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Abstract

Infection by distinct Dengue virus serotypes and host immunity are intricately linked.
Inparticular, certain levels of cross-reactive antibodies in the host may actually enhance
infection severity leading to Dengue hemorrhagic fever (DHF). The coupled immuno-
logical and epidemiological dynamics of Dengue calls for a multi-scale modeling
approach. In this work, we formulate a within-host model which mechanistically
recapitulates characteristics of antibody dependent enhancement in Dengue infection.
The within-host scale is then linked to epidemiological spread by a vector—host partial
differential equation model structured by host antibody level. The coupling allows for
dynamic population-wide antibody levels to be tracked through primary and secondary
infections by distinct Dengue strains, along with waning of cross-protective immunity
after primary infection. Analysis of both the within-host and between-host systems are
conducted. Stability results in the epidemic model are formulated via basic and inva-
sion reproduction numbers as a function of immunological variables. Additionally, we
develop numerical methods in order to simulate the multi-scale model and assess the
influence of parameters on disease spread and DHF prevalence in the population.

Keywords Dengue hemorrhagic fever (DHF) - Antibody dependent enhancement
(ADE) - Multi-scale - Immuno-epidemiological model - Size-structured partial
differential equation (PDE) - Invasion stability analysis
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1 Introduction

The global burden of Dengue infection has rapidly increased in recent years, with
about 400 million dengue infections occurring every year. Research has delved into the
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complexities of this mosquito-transmitted disease. The intricate relationship between
host immune response, pathogenesis, viral diversity and epidemiology has received
particular attention. While the immune response ultimately clears Dengue virus from
an infected host and provides strain-specific immunity upon recovery, certain lev-
els of cross-reactive antibodies (reacting to multiple Dengue strains) may actually
enhance severity of a subsequent (or even a primary) infection manifesting in Dengue
hemorrhagic fever (DHF). Determining the impact of host immune response, distinct
viral strains, and population-wide antibody levels on Dengue incidence calls for a
multi-scale approach. The problem is critical for control strategies against Dengue,
highlighted by recent debate over vaccination, which by boosting antibody responses,
may actually increase DHF prevalence in certain groups. Herein this paper, we develop
a mathematical model linking within-host and between-host scales through host anti-
body level in order to describe the connection between immunity and Dengue infection
dynamics across both scales.

Dengue fever is caused by four antigenically related but distinct serotypes (DENV-
1 to DENV-4). Infection by one serotype confers life-long immunity to that serotype
and a period of temporary cross-immunity to other serotypes. Sequential infection
increases the risk of developing severe dengue, due to a process described as antibody-
dependent enhancement (ADE), where the pre-existing antibodies to previous dengue
infection enhances the new infection (Dejnirattisai et al. 2010). The mechanisms
behind ADE and consequences on Dengue epidemiology are not completely under-
stood. However, recent research has found evidence that a certain intermediate window
of pre-existent antibody titer in the host population is associated with risk of DHF
(Katzelnick et al. 2017; Salje et al. 2018).

Previous modeling efforts have studied Dengue infection on either the within-
host or between-host scales (Ben-Shachar and Koelle 2015; Wearing and Rohani
2006; Ferguson et al. 2016). Several mathematical models investigate multi-strain
epidemiological dynamics with potential secondary infection and ADE due to partial
or temporary cross-reactivity (Aguiar and Stollenwerk 2017; Ferguson et al. 1999;
Reich et al. 2013; Nikin-Beers et al. 2018). Resulting bi-stable, oscillatory or chaotic
dynamics may explain large fluctuations in disease incidence observed in Dengue epi-
demics (Ferguson et al. 1999; Cummings et al. 2005; Aguiar et al. 2008). In all of these
epidemic models, ADE is incorporated through parameters associated with secondary
infection, however the recent evidence points to pre-existent antibody levels as the
determinant of infection severity. Therefore for a more precise formulation of ADE
on the epidemiological scale, a model should track dynamic immune status in host pop-
ulation, which is one of the goals of this paper. On the within-host scale, several models
have considered the phenomenon of ADE (Ben-Shachar and Koelle 2015; Gujarati and
Ambika2014; Nikin-Beers and Ciupe 2015), although explicit dependence of infection
severity on pre-existent cross-reactive antibody concentration has not been produced.

In addition to the correlation of pre-existent antibody level to risk of developing
severe infection, the virus and antibody dynamics within infected hosts determine their
inherent infectivity and recovery rates. With this in mind, multi-scale models linking
within-host and between-host dynamics emerge as an appropriate tool for a unified
model of Dengue. In particular, recently studied “nested immuno-epi”” models offer a
useful framework, where a partial differential equation (PDE) epidemiological model

@ Springer



Infection severity across scales in multi-strain...

includes a structuring variable that also appears on the virus-immune response scale
(Gilchrist and Sasaki 2002; Gandolfi et al. 2015; Tuncer et al. 2016; Gulbudak et al.
2017). In most nested models, transmission and recovery rates of infected hosts are
structured by infection-age T depending upon pathogen and immune concentrations
within-host 7 units after infection, independent of the epidemic scale and with identical
infection course among all hosts. Recently, more complex scenarios have also been
considered, such as a distribution of immunity among susceptible hosts (Pugliese
2011) and a “pathogen size- structured” epidemic model with fully coupled feedback
through variable initial pathogen load (Gandolfi et al. 2015). In addition, without
explicitly modeling the within-host scale, several works have explored dynamic levels
of host immunity in delay differential equation (DDE), PDE, and stochastic epidemic
models with re-infection, immune boosting and waning (Martcheva and Pilyugin 2006;
Barbarossa and Rost 2015; Veliov and Widder 2016; Diekmann et al. 2018).

Dengue provides a particular example where host immunity has complex and signif-
icant effects on infection dynamics across both within-host and between-host scales.
Therefore, in this paper, we construct immunological and epidemiological models
that capture signatures of ADE on both scales, connected via a variable tracking host
cross-reactive antibody levels through multiple infections by distinct strains, along
with recovery and waning. First, we formulate a within-host model which mechanisti-
cally mimics characteristics of ADE in Dengue infection; namely (i) a shorter time to
peak viremia, (ii) a higher maximum viral clearance rate, (iii) a higher peak viremia
(Ben-Shachar and Koelle 2015), and (iv) infection severity (measured by peak viremia)
modulated by initial antibody concentration with a unimodal relationship (Katzelnick
et al. 2017; Salje et al. 2018). Moreover, we prove that our formulation is, in a sense,
the minimal model to produce severe infection solely by varying pre-existent antibod-
ies in an intermediate window of concentration. Next, the within-host scale is linked
to epidemiological spread by a PDE model structured by host antibody level. Stabil-
ity results in the epidemic model are formulated via basic and invasion reproduction
numbers as a function of immunological variables. Additionally, we develop numeri-
cal methods in order to simulate the multi-scale model and assess the influence of ADE
on disease spread and burden in the population. Overall our model offers a promising
approach for understanding the connection between immunity and Dengue infection
dynamics on both within-host and population scales.

2 Multi-scale Dengue modeling: an antibody size-structured
approach for sequential infections

2.1 Within-host model and analysis

Here we formulate a within-host model which can describe primary and secondary
Dengue infections, along with the host immune response. We attempt to simplify the
within-host dynamics of virus and immune response, while still capturing the mech-
anisms responsible for antibody dependent enhancement (ADE) of the infection. In
order to model the host immune response, we consider long-lived memory antibodies
(IgG) as proxies for the collective immune populations (which includes short-lived

@ Springer



H. Gulbudak, C. J. Browne

innate and IgM antibody responses, along with T-cell responses). The memory antibod-
ies increase upon infection, and can roughly be grouped into two categories, specific
and cross-reactive (non-specific). Distinct antibody populations target several epitopes
(viral proteins) during infection, some of which are common amongst the different
Dengue serotypes while other epitopes are specific to the infecting strain. The former
are often termed (sero-)cross-reactive antibodies and have less affinity to the infect-
ing virus than the more specific antibodies. This distinction is important as during
secondary infection, or even possibly primary infection, pre-existent cross-reactive
antibodies within the host may induce ADE.

