Example 3 Gamma-distributed intracellular and viral production583

Recent studies have shown for HIV the intracellular and viral production kernels may584

be gamma-distributed (Beauchemin et al. 2017). Thus, we let585

f (τ ) =
τ k1−1e−τ/θ1

0(k1)θ
k1

1

, g(a) =
ak2−1e−a/θ2

0(k2)θ
k2

2

.586

123

Journal: 11538 Article No.: 0704 TYPESET DISK LE CP Disp.:2020/1/30 Pages: 29 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Resonance of Periodic Combination Antiviral Therapy and… Page 21 of 29 _####_

For illustration, we consider the simple case when k1 = k2 = 1. Define587

I (t) = θθ2

∫ ∞

0

∫ ∞

0

g(a) f (τ )β(t − a − τ )S(t − a − τ )V (t − a − τ )dτda588

and E(t) = θ1

∫ ∞
0 f (τ )β(t−τ )S(t−τ )V (t−τ )dτ.We transform the delay differential589

system into an ordinary differential system:590

S′(t) = λ − δS(t) − β(t)S(t)V (t),591

E ′(t) = β(t)S(t)V (t) − E(t)/θ1,592

I ′(t) = θ E(t)/θ1 − I (t)/θ2,593

V ′(t) = p(t)N I (t)/θ2 − dV (t). (26)594
595

This is equivalent to the age-structured PDE (3) with596

γ (τ ) = θ/θ1, µ1(τ ) = (1 − θ)/θ1, q(a) = N/θ2, µ2(a) = 1/θ2.597
598

Similarly, for any positive integers k1 and k2, we can use linear chain trick (Smith599

2011) to obtain a system of k1 + k2 + 2 ordinary differential equations. However, we600

assume k1 and k2 are positive real numbers, and thus, the model system is in general601

still of infinite dimension. It can be calculated that602

F1 = (1 + iθ1ω)−k1(1 + iθ2ω)−k2 = |F1|e
−i(ω1k1+ω2k2),603

where |F1| = [1 + (θ1w)2]−k1/2[1 + (θ2ω)2]−k2/2, ω1 = arctan(θ1ω) and ω2 =604

arctan(θ2ω). A further computation gives605

A =
ω2

d2 + ω2
· |F1| cos(ω1k1 + ω2k2) + (1 − |F1|

2) ·
d2

d2 + ω2
,606

B =
ω2

d2 + ω2
· |F1| sin(ω1k1 + ω2k2) + (1 − |F1|

2) ·
−dω

d2 + ω2
.607

608

Consequently, the optimal phase shift of drug treatments is609

φ∗ =
T

2
+

T

2π
arctan

ω2|F1| sin(ω1k1 + ω2k2) − dω(1 − |F1|
2)

ω2|F1| cos(ω1k1 + ω2k2) + d2(1 − |F1|2)
mod T610

611

if A ≥ 0, and612

φ∗ =
T

2π
arctan

ω2|F1| sin(ω1k1 + ω2k2) − dω(1 − |F1|
2)

ω2|F1| cos(ω1k1 + ω2k2) + d2(1 − |F1|2)
mod T613

614

if A < 0.615

For numerical simulations in this example, we consider more realistic drug effica-616

cies given by the impulsive exponential decay dose–response form (5) as in Vaidya and617
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_####_ Page 22 of 29 C. J. Browne et al.

(a) (b)

(c) (d)

Fig. 4 a Impulsive exponential decay dose–response drug efficacies of RTI (blue or red) and PI (black). The

pharmacodynamic parameters used in simulations from formula (5) are m1 = 1 (red) or 2 (blue), m2 = 3,

and ri = 6 ln 2, Cmaxi
/I C50i

= 15 for i = 1, 2. b R0 as a function of phase difference φ for the cases

m1 = 1 (red) or 2 (blue). The gamma distribution parameters are k1 = 3.5, k2 = 12 and HIV parameters

are given in text. c R0 as a function of phase difference φ when m1 = 1 for gamma distribution parameters

k1 = k2 = 1 and k1 = 3.5, k2 = 12. d Simulations of time-dependent solutions displaying virus level

when k1 = k2 = 1 for in-phase (φ = 0) and out-of-phase (φ = 0.5) drug combination

