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Abstract

Infection by distinct Dengue virus serotypes and host immunity are intricately linked.

In particular, certain levels of cross-reactive antibodies in the host may actually enhance

infection severity leading to Dengue hemorrhagic fever (DHF). The coupled immuno-

logical and epidemiological dynamics of Dengue calls for a multi-scale modeling

approach. In this work, we formulate a within-host model which mechanistically

recapitulates characteristics of antibody dependent enhancement in Dengue infection.

The within-host scale is then linked to epidemiological spread by a vector–host partial

differential equation model structured by host antibody level. The coupling allows for

dynamic population-wide antibody levels to be tracked through primary and secondary

infections by distinct Dengue strains, along with waning of cross-protective immunity

after primary infection. Analysis of both the within-host and between-host systems are

conducted. Stability results in the epidemic model are formulated via basic and inva-

sion reproduction numbers as a function of immunological variables. Additionally, we

develop numerical methods in order to simulate the multi-scale model and assess the

influence of parameters on disease spread and DHF prevalence in the population.

Keywords Dengue hemorrhagic fever (DHF) · Antibody dependent enhancement

(ADE) · Multi-scale · Immuno-epidemiological model · Size-structured partial

differential equation (PDE) · Invasion stability analysis
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1 Introduction

The global burden of Dengue infection has rapidly increased in recent years, with

about 400 million dengue infections occurring every year. Research has delved into the
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complexities of this mosquito-transmitted disease. The intricate relationship between

host immune response, pathogenesis, viral diversity and epidemiology has received

particular attention. While the immune response ultimately clears Dengue virus from

an infected host and provides strain-specific immunity upon recovery, certain lev-

els of cross-reactive antibodies (reacting to multiple Dengue strains) may actually

enhance severity of a subsequent (or even a primary) infection manifesting in Dengue

hemorrhagic fever (DHF). Determining the impact of host immune response, distinct

viral strains, and population-wide antibody levels on Dengue incidence calls for a

multi-scale approach. The problem is critical for control strategies against Dengue,

highlighted by recent debate over vaccination, which by boosting antibody responses,

may actually increase DHF prevalence in certain groups. Herein this paper, we develop

a mathematical model linking within-host and between-host scales through host anti-

body level in order to describe the connection between immunity and Dengue infection

dynamics across both scales.

Dengue fever is caused by four antigenically related but distinct serotypes (DENV-

1 to DENV-4). Infection by one serotype confers life-long immunity to that serotype

and a period of temporary cross-immunity to other serotypes. Sequential infection

increases the risk of developing severe dengue, due to a process described as antibody-

dependent enhancement (ADE), where the pre-existing antibodies to previous dengue

infection enhances the new infection (Dejnirattisai et al. 2010). The mechanisms

behind ADE and consequences on Dengue epidemiology are not completely under-

stood. However, recent research has found evidence that a certain intermediate window

of pre-existent antibody titer in the host population is associated with risk of DHF

(Katzelnick et al. 2017; Salje et al. 2018).

Previous modeling efforts have studied Dengue infection on either the within-

host or between-host scales (Ben-Shachar and Koelle 2015; Wearing and Rohani

2006; Ferguson et al. 2016). Several mathematical models investigate multi-strain

epidemiological dynamics with potential secondary infection and ADE due to partial

or temporary cross-reactivity (Aguiar and Stollenwerk 2017; Ferguson et al. 1999;

Reich et al. 2013; Nikin-Beers et al. 2018). Resulting bi-stable, oscillatory or chaotic

dynamics may explain large fluctuations in disease incidence observed in Dengue epi-

demics (Ferguson et al. 1999; Cummings et al. 2005; Aguiar et al. 2008). In all of these

epidemic models, ADE is incorporated through parameters associated with secondary

infection, however the recent evidence points to pre-existent antibody levels as the

determinant of infection severity. Therefore for a more precise formulation of ADE

on the epidemiological scale, a model should track dynamic immune status in host pop-

ulation, which is one of the goals of this paper. On the within-host scale, several models

have considered the phenomenon of ADE (Ben-Shachar and Koelle 2015; Gujarati and

Ambika 2014; Nikin-Beers and Ciupe 2015), although explicit dependence of infection

severity on pre-existent cross-reactive antibody concentration has not been produced.

In addition to the correlation of pre-existent antibody level to risk of developing

severe infection, the virus and antibody dynamics within infected hosts determine their

inherent infectivity and recovery rates. With this in mind, multi-scale models linking

within-host and between-host dynamics emerge as an appropriate tool for a unified

model of Dengue. In particular, recently studied “nested immuno-epi” models offer a

useful framework, where a partial differential equation (PDE) epidemiological model
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includes a structuring variable that also appears on the virus-immune response scale

(Gilchrist and Sasaki 2002; Gandolfi et al. 2015; Tuncer et al. 2016; Gulbudak et al.

2017). In most nested models, transmission and recovery rates of infected hosts are

structured by infection-age τ depending upon pathogen and immune concentrations

within-host τ units after infection, independent of the epidemic scale and with identical

infection course among all hosts. Recently, more complex scenarios have also been

considered, such as a distribution of immunity among susceptible hosts (Pugliese

2011) and a “pathogen size- structured” epidemic model with fully coupled feedback

through variable initial pathogen load (Gandolfi et al. 2015). In addition, without

explicitly modeling the within-host scale, several works have explored dynamic levels

of host immunity in delay differential equation (DDE), PDE, and stochastic epidemic

models with re-infection, immune boosting and waning (Martcheva and Pilyugin 2006;

Barbarossa and Röst 2015; Veliov and Widder 2016; Diekmann et al. 2018).

Dengue provides a particular example where host immunity has complex and signif-

icant effects on infection dynamics across both within-host and between-host scales.

Therefore, in this paper, we construct immunological and epidemiological models

that capture signatures of ADE on both scales, connected via a variable tracking host

cross-reactive antibody levels through multiple infections by distinct strains, along

with recovery and waning. First, we formulate a within-host model which mechanisti-

cally mimics characteristics of ADE in Dengue infection; namely (i) a shorter time to

peak viremia, (ii) a higher maximum viral clearance rate, (iii) a higher peak viremia

(Ben-Shachar and Koelle 2015), and (iv) infection severity (measured by peak viremia)

modulated by initial antibody concentration with a unimodal relationship (Katzelnick

et al. 2017; Salje et al. 2018). Moreover, we prove that our formulation is, in a sense,

the minimal model to produce severe infection solely by varying pre-existent antibod-

ies in an intermediate window of concentration. Next, the within-host scale is linked

to epidemiological spread by a PDE model structured by host antibody level. Stabil-

ity results in the epidemic model are formulated via basic and invasion reproduction

numbers as a function of immunological variables. Additionally, we develop numeri-

cal methods in order to simulate the multi-scale model and assess the influence of ADE

on disease spread and burden in the population. Overall our model offers a promising

approach for understanding the connection between immunity and Dengue infection

dynamics on both within-host and population scales.

2 Multi-scale Denguemodeling: an antibody size-structured
approach for sequential infections

2.1 Within-host model and analysis

Here we formulate a within-host model which can describe primary and secondary

Dengue infections, along with the host immune response. We attempt to simplify the

within-host dynamics of virus and immune response, while still capturing the mech-

anisms responsible for antibody dependent enhancement (ADE) of the infection. In

order to model the host immune response, we consider long-lived memory antibodies

(IgG) as proxies for the collective immune populations (which includes short-lived
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innate and IgM antibody responses, along with T-cell responses). The memory antibod-

ies increase upon infection, and can roughly be grouped into two categories, specific

and cross-reactive (non-specific). Distinct antibody populations target several epitopes

(viral proteins) during infection, some of which are common amongst the different

Dengue serotypes while other epitopes are specific to the infecting strain. The former

are often termed (sero-)cross-reactive antibodies and have less affinity to the infect-

ing virus than the more specific antibodies. This distinction is important as during

secondary infection, or even possibly primary infection, pre-existent cross-reactive

antibodies within the host may induce ADE.

Consider the infecting virus strain, x(τ ), specific IgG response to this strain, z(τ ),

and the cross-reactive (non-specific) IgG response, y(τ ), where the time variable τ

refers time-since-infection within a host. The virus is assumed to undergo exponen-

tial growth at the rate r for simplicity, and the specific IgG response z(τ ) kills the

virus and proliferates according to Michaelis-Menten kinetics. There are multiple

mechanisms for ADE which we include in our model. First, studies have shown that

neutralization of a virion requires more bound cross-reactive antibodies compared to

the specific response (Dejnirattisai et al. 2010). Thus, we model the neutralization

by cross-reactive response y(τ ) with a sigmoidal Hill equation of “n = 2” positive

cooperativity (Stefan and Le Novere 2013), as opposed to “n = 1” Michaelis-Menten

kinetics. In this way, a threshold number of cross-reactive antibodies bound to a virion

is required for neutralization and so low concentrations of cross-reactive antibodies

have poor neutralization properties, consistent with a “multiple-hit” stoichiometry

requirement hypothesis (Wahala and de Silva 2011; Ripoll et al. 2019; Dowd and

Pierson 2011). Furthermore, any antibody-virion binding can actually enhance proba-

bility of cell infection (Dejnirattisai et al. 2010), and thus we add a Michaelis-Menten

enhancing term dependent on cross-reactive antibodies y(τ ) to the viral replication

rate. Note that the efficient neutralization by specific antibodies with higher affinity to

virions precludes the need to add a similar enhancing term for z(τ ). Another possible

mechanism of ADE is “original antigenic sin” where antibody populations compete

and interfere with each other (Nikin-Beers and Ciupe 2017). This is included by inter-

ference competition coefficient k1 and k2 inhibiting the proliferation rates of y and z.

With these features in mind, the following Dengue within-host model is novel for its

enzyme kinetics mechanisms of ADE.

Within-host Model

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dx

dτ
= x

(

r +
α1 y

A1 + y
−

α2 y2

A2 + y2
−

δz

B + z

)

:= f (x, y, z)

dy

dτ
=

φ1xy

C1 + y + k1z
:= g(x, y, z)

dz

dτ
=

φ2xz

C2 + k2 y + z
:= h(x, y, z)

(1)

The initial conditions x(0) = x0, y(0) = y0, and z(0) = z0 and all parameters are

assumed to be non-negative.

We remark that the assumed exponential growth of the virus in the absence of

immune response is a simplification of viral replication dynamics. In reality there is a

source of target cells which is depleted (and has recruitment), which bounds the virus
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population dynamics. Target cells have been included in previous models of Dengue

infection (Ben-Shachar and Koelle 2015). For simplicity, we assume in our model that

immune suppression of the virus either overwhelms or is more important than any

effect of target cell limitation on the dynamics. Also, here and as been found in other

studies, immune response is necessary to clear Dengue virus (Clapham et al. 2016).

The following result shows that in our model the immune response is sufficient to

clear the virus.

Proposition 1 Suppose that at least one of the following conditions hold in system (1):

(i) δ > r + α1 and y0 > 0, or (ii) α2 > r + α1 and z0 > 0. Then limτ→∞ x(τ ) =

0, limτ→∞ y(τ ) = ȳ, limτ→∞ z(τ ) = z̄ where ȳ, z̄ depends on initial conditions.

Proof Since the boundary of the positive orthant, ∂R
3
+, is invariant for (1), we find

that R
3
+ is also invariant. Thus solutions remain non-negative for all τ . Also it

is not hard to show that solutions exist for all τ since the differential inequality

(x + y + z)′ ≤ c (x + y + z) can be established for appropriate constant c, which

yields an exponential bound for the solution.

Now suppose by way of contradiction that lim supτ→∞ x(τ ) > 0. Let w = y+z and

observe that w′ ≥ φxw
C+kw

, where φ = max(φ1, φ2) and C = min(C1, C2). Integrating,

we find C ln
(

w(τ)
w0

)

+ w(τ) − w(0) ≥ φ
∫ τ

0 x(s)ds. Thus limτ→∞ w(τ) = ∞.

Therefore, since δ > r + α1 and z0 > 0, or α2 > r + α1 and y0 > 0, there exists

τ ∗ : ∀τ > τ ∗, where r +
α1 y(τ )

A1 + y(τ )
−

α2 y(τ )2

A2 + y(τ )2
−

δz(τ )

B + z(τ )
< 0. Integrating the

first equation in (1), we find

x(τ ) = x0 exp

(∫ τ

0

(

r +
α1 y(τ )

A1 + y(τ )
−

α2 y(τ )2

A2 + y(τ )2
−

δz(τ )

B + z(τ )

)

ds

)

.

Since the integrand is negative for τ > τ ∗, we conclude limτ→∞ x(τ ) = 0. Next,

since 0 ≤ y′(τ ), y(τ ) is increasing, it has either positive limit or diverges to infinity

asymptotically. Suppose by way of contradiction that limτ→∞ y(τ ) = ∞. Then dx
dτ

≤

−ax(τ ) for τ sufficiently large, say τ ≥ τ0, where a = α2 − (r + α1) + ε > 0 for

some ε sufficiently small. Thus x(τ ) ≤ x(τ0)e
−a(τ−τ0), and thus

y′ ≤
φ1xy

C1 + y
≤

φ1x

C1
⇒ y(τ ) − y(τ0) ≤

φ1

C1

∫ τ

τ0

e−a(τ−τ0)dτ.