Consider the infecting virus strain, x (), specific IgG response to this strain, z(7),
and the cross-reactive (non-specific) IgG response, y(t), where the time variable t
refers time-since-infection within a host. The virus is assumed to undergo exponen-
tial growth at the rate r for simplicity, and the specific IgG response z(7) kills the
virus and proliferates according to Michaelis-Menten kinetics. There are multiple
mechanisms for ADE which we include in our model. First, studies have shown that
neutralization of a virion requires more bound cross-reactive antibodies compared to
the specific response (Dejnirattisai et al. 2010). Thus, we model the neutralization
by cross-reactive response y(t) with a sigmoidal Hill equation of “n = 2” positive
cooperativity (Stefan and Le Novere 2013), as opposed to “n = 1”” Michaelis-Menten
kinetics. In this way, a threshold number of cross-reactive antibodies bound to a virion
is required for neutralization and so low concentrations of cross-reactive antibodies
have poor neutralization properties, consistent with a “multiple-hit” stoichiometry
requirement hypothesis (Wahala and de Silva 2011; Ripoll et al. 2019; Dowd and
Pierson 2011). Furthermore, any antibody-virion binding can actually enhance proba-
bility of cell infection (Dejnirattisai et al. 2010), and thus we add a Michaelis-Menten
enhancing term dependent on cross-reactive antibodies y(t) to the viral replication
rate. Note that the efficient neutralization by specific antibodies with higher affinity to
virions precludes the need to add a similar enhancing term for z(t). Another possible
mechanism of ADE is “original antigenic sin” where antibody populations compete
and interfere with each other (Nikin-Beers and Ciupe 2017). This is included by inter-
ference competition coefficient k1 and k> inhibiting the proliferation rates of y and z.
With these features in mind, the following Dengue within-host model is novel for its
enzyme kinetics mechanisms of ADE.

dx ay o y? 8z )

— =x\|r+ — —_ = X,V,Z

Zr ( Al+y Ay+y*? B+z fx.y.2)
Within-host Model | & — P 0y o

dt Ci+y+kz

dz $2xz

= =" .= h(x,y,
& " Gtk )

ey

The initial conditions x(0) = xg, y(0) = yo, and z(0) = zo and all parameters are
assumed to be non-negative.

We remark that the assumed exponential growth of the virus in the absence of

immune response is a simplification of viral replication dynamics. In reality there is a

source of target cells which is depleted (and has recruitment), which bounds the virus
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population dynamics. Target cells have been included in previous models of Dengue
infection (Ben-Shachar and Koelle 2015). For simplicity, we assume in our model that
immune suppression of the virus either overwhelms or is more important than any
effect of target cell limitation on the dynamics. Also, here and as been found in other
studies, immune response is necessary to clear Dengue virus (Clapham et al. 2016).
The following result shows that in our model the immune response is sufficient to
clear the virus.

Proposition 1 Suppose that at least one of the following conditions hold in system (1):
(i) >r+ayand yyp > 0, or (ii) ap > r + a1 and zp > 0. Then lim;_, o0 x(T) =
0, lim; 00 y(7) = y, lim; 0 2(T) = Z where y, Z depends on initial conditions.

Proof Since the boundary of the positive orthant, aRi, is invariant for (1), we find
that Ri is also invariant. Thus solutions remain non-negative for all 7. Also it
is not hard to show that solutions exist for all t since the differential inequality
(x +y+2) < c(x+y+z) can be established for appropriate constant ¢, which
yields an exponential bound for the solution.

Now suppose by way of contradiction thatlim sup, _, ., x(r) > 0.Letw = y+zand

observe that w’ > C‘ﬁf,tuw , where ¢ = max(¢1, ¢2) and C = min(Cq, C»). Integrating,

we find Cln (%) +w(t) — w0) > ¢ [ x(s)ds. Thus lim, .o w(r) = oo.

0
Therefore, since § > r + o1 and zg > 0, or ap > r 4+ o1 and yg > 0, there exists

a1y (7) ary(1)? 8z(1)

Al+y(@) A +y(@)?  B+z(1)
first equation in (1), we find

i a1y(7) oy(r)® 82(7)
x(t) = xpexp r+ — 5 — ds | .
0 A +y(m)  A2+y(@)*  B+z(1)

Since the integrand is negative for T > t*, we conclude lim;_, o, x(7) = 0. Next,
since 0 < y'(t), y(t) is increasing, it has either positive limit or diverges to infinity
asymptotically. Suppose by way of contradiction that lim;_, o, y(t) = oco. Then fi—’t‘ <
—ax(t) for t sufficiently large, say t > 19, where a = ap — (r + 1) + € > 0 for
some € sufficiently small. Thus x(7) < x(z0)e %"~ and thus

™ V1 > 7%, where r + < 0. Integrating the

d1xy P1x TR
s —— ===y —y) < o | T
Y Ci+y Cq Y Y Ci Jq

Therefore y(7) is bounded and there exists y > 0 such that lim; »o y(7) = Y.
Similarly z(t) converges monotonically to a limit . O

The proposition proves that either specific or cross-reactive antibodies can even-
tually clear the virus given either antibody killing rate exceeds maximal viral growth
rate. Indeed the trajectory of the virus population mimics the general pattern displayed
in data of rise and subsequent decline of virus caused by immune response, charac-
teristic of an acute infection. We obtain a triangular curve in log scale of viral load as
found in other studies (Ben-Shachar and Koelle 2015), and Proposition 1 shows that
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Fig.1 a Example trajectory of within-host model (1). b Cross-reactive antibody levels (y or yq) are boosted
during primary infection and then wane to an intermediate level which can produce severe infection upon
secondary infection due to ADE effect. ¢ Host infection severity (peak viral load) unimodal function of
pre-existent antibody level (yg). d Two orbits corresponding to solutions of within-host model (1). The
parameters (and initial conditions) of within-host model (1) are set as follows: a yg = 0.11; b yg = 0.11
for primary infection and yy = 0.5 for secondary infection (after 2 years of antibody exponential decay
given by waning rate (7) with & = 0.002, y. = 0.02; ¢ yg varied in range [0.01,2.5];d yp = 0.11 and
yo = 0.3. All other parameters are fixed at r = 1, = 2,A; = 1,ap =3,A2 = 10,6 = 3.5,B =
1,1 =04,¢p =0.5,Cy =Cr =10,k = kp =0.1,and xg = 0.01, z9 = 0.1

the virus population converges to zero while (memory) immune responses saturate
to an equilibrium level dependent on initial concentrations. Moreover the within-host
model mechanistically mimics characteristics of ADE in Dengue infection; namely
(i) a shorter time to peak viremia, (ii) a higher maximum viral clearance rate, (iii) a
higher peak viremia (Ben-Shachar and Koelle 2015), and (iv) infection severity (mea-
sured by peak viremia) modulated by initial antibody concentration with a unimodal
relationship (Katzelnick et al. 2017; Salje et al. 2018). Note that fitting the within-host
model to data is not a goal of the present work. However, we do tune parameters in
system (1) to first match infectious period of primary infection (Fig. la), and after a
characteristic period where cross-reactive antibodies, y, wane to a certain range, sub-
sequent secondary infection displays features (i)—(iii) associated with DHF induced
by ADE, as shown in Fig. 1b (Table 1).

The system (1) captures the signature of Dengue infection severity being highest for
intermediate pre-existent antibody level [(iv) in previous paragraph], and is, in some
sense, the minimal model to produce this unimodal relationship, as the following
proposition suggests:

Proposition 2 Consider system (1) with 6 > r + o1 and oy > r + «1. Let x(t; yo)
denote the viral component of solution as a function of initial cross-reactive antibody
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Table 1 Description of the within-host model variables/parameters in (1) and value chosen for simulations
(which mimic qualitative within-host characteristics of Dengue)

Variable/parameter Description Value

x(1) Dengue virus concentration at T days post host infection -

y(t) Concentration of cross-reactive (IgG) antibodies at Host -
infection age T

z(7) Concentration of specific antibodies at host infection -
age T

r Within-host virus growth rate

o] Viral growth enhancing rate induced by cross-reactive 2
antibody-virus binding (ADE)

%) Cross-reactive antibody-virus killing rate upon 3
cooperative binding

) Specific antibody-virus killing rate upon binding 3.5

b1 Cross-reactive antibody activation rate 0.4

0% Specific antibody activation rate 0.5

ki, ko Antibody interference competition coefficient 0.1,0.1

A1, Ay, C Saturation coefficients of Hill functions for 1,10, 10
cross-reactive antibody

B, Cy Saturation coefficients of Hill functions for specific 1,10
antibody

level yo, and xp1(yo) := max;>0x(T; yo) denote the peak viral load as a function

of yo (with other parameters fixed). Then there exists some set of parameters for the
system (1) where xp1(yo) is an unimodal curve with a single maximum, in particular
when ¢y = ko =0,A, =3,Cr = B, and A| > %. Furthermore, if z =0 (y = 0),
then xp(yo) (xp(z0)) will be a strictly decreasing function.