Rong (2017). The pharmacodynamic parameters chosen are consistent with antiviral618

medications (RTIs and PIs) for HIV studied in Shen et al. (2008). For the RTI drug619

class, we consider two different types, NRTIs and NNRTIs, which have different slope620

parameters, m1, in (5). In particular, we take m1 = 1 or 2 in simulations, with the larger621

m1 value increasing the drug efficacy. Figure 4a displays the periodic drug efficacies622

utilized for the RTI, η1(t) (for the 2 different m1 values), and the P I , η2(t − φ). The623

baseline HIV parameter values are kept as (25). Furthermore, we choose the gamma624

distribution parameters in line with the recent experimental estimates obtained for SIV625

parameters (Beauchemin et al. 2017). In particular,626

k1 = 3.5, k2 = 12, θ1 = τ0/k1 = 0.57, θ2 = 1/(k2ν) = 0.12.627

In Fig. 4b, we plot the basic reproduction number as a function of the phase difference628

φ for m1 = 1 and 2. Next for the case where m1 = 2, in Fig. 4c, we also plot R0 for629

gamma distribution parameters k1 = 1, k2 = 1, θ1 = τ0/k1 = 2, θ2 = 1/(k2ν) = 1,630

corresponding to the analogous ODE (26). Observe that the optimal phase shifts are631

almost the same and the optimal values of basic reproduction number are nearly632

identical. Thus, in terms of R0, the ODE can be a good approximation of the infinite-633

dimensional equations corresponding to fitted parameters. The ODE case also has634

the advantage of relative ease in conducting numerical simulations. Thus, we display635

time-dependent solutions in Fig. 4d illustrating how the phase difference critically636

affects the outcomes of viral persistence versus extinction corresponding to whether637

R0 is greater or less than unity.638
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5 Discussion639

In this paper, we studied within-host viral dynamics under general intracellular dis-640

tributed delays and periodic combination antiretroviral therapy. Our formulation641

extends previous models by inclusion of eclipse and viral production stages as probabil-642

ity distributions, along with time-varying drug treatments. This allows us to incorporate643

recent experimentally derived gamma distribution parameters of HIV replication644

(Beauchemin et al. 2017) and pharmacodynamic models of drug therapy. Further-645

more, to the best of our knowledge, we provide the first rigorous analysis establishing646

the basic reproduction number R0 as a global threshold determining extinction versus647

persistence in an infinite-dimensional virus model with intracellular delay and periodic648

antiviral treatment. Although an explicit formula is not possible, we utilize Fourier649

analysis to provide an effective method of analytical and numerical approximation of650

R0. In the proof of persistence theorem, we chose to construct an autonomous semiflow651

as in Saperstone (1981). It is worth mentioning that one may use another approach by652

considering the associated Poincaré (time-periodic) map (Zhao 2017b).653

Motivated by previous results demonstrating large impacts on periodic viral dynam-654

ics induced by varying intracellular delays (Neagu et al. 2018) or phase shifts in655

combination drug therapy (Browne and Pilyugin 2012), we characterize how the tim-656

ing of, both, viral replication cycle and combination antiviral regimen can critically657

affect R0. Our analytical and numerical results show that a combination therapy can658

effectively neutralize a virus by optimizing phase difference φ between two distinct659

antivirals, even in the case that the virus adapts to a single drug through “synchroniz-660

ing” its intracellular delay τ0 with dosing period, as in Neagu et al. (2018). The phase661

difference φ between antiviral drug efficacies substantially affects R0 in simulations662

with realistic pharmacokinetics and gamma-distributed viral production delays for663

HIV (Fig. 4). Thus, consideration of pharmacodynamics and dosing regimen together664

with viral replication kinetics may be important for the optimization of treatment. 4665

There are several limitations to our model (9), which can be further addressed. First,666

as already mentioned in Remark 1, more detailed models of the viral replication cycle667

can allow for the precise mode of action of specific antiviral medications (e.g., RTIs). In668