Therefore y(τ ) is bounded and there exists ȳ > 0 such that limτ↗∞ y(τ ) = ȳ.

Similarly z(τ ) converges monotonically to a limit z̄. ��

The proposition proves that either specific or cross-reactive antibodies can even-

tually clear the virus given either antibody killing rate exceeds maximal viral growth

rate. Indeed the trajectory of the virus population mimics the general pattern displayed

in data of rise and subsequent decline of virus caused by immune response, charac-

teristic of an acute infection. We obtain a triangular curve in log scale of viral load as

found in other studies (Ben-Shachar and Koelle 2015), and Proposition 1 shows that
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Fig. 1 a Example trajectory of within-host model (1). b Cross-reactive antibody levels (y or y0) are boosted

during primary infection and then wane to an intermediate level which can produce severe infection upon

secondary infection due to ADE effect. c Host infection severity (peak viral load) unimodal function of

pre-existent antibody level (y0). d Two orbits corresponding to solutions of within-host model (1). The

parameters (and initial conditions) of within-host model (1) are set as follows: a y0 = 0.11; b y0 = 0.11

for primary infection and y0 = 0.5 for secondary infection (after 2 years of antibody exponential decay

given by waning rate (7) with ξ = 0.002, yc = 0.02; c y0 varied in range [0.01, 2.5]; d y0 = 0.11 and

y0 = 0.3. All other parameters are fixed at r = 1, α1 = 2, A1 = 1, α2 = 3, A2 = 10, δ = 3.5, B =

1, φ1 = 0.4, φ2 = 0.5, C1 = C2 = 10, k1 = k2 = 0.1, and x0 = 0.01, z0 = 0.1

the virus population converges to zero while (memory) immune responses saturate

to an equilibrium level dependent on initial concentrations. Moreover the within-host

model mechanistically mimics characteristics of ADE in Dengue infection; namely

(i) a shorter time to peak viremia, (ii) a higher maximum viral clearance rate, (iii) a

higher peak viremia (Ben-Shachar and Koelle 2015), and (iv) infection severity (mea-

sured by peak viremia) modulated by initial antibody concentration with a unimodal

relationship (Katzelnick et al. 2017; Salje et al. 2018). Note that fitting the within-host

model to data is not a goal of the present work. However, we do tune parameters in

system (1) to first match infectious period of primary infection (Fig. 1a), and after a

characteristic period where cross-reactive antibodies, y, wane to a certain range, sub-

sequent secondary infection displays features (i)–(iii) associated with DHF induced

by ADE, as shown in Fig. 1b (Table 1).

The system (1) captures the signature of Dengue infection severity being highest for

intermediate pre-existent antibody level [(iv) in previous paragraph], and is, in some

sense, the minimal model to produce this unimodal relationship, as the following

proposition suggests:

Proposition 2 Consider system (1) with δ > r + α1 and α2 > r + α1. Let x(τ ; y0)

denote the viral component of solution as a function of initial cross-reactive antibody
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Table 1 Description of the within-host model variables/parameters in (1) and value chosen for simulations

(which mimic qualitative within-host characteristics of Dengue)

Variable/parameter Description Value

x(τ ) Dengue virus concentration at τ days post host infection –

y(τ ) Concentration of cross-reactive (IgG) antibodies at Host

infection age τ

–

z(τ ) Concentration of specific antibodies at host infection

age τ

–

r Within-host virus growth rate 1

α1 Viral growth enhancing rate induced by cross-reactive

antibody-virus binding (ADE)

2

α2 Cross-reactive antibody-virus killing rate upon

cooperative binding

3

δ Specific antibody-virus killing rate upon binding 3.5

φ1 Cross-reactive antibody activation rate 0.4

φ2 Specific antibody activation rate 0.5

k1, k2 Antibody interference competition coefficient 0.1, 0.1

A1, A2, C1 Saturation coefficients of Hill functions for

cross-reactive antibody

1, 10, 10

B, C2 Saturation coefficients of Hill functions for specific

antibody

1, 10

level y0, and xM (y0) := maxτ≥0 x(τ ; y0) denote the peak viral load as a function

of y0 (with other parameters fixed). Then there exists some set of parameters for the

system (1) where xM (y0) is an unimodal curve with a single maximum, in particular

when φ1 = k2 = 0, A2 = 3, C2 = B, and A1 > 8α1
3α2

. Furthermore, if z = 0 (y = 0),

then xM (y0) (xM (z0)) will be a strictly decreasing function.

Proof In order to prove the first statement, consider the special case where φ1 = 0, for

simplicity, since we just need to show it for some parameter set. In this case the cross-

reactive antibody concentration y does not change during infection, i.e. y(t) ≡ y0.

Then the infection dynamics are

⎧

⎪

⎨

⎪

⎩

dx

dτ
= x

(

r(y0) − δz
B+z

)

dz

dτ
=

φ2xz

C(y0) + z
,

(2)

where r(y0) = r +
α1 y0

A1+y0
−

α2 y2
0

A2+y2
0

and C(y0) = C2 + k2 y0. We assume that α2 >

r + α1 as in Proposition 1. We first claim the function r(y0) is unimodal. Since

r ′(y0) = α1 A1

(A1+y0)2 −
2α2 A2 y0

(A2+y2
0 )2

, we find the following polynomial equation for the roots

of r ′(y) (which are the critical points of r(y)):

α1 A1 y4 − 2α2 A2 y3 + 2A1 A2(α1 − α2)y2 − 2A2 A2
1α2 y + α1 A1 A2

2 = 0. (3)
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Since α1 − 2α2 < 0 by assumption, there are either two or zero positive roots

by Descarte’s rule of signs. We now find parameters where there are two positive

roots, y∗
1 < y∗

2 . Let p(y) = α1 A1

(A1+y)2 and q(y) =
2α2 A2 y

(A2+y2)2 , and observe that r ′(y) =

p(y) − q(y). Note that p(0) = α1
A1

> 0, p(y) is decreasing, q(0) = 0 and q ′(0) > 0.

The goal is to obtain conditions where maxy>0 q(y) > p(0) which would guarantee

intersection of p(y) and q(y), and hence a positive root. It can be shown that q ′(y) =

0 ⇒ A2 + y − 4y2 = 0. Let A2 = 3, then the maximum of q(y) occurs at ŷ = 1,

and q(1) = 3
8
α2 > α1

A1
= p(0) if A1 > 8α1

3α2
. Thus if A1 = A2 = 3, then there are two

positive roots. Furthermore since r ′(0) > 0, y∗
1 is a local maximum of r(y) and y∗

2 is

a local minimum. Also r(∞) < 0 implies that there exists unique positive root y of

r(y), where r(y) > 0 for 0 ≤ y < y and r(y) < 0 for y > y (where y < y∗
2 ). Clearly

if y0 > y, then ẋ(t) < 0 for all t ≥ 0, so xM (y0) = x0 in this case. Furthermore we

show that peak viral load xM (y0) is increasing with respect to the growth rate r(y0)

for the special case k2 = 0, C2 = B. Indeed in this case, peak viral load occurs at

zc(r) := r B
δ−r

, and dividing equations in (2)

dz

dx
=

φ2z

r B + (δ − B)z
⇒

∫ zc(r)

z0

dz

(

r B

φ2z
+

δ − B

φ2

)

=

∫ xM (r)

x0

dx

⇒ x ′
M (r) =

Bδ

(δ − r)2

(

δ − r

φ2
+

δ − B

φ2

)

> 0

Therefore it follows that the peak viral load xM (y0) is unimodal with a single maxi-

mum.

Now to show the second statement. For given parameters satisfying δ > r +α1 and

α2 > r + α1 with either z = 0 or y = 0, Proposition 1 implies the pathogen load will

tend to zero while the single present antibody population is increasing. Viewed in the

phase plane of pathogen (x) and single antibody population (without loss of general-

ity, y), the orbits form arcs connecting initial antibody level, y0, with final antibody

level y∗(y0) = limτ→∞ y(τ ; y0) > y0, as x increases to peak and decays to zero.

When increasing initial antibody level, y0, in order for the peak viral load to increase,

solutions would have to cross violating flow property of solutions. Thus peak viral

load can then only be a decreasing function of initial antibody load in this case. ��

Proposition 2 implies that the presence of both cross-reactive and specific antibodies

within infection are necessary to produce the ADE phenomenon of severe infection

for intermediate level of pre-existing antibodies. The full model (1) with both antibody

types produces the unimodal curve for infection severity versus initial antibody load

(Fig. 1c), similar to data from recent epidemiological studies. Observe in Fig. 1d, the

“crossing” of two solution projections on the xy-plane when both antibody components

y, z are present and y0 is varied. In contrast, Proposition 2 states that peak viral load

cannot increase with y0 when z = 0. Moreover sufficient conditions to generate the

unimodal pattern are dominance of (cross-reactive) antibody enhanced viral infection

rate at low concentrations (controlled by A1) switching to dominance of neutralization

at higher concentrations (controlled by α2), consistent with the observed mechanisms

responsible for ADE in experiments (Dejnirattisai et al. 2010).
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waning

Fig. 2 Schematic diagram of multi-scale Dengue model (4) viewed through evolving host antibody level

2.2 Between-host model and linking scales

Here we detail our antibody structured vector–host epidemiological model which

links to the within-host model, tracking evolving antibody levels as illustrated in Fig.

2. Let s(t, y), ik(t, y, y0), rk(t, y), ik j (t, y, y0), rk j (t, y) be the density with respect

to (cross-reactive) antibody level y (and initial antibody level y0 at time of infec-

tion) at time t, of susceptible, primary strain-k infected, primary strain-k infection

recovered, secondary strain- j infected hosts, and secondary infected recovered indi-

viduals, respectively. Furthermore consider Sv(t), Iv(t) as the number of susceptible

and infected vectors, respectively. Vectors are the only mechanism transmitting the

disease to susceptible hosts. The host compartments structured by antibody levels, y,

can be integrated over y (and y0 in the case of infected classes) in order to obtain the

number of individuals in each compartment. For example, the number of susceptible

individuals is given by S(t) =
∫ ∞

0 s(t, y) dy and the number of individuals infected

by strain k is
∫ ∞

0

∫ ∞
y0

ik(t, y, y0) dy dy0.

We connect the epidemiological variables to the within-host model (1) through

partial differential equations and boundary conditions describing coupled dynamics

of population densities and antibodies through time and infections (see Fig. 2 and sys-

tem (4) below). In particular, we include first order hyperbolic PDEs for host variables

ik(t, y, y0), ik j (t, y, y0), and rk(t, y) with transport rates gk(y, y0), gk j (y, y0), and

ωk(y, y0) quantifying antibody change through primary, secondary infection, and wan-

ing, respectively. The goal is to track and determine effect of evolving (cross-reactive)

antibody levels in the entire host population. Thus we consider host compartments

ik, ik j , rk as a function of within-host variable y [and y0 for setting initial antibody

level in within-host infection model (1)]. Note that the epidemiological variables can

be recast to depend additionally on within-host viral load x and host specific antibodies

z (see Remark 1), although having initial pathogen load x0 depend on infector viral

load as in Gandolfi et al. (2015), Gulbudak (2019) would introduce more complexity.

For simplicity x0 and z0 are assumed to be fixed in the within-host component (1)

of our multi-scale model. Epidemiological rates, including transmission and recovery

rate, are formulated as functions of y and y0 (which also accounts for influence of

within-host variables x and z) in system (4) below, and will be detailed further in

following paragraphs.