Proof In order to prove the first statement, consider the special case where ¢; = 0, for
simplicity, since we just need to show it for some parameter set. In this case the cross-
reactive antibody concentration y does not change during infection, i.e. y(t) = yp.
Then the infection dynamics are

dx
—— =x(r0on - 5t
qr <¢2xz ) e

dt ~ COo+z

2
aryo 2% —
FYEST I and C(yg) = C2 + koyo. We assume that oy >
r + o« as in Proposition 1. We first claim the function r(yg) is unimodal. Since
!/ _ 0!|A1 _ 20{2142)‘0 . . .
r'(yo) = @A~ D we find the following polynomial equation for the roots

of ¥/ (y) (which are the critical points of r(y)):

where r(yo) = r +

arAry? —200A42y% + 241 A2 (1 — @2)y? — 2A2AT00y + 01 A1A3 =0.  (3)
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Since o1 — 29 < 0 by assumption, there are either two or zero positive roots

by Descarte’s rule of signs. We now find parameters where there are two positive

207 A
roots, yi < y5. Let p(y) = (A“I‘f;)Q and g(y) = (A‘;‘i;%z, and observe that r'(y) =

o]

p(y) —q(y). Note that p(0) = > 0, p(y) is decreasing, ¢(0) = 0 and ¢’(0) > 0.
The goal is to obtain conditions where max,-o g (y) > p(0) which would guarantee
intersection of p(y) and g(y), and hence a positive root. It can be shown that ¢’ (y) =
0= Ay +y—4y> = 0. Let A, = 3, then the maximum of ¢(y) occurs at = 1,
and g(1) = %0[2 > 2‘1—‘1 =p0)if A} > %. Thus if A = A, = 3, then there are two
positive roots. Furthermore since 7/(0) > 0, y} is a local maximum of r(y) and yj is
a local minimum. Also r(co0) < 0 implies that there exists unique positive root y of
r(y), where r(y) > 0for0 <y < yandr(y) < Ofory > 7y (wherey < yJ). Clearly
if yo >y, then Xx(¢) < O for all r > 0, so x7(yg) = x¢ in this case. Furthermore we
show that peak viral load xjs(yo) is increasing with respect to the growth rate r(yo)
for the special case k» = 0, C» = B. Indeed in this case, peak viral load occurs at

ze(r) == ({%, and dividing equations in (2)

d ' ze(r) B S— B xp (r)
dz . $z _:>/ dz(r—+ >=/ dx
dx rB+ (@ - B)z . 2z 103) X0

) = BS (5—r+8—B>>0
MEZZ 6 -2\ # ¢

Therefore it follows that the peak viral load x s (yo) is unimodal with a single maxi-
mum.

Now to show the second statement. For given parameters satisfying § > r + o and
ap > r 4+ aq with either z = 0 or y = 0, Proposition 1 implies the pathogen load will
tend to zero while the single present antibody population is increasing. Viewed in the
phase plane of pathogen (x) and single antibody population (without loss of general-
ity, ), the orbits form arcs connecting initial antibody level, yy, with final antibody
level y*(yo) = lim;— o0 y(T; yo) > Yo, as x increases to peak and decays to zero.
When increasing initial antibody level, yg, in order for the peak viral load to increase,
solutions would have to cross violating flow property of solutions. Thus peak viral
load can then only be a decreasing function of initial antibody load in this case. O

Proposition 2 implies that the presence of both cross-reactive and specific antibodies
within infection are necessary to produce the ADE phenomenon of severe infection
for intermediate level of pre-existing antibodies. The full model (1) with both antibody
types produces the unimodal curve for infection severity versus initial antibody load
(Fig. 1c), similar to data from recent epidemiological studies. Observe in Fig. 1d, the
“crossing” of two solution projections on the x y-plane when both antibody components
¥, z are present and yy is varied. In contrast, Proposition 2 states that peak viral load
cannot increase with yp when z = 0. Moreover sufficient conditions to generate the
unimodal pattern are dominance of (cross-reactive) antibody enhanced viral infection
rate at low concentrations (controlled by A1) switching to dominance of neutralization
at higher concentrations (controlled by &), consistent with the observed mechanisms
responsible for ADE in experiments (Dejnirattisai et al. 2010).
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Fig.2 Schematic diagram of multi-scale Dengue model (4) viewed through evolving host antibody level

2.2 Between-host model and linking scales

Here we detail our antibody structured vector-host epidemiological model which
links to the within-host model, tracking evolving antibody levels as illustrated in Fig.
2. Lets(t, y), ix(t, y, yo), re(t, y), ikj (¢, ¥, yo), rj(f, y) be the density with respect
to (cross-reactive) antibody level y (and initial antibody level yy at time of infec-
tion) at time ¢, of susceptible, primary strain-k infected, primary strain-k infection
recovered, secondary strain-j infected hosts, and secondary infected recovered indi-
viduals, respectively. Furthermore consider S, (¢), I, (¢) as the number of susceptible
and infected vectors, respectively. Vectors are the only mechanism transmitting the
disease to susceptible hosts. The host compartments structured by antibody levels, y,
can be integrated over y (and yg in the case of infected classes) in order to obtain the
number of individuals in each compartment. For example, the number of susceptible
individuals is given by S(¢) = fooo s(t, y)dy and the number of individuals infected
by strain k is fooo f;o ix(t,y, vo)dy dyy.

We connect the epidemiological variables to the within-host model (1) through
partial differential equations and boundary conditions describing coupled dynamics
of population densities and antibodies through time and infections (see Fig. 2 and sys-
tem (4) below). In particular, we include first order hyperbolic PDEs for host variables
ix(t, y,y0), ixj(t, y, yo), and ri(z, y) with transport rates gx(y, yo), gkj (¥, yo), and
wk (¥, yo) quantifying antibody change through primary, secondary infection, and wan-
ing, respectively. The goal is to track and determine effect of evolving (cross-reactive)
antibody levels in the entire host population. Thus we consider host compartments
ik, ikj, rx as a function of within-host variable y [and yg for setting initial antibody
level in within-host infection model (1)]. Note that the epidemiological variables can
be recast to depend additionally on within-host viral load x and host specific antibodies
z (see Remark 1), although having initial pathogen load x¢ depend on infector viral
load as in Gandolfi et al. (2015), Gulbudak (2019) would introduce more complexity.
For simplicity xo and zo are assumed to be fixed in the within-host component (1)
of our multi-scale model. Epidemiological rates, including transmission and recovery
rate, are formulated as functions of y and yy (which also accounts for influence of
within-host variables x and z) in system (4) below, and will be detailed further in
following paragraphs.

The epidemiological dynamics are given by the following vector—host system:
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I, y) _ B o
o AQy) —s(t,y) kz;ﬂv WIF@) — ps(e, y)
i (2, y, 9
Zk(taty yo) (g (y, yoé))zyk(t Y. 30) _ O 4 i 330

org(t,y) it y))
ot ay

=/J/k(yvyo)ik(l,y,yo)dyo—Wk(l,y)
0
— B e, WL ()

digj(t, v, yo) 8(gk,(y Yo)ikj(t, y, yo))

— (v (v, yo) + ) ixj (. v, Yo)

at ay
orij(t.y) BNt y) [
rij T,y ok (y)rij L,y . .
]at - : ay] Z/ij(}’»)’O)ij(tay,)’O)d}’O—lU’kj(tay)’ k#j,
0
2 o0 o0
das, .
o= M= S [ 2 [ | Bty y0)i(t, v, o) dy dyo
k=17 Yo
2 o0
+) //ﬂk,(y YO)ikj (t, ¥, yo) dy dyo + tho
k,j=1
kot 0 Yo
oo o0
dIl’f
7 Bk (y, y0)ix(t, y, yo) dy dyo
0 Yo
Sv//ﬁjk(y,yo)i,/k(l,y,YO)dydyo—lef, 4)
Yo Yo

with the following boundary conditions

(50, Y0)ik (1, yo, y0) = BE(yo)s(t, yo) IX (1),
wr(Ye)ri(t, ye) = yli)rgo wr(Y)ri(t,y) =0,