“Appendix A”, we show that assuming a fixed (discrete) intracellular delay for reverse669

transcription (RT) simply shifts the action of an RTI by this delay duration in our670

analyzed model (9); however, more general RT delay distributions will require analysis671

of the extended model. Additionally, although our model predicts the clearance of the672

virus when R0 < 1, current treatment for HIV cannot eradicate the virus due to latently673

infected cells which are not targeted by antiviral therapy. Recent studies have modeled674

HIV persistence and the latent reservoir (Rong and Perelson 2009), which provides675

motivation for extending our model to include latency. Finally, drug resistance may be a676

barrier to treatment success and will be studied in future research into the optimization677

of antiviral therapies.678
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A ExtendedModel with Reverse Transcription685

We consider the following generalization of (3) with extra compartment explicitly686

tracking the process of reverse transcription (RT) during the eclipse phase of infected687

cell. Thus, the infected cells in the eclipse phase, j(t, τ ), are separated into two classes688

j1(t, τ1) and j2(t, τ2) measuring infected cells τ1 units of time after cell infection,689

before RT, and τ2 units of time after RT, respectively. Then, the eclipse phase-infected690

cell equation in (3) is modified as follows:691

(

∂

∂t
+

∂

∂τ1

)

j1(t, τ1) = −(ν1(τ1) + γ1(τ1)) j(t, τ1), j1(t, 0) = kS(t)V (t),692

(

∂

∂t
+

∂

∂τ

)

j2(t, τ ) = −(ν2(τ ) + γ2(τ )) j2(t, τ ),693

j2(t, 0) = (1 − η1(t))

∞
∫

0

γ1(τ1) j1(t, τ1)dτ1,694

(

∂

∂t
+

∂

∂a

)

i(t, a) = −µ(a)i(t, a), i(t, 0) =

∞
∫

0

γ2(τ ) j2(t, τ )dτ.695

696

In the special case that γ1(τ1) = δ(τ1 − r), then we have697

j2(t, 0) = (1 − η1(t))e
−

∫ r
0 ν1(s)kS(t − r)V (t − r),698

which implies that699

j2(t, τ2) = k(1 − η1(t − τ2))e
−

∫ r
0 ν1(s)S(t − τ2 − r)V (t − τ2 − r)700

e−
∫ τ2

0 (ν2(s)+γ2(s))ds
701

= k(1 − η1(t − τ + r))e−
∫ r

0 ν1(s)S(t − τ )V (t − τ )e−
∫ τ−r

0 (ν2(s)+γ2(s))ds,702
703

where τ := τ2 + r . Consequently, the differential equation for V (t) becomes704

V ′(t) = p(t)

∞
∫

0

∞
∫

0

q(a)e
−

a
∫

0

µ(s)ds

γ2(τ )e
−

r
∫

0

ν1(s)ds−
τ−r
∫

0

(ν2(s)+γ2(s))ds

β(t − a − τ + r)705

S(t − a − τ )V (t − a − τ )dτdτda − dV ,706707

which is the same as Eq. (9) with the effective infection rate (affected by the RT708

inhibitor) shifted by r units of time, i.e., β̃(t) = β(t + r). The corresponding709
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relation between PDE and DDE is: P(τ ) = e
−

r
∫

0

ν1(s)ds−
τ−r
∫

0

ν2(s)ds

and π(τ ) =710

γ2(τ )e
−

τ−r
∫

0

γ2(s)ds

, θ :=
∞
∫

0

P(τ )π(τ )dτ , f (τ ) = (P(τ )π(τ ))/θ , along with g(a) =711

(q(a)σ (a))/N , N =
∞
∫

0

q(a)σ (a)da where σ (a) = e
−

a
∫

0

µ(s)ds

.712

B Proof of Theorem 4713

We proceed in the following steps.714

1. In Sect. 3.1, we have proved that /(t) is point dissipative and the trajectories of715

any given bounded set are uniformly bounded.716

2. We show that /(t) is asymptotically smooth.717

Fix C > λ/ min{δ, d}. It follows from Burton and Hutson (1989), Lemma 3.2 that718

the set719

BC := {u ∈ C+
α : sup

θ≤0

u(θ)eαθ/2 ≤ C}720

is compact in C+
α . We need to prove that BC×BC×RT attracts all bounded invariant721

set 0 in X = C+
α ×C+

α ×RT . Fix any (Sr , Vr , r) in 0, we denote (St , Vt , t +r) =722

/(t)(Sr , Vr , r) such that (S(t), V (t)) = (St (0), Vt (0)) satisfies system (8), (9) for723

t > r with the initial condition (S(r + θ), V (r + θ)) = (Sr (θ), Vr (θ)) for θ ≤ 0.724