The epidemiological dynamics are given by the following vector–host system:
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∂s(t, y)

∂t
= Λ(y) − s(t, y)

2
∑

k=1

βk
v (y)I k

v (t) − μs(t, y)

∂ik(t, y, y0)

∂t
+

∂(gk(y, y0)ik(t, y, y0))

∂ y
= − (γk(y, y0) + μ) ik(t, y, y0)

∂rk(t, y)

∂t
−

∂(ωk(y)rk(t, y))

∂ y
=

∞
∫

0

γk(y, y0)ik(t, y, y0)dy0 − μrk(t, y)

− β j
v (y)rk(t, y)I j

v (t)

∂ik j (t, y, y0)

∂t
+

∂(gk j (y, y0)ik j (t, y, y0))

∂ y
= −

(

γk j (y, y0) + μ
)

ik j (t, y, y0)

∂rk j (t, y)

∂t
−

∂(ωk j (y)rk j (t, y))

∂ y
=

∞
∫

0

γk j (y, y0)ik j (t, y, y0)dy0−μrk j (t, y), k �= j,

d Sv

dt
= Λv − Sv

⎛

⎝

2
∑

k=1

∞
∫

0

∞
∫

y0

βk(y, y0)ik(t, y, y0) dy dy0

+

2
∑

k, j=1
k �= j

∞
∫

0

∞
∫

y0

βk j (y, y0)ik j (t, y, y0) dy dy0 + μv

⎞

⎟

⎟

⎠

d I k
v

dt
= Sv

∞
∫

0

∞
∫

y0

βk(y, y0)ik(t, y, y0) dy dy0

+ Sv

∞
∫

y0

∞
∫

y0

β jk(y, y0)i jk(t, y, y0) dy dy0 − μv I k
v , (4)

with the following boundary conditions

gk(y0, y0)ik(t, y0, y0) = βk
v (y0)s(t, y0)I k

v (t),

ωk(yc)rk(t, yc) = lim
y→∞

ωk(y)rk(t, y) = 0,

gk j (y0, y0)ik j (t, y0, y0) = β j
v (y0)rk(t, y0)I j

v (t),

ωk j (yc,2)rk j (t, yc,2) = lim
y→∞

ωk j (y)rk j (t, y) = 0, k �= j, (5)

and the following initial conditions

s(0, y0) = s0(y0), y0 ≥ ys ≥ 0, ik(0, y, y0) = i0
k (y, y0), y ≥ y0 ≥ ys

rk(0, y) = r0
k (y), y ≥ yc ≥ 0, ik j (0, y, y0) = i0

k j (y, y0), y ≥ y0 ≥ yc,

rk j (0, y) = r0
k j (y), y ≥ yc ≥ 0, Sv(0) = S0

v , Iv(0) = I 0
v . (6)
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Table 2 Definitions of the between-host model variables

Variable Description

s(t, y) Density of susceptible hosts at time t with (cross-reactive) antibody level y

ik (t, y, y0) Density of primary strain-k infected hosts at time t with antibody level y

and pre-existent antibody level y0

rk (t, y) Density of strain-k recovered hosts at time t with antibody level y

ik j (t, y, y0) Density of secondary strain- j infected hosts at time t with antibody level y

and pre-existent antibody level y0

Sv(t) Number of susceptible vectors at time t

Iv(t) Number of infected vectors at time t

The host initial conditions are assumed to be non-negative (Lesbesgue) integrable

functions, i.e. in L1
+, on their domains specified above, and vector initial conditions

are non-negative, i.e. S0
v , I 0

v ∈ R+. The parameters Λ(y) and Λv denote the host and

vector recruitment rates, andμ andμv represents the host and vector natural death rates,

respectively. The vector to host transmission rate may depend on the host antibody

level, so in general we have this rate as βk
v (y). We assume Λ(y) and βk

v (y) are bounded,

measurable non-negative functions, i.e. in L∞
+ (0,∞). The other parameter functions

linking antibody levels y and y0 to epidemiological quantities will be detailed in

following paragraphs. First note that assumptions may be relaxed at times to allow for

point measure distributions, e.g. all susceptible individuals have the same initial naive

amount of cross-reactive antibodies, ys , so that Λ(y) = Λδ(ys), s0(y) = S0δ(ys)

where δ(y) is the Dirac delta measure at y, and Λ is constant. In this case, we can

consider an ODE for S(t) :=
∫ ∞

0 s(t, y)δ(ys)dy = s(t, ys). Also, we remark that the

secondary recovered component, rk j , decouples from the rest of the system (Tables 2,

3, 4).

The functions gk(y, y0) and gk j (y, y0) represent the memory antibody concen-

tration growth rates corresponding to primary infection with strain k and secondary

infection by strain j , respectively. They can be formally defined as follows. Con-

sider the solution to the within-host system (1) with parameters corresponding to the

particular infection type (strain and primary/secondary). Note that within the general

within-host model (1), parameters may differ between strain and whether it is pri-

mary or secondary infection. Given the solution x(τ ) := x(τ ; x0, y0, z0), y(τ ) :=

y(τ ; x0, y0, z0), z(τ ) := z(τ ; x0, y0, z0), define inverse map τ = τ(y; y0) corre-

sponding to time since infection, noting that y(τ ; y0) is strictly increasing function

of τ for each y0 > 0 (holding x0, z0 fixed). For primary or secondary infec-

tion, we assume fixed initial concentration of pathogen x0 and fixed initial specific

naive (memory) specific antibody concentration of z0 > 0. The initial cross-

reactive antibody concentration, y0 = ỹ, is given by the structuring variable of

the susceptible host which becomes infected, s(t, ỹ), in the case of primary infec-

tion. Then gk(y, y0) = g(x(τ ; x0, ỹ, z0), y(τ ; x0, ỹ, z0), z(τ ; x0, ỹ, z0))) where g

is the second component of the vector field in the within-host system (1) with

parameters corresponding to primary infection by strain k. Similarly gk j (y, y0) =

g(x(τ ; x0, ỹ, z0), y(τ ; x0, ỹ, z0), z(τ ; x0, ỹ, z0)) with parameters corresponding to

secondary infection by strain j in system (1).
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Table 3 Definition of the between-host model parameters

Parameter Meaning Values (range)

Λ(y) Recruitment rate of susceptible hosts with antibody

level y

E(Λ) = 100 (variable

distribution centered

around ym = 0.11)

Λv Susceptible vector recruitment rate 0.02

βk
v (y) Transmission rate from k-strain infected vector to

susceptible hosts with antibody level y

{

0.00025 y < yp

0 y > yp

βk (y, y0) Transmission rate from primary strain-k infected hosts,

with antibody level y (and initial antibody level y0), to

susceptible vectors

a

βk j (y, y0) Transmission rate from secondary strain- j infected

hosts, with antibody level y (and initial antibody level

y0), to susceptible vectors

a

γk (y, y0) Recovery rate of primary strain-k infected hosts, with

antibody level y (and initial antibody level y0)

a

γk j (y, y0) Recovery rate of secondary strain- j infected hosts, with

antibody level y (and initial antibody level y0)

a

gk (y, y0) Antibody growth rate [
dy
dτ

in (1)] during primary

infection

a

gk j (y, y0) Antibody growth rate [
dy
dτ

in (1)] during secondary

infection

a

ωk (y) (Cross-reactive) antibody waning rate after primary

infection

a

ωk j (y) (Cross-reactive) antibody waning rate after secondary

infection

a

μ Host natural death rate 1/(10 × 365), 1/(55 ×

365)

μv Vector natural death rate 1/20

aSee Tables 1 and 4, along with linking functions (8), (8), and (11)

Multiple studies have shown that following primary infection, individuals have a

temporary period of immunity to different serotypes induced by cross-reactive anti-

bodies primed by the primary infecting serotype. This immunity can be generated in

our within-host models via the rise of antibody concentration during primary infec-

tion to levels sufficient for inhibition of secondary infection. However, in reality the

immunity can wane through time allowing for secondary infection by serotypes dis-

tinct from the primary strain, potentially manifesting in dengue hemorrhagic fever

caused by ADE at intermediate levels of cross-reactive antibody. Note that although

the antibody level wanes through time, recovered individuals remain immune to the

primary infecting strain, thus the total antibody levels (in particular specific antibod-

ies) stay above some critical level for strain-specific immunity. With these features in

mind, we include a drift term for waning antibody level. Suppose that antibody levels

change according to ẏ = −ωk(y), where ωk ≥ 0 is the rate of antibody waning after

recovery from primary infection by strain k. We assume that ωk(y) → 0 as y → y+
c ,
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Fig. 3 a Transmission rate, β
(τ (y, y0)), and probability of exiting infectious period (through recovery or

death), given by 1 − π
(τ (y, y0)), as functions of time since infection τ = τ(y, y0). b Infection severity

(as shown in Fig. 1c) and host-vector force of infection Fk (y0) as functions of pre-existent antibody level

y0. The parameters utilized for the within-host model (1) are the same as Fig. 1 with y0 = 0.11 for a. For

the linking functions, β(τ(y, y0)) and γ (τ(y, y0)), we utilize (11) with ψ = 0.001 and C
 = 135 (based

on Nguyen et al. 2013), and (8) with ρ = ν = 10, respectively

so antibody levels stay above some yc ≥ 0, as studies show that antibodies do not

wane completely. Similar assumptions are made for individuals recovered from sec-

ondary infection, however since they have permanent immunity to both strains, the

rk j equation is decoupled from the system. A specific example, supported by a study

of waning IgG (Antia et al. 2018), is exponential decay of memory antibodies, above

the critical level yc:

ωk(y) = ξ(y − yc), so that y(τ ) = (y0 − yc)e
−ξτ + yc. (7)

This exponential rate form is utilized in between primary and secondary infection

in Fig. 1b with ξ and yc calibrated to produce the displayed waning antibody level in

the characteristic period of 2 years corresponding to loss of cross-immunity (Reich

et al. 2013).

On the host population scale, the preexistent cross-reactive antibody level, y0,

can vary according to the distribution Λ(y0), leading to variable within-host pri-

mary infection dynamics in the population. The recovery and waning process creates

more heterogeneity in antibody level among the host population, leading to variable

responses to secondary exposure. In order to formulate the recovery rate, first note

that Dengue is an acute infection with an approximate triangular viral load trajectory

in log scale, suggested by both data and our within-host model. In addition, recovery

from primary infection induces lifelong immunity to the primary infecting serotype.

With these features in mind, we consider a few possible recovery rate forms. First,

we assume the recovery rate increases as viral load slope becomes negative and the

viral load becomes small. The second rate form specifies that viral load should be

decreasing, i.e. viral load slope becomes negative, which is a necessary condition for

protective immunity against the same strain. Last, we suppose that recovery occurs

at a fixed level of antibody. In particular, we give the following three examples of

recovery rates;
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Table 4 Description of linking parameters in (8), (8), and (11)

Parameter Description Value

ψ Max host-vector transmission rate 0.001a

C Host-vector transmission saturation constant 135a

ρ Host recovery shape parameter for viral load 10

ν Host recovery shape parameter for viral load slope 10

ξ Antibody waning rate 0.002b

yc Antibody lower bound 0.02b

aChosen to match data in Nguyen et al. (2013)
bCorresponds to approximately 2 years before recovered primary are susceptible to severe secondary infec-

tion

(i) γk(τ (y, y0)) = e−(ρx(τ )+ν(log x(τ ))′), (8)

(i i) γk(τ (y, y0)) = νe−ρx(τ )
1{ fk (τ )<0}, (9)

(i i i) γk(y, y0) = δ(y − y∗(y0)), (10)

where ρ, ν are factors determining the distribution of recovered hosts with respect

to infection dynamics and fk(τ ) = fk(x(τ ), y(τ ), z(τ )) is the pathogen growth rate.

For (ii), note that γ is zero prior to the critical time when the pathogen begins to

decrease (when fk(τ ) = 0). For (iii), y∗ corresponds to a constant antibody level

dependent on initial conditions at which infected hosts recover. Note that this case

covers the situation where the virus must decline below a fixed threshold, x∗, which

can be related to y∗ via the inverse map. Also for (iii), the infectious period for strain-k

infected hosts with initial level y0 is given by T (y0) = 1
∫ y∗(y0)

y0
gk (y,y0)dy

.

The host to vector transmission rate also depends upon the within-host infection

dynamics. Data suggest that the probability of an mosquito getting infecting by a bite

from an infected individual is a Holling type III function of the pathogen load at a

given time-since-infection τ (Handel and Rohani 2015; Nguyen et al. 2013; Tuncer

et al. 2016). Thus, the form of host to vector transmission rate utilized is as follows;

β
(y, y0) = ψ
(x(τ (y, y0)))

2

C
 + (x(τ (y, y0)))2
, 
 ∈ {1, 2, 12, 21} (11)

where C
, and ψ are half saturation and transmission constants. We utilize data of

DENV-1 from Nguyen et al. (2013) in order to parameterize the half-saturation con-

stant C := C
. In particular, although we do not concern about the scale of viral load

in our simulations (e.g. Fig. 1a), C is chosen so that the ratio of peak viral load and

viral load causing 50% infectiousness does match the data in Nguyen et al. (2013).

Both the transmission rate, β
(τ (y, y0)), and probability of exiting infectious period

(through recovery or death), given by 1−π
(τ (y, y0)) [defined later by formula (13)],

are simulated in Fig. 3a.

Remark 1 Finally, we remark that the host population can be equivalently structured

by both antibody variables y and z, along with viral load x for infected components.
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Then, for example, the following equation for ĩk := ĩk(t, x, y, z, x0, y0, z0) would

appear:

∂ ĩk

∂t
+

∂( fk ĩk)

∂x
+

∂(gk ĩk)

∂ y
+

∂(hk ĩk)

∂z
= −(γk + μ)ĩk

( fk(x0, y0, z0, x0, y0, z0) + gk(·) + hk(·))ĩk(t, x0, y0, z0, x0, y0, z0)

= βk
v (x0, y0, z0)s(t, y0, z0)I k

v (t) (12)

In such a model, y might be interpreted as antibodies specific to strain 1 and z as

antibodies specific to strain 2. In this way, the model affords flexibility in terms of how

one defines specific versus non-specific antibodies. While tracking multiple antibody

variables may seem to complicate matters, observe that there is a 1–1 relationship

between y and z, where the additional variable z is mapped onto y via the inverse

map. Thus we can utilize our original system (4) (with additional “static” variable

z0) and simply calculate z(y) for each cohort. Note also that the infection-age τ is in

1–1 relationship with y, therefore we can transform the system to an age-structured

model as done in Gandolfi et al. (2015). However since we are interested in tracking

antibody level in host population, we only pursue this direction when it can be advan-

tageous for numerical simulations in the special case when susceptible antibody level

(Λ(y), s0(y)) is a Dirac point measure distribution (see Sect. 5) .