2k (50, Y0)ik; (£, Y0, Y0) = B (vo)ri(t, yo) I (1),
@i (Ye, )T, ye,2) = ylljgo oM (t,y) =0, k# j, ©)

and the following initial conditions

5(0.y0) = 50(30). Yo = s = 0, k(0. y.y0) = i{(y.0). ¥ = ¥o = Vs
0, 9) =r{(y), ¥ =ye =0, i (0., y0) =if;(y.50), ¥ = y0 = ye,
g0, y) =r (), y=ye =0, $,00) =8, L,(0)=1I. (6)
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Table 2 Definitions of the between-host model variables

Variable Description

s(t,y) Density of susceptible hosts at time ¢ with (cross-reactive) antibody level y

ir(t,y, y0) Density of primary strain-k infected hosts at time ¢ with antibody level y
and pre-existent antibody level yq

ri(t,y) Density of strain-k recovered hosts at time ¢ with antibody level y

irj(t, v, y0) Density of secondary strain-j infected hosts at time ¢ with antibody level y
and pre-existent antibody level yg

Sv(t) Number of susceptible vectors at time ¢

I (1) Number of infected vectors at time 7

The host initial conditions are assumed to be non-negative (Lesbesgue) integrable
functions, i.e. in L 1+, on their domains specified above, and vector initial conditions
are non-negative, i.e. SS , 13 € R.. The parameters A(y) and A, denote the host and
vector recruitment rates, and p and p,, represents the host and vector natural death rates,
respectively. The vector to host transmission rate may depend on the host antibody
level, so in general we have this rate as ,35 (y). We assume A(y) and ,B’v‘ (y) are bounded,
measurable non-negative functions, i.e. in LS:’(O, 00). The other parameter functions
linking antibody levels y and yy to epidemiological quantities will be detailed in
following paragraphs. First note that assumptions may be relaxed at times to allow for
point measure distributions, e.g. all susceptible individuals have the same initial naive
amount of cross-reactive antibodies, ys, so that A(y) = Ad8(yy), so(y) = Sod(ys)
where §(y) is the Dirac delta measure at y, and A is constant. In this case, we can
consider an ODE for S(¢) := fooo s(t, y)6(ys)dy = s(t, ys). Also, we remark that the
secondary recovered component, r¢;, decouples from the rest of the system (Tables 2,
3,4).

The functions gx(y, yo) and gi;(y, yo) represent the memory antibody concen-
tration growth rates corresponding to primary infection with strain k and secondary
infection by strain j, respectively. They can be formally defined as follows. Con-
sider the solution to the within-host system (1) with parameters corresponding to the
particular infection type (strain and primary/secondary). Note that within the general
within-host model (1), parameters may differ between strain and whether it is pri-
mary or secondary infection. Given the solution x(7) := x(t; xo, Yo, 20), ¥(t) =
y(t; X0, Y0, 20), 2(t) = z(7; X0, Y0, 20), define inverse map T = t(y; yo) corre-
sponding to time since infection, noting that y(7; yo) is strictly increasing function
of v for each yg > 0 (holding xo, zo fixed). For primary or secondary infec-
tion, we assume fixed initial concentration of pathogen x( and fixed initial specific
naive (memory) specific antibody concentration of zg > 0. The initial cross-
reactive antibody concentration, yp = y, is given by the structuring variable of
the susceptible host which becomes infected, s(¢, y), in the case of primary infec-
tion. Then g (y, yo) = g(x(t; xo, Y, z0), y(T; x0, ¥, 20), 2(T; X0, ¥, 20))) where g
is the second component of the vector field in the within-host system (1) with
parameters corresponding to primary infection by strain k. Similarly g¢;(y, yo) =
g(x(t; x0, ¥, 20), ¥(1; x0, ¥, 20), 2(T; X0, ¥, Z0)) With parameters corresponding to
secondary infection by strain j in system (1).
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Table 3 Definition of the between-host model parameters

Parameter Meaning Values (range)
A(y) Recruitment rate of susceptible hosts with antibody E(A) = 100 (variable
level y distribution centered
around y,; = 0.11)
Ay Susceptible vector recruitment rate 0.02
0.00025 y
ﬂ{j ) Transmission rate from k-strain infected vector to y=rp
susceptible hosts with antibody level y 0 Y=
Br (v, y0) Transmission rate from primary strain-k infected hosts, a

with antibody level y (and initial antibody level y), to
susceptible vectors

Brj (v, y0) Transmission rate from secondary strain-j infected

hosts, with antibody level y (and initial antibody level
Y0), to susceptible vectors

(Y, Y0) Recovery rate of primary strain-k infected hosts, with a
antibody level y (and initial antibody level yg)

7kj (¥, y0) Recovery rate of secondary strain-j infected hosts, with a
antibody level y (and initial antibody level yg)

gt (v, yo) Antibody growth rate [% in (1)] during primary a
infection

8kj (¥, y0) Antibody growth rate [Z—“{V in (1)] during secondary a
infection

wi () (Cross-reactive) antibody waning rate after primary a
infection

2316)) (Cross-reactive) antibody waning rate after secondary a
infection

n Host natural death rate 1/(10 x 365), 1/(55 x

365)
o Vector natural death rate 1/20

4See Tables 1 and 4, along with linking functions (8), (8), and (11)

Multiple studies have shown that following primary infection, individuals have a
temporary period of immunity to different serotypes induced by cross-reactive anti-
bodies primed by the primary infecting serotype. This immunity can be generated in
our within-host models via the rise of antibody concentration during primary infec-
tion to levels sufficient for inhibition of secondary infection. However, in reality the
immunity can wane through time allowing for secondary infection by serotypes dis-
tinct from the primary strain, potentially manifesting in dengue hemorrhagic fever
caused by ADE at intermediate levels of cross-reactive antibody. Note that although
the antibody level wanes through time, recovered individuals remain immune to the
primary infecting strain, thus the fotal antibody levels (in particular specific antibod-
ies) stay above some critical level for strain-specific immunity. With these features in
mind, we include a drift term for waning antibody level. Suppose that antibody levels
change according to y = —wy(y), where wy > 0 is the rate of antibody waning after
recovery from primary infection by strain k. We assume that wy(y) — Oas y — y,
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Fig.3 a Transmission rate, B¢ (t(y, yp)), and probability of exiting infectious period (through recovery or
death), given by 1 — my(7(y, yp)), as functions of time since infection T = t(y, yg). b Infection severity
(as shown in Fig. 1c) and host-vector force of infection F (o) as functions of pre-existent antibody level
yo- The parameters utilized for the within-host model (1) are the same as Fig. 1 with yg = 0.11 for a. For
the linking functions, B(z(y, o)) and y (t(y, yo)), we utilize (11) with ¢ = 0.001 and C;, = 135 (based
on Nguyen et al. 2013), and (8) with p = v = 10, respectively

so antibody levels stay above some y. > 0, as studies show that antibodies do not
wane completely. Similar assumptions are made for individuals recovered from sec-
ondary infection, however since they have permanent immunity to both strains, the
rij equation is decoupled from the system. A specific example, supported by a study
of waning IgG (Antia et al. 2018), is exponential decay of memory antibodies, above
the critical level y.:

we(y) =E(y — ye),  sothat y(r) = (yo — ye)e 5T + y. (7)

This exponential rate form is utilized in between primary and secondary infection
in Fig. 1b with & and y, calibrated to produce the displayed waning antibody level in
the characteristic period of 2 years corresponding to loss of cross-immunity (Reich
et al. 2013).