Since the limit superior of S(t) is bounded above by λ/δ, we have S(t) < C for725

all large t . Let t0 ≥ 0 be the largest t ≥ r such that S(t) ≥ C . If S(t) < C for all726

t ≥ r , we set t0 = r . For t > t0, define727

ut (θ) :=

{

St (θ), t0 − t ≤ θ ≤ 0,

S(t0)e
−α(θ−t0+t)/2, θ ≤ t0 − t .

728

729

It is readily seen that ut ∈ BC . Now, we intend to show that ‖ut − St‖α → 0 as730

t → ∞. For θ ∈ [t0 − t, 0], we have ut (θ) = St (θ). As t → ∞, we have731

ut (θ)eαθ = S(t0)e
α(θ+t0−t)/2 ≤ Ceα(t0−t) → 0, θ ≤ t0 − t;732

St (θ)eαθ ≤ S(t + θ)eα(t0−t) ≤ sup
r≤s≤t0

S(s)eα(t0−t) → 0, θ ∈ [r − t, t0 − t];733

St (θ)eαθ = Sr (t − r + θ)eα(θ+t−r)e−α(t−r) ≤ ‖Sr‖αe−α(t−r) → 0, θ ≤ r − t .734
735
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_####_ Page 26 of 29 C. J. Browne et al.

Therefore,736

‖ut − St‖α = sup
θ≤t0−t

|ut (θ) − St (θ)|eαθ
737

≤ Ceα(t0−t) + max{ sup
r≤s≤t0

S(s)eα(t0−t), ‖Sr‖αe−α(t−r)} → 0,738

739

as t → ∞. Similarly, we define740

vt (θ) :=

{

Vt (θ), t1 − t ≤ θ ≤ 0,

V (t1)e
−α(θ−t1+t)/2, θ ≤ t1 − t,

741

742

where t1 is the largest t ≥ r such that V (t) ≥ C ; if V (t) < C for all t ≥ r , then743

we set t1 = r . It can be shown that vt ∈ BC and ‖vt − Vt‖α → 0 as t → ∞.744

Therefore, the compact set BC × BC ×RT attracts all bounded invariant set 0 ∈ X ,745

which proves asymptotic smoothness of system (8), (9).746

3. By Hale and Waltman (1989), Theorem 2.1, /(t) possesses a nonempty global747

attractor in X . Denote X0 = {(u, v, r) ∈ X : v(0) > 0} and ∂ X0 = X\X0 =748

{(u, v, r) ∈ X : v(0) = 0}. Introduce a generalized distance function p : X → R+749

as p(u, v, r) = v(0). It is readily seen that p−1(0) = ∂ X0 and p−1(0,∞) = X0.750

Furthermore, by comparison principle, p(/(t)x) > 0 for all x ∈ X0. Hence,751

the condition (P) in Smith and Zhao (2001), Section 3 is verified; see also Zhao752

(2017b), Definition 1.3.1.753

We now prove that the basin of attraction for E0 × RT does not intersect754

p−1(0,∞) = X0. Assume to the contrary that there exists (S0, V0, t0) ∈ X0755

such that (S(t), V (t)) → (S̄, 0) as t → ∞, where (S(t), V (t)) = (St (0), Vt (0))756

with (St , Vt ) = U (t, t0)(S0, V0). Since V (0) > 0, comparison principle shows757