3 Analysis of between-host model

The aims of this paper are multi-scale model formulation, and equilibrium, linearized

stability and numerical analysis, with the goal of capturing Dengue ADE across scales.

We do not delve into establishing existence, uniqueness, regularity and positivity of

solutions of (4). However, in a sequel to this paper, we will analyze the uniform

persistence of solutions, which will require rigorous proof of model well-posedness.

Thus we reserve such questions addressing existence, regularity and global properties

of solutions for our follow-up study. We do remark here that use of abstract semigroup

theory (Thieme 1990) or transformation to an age-structured model as noted in Remark

1 combined with fixed point techniques applied to an integral form of the system, as

in Browne and Pilyugin (2013), can yield existence and uniqueness results. In both

approaches, assuming antibody-dependent rates, e.g. Λ(y), to be L∞
+ (0,∞) should

be sufficient for finding unique solutions in an appropriate product space consisting

of L1
+(0,∞) components of non-negative Lebesgue functions defined on (0,∞).

The main challenge, different from most structured population models but similar

to Barbarossa and Röst (2015), is to properly control the evolution of the recovered

distributions, rk(t, y), through waning (decreasing) antibody level y at rates ωk(y).

We conjecture that the proportional waning rate (exponential decay of y with lower

bound yc), given by (7), will ensure rk(t, y) remains in L1
+(yc,∞), as we show for the

equilibrium solutions in Sect. 5. Restriction to Sobolev spaces can further strengthen

linearized stability results obtained later in this current section. Also, while considering
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the more general setting of measures (Carrillo et al. 2012) can allow for Dirac delta

measures for certain rates and components, it may be easier to transform the model to

equivalent ordinary differential or delay equations in the specific examples where we

utilize Dirac delta point measures.

To begin our analysis, define the total vector population, Nv(t) = Sv(t) +
∑2

k=1 I k
v (t), and total host population as

Nh(t) =

∞
∫

0

s(t, y) dy +

2
∑

k, j=1
k �= j

⎛

⎝

∞
∫

0

∞
∫

y0

ik(t, y, y0) dy dy0 +

∞
∫

0

rk(t, y) dy

+

∞
∫

0

∞
∫

y0

ik j (t, y, y0) dy dy0

⎞

⎠ .

Proposition 3 Solutions to the system (4) remain bounded in forward time, and more-

over

lim sup
t→∞

Nh(t) =

∫ ∞
0 Λ(y)dy

μ
, lim sup

t→∞
Nv(t) =

Λv

μv

.

Proof Consider the differential equation satisfied by Nh(t) derived from (4):

d Nh(t)

dt

=

∞
∫

0

Λ(y)dy − μNh(t) −

∞
∫

0

s(t, y)
∑

k

βk
v (y)I k

v (t)dy

+
∑

k

∞
∫

0

∞
∫

y0

(

−
∂(gk(y, y0)ik(t, y, y0))

∂ y
− (μ + γk(y, y0)ik(t, y, y0))

)

dydy0

+
∑

k

∞
∫

0

(

∂(ωk(y)rk(t, y))

∂ y
+

∫ ∞

0

γk(y, y0)ik(t, y, y0)dy0 − μrk(t, y)

−β j
v (y)rk(t, y)I j

v (t)
)

dy

+
∑

j �=k

∞
∫

0

∞
∫

y0

(

−
∂(gk j (y, y0)ik j (t, y, y0))

∂ y
−(γk j (y, y0)+μ)

)

ik j (t, y, y0)dydy0

+
∑

j �=k

∞
∫

0

(

∂(ωk j (y)rk j (t, y))

∂ y
+

∫ ∞

0

γk j (y, y0)ik j (t, y, y0)dy0−μrk j (t, y)

)

dy
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Applying the fundamental theorem of calculus, along with the boundary conditions of

(4) (noting for example that ωk(y)rk(t, y) = 0 for y ≤ yc ≥ 0 and all the populations

decay to zero as y → ∞), several cancellations occur and we simply obtain

d Nh(t)

dt
=

∞
∫

0

Λ(y)dy − μNh(t).

Similar conclusion holds for Nv(t) and the result follows. ��

3.1 Reproduction number and dynamical properties of the nested systems

Define the following quantities giving the probability of host recovery and host-vector

force of infection as functions of antibody levels:

πk(y, y0) = e
−
∫ y

y0

γ (a,y0)+μ

gk (a,y0)
da

, Fk(y0) =

∞
∫

y0

πk(y, y0)

gk(y, y0)
βk(y, y0) dy (13)

Then the antibody level dependent basic reproduction number for each strain is given

by:

R
k
0 =

Nv

μμv

∞
∫

0

Λ(y0)β
k
v (y0)Fk(y0) dy0, (14)

where Nv =
Λv

μv

. Note that host-vector force of infection Fk(y0) may not mimic

infection severity measured by peak viral load within-host, as shown in Fig. 3b where

Fk(y0) achieves maximum levels for smaller magnitudes of pre-existent antibody level

y0 than infection severity (due to decreasing infectious period associated with ADE).

The following proposition shows that the basic reproduction number Rk
0 is a thresh-

old for disease extinction (locally) and existence of an endemic equilibrium.

Proposition 4 If Rk
0 < 1, k = 1, 2, then the DFE E0 is locally asymptotically stable.

If Rk
0 > 1, there exists a single strain boundary equilibrium Ek and E0 is unstable.

Proof For the single-strain equilibrium Ek , we derive the equilibrium equation for Ī k
v :

μv

Nv − Ī k
v

=

∞
∫

0

Λ(y0)

βk
v (y0) Ī k

v + μ
βk

v (y0)Fk(y0) dy0

Let the right-hand side of the above equation be denoted F( Ī k
v ) and the left-hand side

G( Ī k
v ). Then G is increasing on [0, Nv), approaching +∞ as Ī k

v approaches Nv from

the left, and F is decreasing on [0, Nv). Note that F(0) > G(0) ⇔ Rk
0 > 1. Thus

there exists a positive equilibrium value Ī k
v if and only if Rk

0 > 1.

123



H. Gulbudak, C. J. Browne

Now for the stability of E0, we will consider the linearized equation for deviations of

solutions: s̃(t, y) = s(t, y)− s̄(y), ĩk(t, y, y0), r̃k(t, y), ĩ jk(t, y, y0), S̃v(t) = Sv(t)−

S̄v, Ĩ k
v (t). After discarding higher order terms in (4), we obtain the following linearized

equations:

∂ s̃(t, y)

∂t
= −μs̃(t, y) − s̄(y)

∑

k

βk
v (y) Ĩ k

v (t)

∂ ĩk(t, y, y0)

∂t
+

∂(gk(y, y0)ĩk(t, y, y0))

∂ y
= − (γk(y, y0) + μ) ĩk(t, y, y0)

gk(y0, y0)ĩk(t, y0, y0) = βk
v (y0)s̄(y) Ĩ k

v (t)

∂ r̃k(t, y)

∂t
−

∂(ωk(y)r̃k(t, y))

∂ y
=

∫ ∞

0

γk(y, y0)ĩk(t, y, y0)dy0 − μr̃k(t, y)

∂ ĩk j (t, y, y0)

∂t
+

∂(gk j (y, y0)ĩk j (t, y, y0))

∂ y
= −

(

γk j (y, y0) + μ
)

ĩk j (t, y, y0),

ĩk j (t, y0, y0) = 0 (15)

d S̃v

dt
= −μv S̃v − Nv

⎛

⎝

2
∑

k=1

∞
∫

0

∞
∫

y0

βk(y, y0)ĩk(t, y, y0) dy dy0

+

2
∑

k, j=1
k �= j

∞
∫

0

∞
∫

y0

βk j (y, y0)ĩk j (t, y, y0) dy dy0

⎞

⎟

⎟

⎠

d Ĩ k
v

dt
= Nv

⎛

⎝

∞
∫

0

∞
∫

y0

βk(y, y0)ĩk(t, y, y0) dy dy0

+

∞
∫

y0

∞
∫

y0

β jk(y, y0)ĩ jk(t, y, y0) dy dy0

⎞

⎠ − μv Ĩ k
v (16)

We assume exponential form of the deviations of solutions from E0 (using sep-

aration of variables for the PDE’s), and thus insert the following variables into

the linearized system: s̃(t, y) = ŝ(y)eλt , ik(t, y, y0) = îk(y, y0)e
λt , rk(t, y) =

r̂k(y)eλt , i jk(t, y, y0) = î jk(y, y0)e
λt , Sv(t) = Ŝveλt , I k

v = Î k
v eλt . After some sim-

plification, we arrive at the following equations for λ ∈ C and Ŝv, Î 1
v , Î 2

v ∈ R+:

λŜv = −μv S̃v − Nv

⎛

⎝

2
∑

k=1

∞
∫

0

βk
v (y0)s̄(y0) Î k

v L(y0) {ϕ1} (λ)dy0

⎞

⎠

λ Î k
v = −μv Î k

v + Nv

∞
∫

0

βk
v (y0)s̄(y0) Î k

v L(y0) {ϕ1} (λ)dy0 (17)
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where ϕk(y, y0) =
πk (y,y0)
gk (y,y0)

βk(y, y0), L(y0) {·} (λ) denotes Laplace transform (with

additional variable y0). The Î k
v equation above yields the characteristic equation:

1 =
1

λ + μv

Nv

μ

∞
∫

0

βk
v (y0)Λ(y0)L(y0) {ϕ1} (λ)dy0 := Ψk(λ) (18)

Then Ψk(0) = Rk
0 and limλ→∞ Ψk(λ) = 0 for λ ∈ R. Thus we readily infer that

if Rk
0 > 1, then E0 is unstable since there exists eigenvalue λ > 0 corresponding to

eigenvector with Î k
v > 0. On the other hand suppose that Rk

0 < 1, k = 1, 2. Suppose

by way of contradiction that there exists an eigenvalue with non-negative real part;

λ = a + bi, a ≥ 0. Cleary that can not happen if Î k
v = 0, k = 1, 2, since in that case

λ = −μv . So assume Î k
v > 0. Then taking modulus of (18), we find that

1 = |Ψk(λ)| ≤
1

λ + μv

Nv

μ

∞
∫

0

βk
v (y0)Λ(y0)|L(y0) {ϕ1} (λ)|dy0 ≤ Ψk(0) = R

k
0 < 1,

which gives a contradiction. ��

In addition to existence of unique single strain equilibria, Ek , when Rk
0 > 1, when βk

v

is constant (does not depend on host antibody level y0), Ek can be explicitly found to

have the following positive components:

Ī k
v =

μvμ

βk
v (μv +

∫ ∞
0 Λ(y0)Fk(y0) dy0)

(

R
k
0 − 1

)

,

S̄k
v = Nv − Ī k

v , s̄(y) =
Λ(y)

μ + βk
v Ī k

v

,

īk(y, y0) = βk
v s̄(y0) Ī k

v

πk(y, y0)

gk(y, y0)
,

r̄k(y) =
1

ωk(y)

∞
∫

y

e

y
∫

a

μ
ωk (s)

ds
∞
∫

0

γk(a, y0)īk(a, y0)dy0da. (19)

Next, we define the following host to vector “force of infection” quantities with

respect to primary and secondary infections, respectively:

Gk =

∞
∫

0

Λ(y0)Fk(y0) dy0, if βk
v constant, Gk =

μμv

Nvβk
v

R
k
0, (20)

Hk j =

∞
∫

0

1

ωk(y0)

∞
∫

y0

e

y0
∫

a

μ
ωk (s)

ds
∞
∫

0

γk(a, z)Λ(z)
πk(y0, z)

gk(y0, z)
dzda
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∞
∫

y0

βk j (y, y0)
πk j (y, y0)

gk j (y, y0)
dy dy0, (21)

Note that in the absence of waning, i.e. ωk ≡ 0, then r̄k(y) is proportional to the prob-

ability density corresponding to the antibody concentration after primary infection:

r̄k(y) =

∞
∫

y0

γk(y, y0)īk(y, y0)

μ
dy0,

Hk j =

∞
∫

0

∞
∫

y0

γk(y0, z)

μ
Λ(z)

πk(y0, z)

gk(y0, z)
dz

∞
∫

y0

βk j (y, y0)
πk j (y, y0)

gk j (y, y0)
dy dy0. (22)

The invasion reproduction number for strain j invading strain k is the following:

R
j

inv =
R

j
0

Rk
0

+
1

μv

∞
∫

0

β j
v (y0)r̄k(y0)

∞
∫

y0

βk j (y, y0)
πk j (y, y0)

gk j (y, y0)
dy dy0 (23)

Plugging in equilibrium value of r̄k(y) to (23), for the case of constant vector to host

transmission rate βk
v , we obtain

R
j

inv =
R

j
0

Rk
0

+
μvβ

j
v

(

Rk
0 − 1

)

Rk
0μv + Gk

Hk j .