On the host population scale, the preexistent cross-reactive antibody level, yy,
can vary according to the distribution A(yp), leading to variable within-host pri-
mary infection dynamics in the population. The recovery and waning process creates
more heterogeneity in antibody level among the host population, leading to variable
responses to secondary exposure. In order to formulate the recovery rate, first note
that Dengue is an acute infection with an approximate triangular viral load trajectory
in log scale, suggested by both data and our within-host model. In addition, recovery
from primary infection induces lifelong immunity to the primary infecting serotype.
With these features in mind, we consider a few possible recovery rate forms. First,
we assume the recovery rate increases as viral load slope becomes negative and the
viral load becomes small. The second rate form specifies that viral load should be
decreasing, i.e. viral load slope becomes negative, which is a necessary condition for
protective immunity against the same strain. Last, we suppose that recovery occurs
at a fixed level of antibody. In particular, we give the following three examples of
recovery rates;
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Table 4 Description of linking parameters in (8), (8), and (11)

Parameter Description Value
v Max host-vector transmission rate 0.0012
C Host-vector transmission saturation constant 1352

P Host recovery shape parameter for viral load 10

v Host recovery shape parameter for viral load slope 10

£ Antibody waning rate 0.002b
e Antibody lower bound 0.02°

4Chosen to match data in Nguyen et al. (2013)
bCorresponds to approximately 2 years before recovered primary are susceptible to severe secondary infec-
tion

() yx(z(y, yo)) = e~ (Pr@+vogx()) (8)
(i) ye(t (v, y0)) = ve PO 4 0y <0y, )
@ii) v (y, y0) = 8(y — y*(0)), (10)

where p, v are factors determining the distribution of recovered hosts with respect
to infection dynamics and fi(t) = fr(x(7), y(7), z(7)) is the pathogen growth rate.
For (ii), note that y is zero prior to the critical time when the pathogen begins to
decrease (when fi(tr) = 0). For (iii), y* corresponds to a constant antibody level
dependent on initial conditions at which infected hosts recover. Note that this case
covers the situation where the virus must decline below a fixed threshold, x*, which
can be related to y* via the inverse map. Also for (iii), the infectilous period for strain-k

infected hosts with initial level yg is given by T (y0) = —=5 .
5o 0 gk(y.y0)dy

The host to vector transmission rate also depends upon the within-host infection
dynamics. Data suggest that the probability of an mosquito getting infecting by a bite
from an infected individual is a Holling type III function of the pathogen load at a
given time-since-infection t (Handel and Rohani 2015; Nguyen et al. 2013; Tuncer
et al. 2016). Thus, the form of host to vector transmission rate utilized is as follows;

(x(t(y, yo))?

CZ + (X(‘L'(y’ yo)))z’ E € {17 2, 12, 21} (11)

Be(y,yo) =¥

where Cy, and i are half saturation and transmission constants. We utilize data of
DENV-1 from Nguyen et al. (2013) in order to parameterize the half-saturation con-
stant C := Cy. In particular, although we do not concern about the scale of viral load
in our simulations (e.g. Fig. 1a), C is chosen so that the ratio of peak viral load and
viral load causing 50% infectiousness does match the data in Nguyen et al. (2013).
Both the transmission rate, B¢ (7 (v, yo)), and probability of exiting infectious period
(through recovery or death), given by 1 — ¢ (7 (y, yo)) [defined later by formula (13)],
are simulated in Fig. 3a.

Remark 1 Finally, we remark that the host population can be equivalently structured
by both antibody variables y and z, along with viral load x for infected components.
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Then, for example, the following equation for 1~'k = fk (t,x,v,z, X0, Y0, 20) would
appear:

dik N A( fiix) N d(gkix) N I(hei)

o ™ by PP —(Yk + Wik
(fi (X0, Y0, 205 X0, Y05 20) + &k () + A ())ik (£, X0, Y0, 20, X0, Y0, 20)
= BE(x0, yo. 20)s(t, yo. 20) IF (1) (12)

In such a model, y might be interpreted as antibodies specific to strain 1 and z as
antibodies specific to strain 2. In this way, the model affords flexibility in terms of how
one defines specific versus non-specific antibodies. While tracking multiple antibody
variables may seem to complicate matters, observe that there is a 1-1 relationship
between y and z, where the additional variable z is mapped onto y via the inverse
map. Thus we can utilize our original system (4) (with additional “static” variable
zo) and simply calculate z(y) for each cohort. Note also that the infection-age 7 is in
1-1 relationship with y, therefore we can transform the system to an age-structured
model as done in Gandolfi et al. (2015). However since we are interested in tracking
antibody level in host population, we only pursue this direction when it can be advan-
tageous for numerical simulations in the special case when susceptible antibody level
(A(y), so(y)) is a Dirac point measure distribution (see Sect. 5) .

3 Analysis of between-host model

The aims of this paper are multi-scale model formulation, and equilibrium, linearized
stability and numerical analysis, with the goal of capturing Dengue ADE across scales.
We do not delve into establishing existence, uniqueness, regularity and positivity of
solutions of (4). However, in a sequel to this paper, we will analyze the uniform
persistence of solutions, which will require rigorous proof of model well-posedness.
Thus we reserve such questions addressing existence, regularity and global properties
of solutions for our follow-up study. We do remark here that use of abstract semigroup
theory (Thieme 1990) or transformation to an age-structured model as noted in Remark
1 combined with fixed point techniques applied to an integral form of the system, as
in Browne and Pilyugin (2013), can yield existence and uniqueness results. In both
approaches, assuming antibody-dependent rates, e.g. A(y), to be L5°(0, co) should
be sufficient for finding unique solutions in an appropriate product space consisting
of LL(O, oo) components of non-negative Lebesgue functions defined on (0, 00).
The main challenge, different from most structured population models but similar
to Barbarossa and Rost (2015), is to properly control the evolution of the recovered
distributions, r (¢, y), through waning (decreasing) antibody level y at rates wi(y).
We conjecture that the proportional waning rate (exponential decay of y with lower
bound y,), given by (7), will ensure r¢ (¢, y) remains in Llr(yc, 00), as we show for the
equilibrium solutions in Sect. 5. Restriction to Sobolev spaces can further strengthen
linearized stability results obtained later in this current section. Also, while considering
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the more general setting of measures (Carrillo et al. 2012) can allow for Dirac delta
measures for certain rates and components, it may be easier to transform the model to
equivalent ordinary differential or delay equations in the specific examples where we
utilize Dirac delta point measures.

To begin our analysis, define the total vector population, N,(t) = S,(t) +
Z;%: | I¥(1), and total host population as

oo 2 o0 o0 oo
Np(r) = /s(t,y)der > //ik(t,y,yo)dydyo+/rk(t,y)dy
k,j=1
0 k];éj 0 0

oo o0
+//ikj(t,y,yo)dydyo
0 Yo

Proposition 3 Solutions to the system (4) remain bounded in forward time, and more-
over

= A(y)d A
lim sup N, (1) = M, lim sup N, () = —.

t—00 n t—00 v

Proof Consider the differential equation satisfied by Ny, (¢) derived from (4):

ANy
dt
= [ A0y - umi = [ Y phortway
0 0 k
o0 8 ’ X 7 ’
[ (— (80> 03’;(’ y. o)) _(M"‘Vk(y’yo)ik(l»ya)’O))) dydyo
k

<3(wk(y)rk(f, y) n

o0
3 / Ye(¥, Y0)ik(t, y, yo)dyo — ure(t, y)
y 0

—Bl (e, I 1)) dy

o0 o0 8 ' ’ - ’ ’
+Z// (— (81 Y0)ikj 1, ¥ yO))—(ykj(y,yo)vLu)) i (1, y, yo)dydyo

0
J#k0 Yo Y
[ (0@ y) [
ki (Y)rgi(t,y .
+Z/< ! E)yj +/0 ij(y,yo)tkj(t,y,yo)dyo—ij(f»Y))dy
J#k
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Applying the fundamental theorem of calculus, along with the boundary conditions of
(4) (noting for example that wi (y)rr (¢, y) = 0 for y < y. > 0 and all the populations
decay to zero as y — 00), several cancellations occur and we simply obtain

e¢]

dNp (1)
pTa A(y)dy — uNp(2).
t
0
Similar conclusion holds for N, (¢) and the result follows. O

3.1 Reproduction number and dynamical properties of the nested systems

Define the following quantities giving the probability of host recovery and host-vector
force of infection as functions of antibody levels:

o0

vyt 7k (Y, Yo)
T (y, yo) = e 0 w@ Y T (yp) :/ — By, yo)dy  (13)
gk (y, y0)

Yo

Then the antibody level dependent basic reproduction number for each strain is given
by:

o0
N,
Ry = — / A(0) BE (y0) Fic(y0) dyo. (14)
My
Ay . . .
where N, = —. Note that host-vector force of infection Fi(yp) may not mimic

infection severi'%; measured by peak viral load within-host, as shown in Fig. 3b where
Fi(yo) achieves maximum levels for smaller magnitudes of pre-existent antibody level
yo than infection severity (due to decreasing infectious period associated with ADE).