that V (t) > 0 for all t ≥ 0. For any µ, ν > 0, we introduce a parametrized758

operator on PT :759

(Lµ,νφ)(t) = θ N S̄

∞
∫

0

∞
∫

0

∞
∫

0

e−µ(s+a+τ )−(d+ν)s p(t − s)g(a) f (τ )β(t − s − a − τ )760

φ(t − s − a − τ )dτdads.761

Clearly, ρ(L0,0) = R0 > 1. It follows from continuity (Degla 2008, Theorem762

2.1) and monotonicity (Burlando 1991, Theorem 1.1) of Lµ,ν on both µ and ν763

that ρ(Lδ,δ) > 1 for some small δ > 0. Krein–Rutman theorem guarantees that764

the principal eigenfunction φ of Lδ,δ is positive. Set ε = S̄ − S̄/ρ(Lδ,δ) > 0 and765

v(t) = eδtφ(t). It is easily seen that766

v(t) = θ N (S̄ − ε)

∞
∫

0

∞
∫

0

∞
∫

0

e−(d+δ)s p(t − s)g(a) f (τ )β(t − s − a − τ )767

v(t − s − a − τ )dτdads.768
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Differentiating both sides gives a periodic renewal equation769

v′(t) = −(d + δ)v(t) + θ N (S̄ − ε)p(t)

∫ ∞

0

∫ ∞

0

β(t − a − τ )g(a) f (τ )770

v(t − a − τ )dadτ.771
772

Since S(t) → S̄ as t → ∞, there exists t0 > 0 such that S(t) > S̄ − ε for all773

t > t0. Define774

F(t) = θ N (S̄ − ε)p(t)

∫∫

τ+a≥t−t0

β(t − a − τ )g(a) f (τ )v(t − a − τ )dadτ.775

It is easy to show that F(t) → 0 as t → ∞. On the other hand, v(t) = eδtφ(t) →776

∞ as t → ∞. There exists t1 > t0, such that F(t) < δv(t) for all t > t1.777

Consequently, we obtain778

v′(t) ≤ −dv(t) + θ N (S̄ − ε)p(t)

∫∫

τ+a≤t−t0

β(t − a − τ )g(a) f (τ )779

v(t − a − τ )dadτ780

for all t ≥ t1. On the other hand,781

V ′(t) ≥ −dV (t) + θ N (S̄ − ε)p(t)

∫∫

τ+a≤t−t0

β(t − a − τ )g(a) f (τ )782

V (t − a − τ )dadτ783

for all t ≥ t1. Let C = maxt∈[t0,t1][v(t)/V (t)]. It follows from comparison prin-784

ciple that CV (t) ≥ v(t) for all t ≥ t0. This leads to a contradiction because v(t)785

is unbounded but V (t) vanishes as t → ∞.786

4. We demonstrate that E0 × RT is isolated and acyclic.787

Obviously, E0 ×RT is isolated. If to the contrary E0 ×RT is cyclic, namely, there788

exists a homoclinic orbit {S(t), V (t)} that connects E0 as t → ±∞. We claim that789

V (t) = 0 for all t . Otherwise, if V (t0) > 0 for some t0 ∈ R, then by (9), V (t) > 0790

for all t ≥ t0. A similar argument as in the previous step shows that V (t) cannot791

converge to 0 at infinity. Hence, V (t) = 0 for all t , which reduces (8) to a single792

ordinary equation and contradicts to the existence of homoclinic orbit.793

5. All the conditions in Smith and Zhao (2001), Theorem 4.7 (see also Zhao 2017b,794

Theorem 1.3.2) have been verified. Therefore, there exists δ0 > 0 such that795

lim inf t→∞ p(/(t)x) > δ0 for any x ∈ X0. Let (S, V ) be the solution of (8),796

(9) with the initial condition (u0, v0) ∈ Cα × Cα such that v0(0) > 0. Denote797

St (θ) = S(t + θ) and Vt (θ) = V (t + θ) for all t ≥ 0 and θ ≤ 0. We then have798

(u0, v0, 0) ∈ X0 and (St , Vt , t) = /(t)(u0, v0, 0). The persistent of /(t) with799

respect to the distance function p implies that lim inf t→∞ V (t) > δ0. By choosing800

δ0 > 0 sufficiently small (and still independent of initial condition), we also obtain801

from (8) that lim inf t→∞ S(t) > δ0. This completes the proof.802
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