Theorem 1 Consider the case that βk
v is constant (does not depend on host antibody

level y0). Let j, k ∈ {1, 2}, j �= k and suppose that Rk
0 > 1. If R

j
inv < 1, then Ek

1 is

locally asymptotically stable. If R
j
inv > 1, then Ek

1 is unstable.

Proof Without loss of generality, let k = 1, j = 2. The linearized PDE system solved

with separation of variables, similar to (17) reduces to the following equations for

λ ∈ C and Ŝv, Î 1
v , Î 2

v ∈ R+:

λŜv = −

⎛

⎝μv + Ī 1
v

∞
∫

0

s̄(y)β1
vF1(y)dy

⎞

⎠ Ŝv (24)

− S̄v

∞
∫

0

[

β1
v (s̄(y0) Î 1

v +ŝ(y0) Ī 1
v )L(y0) {ϕ1} (λ)+β2

v s̄(y0) Î 2
v L(y0) {ϕ2} (λ)

]

dy0

− Î 2
v

∞
∫

0

(

β2
v r̄1(y0)L(y0) {ϕ12} (λ) + β1

v r̂2(y0)L(y0) {ϕ21} (λ)
)

dy0
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λ Î 1
v = −μv Î 1

v + S̄v

∞
∫

0

β1
v (s̄(y0) Î 1

v + ŝ(y0) Ī 1
v )L(y0) {ϕ1} (λ) dy0

+ Î 2
v

∞
∫

0

β1
v r̂2(y0)L(y0) {ϕ21} (λ) dy0 + Ī 1

v

∞
∫

0

s̄(y)β1
vF1(y)dy

λ Î 2
v = −μv Î 2

v + S̄v

∞
∫

0

β2
v s̄(y0) Î 2

v L(y0) {ϕ2} (λ) dy0

+ Î 2
v

∞
∫

0

β2
v r̄1(y0)L(y0) {ϕ12} (λ) dy0 (25)

where ϕk(y, y0) =
πk (y,y0)
gk (y,y0)

βk(y, y0), L(y0) {·} (λ) denotes Laplace transform (with

additional variable y0), and

ŝ(y) =
Λ(y)

λ + μ + β1
v Ī 1

v +
∑

k βk
v Î k

v

,

r̂2(y) =
1

ωk(y)

∞
∫

y

e

y
∫

a

λ+μ+β1
v Ī 1

v
ωk (s)

ds
∞
∫

0

β2
v s̄(y0) Î 2

v L(y0) {ϕ2} (λ)dy0da.

Assume that Î 2
v > 0. Upon plugging in equilibrium values, we use that

s̄(y0)S̄v =
μvΛ(y0)

β1
v

∫ ∞
0 Λ(y)F1(y)dy

=
NvΛ(y0)

R1
0μ

.

The I 2
v equation (25) becomes

1=
1

λ+μv

⎡

⎣

Nv

R1
0μ

∞
∫

0

β2
vΛ(y0)L(y0) {ϕ2} (λ) dy0+

∞
∫

0

β2
v r̄1(y0)L(y0) {ϕ12} (λ) dy0

⎤

⎦

(26)

This yields the characteristic equation 1 = G(λ) for an eigenvalue λ where G(λ) is

the right hand side of (26). Note G(0) = R2
inv and limλ→∞ G(λ) = 0 for λ ∈ R. Thus

we readily infer that if R2
inv > 1, then E1

1 is unstable since there exists eigenvalue

λ > 0 corresponding to eigenvector with
(

Ŝv, Î 1
v , Î 2

v

)

= (0, 0, 1).

Now consider the case where R2
inv < 1. We claim that E1

1 is locally asymptotically

stable. First consider the case Î 2
v > 0. Suppose by way of contradiction that there

exists an eigenvalue with non-negative real part; λ = a + bi, a ≥ 0. Then taking

modulus of (26), we find that
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1 = |G(λ)|

≤
1

μv

⎡

⎣

Nv

R1
0μ

∞
∫

0

β2
vΛ(y0)|L(y0) {ϕ2} (λ)| dy0+

∞
∫

0

β2
v r̄1(y0)|L(y0) {ϕ12} (λ)| dy0

⎤

⎦

≤ G(0) = R
2
inv < 1,

which gives a contradiction.

Next consider the case where Î 2
v = 0. This also implies that r̂2 = 0. Notice that all of

terms referring to strain 2 are now zero in (24), thus we drop the superscript referring to

strain 1. Adding two vector equations in (24), we obtain λ(Ŝv + Îv) = −μv(Ŝv + Îv).

Therefore if Ŝv �= − Îv , then λ = −μv . So consider the case Ŝv = − Îv . Suppose

by way of contradiction that there exists an eigenvalue with non-negative real part;

λ = a + bi, a ≥ 0. Then after substitution and cancellation involving the equations

of (24), we obtain

⎛

⎝λ + μv + βv Īv

∞
∫

0

F(y)s̄(y)dy

⎞

⎠ (λ + βv Īv + μ)

= (λ + μ)βv S̄v

∞
∫

0

s̄(y)L(y) {ϕ} (λ)dy

⇒ 1 <
|λ + βv Īv + μ|

|λ + μ|
=

|βv S̄v

∞
∫

0

s̄(y)L(y) {ϕ} (λ)dy)|

|λ + μv + Fβv S̄ Īv|

≤

βv

∞
∫

0

F(y)s̄(y)S̄vdy

μv +
∞
∫

0

F(y)s̄(y)dyβv Īv

=
μv

μv +
∞
∫

0

F(y)s̄(y)dyβv Īv

< 1

This yields a contradiction. ��

3.2 Coexistence equilibrium

The complexity of the model challenges explicit formulation and conditions for a

coexistence equilibrium. However, general equations of two variables for coexistence

equilibria can be derived, which reduced to a single variable equation in the case of

symmetric strains. Furthermore, when there is no waning (ω ≡ 0), a quadratic equation

determines coexistence equilibria. Thus we first consider the case of no waning.

Case: no waning

Recall the host to vector force of infection quantities Gk and Hk j given by (20) and

(22). Let x̄k = βv Ī k
v . Then the following equations for x̄k, k = 1, 2 can be derived

for a coexistence equilibrium (denoted by Ec):
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μv

βk
v

=

(

x̄ jHk j

μ + x̄ j

+
Gk

μ + x̄1 + x̄2

)(

Nv −
x̄1

β1
v

−
x̄2

β2
v

)

, j �= k, (27)

⇒
x̄2H21

μ + x̄1
+

G1

μ + x̄1 + x̄2
=

x̄1H12

μ + x̄2
+

G2

μ + x̄1 + x̄2
(28)

Indeed obtain the following equations for Ec from the model:

S̄k
v = Nv −

∑

k

x̄k, s̄(y) =
Λ(y)

μ +
∑

k x̄k

,

īk(y, y0) = s̄(y0)x̄k

πk(y, y0)

gk(y, y0)
, r̄k(y) =

xk

μ + x j

∫ ∞

0

γk(y, y0)s̄(y0)
πk(y, y0)

gk(y, y0)
dy0,

īk j (y, y0) = βv r̄k(y0) Ī j
v

πk j (y, y0)

gk j (y, y0)
,

μv x̄k

βk
v

= S̄v x̄k

∞
∫

0

Fk(y0)s̄(y0) dy0 + S̄v

x̄k x̄ j

μ + x̄k

∞
∫

0

F jk(y0)s̃k(y0) dy0,

μv

βk
v

=

(

Nv −
x̄1

β1
v

−
x̄2

β2
v

)

⎛

⎝

∞
∫

0

Fk(y0)Λ(y0) dy0

+
(μ + x̄1 + x̄2)x̄ j

μ + x̄k

∞
∫

0

F jk(y0)s̃ j (y0) dy0

⎞

⎠ ,

where

Fk j (y0) =

∞
∫

y0

πk j (y, y0)

gk j (y, y0)
βk j (y, y0) dy, s̃k(y0) =

∞
∫

0

πk(y0, z)

gk(y0, z)
Λ(z)γk(y0, z) dz.

The Eqs. (27) and (28) follow from the definition of Gk and Hk j .

Under general parameters, the equations for the coexistence equilibrium yield

a quadratic equation for x̄2 in terms of x̄1, and therefore it does not reduce to

a polynomial equation in the single variable x̄1. Thus, for tractability, we con-

sider the case of identical strains and constant vector to host transmission rate, i.e.

βv = β1
v = β2

v ,G = G1 = G2,H = H12 = H21. Then the Eq. (28) simplifies to

(x̄2 − x̄1)(μ + x̄1 + x̄2) = 0, which implies that x̄1 = x̄2. From (27), we obtain the

following quadratic equation for x̄ = x̄k = βv Ī k
v :

2μv ((G + H) + μv) x2 + [μvμ(3μv + 2G) − Λvβv(G + H)] x

+ (μvμ)2 (1 − R0) = 0 (29)

We cannot rule out the existence two positive (subthreshold) coexistence equilibria

when R0 (:= maxk(R
k
0)) < 1, known as backward bifurcation (Gulbudak and
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Martcheva 2013). However, we can preclude existence of subthreshold equilibria if the

second (linear) coefficient of the quadratic (29) is positive. For instance, the following

result follows from Proposition 4 and Eq. (29):

Proposition 5 Consider the case of symmetric strains, constant vector–host transmis-

sion and no waning, i.e. R0 = Rk , βk
v (y) = βv and ωk ≡ 0, k = 1, 2. Furthermore,

assume that H ≤ G and Λvβv < 2μvμ. If R0 < 1, then there are no endemic equi-

libria. If R0 > 1, then (in addition to existence of single-strain equilibria Ek) there

exists a unique coexistence equilibrium, Ec.

Note that the condition H ≤ G in the hypothesis can be interpreted as “secondary”

force of infection is less than primary.

A coexistence equilibrium under the condition of symmetric strains, denoted by Ec,

has the following components:

Ī k
v = x̄/βv, where x̄ is root of (29),

S̄k
v = Nv − Ī k

v , s̄(y) =
Λ(y)

μ + βv

∑

k Ī k
v

, īk(y, y0) = βv s̄(y0) Ī k
v

πk(y, y0)

gk(y, y0)
,

r̄k(y) =

∞
∫

0

γk(y, y0)īk(y, y0)

μ + β
j
v Ī

j
v

dy0,

īk j (y, y0) = βv r̄k(y0) Ī j
v

πk j (y, y0)

gk j (y, y0)
, (30)

where the quantities Gk and Hk j , given by (20) and (22), are identical for strains k, j .

Case: waning

In the case of continuous waning, there is no analytical solution for the coexistence

equilibria. Indeed, even for symmetric strains, the equations become transcendental,

shown below:

r̄k(y) =
1

ωk(y)

∞
∫

y

e

y
∫

a

μ+x̄ j
ωk (s)

ds
∞
∫

0

γk(a, y0)īk(a, y0)dy0da

1

βk
v

= S̄v

∞
∫

0

Fk(y0)s̄(y0) dy0 + S̄v x̄ j

∞
∫

0

1

ω j (y0)

∞
∫

y0

e

y0
∫

a

μ+x̄k
ω j (s)

ds

F jk(y0)s̃ j (a) da dy0

μv

βk
v

=

(

Nv −
x̄1

β1
v

−
x̄2

β2
v

)(

Gk

μ + x̄1 + x̄2

+x̄ j

∞
∫

0

F jk(y0)

ω j (y0)

∞
∫

y0

e

y0
∫

a

μ+x̄k
ω j (s)

ds

s̃ j (a) da dy0

⎞

⎠ , k �= j . (31)
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In this case, we are also not able to prove that a coexistence equilibrium, Ec, of

symmetric strains must have equal components (x̄1 = x̄2), as shown when there is no

waning. The above equations do allow for numerical approximation of roots, which

we will perform for examples considered in Sect. 5 in the presence of waning.

4 Numerical scheme

We develop a finite difference scheme combined with a ODE solver in MatLab in

order to numerically solve the coupled immuno-epidemiological model. To simulate

the coupled system, first consider the within-host model ODE for relevant ranges of

pre-existent antibody levels of susceptible hosts, y1 ≤ y0 ≤ yM0 , and time since

infection 0 ≤ τ ≤ τend . Here y0 supplies the variable initial condition in within-

host system (1), where other initial conditions x0, z0 are fixed. Note that the distinct

strains may have different parameter values in (1), in which case the ODE simula-

tions must be conducted for each strain. The mesh chosen for the interval [y1, yM0 ]

can have equal or variable step size with M0 mesh-points. The output of the ODE

solver is the solution vector, denoted here (φ(τk; ym))
N0

k=1, where (τk)
N0

k=1 is a partition

of 0 ≤ τ ≤ τend for each ym, m = 1, . . . , M0. We utilize MatLab solver ODE45,

which adaptively chooses the time partition and interpolates at time points (τk)
N0

k=1.

Consider the state variable y(τ ; ym) giving antibody level y during primary infec-

tion. It is possible to consider the partitions (y(τk; ym))
N0

k=1 for each m = 1, . . . , M0.