The following proposition shows that the basic reproduction number RI(‘) is a thresh-
old for disease extinction (locally) and existence of an endemic equilibrium.

Proposition 4 If Rlé < 1, k = 1,2, then the DFE & is locally asymptotically stable.
If Rl(‘) > 1, there exists a single strain boundary equilibrium & and &y is unstable.

Proof For the single-strain equilibrium &, we derive the equilibrium equation for I l’f:

Ky A(yo) k
= . Fe(yo)d
N, — It Ofﬂf(ﬂ))ll’f By (Yo)Fi(yo) dyo

Let the right-hand side of the above equation be denoted F (I_f) and the left-hand side
G(I_l]f). Then G is increasing on [0, N,), approaching 400 as I_{f approaches N, from
the left, and F is decreasing on [0, N,). Note that F(0) > G(0) & ’Rl(‘) > 1. Thus
there exists a positive equilibrium value IX if and only if Rf > 1.
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Now for the stability of £, we will consider the linearized equation for deviations of
solutions: 5(z, y) = s(1, y) =5(y), ix(t, y, y0), 7k (t, y), 1k, ¥, yo), Su(t) = Sy (1) —
Sy, I 1’)‘ (1). After discarding higher order terms in (4), we obtain the following linearized
equations:

95(t. y)
ot

= —uS(t, ) =500 Y B0
k

dik(t, y, y0)  3(gk(y, yo)ik(t, ¥, ¥0))
+ fred
ot ay

(30, YOIk (2, Y0, ¥0) = BX ()5 () I¥ (1)
Or(t, y) — 9(wr (M7 (2, ¥))

— (i (3, 0) + W) ik (t, ¥, yo)

o0
=/ Y (¥, Y0)ik(t, y, yo)dyo — i (t, y)
0

at ay
ik (t, ¥, yo) L 0. Y0)ik; (t, ¥, ¥0)) _

: p : : — (ki (v, y0) + 1) ik (£, ¥, Y0),

t ay

i (t, y0, y0) =0 (15)
~ 2 oo o0
ds, - y
7 = S = N > Br(y. y0)ir(z, y, yo) dy dyo

k=170 y

o0 0
/ / Bri (v, 0)ik; (t, v, y0) dy dyo
0

2
2
Jz

k=19 yo
dIk ra
I //ﬁk(y Y0)ik(t, ¥, o) dy dyo
0 Yo
+/fﬁjk(y,yo)?'jk(t,y,yo)dydyo — Ik (16)

Yo Yo

We assume exponential form of the deviations of solutions from & (using sep-
aration of variables for the PDE’s), and thus insert the following variables into

the linearized system: s(t y) = s(y)e LI (t, s yo) = tk(y yo)e Skt y) =
Fr(y)et Lkt Yy, yo0) = l/k(y yo)eM | Sy(t) = Syet AR I keM  After some sim-

plification, we arrive at the following equations for A € C and Sy, Ivl, IU2 e R;:

2 o0
15, = =S, = N [ 32 [ BLowsooRcon e W

k=1 0

MK = —po ¥ 4 N, / BE 00550 XL (o) {1} (o (17)
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where @i (v, yo) = % Bk (¥, y0), L(yo) {-} (A) denotes Laplace transform (with

additional variable yg). The ff equation above yields the characteristic equation:

1=

Ny K
- = / BY(30) A(y0) L(y0) {o1} (W dyo := Wi (3) (18)
+ oy 0

Then ¥, (0) = R’g and limy o Y% (X)) = 0 for A € R. Thus we readily infer that
if R’(‘) > 1, then & is unstable since there exists eigenvalue A > 0 corresponding to
eigenvector with IAff > (. On the other hand suppose that R’é <1, k=1, 2. Suppose
by way of contradiction that there exists an eigenvalue with non-negative real part;
A =a+bi, a > 0. Cleary that can not happen if IAllj =0, k =1, 2, since in that case
A = —lyp. So assume IA{j > (. Then taking modulus of (18), we find that

1= (V)| <
|k()|_)»+

—/ﬁv 0) AL (o) {e1} Wdyo < Wi (0) = R < 1,

which gives a contradiction. O

In addition to existence of unique single strain equilibria, &, when Rg > 1, when ,85
is constant (does not depend on host antibody level yp), & can be explicitly found to
have the following positive components:

jk — Mok Rk _ 1 ’
U BE (e + fyT AG0) Fr (o) dyo) ( 0 )
= - A
SK=N, - IF, 5y = 1 BT
By, y0) = B (o) IF 0
gy, y0)’
_ [ tds _
F(y) = f e f (@, 0)ix(a, yo)dyoda. (19)

wi(y)
y 0

Next, we define the following host to vector “force of infection” quantities with
respect to primary and secondary infections, respectively:

oo
Gi = f AGO)Fi(yo)dyo,  if B constant, Gy = ﬁp;”kRks (20)
v
0

[e%e) oo Y0 o0
1 [ atwds (Y0, 2
Hij =/ /e" o /Vk(a,z)A(z)Mdzda
J @i (y0) . gk (Y0, 2)
Yo
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o0
ki (¥, Yo)

/ Bii (v, y0) 22200 4y, @1
gk (v, yo)

Yo

Note that in the absence of waning, i.e. wy = 0, then 7, (y) is proportional to the prob-
ability density corresponding to the antibody concentration after primary infection:

Fely) = / Vk(y’}’OZk()’vYO) dy

ij :// Yk (Y0, Z)A 7k (Y0, Z)deﬁ (v, k](y yo) dydyy. (22)
iz gk(yo, g ki (¥s Yo)

The invasion reproduction number for strain j invading strain k& is the following:

ki (¥, Yo)

(7. 30) dydyo  (23)
8kj

l o0
RI +— - [ slowron f By 30) L2
0

Yo

Plugging in equilibrium value of 7 (y) to (23), for the case of constant vector to host
transmission rate ﬂ,’j , we obtain

Rj _ R() ﬂv,Bv (Rk ) »
inv Rk Rgﬂv +gk J

Theorem 1 Consider the case that ,Bk is constant (does not depend on host antibody
level yg). Let j, k € {1,2}, j # k and suppose that Rk > 1. IfRJ < 1, then 5{‘ is

mnv
locally asymptotically stable. If Rl’n > 1, then 5{‘ is unstable.

v

Proof Without loss of generality, let k = 1, j = 2. The linearized PDE system solved
with separation of variables, similar to (17) reduces to the following equations for
VS (CandSv,Il 2 e Ry

v v

o0
ASy = — |y + 1} / SBLFI(dy | S, (24)
0

=S [ [BEGOOI+500INLG0) o1} 0+ B2 G0V [ZLGo0) {2} ()] dyo

~I? (ﬂvﬁ()’o)ﬁ(yo) {o12} V) + By 72(y0) L(y0) {9021}(?»)> dyo

0\8 0\8
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o0

~

MY = i1 45, / BLG (o) I} + 50 INL (o) {e1) (1) dyo

0
00

+ 12 / BLr2(yo) L (o) {21} (W) dyo + I} / S BLFI()dy
0 0

o0
M2 =, 1245, f B25(30) 2L (30) (92} (1) dyo
0

+1I7 / BZ71 (y0) L(y0) {12} (1) dyo (25)
0

where @i (v, yo) = 2:858;

additional variable yg), and

B (v, o), L(yo) {-} (1) denotes Laplace transform (with

. A(y)
Sy) = 171 Kk’
)‘+H“+:3v]v + Zkﬂvlv
oo X A+u+ﬁ$ivld 00
. 1 o) 20\ 72
ra(y) = e Bys(yo) Iy L(yo) {g2} (W)dyoda.
wi (y) ,
)7

Assume that ff > (. Upon plugging in equilibrium values, we use that

oy A(Yo) _ Ny A(yo)
BL[sS AWFi(y)dy Rin

5(00)Sy =

The 13 equation (25) becomes

| N, ) 0o )
1=k 7 /ﬂf/\()’o)ﬁ(yo) {g2} ) d)’0+/ BaF1(y0)L(yo) {@12} (V) dyo
T | Ro 0 0

(26)

This yields the characteristic equation 1 = G(A) for an eigenvalue A where G(}) is
the right hand side of (26). Note G (0) = R2 andlim;_ oo G(A) = Ofor A € R. Thus

v
we readily infer that if R%m) > 1, then 511 is unstable since there exists eigenvalue

A > 0 corresponding to eigenvector with (3‘,,, I! iz) = (0,0, 1).

vV
Now consider the case where R%nv < 1. We claim that 511 is locally asymptotically

stable. First consider the case f3 > 0. Suppose by way of contradiction that there
exists an eigenvalue with non-negative real part; A = a + bi, a > 0. Then taking
modulus of (26), we find that
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I=1GM)]
LN T 2 [ 2
< — | = /ﬂUA(yo)Iﬁ(yo) {wz}(K)ldYO-i-/ Byri (o) IL(yo) {12} (W) [ dyo
My ROI’L g 0

<GO)=R?> <1,

nv

which gives a contradiction.