For small M0, for instance the case of susceptible point distribution (M0 = 1), this

method of partitioning increases speed and is equivalent to transforming the infected

host antibody level, y, to time since infection τ , similar to the approach in Gan-

dolfi et al. (2015). However for M0 > 1, the number of stored y meshpoints will

rapidly increase with M0, and thus it is advantageous to utilize a “global” partition

(y
)
M

=1 which contains as a sub-partition the initial mesh y1, . . . , yM0 and covers

all necessary stored antibody variables. Then we can interpolate the pathogen and

specific antibody, x and z, as functions of y onto this global mesh (y
)
M

=1, in order

to compute linking functions γ (y, y0), β(y, y0), gk(y, y0) at each (reachable) grid

point (y
, ym), 1 ≤ 
 ≤ M, 1 ≤ m ≤ M0. The same logic is utilized for secondary

infection, along with numerical integration for reproduction numbers and equilibria

values.

For the epidemiological model, we approximate solutions to the antibody-level

structured PDE vector–host model with the stored within-host calculations. Let

0 ≤ t ≤ T be the time interval of interest and {tn}N
n=1 be a partition of 0 ≤ t ≤ T

with fixed time step Δt = T /N . In the following, we denote the time iteration, n,

in the superscript of state variables and the antibody levels as function arguments,

e.g. I k,n
v , in+1

k (y
, ym). For clarity, we utilize antibody variables (y
, ym) in func-

tion arguments, but note that the outer state variables and linking parameters are

computed at (reachable) grid points in within-host part of numerical scheme. The

numerical algorithm for approximating solutions at times tn, n = 1, . . . , N , is the

following:

I
n
k =

M0
∑

m=1

M
∑


=1

βk (y
+1, ym+1)in
k (y
+1, ym )Δy
Δym ,
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I
n
jk =

M
∑

i=1

M
∑


=1

β jk (yi+1, y
+1)in
jk (yi+1, y
+1)Δyi Δy
,

Sn+1
v =

Sn
v + ΛvΔt

1 + Δt

⎛

⎜

⎜

⎝

μv +
2
∑

k, j=1
k �= j

I
n
k

+ I
n
jk

⎞

⎟

⎟

⎠

,

I k,n+1
v =

I
k,n
v + Δt Sn+1

v

(

I
n
k

+ I
n
jk

)

1 + Δtμv

sn+1(ym ) =
sn(ym ) + ΔtΛ(ym )

1 + Δt

(

2
∑

k=1

βk
v (ym )I

k,n+1
v + μ

) ,

in+1
k

(ym , ym ) =
βk
v (ym )

gk (ym , ym )
I k,n+1
v sn+1(ym ),

in+1
k

(y
+1, ym ) =
mn

k
(y
+1, ym+1) + Δt

Δy

gk (y
, ym )in+1

k
(y
, ym )

1 + Δt
(

gk (y
+1,ym )

Δy

+ γk (y
+1, ym ) + μ

) ,

rn+1
k

(yM−
) =

rn
k
(yM−
)+Δt

(

ωk (yM−
)

ΔyM−

rn+1
k

(yM−
+1)+
M
∑

i=1

γk (yM−
, yi )i
n+1
k

(yM−
, yi )Δyi

)

1+Δt
(

ωk (yM−
+1)

ΔyM−

+β2

v (yM−
)I
2,n+1
v +μ

) ,

in+1
jk

(y
, y
) =
βk
v (y
)

g jk (y
, y
)
I k,n+1
v rn+1

j
(y
),

in+1
jk

(yi+1, y
) =
in

jk
(yi+1, y
+1) + Δt

Δyi
g jk (yi , y
)i

n+1
k

(yi , y
)

1 + Δt
(

g jk (yi+1,y
)

Δyi
+ γ jk(yi+1, y
) + μ

)
,

where i, 
, m denote index for discretized antibody level during secondary infec-

tion, during and after recovery of primary infection, and before primary infection,

respectively, with 1 ≤ i ≤ M, 1 ≤ 
 ≤ M, 1 ≤ m ≤ M0 being the ranges of allowed

antibody level, and j, k denote distinct strains. Note that we utilize an implicit-explicit

approximation mixture in the above finite difference scheme. In particular, the cal-

culation procedure allows for implicit terms involving components that have already

been updated, thereby gaining advantages of an implicit form without having to pay

the computational price of matrix inversion (which is common with implicit schemes).

We remark that an explicit-implicit mixture approach has been used for the approx-

imation of size-structured models (Ackleh et al. 2014). In the appendix, we present

several numerical tests of rates of convergence for the algorithm described here.
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5 Epidemiological implications

In this section, we consider examples and potential implications for vaccination, uti-

lizing formulas established in Sect. 3 and the numerical scheme developed in Sect. 4.

First, we point out an important severity measure for dengue; the prevalence of DHF.

Define the measure of DHF in the population of strain-k infected individuals by the

following:

Dk(t) =

∫∫

{

(y,y0)∈R
2
+:x(τ (y,y0))>Vc

}

(

ik(t, y, y0) + i jk(t, y, y0)
)

dy dy0

=

∫ ỹk
u

ỹk
l

∫ yk
u (y0)

yk
l (y0)

ik(t, y, y0) dy dy0 +

∫ ỹ
jk
u

ỹ
jk

l

∫ y
jk
u (y0)

y
jk

l (y0)

i jk(t, y, y0) dy dy0,

(32)

where the constant Vc is a threshold critical lower bound such that if viral load during

infection, x(τ ), is above Vc, the patient will experience DHF. Here τ = τ(y, y0) in

the first equation above refers to the inverse map formulated in Sect. 2.2. Assume

that peak viral load as a function of initial antibody level, xM (y0), is unimodal with

single maximum rising above Vc in the range of “reachable” host antibody titres, as

for parameters guaranteed to exist by Proposition 2 and illustrated in our numerical

simulations. The latter equation above reflects that this will translate into a particular

range of antibody level and intermediate “risk window” of pre-existent antibody level

which will precipitate DHF upon primary or secondary strain-k infection. A related

measure which can be useful is the incidence of individuals who will experience DHF

(by strain-k) at time t predicated on their initial antibody level at time of infection:

Ik(t) = Iv(t)

(

∫ ỹk
u

ỹk
l

βk
v (y0)s(t, y0) dy0 +

∫ ỹ
jk
u

ỹ
jk

l

βk
v (y0)r j (t, y0) dy0

)

. (33)

Note that the antibody level bounds corresponding to the DHF risk windows depend

on the type of infection since the within-host dynamics may differ between primary

and secondary infections, along with infecting strain. In the following examples, we

perform numerical simulations utilizing the derived equilibria formulae and numerical

scheme for solutions of the model. In order to simplify the model for numerical

validation, we assume symmetric strains. We fix parameter values, except for waning

rate (ρ(y)), vector–host transmission rate (βv(y)) and susceptible recruitment rate

(Λ(y)), in order to compare simulations for cases with or without waning, temporary

cross-immunity, and a distribution of susceptible antibody level.

5.1 No waning

In the first example, we consider the case where there is no waning, i.e. ωk(y) ≡

0. Although cross-reactive antibody levels are thought to decline after primary, the

absence of waning may be a reasonable approximation for Dengue endemic regions.
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Fig. 4 Numerical simulations for the case of no waning (a, c, e), and for case of waning and temporary cross-

immunity (b, d, f). Numbers of infected vectors (a, b) and hosts (c, d) are plotted versus time with equilibria

values (black). Recovered and secondary infected distributions as function of y and y0, respectively, are

graphed at a (large) simulation end time, along with calculated equilibria distributions (dashed lines) in e, f.

Here we utilize a point distribution for susceptible antibody level Λ(y) = Λδ(ys ), S(0, y) = S0δ(ys ), with

ys = 0.11, along with all other within-host and linking parameters as in Figs. 1 and 3. The demographic

parameters are Λ = 100, Λv = 0.02, μ = 1/(10 × 365), μv = 1/20. The vector–host transmission

rate βv(y) is constant with βv = 0.00025 in a, c, e and piecewise constant given by (36) with βv =

0.00025, yp = 2 in b, d, f. The waning rate in a, c, e is ω(y) = 0 and is given by (7) with ξ = 0.002,

yc = 0.02. Additionally, we let the viral load threshold for infected individual to experience DHF in (32)

to be Vc = 30, which generates the vertical dashed lines in e, f giving the antibody level window of DHF

risk

In particular, some studies have found antibody levels to be stable because of continual

exposure to Dengue providing boosting of immunity (Katzelnick et al. 2016). The

explicit inclusion of boosting through exposure to virus as in Barbarossa and Röst

(2015) would significantly complicate the model and is beyond the scope of the current

paper. Here, we assume constant vector–host transmission rate (βv(y) ≡ βv) and

susceptible point distribution, i.e. Λ(y) = Λδ(ys), s(0, y) = S0δ(ys). Observe Fig.

4a, c, e displaying simulations of time-dependent solutions of infected vectors and

hosts, and the final time distribution of recovered and secondary infected individuals
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with respect to antibody level y and y0, respectively. Calculations of equilibria are also

displayed, and note the long time for convergence, along with some numerical error.

In this case without waning, the vast majority of recovered individuals have a large

cross-reactive antibody level, whereby secondary exposure leads to mild infection.

5.2 Waning and temporary cross-immunity

For examples in this and the next section, we consider particular forms of waning,

ωk(y) and antibody dependent vector–host transmission rate βk
v (y), motivated by

epidemiological observations. We utilize the form of waning given ωk(y) = ξ(y −

yc), which is consistent with a lower bound yc and exponential decline of antibodies

as formulated in Eq. (7). In this case, inserting (7) into (19), we find the (strain-k)

recovered equilibrium component

r̄k(y) =
(y − yc)

μ
ξ
−1

ξ

∞
∫

y

(a − yc)
− μ

ξ

∞
∫

yc

γk(a, y0)īk(a, y0)dy0da,

with

∞
∫

yc

r̄k(y) =
1

μ

∞
∫

yc

∞
∫

0

γk(y, y0)īk(y, y0)dy0dy. (34)

Note the the total amount of recovered individuals obtained by the integration above

(34) is precisely the number at the equilibrium with no waning (22). In the instance

of recovery occurring at a constant level of antibody y∗ (10), we obtain

r̄k(y) =
(y − yc)

μ
ξ
−1

ξ
(y∗ − yc)

− μ
ξ

∞
∫

0

īk(y∗, y0)dy0. (35)

Observe that recovered individuals at the lower bound of antibody level satis-

fies r̄k(yc) = 0 when μ > ξ (natural death rate greater than waning rate), and

r̄k(yc) = +∞ when μ < ξ , however the total amount of recovered individuals stays

finite by (34).

Furthermore, as mentioned previously, primary Dengue infection induces a period

of temporary cross-immunity. The simplest way to include this feature is to assume

that

βk
v (y) = βk

v1{y<yp} =

{

0 y ≥ yp

βk
v y < yp

, (36)

so that the vector to host transmission rate is a piecewise function where there exists

a threshold antibody level yp providing complete protection above it. In this case,

let ck := rk1{y≥yp} and sk := rk1{y<yp}, denoting density of recovered individuals

with cross-immunity and susceptible to secondary infection, respectively. From (4),

we derive
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∂ck(t, y)

∂t
−

∂(ωk(y)ck(t, y))

∂ y
= 1{y≥yp}

∫ ∞

0

γk(y, y0)ik(t, y, y0)dy0 − μrk(t, y),

(37)

∂sk(t, y)

∂t
−

∂(ωk(y)sk(t, y))

∂ y
= 1{y<yp}

∫ ∞

0

γk(y, y0)ik(t, y, y0)dy0 − μsk(t, y)

− β j
v (y)sk(t, y)I j

v (t),

sk(t, yp) = ck(t, yp),

ωk(yc)sk(t, yc) = lim
y→∞

ωk(y)ck(t, y) = 0. (38)

Previous results requiring constant vector–host transmission βk
v , in particular The-

orem 1, Proposition 5 and explicit equilibria formulas (19) and (30), can be extended

to this case of piecewise constant βk
v (y). To see this first note that for integrals in the

formulae for Rk,R
k
inv and equilibria, the upper limit of integration yp will appear

(in place of ∞) wherever βk
v (y) appears. Also for Rk

inv , r̄k(y) can be replaced by

s̄k(y), which makes the arguments in proof of Theorem 1 work for this case of piece-

wise constant βk
v (y). Furthermore for the symmetric coexistence equilibrium (30), the

recovered equation formulas will be altered as follows:

c̄k(y) =
1

ωk(y)

∞
∫

y

exp

⎛

⎝

y
∫

a

μ

ωk(s)
ds

⎞

⎠

yp
∫

0

γk(a, y0)īk(a, y0)dy0da, y ≥ yp

s̄k(y) =
1

ωk(y)

yp
∫

y

exp

⎛

⎝

y
∫

a

μ + β
j
v Ī

j
v

ωk(s)
ds

⎞

⎠

yp
∫

0

γk(a, y0)īk(a, y0)dy0da

+
ωk(yp)

ωk(y)
c̄k(yp) exp

⎛

⎜

⎝

y
∫

yp

μ + β
j
v Ī

j
v

ωk(s)
ds

⎞

⎟

⎠
,

where y < yp for the domain of s̄k(y). The secondary vector–host force infection at

equilibrium then depends upon s̄k(y). The component rk(y) in boundary equilibrium

remains as is in (19) (with upper limit of integration yp), as can be seen in the above

formula when removing secondary infection (I
j
v = 0), where rk = ck + sk .