Next consider the case where IAv2 = 0. This also implies that 7, = 0. Notice that all of
terms referring to strain 2 are now zero in (24), thus we drop the superscript referring to
strain 1. Adding two vector equations in (24), we obtain )L(S'v + fv) = —/LU(S’U + fv).
Therefore if S'v #= —iv, then A = —u,. So consider the case S'v = —fv. Suppose
by way of contradiction that there exists an eigenvalue with non-negative real part;
A = a + bi, a > 0. Then after substitution and cancellation involving the equations
of (24), we obtain

A+m+mhffwmww o+ Body + 1)
0

0
7 vsv Is L d
ot Bl + 1l 13 Ofs(y) O {e} W)dy)]
=1< _ -
arn o+ 1 + FBuST|
Bu [ F(»)5(y)Sydy
: 0 - al <1

Mo +ff(y)§(y)dyﬂvl_v Mo +f-7:(y)§()’)dyﬂvl_v
0 0

This yields a contradiction. O

3.2 Coexistence equilibrium

The complexity of the model challenges explicit formulation and conditions for a
coexistence equilibrium. However, general equations of two variables for coexistence
equilibria can be derived, which reduced to a single variable equation in the case of
symmetric strains. Furthermore, when there is no waning (w = 0), a quadratic equation
determines coexistence equilibria. Thus we first consider the case of no waning.
Case: no waning

Recall the host to vector force of infection quantities Gx and Hy; given by (20) and
(22). Let Xx = ByI¥. Then the following equations for %, k = 1,2 can be derived
for a coexistence equilibrium (denoted by &£.):
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ﬂ:(fﬂ“ﬁw _g’“_)<zvv—f—‘—f—2),j#k, @7

Bk w+xj  p+x+x Bl B?
XH g xH g
LM 6 _Ie, 6 os)
wHxr putxr+x2 pwtx2 ptxr+x
Indeed obtain the following equations for £, from the model:
ZXk, )= —AY
M+Z X
- _ _k(»O) _ o _m(y, yo)
ir(y, y0) =S(yo)ka, re(y) = / )/k(y,yo)s(yo)L
gk(y, yo0) M+xj 0 gk(y, yo0)
- 7Tk (¥ Y0)
ik (v, y0) = Boik (o) I ===,
g (v, y0)’
Mo Xk
ok — / Felon)5(50)dyo + 5o~ / Fir o) (o) dyo.
v
jz X x
— = <Nv -7 ) /fk()’o)A(yo) dyo
By By
(e ~+ X1 + Xx2)X; ~
+—.j/fjk(YO)Sj(YO)dyo ,
W+ X
0
where
[ 700, y0) [ 70, 2)
ki (¥, Yo . 7k (Y0, 2
Fij(vo) = / = B (v, yo) dy, Si(yo) = / ——2 A2y (o, 2) dz.
8kj (y, yo0) gk (0, 2)
0

The Egs. (27) and (28) follow from the definition of Gy and Hy;.

Under general parameters, the equations for the coexistence equilibrium yield
a quadratic equation for X, in terms of x|, and therefore it does not reduce to
a polynomial equation in the single variable x;. Thus, for tractability, we con-
sider the case of identical strains and constant vector to host transmission rate, i.e.
By = Bl = B2,G = Gi = Go, H = Hi2 = Hai. Then the Eq. (28) simplifies to
(x2 — x1)(n + X1 + x2) = 0, which implies that X1 = x3. From (27), we obtain the
following quadratic equation for X = x; = ,BU

2p0 (G +H) + po) X2 + [ot Bray +2G) — Ayfu(G + H)1 x
+ (p)* (1 =Rp) =0 (29)

We cannot rule out the existence two positive (subthreshold) coexistence equilibria
when Rg (= maxk(R )) < 1, known as backward bifurcation (Gulbudak and
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Martcheva 2013). However, we can preclude existence of subthreshold equilibria if the
second (linear) coefficient of the quadratic (29) is positive. For instance, the following
result follows from Proposition 4 and Eq. (29):

Proposition 5 Consider the case of symmetric strains, constant vector—host transmis-
sion and no waning, i.e. Ro = Ry, ,BI,j (y) = Byand wr =0, k = 1, 2. Furthermore,
assume that H < G and A, By < 2uyp. If Ry < 1, then there are no endemic equi-
libria. If Ro > 1, then (in addition to existence of single-strain equilibria &) there
exists a unique coexistence equilibrium, &,.

Note that the condition H < G in the hypothesis can be interpreted as “secondary”
force of infection is less than primary.

A coexistence equilibrium under the condition of symmetric strains, denoted by &,
has the following components:

¥ =%/B,,  where X is root of (29),

= & A(y) - _ (Y, Y0)
Sk =N, — I, = L ¥0) = Bui (yo) Ik K Y0
v v S PET SN ir(y, y0) = Bus(yo) I, 200
Fe(y) = 7Vk(% yo)l_'k‘(_y., yo)d 7
, w4+ By I
(v y0) = o (o) 1 L0220, (30)
gk (¥, y0)

where the quantities Gy and Hy;, given by (20) and (22), are identical for strains k, j.
Case: waning

In the case of continuous waning, there is no analytical solution for the coexistence

equilibria. Indeed, even for symmetric strains, the equations become transcendental,

shown below:

M+x

RO) = o / e / Vi (a, yo)ix (a, yo)dyoda

]

1 f s s
5= S, /J—'k(yo)s(yo) dyo + Sy%; / o0 / © Fix(yo)sj(a)dadyo
v 0 wj
A= (-5 7) ( :
— =|Ny— — — —= e ——
Bk Bl B2 + X1+ X
[ Fiulo) [ )
+)Ej/ CUJj()’O) m s](a)dadyo . k# ] (3D
0
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In this case, we are also not able to prove that a coexistence equilibrium, &, of
symmetric strains must have equal components (x| = Xx3), as shown when there is no
waning. The above equations do allow for numerical approximation of roots, which
we will perform for examples considered in Sect. 5 in the presence of waning.

4 Numerical scheme

We develop a finite difference scheme combined with a ODE solver in MatLab in
order to numerically solve the coupled immuno-epidemiological model. To simulate
the coupled system, first consider the within-host model ODE for relevant ranges of
pre-existent antibody levels of susceptible hosts, yi < yo < yum,, and time since
infection 0 < t < t,,4. Here yop supplies the variable initial condition in within-
host system (1), where other initial conditions xg, z¢g are fixed. Note that the distinct
strains may have different parameter values in (1), in which case the ODE simula-
tions must be conducted for each strain. The mesh chosen for the interval [y, ya,]
can have equal or variable step size with My mesh-points. The output of the ODE
solver is the solution vector, denoted here (¢ (tx; ym)),ivi 1» Where (rk),]{vi1 is a partition
of 0 < 1 < 144 for each y,,, m = 1, ..., My. We utilize MatLab solver ODE45,
which adaptively chooses the time partition and interpolates at time points (tk),ivil.
Consider the state variable y(t; y,,) giving antibody level y during primary infec-
tion. It is possible to consider the partitions (y(tx; ym)),ivil foreachm =1, ..., M.
For small M), for instance the case of susceptible point distribution (M = 1), this
method of partitioning increases speed and is equivalent to transforming the infected
host antibody level, y, to time since infection t, similar to the approach in Gan-
dolfi et al. (2015). However for My > 1, the number of stored y meshpoints will
rapidly increase with My, and thus it is advantageous to utilize a “global” partition
(yg)é”: | which contains as a sub-partition the initial mesh yi, ..., yy, and covers
all necessary stored antibody variables. Then we can interpolate the pathogen and
specific antibody, x and z, as functions of y onto this global mesh (y/g)éw: 1» in order
to compute linking functions y (y, yo), B(y, Y0), gk (y, yo) at each (reachable) grid
point (y¢, ym), | <€ < M,1 < m < My. The same logic is utilized for secondary
infection, along with numerical integration for reproduction numbers and equilibria
values.