In numerical simulations, we first consider the case of susceptible point distribution

(Λ(y) = Λδ(ys), S(0, y) = S0δ(ys)). We compute time dependent solutions from

initial conditions corresponding to outbreak initiation, which are shown in Fig. 4b,

d, f. Observe how waning and temporary cross-immunity shape the distribution of

recovered and secondary infected individuals with respect to y in this example, as

opposed to the previous case with constant vector–host transmission and no waning.

In particular, the waning allows for secondary infected cases in the window of antibody

level causing DHF, resulting in around 2 DHF cases per time unit instead of zero in

previous case without waning. Note that since there is only one susceptible antibody

level, the variable step size partition of antibody level y (equivalent to transforming y
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(a) (b)

Fig. 5 Equilibria recovered host density distribution (blue curve) and total secondary infected cases (red

curve) with respect to initial antibody size y0 for distinct cases, when waning rate is constant ξ , the

transmission rate βv(y) is constant (describing temp. cross immunity), μ > ξ , recovery rate is chosen as:

γ (y, y0) = e−ρx(τ )
1{ fk (τ )<0}, and susceptible antibody distribution s̄(y0) is truncated normal. a Death

rate larger than waning rate (μ > ξ ) leads to recovered distribution r̄(y) to go to zero as y ↘ yc , b on the

other hand if μ < ξ , r̄(y) goes to ∞ as y ↘ yc . Other parameters, besides ξ, γ (·), μ are same as in Fig. 6

(colour figure online)

to time-since-infection τ with fixed step size in τ ) is advantageous for reducing error,

as described in Sect. 4. In contrast for the next simulation where Λ(y) is a distribution,

we utilize the fixed antibody level (Δy) step size partition combined with interpolation

of the within-host ODE solver output on to this partition (see Sect. 4).

5.3 Heterogeneity among susceptible antibody level

In this section, for the (initial) distribution of susceptible antibody level given by

Λ(y), we choose the symmetric truncated normal distribution with support on the

interval [ym −α, ym +α] (insert in Fig. 7a). First, in Fig. 5, we display calculations of

equilibrium recovered and secondary infected distributions for two different cases of

waning rates (ξ ), μ > ξ and μ < ξ (μ is host death rate), displaying different limiting

behavior as antibody level y approaches lower bound yc. Note that we analytically

derived this limit dichotomy in (35), and larger waning (μ < ξ ) corresponds to larger

accumulation of individuals in DHF risk window before r̄1(y) → ∞ as y ↘ yc in

this case.

Next we perform simulations utilizing the finite difference and multi-scale method

outlined in Sect. 4. The numerical solutions (shown in Fig. 6) are computationally

more expensive due to the distribution (with width 2α) of susceptible antibody level.

Comparing to the previous case of susceptible point distribution at ym , the number of

DHF cases increases to eventually around 8 per unit time, however this may partially

be due to the altered numerical algorithm which utilizes interpolation and fixed step

size Δy. Observe how the current and pre-existent antibody levels in recovered and

secondary infected populations, respectively, evolve with time after initial outbreak

in Fig. 6c, d. In particular, individuals with pre-existent susceptible antibody levels

recover with a certain boosted antibody level offering temporary cross-immunity until

waning spreads recovered individuals’ antibody levels to intermediate levels at risk of

DHF with accumulation at smaller antibody titres for the chosen parameter regime,

resulting in secondary and DHF cases.
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(a) (b)

(c) (d)

Fig. 6 Numerical simulations in the case of susceptible antibody distribution as symmetric truncated normal

having support on [ym −α, ym +α] (Fig. 7a) where ym = 0.11 and α = 0.03, along with initial conditions

I 1
v (0) = 0.025, I 2

v (0) = 0.02 and other components starting at (disease-free equilibrium) E0 (outbreak

scenario). a Total infected by strain k versus time; b secondary infected and (secondary) DHF cases versus

time; c density of (strain 1) recovered individuals with respect to antibody level y, r1(t, y), evolving with

time t ; d density of secondary infected individuals with pre-existent antibody level y0 (imported from

population r1(t, y0) at time of infection) as function of t

For the last set of numerical simulations, we consider how shifting the mean anti-

body level in a naive susceptible population affects disease incidence, especially DHF

cases, upon introduction of both Dengue strains. In this way, we investigate how

population level antibody level can determine risk of severe dengue infection. In

particular, this can help explore the consequences of a Dengue vaccination boost-

ing cross-reactive antibody levels. As before, consider the distribution of susceptible

antibody level (given by Λ(y)) as the symmetric truncated normal distribution with

support on the interval [ym − α, ym + α] (Fig. 7a). Fixing α, we vary the mean anti-

body level ym and calculate reproductive numbers, along with (severe) DHF cases at

coexistence equilibrium Ec and initial DHF transmission level.

Observe that R0 is unimodal with respect to ym , initially increasing, peaking at

a relatively small antibody level and then decaying as the population antibody level

increases further (Fig. 7a), as opposed to invasion reproduction number Rinv which is

decreasing (Fig. 7b). The initial rise in R0 follows from the host-vector transmission, as

found in Fig. 3b, caused by increasing within-host peak viral load from ADE. However,

decreasing infectious period also occurs with the increasing viral load leading R0 to

peak at smaller antibody level than the observed absolute maximum in DHF cases

(Fig. 7a). Here the total DHF cases, calculated at equilibrium Ec in the immuno-

epidemiological model for each ym , bears some resemblance the unimodal shape of

peak viral load on the within-host scale (Fig. 1c), but there are more “across-scale”
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Fig. 7 Epidemiological quantities (R0, Rinv) and disease incidence (DHF) versus immune antibody (y)

distribution among susceptible population with mean antibody level, ym . Susceptible (naive individuals)

recruitment rate, Λ(y), is chosen as symmetric truncated normal distribution on [ym − α, ym + α] with

mean ym . In the simulations here, we fix α = 0.03 and vary ym , in order to compute a basic reproduction

number R0 (blue solid line), and DHF cases at coexistence equilibrium Ec (orange solid line), b invasion

reproduction number Rinv , c secondary infected DHF cases at Ec , d DHF cases per infected vector in a

(naive) susceptible population (colour figure online)

forces to decipher. In particular, first there is a local maximum caused by an overall

peak in cases at maximal R0. Next, population antibody levels rise to the intermediate

window where ADE causes severe primary infection leading to a second (much larger)

peak in DHF cases. However the decreasing R0 applies an opposing dampening force

on total equilibrium DHF cases, and thus the absolute maximum in DHF cases occurs

around ym = 0.2, whereas the maximum peak viral load on the within-host scale (Fig.

1c) occurs around y0 = 0.5. The sharp rise in DHF cases as a function of ym to the

second maximum is caused by primary infections, as the DHF cases from secondary

infections (Fig. 7c) is relatively small and peaks around ym = 0.1 for the chosen

parameters.

Even though DHF cases at Ec decreases to zero at around ym = 0.52 when R0

becomes less than one, the rate of initial DHF cases per infected vector in a susceptible

population is large and at maximum value for all ym ∈ [ỹ
 + α, ỹu − α] (when

Λ(y) has support in the window of antibody level causing DHF), which is centered

around ym = 0.5, as shown in Fig. 7d. Here we measure this rate of initial DHF

cases by
βv

μv

∫ ỹu

ỹl
Λ(y)dy. Thus, there can be a conflict between reduction or even

elimination/prevention of dengue cases by a cross-reactive antibody boosting vaccine
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administered to a naive population and a (possibly temporary) rise in DHF cases. Since

DHF cases can cause death and should be avoided, an effective Dengue vaccine would

need to boost antibody levels of vaccinated individuals to a sufficiently large level.

This can be achieved by increased vaccine efficacy or only vaccinating individuals

with large enough pre-existent antibody levels (from prior exposure to Dengue) that

can be boosted past the intermediate window of DHF risk.

6 Discussion

In this paper, we develop an immuno-epidemiological model of Dengue tracking

dynamic host cross-reactive antibody levels through infection by multiple strains and

waning, which affect the overall infection trajectory and severity across the within-

host and between-host scales. The model recapitulates: (i) how intermediate levels of

preexistent cross-reactive antibodies enhance infection within a host, and (ii) how to

scale up to distributions of antibody levels among epidemiological classes in the host

population to determine risk of DHF prevalence. The system is novel in its multi-scale

connection of host immunity and infectious disease dynamics, and provides a unified

model of Dengue with ADE phenomenon.

Our mathematical model consists of two linked systems, namely immunological

(within-host) and epidemiological (between-host). First, we formulate ordinary dif-

ferential equations describing dynamics of virus and immune response for primary or

secondary Dengue infection. The model is motivated by experimental and epidemio-

logical evidence that certain levels of pre-existent cross-reactive antibodies cause the

more severe DHF infection. Indeed, we show that our inclusion of distinct binding and

neutralizing kinetics with ADE phenomenon in cross-reactive IgG (memory antibod-

ies), along with neutralizing specific IgG, induce severe infection solely by varying

pre-existent cross-reactive IgG in an intermediate window of concentration.

Next, we connect the within-host dynamics to population scale through a hybrid

ODE-PDE vector–host system structured by host antibody level. Several features of

the linking and model structure are distinguished from prior work:

– The epidemic model is size-structured with respect to a within-host immune vari-

able as opposed to the infection age utilized in most immuno-epidemiological

studies. The one-to-one relationship between cross-reactive memory antibodies

(y(τ )) and infection age τ allows us to formulate epidemiological parameters as

functions of within-host variables, similar to Gandolfi et al. (2015).

– Immune status, in particular antibody level, is traced through multiple infections

by distinct strains and waning during recovery stage, with across-scale feedback

on within-host and between-host dynamics.

– Heterogeneity in immune response among susceptible individuals given by preex-

istent antibody level distribution. Different from Pugliese (2011), our structuring

variable for susceptible population is dynamic through epidemiological stages

described above.
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The interplay across scales between host immunity and infection severity exhibited in

Dengue induced by ADE motivate the above characteristics of our modeling frame-

work.

On the epidemiological scale, in addition to boundedness of solutions, certain

threshold dynamics are determined by strain (basic) reproduction number Rk and

invasion reproduction number R
j
inv , and these quantities depend upon within-host

variables. By linearizing the system around disease-free and single-strain equilibria,

we show that local stability is sharply determined by Rk or R
j

inv . Furthermore, we

derive the formula for a unique coexistence equilibrium Ec in the case of no waning and

a transcendental equation for existence of Ec when waning occurs, under the assump-

tion of symmetric strains. Lastly, for certain choices of vector–host transmission βv(y)

and waning rates ρ(y) representing temporary cross-immunity and exponential decay

of antibodies, we obtain explicit formula for equilibria. Further results are difficult

given the model complexity; for instance there may be backward bifurcation pre-

venting global stability of disease-free equilibrium. Future work will explore stronger

analytical results such as uniform persistence of strain j when R
j
inv > 1.

Moreover, we construct a multi-scale numerical scheme in order to verify the equi-

libria calculations and to determine DHF risk landscape in different scenarios. To

accomplish this, we develop a finite difference algorithm combined with numerical

solutions of ODE (Runge-Kutta method) and numerical integration of antibody depen-

dent functions in order to simulate the model on both scales. The complexity of the

intertwined systems challenges efficient numerical computation. Indeed, the combi-

nation of heterogeneity in susceptible antibody distribution, and tracking antibody

levels through recovery, waning and re-infection, leads us to utilize interpolation of

within-host ODE numerical solutions nested in the discretized size-structured epi-

demic model. The resulting error magnifies with increasing antibody step size Δy,

causing an unavoidable tradeoff between speed and accuracy. It may be possible to

efficiently transform the problem to infection-age structured system (with sufficiently

small number of meshpoints), as we did for the homogenous susceptible antibody dis-

tribution (point distribution). Future work will explore this idea, along with employing

higher order finite difference methods to increase accuracy of numerical solutions.

The numerical simulations suggest that waning after primary infection can lead to

a buildup of individuals with antibody levels in risk window for DHF upon secondary

infection with a distinct strain. Different from prior Dengue epidemic modeling stud-

ies with ADE, DHF is not simply caused by secondary infection, rather it depends

upon preexistent cross-reactive antibody titre, as shown in biological literature. The

model allows us to calculate the exact distribution of host population under risk for

severe infection, along with DHF prevalence. Indeed, by varying the mean of sus-

ceptible antibody level distribution (ym), we observe that the reproduction numbers

are decreasing in precisely the window of ym where DHF prevalence is rising. This

suggests there can be conflict between reduction or even elimination of dengue cases

by cross-reactive antibody boosting vaccine administered to naive population and a

rise in DHF cases. An effective Dengue vaccine would need to boost antibody levels to

sufficiently large level to avoid increased DHF incidence which can lead to fatalities.
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Future work can build upon the epidemiological implications by explicitly incor-

porating vaccination into the model to inform Dengue vaccine policy. The controversy

surrounding apparent rise in DHF among certain vaccinated individuals after a vac-

cination campaign (Aguiar et al. 2016; Yang et al. 2017) and questions into how to

safely vaccinate Dengue-at-risk populations, motivates the need for predictive mod-

eling frameworks including effects of targeted vaccination on population antibody

levels. Such a model would also require robust parameter estimation and identifia-

bility analysis extending prior work in multi-scale data fitting (Tuncer et al. 2016).

Ideally, the model may suggest whom to target for vaccination dependent on cross-

reactive antibody level measured by blood samples, in order to prevent DHF incidence

and ultimately eradicate the disease.
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Appendix: Numerical convergence rates

In this section, we provide tables showing computed rates and order of convergence for

numerical experiments of the finite difference and multi-scale simulation procedure

described in Sect. 4. For the numerical tests, we calculate the error in norm between

computed solutions of the t, y stepping method at certain step sizes Δt, h = Δy

and reference solutions at some final time t = T . We utilize three different types

of reference solutions: (i) the numerically approximated equilibrium given by our

derived formula (31), (ii) solution of the numerical scheme with smallest step sizes

Δt, h̃ = Δy, and (iii) solution of the numerical scheme with step sizes multiplied by

factor of 1/2, Δt
2

, h
2

. For each error calculation at step size h, eh , we form a sequence by

successively decreasing step size by 1/2, whereby we compute order of convergence

by log2(eh/eh/2). Furthermore, we consider two different scenarios: (a) we start the

initial condition where infected vectors, I 1
v , I 2

v are slightly perturbed from E0 (outbreak

scenario) with final time T = 50 days, (b) we start the initial condition at numerically

calculated equilibrium with final time T = 500 days. For the former scenario (a), we

do not use numerically calculated equilibrium as a reference solution since this may

be far off from simulation at t = 50.

We compute the different orders of convergence because there are several sources

of error and to test different initial condition scenarios. Our method relies on distinct

algorithms in addition to the finite difference scheme, such as Runge-Kutta method

for within-host ODE (ode45 in MatLab), interpolation, integration and, in the case

of numerical equilibrium formula, nonlinear root-finding. Each routine can produce

error, which can also propagate in the form of discontinuities in recovered distribution

corresponding to an influx of recovery from primary infected individuals with pre-

existent antibody levels at a certain mesh points from the initial susceptible antibody

distribution. In order to efficiently reduce error we utilize the trapezoidal integration

when integrating with respect to initial susceptible antibody level y0, but left endpoint

integration for other antibody variables since there is small number of mesh points

(M0) for s(·, y0) when compared to the range of antibody levels after infection and
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Table 5 Error analysis of ih
1 (50, y, y0) with initial I 1

v (0) = I 2
v (0) = 0.02, and other components starting

at E0, for step size Δy = h compared to reference solution i h̃
1 (h̃ = 0.00375

2 ) and i
h/2
1 , respectively, in L1

norm

Δt h = Δy

∥

∥

∥
ih
1 − i h̃

1

∥

∥

∥
Order

∥

∥

∥
ih
1 − i

h/2
1

∥

∥

∥
Order

0.02 0.03 524.6908885 91.15745068

0.01 0.015 270.1464444 0.957726043 88.82019677 0.037472811

0.005 0.0075 102.1797402 1.402632521 52.36309638 0.762337357

0.0025 0.00375 27.53347556 1.891850535 27.53347556 0.927363678

Table 6 Error analysis of ih
12(50, y, y0) with initial I 1

v (0) = I 2
v (0) = 0.02, and other components starting

at E0, for step size Δy = h compared to reference solution i h̃
12 (h̃ = 0.00375

2 ) and i
h/2
12 , respectively, in L1

norm

Δt h = Δy

∥

∥

∥
ih
12 − i h̃

12

∥

∥

∥
Order

∥

∥

∥
ih
12 − i

h/2
12

∥

∥

∥
Order

0.04 0.06 0.675368267 0.006352265

0.02 0.03 0.258213027 1.38711261 0.157617642 − 4.633

0.01 0.015 0.064940472 1.991372007 0.045005349 1.808260627

0.005 0.0075 0.013576682 2.257986926 0.010354484 2.119840769

0.0025 0.00375 0.002644786 2.359908155 0.002644786 1.969032926

Table 7 Error analysis of rh
1 (50, y) with initial I 1

v (0) = I 2
v (0) = 0.02, and other components starting at

E0, for step size Δy = h compared to reference solution r h̃
1 (h̃ = 0.00375

2 ) and r
h/2
1 , respectively, in L1

norm

Δt h = Δy

∥

∥

∥
rh
1 − r h̃

1

∥

∥

∥
Order

∥

∥

∥
rh
1 − r

h/2
1

∥

∥

∥
Order

0.04 0.06 199.170148 19.71504953

0.02 0.03 153.0385939 0.380105906 132.3873372 − 2.747395896

0.01 0.015 87.31621564 0.809574014 81.85961804 0.693541296

0.005 0.0075 37.51280945 1.218866289 35.05161783 1.223670901

0.0025 0.00375 15.17871831 1.305333341 15.17871831 1.20743106

waning. We do also provide one numerical test with only left-endpoint integration

shown in last two tables, which gives more error than trapezoidal, but has more reg-

ular order of convergence pattern. In addition, we include comparisons with a larger

step size (Δy = 0.06) for scenarios (a) and the last two tables, which forces a point

distribution for susceptible antibody levels, creating different error structure. Overall,

from the different numerical tests, we observe convergence to certain error rates within

a particular compartment and/or test scenario, ranging from orders that are sub-linear

(< 1) to larger than quadratic (> 2). When comparing with reference solutions com-

puted by numerical simulation at smaller step size, the order of convergence is mostly

faster than linear (Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16).
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Table 8 Error analysis of I
1,h
v (50) with initial I 1

v (0) = I 2
v (0) = 0.02, and other components starting at

E0, for step size Δy = h compared to reference solution I h̃
v (h̃ = 0.00375

2 ) and I
h/2
v , respectively, in L1

norm

Δt h = Δy

∥

∥

∥
I h
v − I h̃

v

∥

∥

∥
Order

∥

∥

∥
I h
v − I

h/2
v

∥

∥

∥
Order

0.04 0.06 0.011545595 0.000253176

0.02 0.03 0.011798771 − 0.031294078 0.002043507 − 3.012833819

0.01 0.015 0.009755265 0.274383701 0.003205022 − 0.649287231

0.005 0.0075 0.006550243 0.574632587 0.003355452 − 0.066172867

0.0025 0.00375 0.003194791 1.035826728 0.003194791 0.07078528

Table 9 Error analysis of sh(50, y) with initial I 1
v (0) = I 2

v (0) = 0.02, and other components starting at

E0, for step size Δy = h compared to reference solution s h̃ (h̃ = 0.00375
2 ) and sh/2, respectively, in L1

norm

Δt h = Δy

∥

∥

∥
sh − s h̃

∥

∥

∥
Order

∥

∥

∥
sh − sh/2

∥

∥

∥
Order

0.04 0.06 332.6520601 41.58150751

0.02 0.03 62.96919952 2.401295736 132.3873372 − 1.670751168

0.01 0.015 49.82665921 0.33772848 81.85961804 0.693541296

0.005 0.0075 32.64463389 0.610071986 35.05161783 1.223670901

0.0025 0.00375 15.64718881 1.060942377 15.17871831 1.20743106

Table 10 Error analysis of ih
1 (500, y, y0) with initial condition set at numerically calculated equilibrium

ī1(y, y0) for step sizes Δy = h compared to ī1, reference solution i h̃
1 (h̃ = .00375) and i

h/2
1 , respectively,

in L1 norm

Δt h = Δy

∥

∥

∥
ih
1 − ī1

∥

∥

∥
Order

∥

∥

∥
ih
1 − i h̃

1

∥

∥

∥
Order

∥

∥

∥
ih
1 − i

h/2
1

∥

∥

∥
Order

0.02 0.03 324.5169207 47.41855063 36.62544876

0.01 0.015 196.0711709 0.726916278 6.727908881 2.817221495 5.311540273 2.785644248

0.005 0.0075 105.7195462 0.891135289 0.846383875 2.99077412 0.846383875 2.649746236

0.0025 0.00375 56.5106755 0.903646798

Table 11 Error analysis of ih
12(500, y, y0) with initial condition set at numerically calculated equilibrium

ī12(y, y0) for step sizes Δy = h compared to ī12, reference solution i h̃
12 (h̃ = .00375) and i

h/2
12 , respectively,

in L1 norm

Δt h = Δy

∥

∥

∥
ih
12 − ī12

∥

∥

∥
Order

∥

∥

∥
ih
12 − i h̃

12

∥

∥

∥
Order

∥

∥

∥
ih
12 − i

h/2
12

∥

∥

∥
Order

0.02 0.03 8.783517629 6.042508363 3.481283278

0.01 0.015 4.503971602 0.963601096 1.631284321 1.88913931 1.082280827 1.685544319

0.005 0.0075 2.240824134 1.007168304 0.32158709 2.342726861 0.32158709 1.7507935

0.0025 0.00375 1.175949762 0.930202999
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Table 12 Error analysis of rh
1 (500, y) with initial condition set at numerically calculated equilibrium r̄1(y)

for step sizes Δy = h compared to r̄1, reference solution r h̃
1 (h̃ = .00375) and r

h/2
1 , respectively, in L1

norm

Δt h = Δy

∥

∥

∥
rh
1 − r̄1

∥

∥

∥
Order

∥

∥

∥
rh
1 − r h̃

1

∥

∥

∥
Order

∥

∥

∥
rh
1 − r

h/2
1

∥

∥

∥
Order

0.02 0.03 618.0541417 775.4388502 599.9811402

0.01 0.015 461.0633089 0.422768362 356.8297922 1.119776945 285.8162025 1.069829449

0.005 0.0075 392.9077021 0.230774413 143.9789694 1.309377976 143.9789694 0.989229606

0.0025 0.00375 357.6509033 0.135638364

Table 13 Error analysis of I
1,h
v (500) with initial condition set at numerically calculated equilibrium Īv for

step sizes Δy = h compared to Īv , reference solution I h̃
v (h̃ = .00375) and I

h/2
v , respectively

Δt h = Δy

∣

∣

∣
I h
v − Īv

∣

∣

∣
Order

∣

∣

∣
I h
v − I h̃

v

∣

∣

∣
Order

∣

∣

∣
I h
v − I

h/2
v

∣

∣

∣
Order

0.02 0.03 0.006679126 0.00106215 0.0008444

0.01 0.015 0.007472821 − 0.161993635 0.00021775 2.286242828 0.000181798 2.215591493

0.005 0.0075 0.007599984 − 0.024343416 3.60E−05 2.598522051 3.60E−05 2.338184328

0.0025 0.00375 0.007596424 0.000675948

Table 14 Error analysis of sh(500, y) with initial condition set at numerically calculated equilibrium s̄(y)

for step sizes Δy = h compared to s̄, reference solution s h̃ (h̃ = .00375) and sh/2, respectively, in L1 norm

Δt h = Δy

∥

∥

∥
sh − s̄

∥

∥

∥
Order

∥

∥

∥
sh − s h̃

∥

∥

∥
Order

∥

∥

∥
sh − sh/2

∥

∥

∥
Order

0.02 0.03 462.4651032 45.73632432 33.06512108

0.01 0.015 518.3459247− 0.164570714 78.8058773 − 0.784962803 31.29116995 0.079554584

0.005 0.0075 526.9051322− 0.023628012 47.51537534 0.729908803 47.51537534− 0.602638825

0.0025 0.00375 526.0055158 0.002465304

Table 15 Error analysis with initial condition set at numerically calculated equilibrium Ec for step sizes

Δy = h compared to Ec , using left-end point approximation integration.

Δt Δy s(500, y) Order i1(500, y, y0) Order i12(500, y, y0)Order

0.4 0.06 660.9536 14.97353256 32.78271708

0.2 0.03 2696.278157 − 2.0283484371830.012949 − 6.93329542334.9009843 − 0.090332293

0.1 0.015 1728.915761 0.64110176 641.6430016 1.51201112 12.19733364 1.516701918

0.05 0.0075 1078.164779 0.68128989 214.2830149 1.582253332 4.159619189 1.552042445

0.025 0.00375 695.6780402 0.632086 74.63216773 1.521648004 1.541971374 1.431675474
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Table 16 Error analysis with initial condition set at numerically calculated equilibrium Ec for step sizes

Δy = h compared to Ec , using left-end point approximation integration

Δt Δy r1(500, y) Order I 1
v (500) Order

0.4 0.06 2522.062793 0.001742764

0.2 0.03 2166.277168 0.582119138 0.038248294 − 4.455946151

0.1 0.015 1559.573153 0.694509637 0.024707943 0.63042051

0.05 0.0075 1167.784572 0.667748654 0.015523692 0.670503164

0.025 0.00375 942.6623956 0.619407636 0.010085476 0.622192549
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