For the epidemiological model, we approximate solutions to the antibody-level
structured PDE vector—host model with the stored within-host calculations. Let
0 <t < T be the time interval of interest and {tn}rll\’:1 be a partition of 0 < ¢t < T
with fixed time step At = T /N. In the following, we denote the time iteration, n,
in the superscript of state variables and the antibody levels as function arguments,
e.g. If’”, i,’:“(yg, vym). For clarity, we utilize antibody variables (y¢, y,) in func-
tion arguments, but note that the outer state variables and linking parameters are
computed at (reachable) grid points in within-host part of numerical scheme. The

numerical algorithm for approximating solutions at times t,, n = 1,..., N, is the
following:
My M
TP =D BOests Yt Dif Gegts ym)AyeAym,
m=1/¢=1
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M M

= DO BikGigts ves )i Gt Yo 1) Ay Ay,
i=1e=1

g+l S+ Ay At
v - k]
14+ At | puy + Z I”+I;’k
j_
K
n n+1 n n
e _ T A (z +73)
v 14+ Aty
S'H_l(y Y= 5" (ym) + At A(ym)
m) — ’
1+ At (Z BE ) IR u)
BE (ym)
i iy ym) = 2 gl gty

k(YmaYm)
n+1
MGt 1) + A gk ym)ip T (e ym)

1+ At (7&(”[] 2 4 (et ym) -HL)

1
lk+ Ve+1s Ym) =

s

r(m—e)+ At (”"(yMM_” 2 (- z+1)+2 Yk Om—e yip T ()‘M—e,yi)Ayi)

4
n+l i=1

m-0) =

)

vt 2t
1+At<7wk2x4$' +B2 M-l +u)

k
By (¥e) fhntl n+l

gike o) ¥ o,

1
" e, yo) =

A 4l
i Oty Yer) + Apg ki YOI (i ve)
Ay;

s

it
l']’,j i1, y0) =
1+ At

+ vikOit1, yo) + u)
where i, £, m denote index for discretized antibody level during secondary infec-
tion, during and after recovery of primary infection, and before primary infection,
respectively, with 1 <i <M, 1 <€ < M, 1 <m < My being the ranges of allowed
antibody level, and j, k denote distinct strains. Note that we utilize an implicit-explicit
approximation mixture in the above finite difference scheme. In particular, the cal-
culation procedure allows for implicit terms involving components that have already
been updated, thereby gaining advantages of an implicit form without having to pay
the computational price of matrix inversion (which is common with implicit schemes).
We remark that an explicit-implicit mixture approach has been used for the approx-
imation of size-structured models (Ackleh et al. 2014). In the appendix, we present
several numerical tests of rates of convergence for the algorithm described here.
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5 Epidemiological implications

In this section, we consider examples and potential implications for vaccination, uti-
lizing formulas established in Sect. 3 and the numerical scheme developed in Sect. 4.
First, we point out an important severity measure for dengue; the prevalence of DHF.
Define the measure of DHF in the population of strain-k infected individuals by the
following:

Di(t) = f/ (ik(t, y, yo) + ik (t. y. y0)) dy dyo
{0 y0)eRT x (T (y.30)> Ve

Ve koo e it oo)

=/ / zk(t,y,yo)dydyo+/. / ijk(t, y, yo) dy dyo,
~k ~ Jk
Yy y Y Vi

£ (o) 7D ow

(32)
where the constant V.. is a threshold critical lower bound such that if viral load during
infection, x(7), is above V,, the patient will experience DHF. Here t = 7(y, yp) in
the first equation above refers to the inverse map formulated in Sect. 2.2. Assume
that peak viral load as a function of initial antibody level, x5 (yp), is unimodal with
single maximum rising above V. in the range of “reachable” host antibody titres, as
for parameters guaranteed to exist by Proposition 2 and illustrated in our numerical
simulations. The latter equation above reflects that this will translate into a particular
range of antibody level and intermediate “risk window” of pre-existent antibody level
which will precipitate DHF upon primary or secondary strain-k infection. A related
measure which can be useful is the incidence of individuals who will experience DHF
(by strain-k) at time ¢ predicated on their initial antibody level at time of infection:

i st
BrG0s .y dyo+ | ﬁ,ﬁ‘(yo)r,-(t,yo)dyo). (33)
y

1

Ti(1) = LIy(1) (

3t
Note that the antibody level bounds corresponding to the DHF risk windows depend
on the type of infection since the within-host dynamics may differ between primary
and secondary infections, along with infecting strain. In the following examples, we
perform numerical simulations utilizing the derived equilibria formulae and numerical
scheme for solutions of the model. In order to simplify the model for numerical
validation, we assume symmetric strains. We fix parameter values, except for waning
rate (p(y)), vector—host transmission rate (8,(y)) and susceptible recruitment rate
(A(»)), in order to compare simulations for cases with or without waning, temporary
cross-immunity, and a distribution of susceptible antibody level.

5.1 No waning
In the first example, we consider the case where there is no waning, i.e. wi(y) =

0. Although cross-reactive antibody levels are thought to decline after primary, the
absence of waning may be a reasonable approximation for Dengue endemic regions.
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Fig.4 Numerical simulations for the case of no waning (a, ¢, e), and for case of waning and temporary cross-
immunity (b, d, f). Numbers of infected vectors (a, b) and hosts (c, d) are plotted versus time with equilibria
values (black). Recovered and secondary infected distributions as function of y and yg, respectively, are
graphed at a (large) simulation end time, along with calculated equilibria distributions (dashed lines) in e, f.
Here we utilize a point distribution for susceptible antibody level A(y) = AS8(ys), S(0, y) = Spd(ys), with
ys = 0.11, along with all other within-host and linking parameters as in Figs. 1 and 3. The demographic
parameters are A = 100, Ay = 0.02, u = 1/(10 x 365), uy = 1/20. The vector—host transmission
rate By(y) is constant with g, = 0.00025 in a, ¢, e and piecewise constant given by (36) with 8, =
0.00025, yp = 2in b, d, f. The waning rate in a, ¢, e is w(y) = 0 and is given by (7) with & = 0.002,
ye = 0.02. Additionally, we let the viral load threshold for infected individual to experience DHF in (32)
to be V. = 30, which generates the vertical dashed lines in e, f giving the antibody level window of DHF
risk

In particular, some studies have found antibody levels to be stable because of continual
exposure to Dengue providing boosting of immunity (Katzelnick et al. 2016). The
explicit inclusion of boosting through exposure to virus as in Barbarossa and Rost
(2015) would significantly complicate the model and is beyond the scope of the current
paper. Here, we assume constant vector—host transmission rate (8,(y) = fB,) and
susceptible point distribution, i.e. A(y) = Ad(ys), s(0, y) = Spé(ys). Observe Fig.
4a, ¢, e displaying simulations of time-dependent solutions of infected vectors and
hosts, and the final time distribution of recovered and secondary infected individuals
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with respect to antibody level y and yy, respectively. Calculations of equilibria are also
displayed, and note the long time for convergence, along with some numerical error.
In this case without waning, the vast majority of recovered individuals have a large
cross-reactive antibody level, whereby secondary exposure leads to mild infection.

5.2 Waning and temporary cross-immunity

For examples in this and the next section, we consider particular forms of waning,
wk(y) and antibody dependent vector-host transmission rate /3{5 (y), motivated by
epidemiological observations. We utilize the form of waning given wi(y) = &(y —
¥¢), which is consistent with a lower bound y. and exponential decline of antibodies
as formulated in Eq. (7). In this case, inserting (7) into (19), we find the (strain-k)
recovered equilibrium component

ﬁ_l o0 [o.@]
Fi(y) = % / (@—yo ¢ / ye(a, yo)ie(a. yo)dyoda,
y Ye
o0 o0 X0
with / Fe(y) = ﬁ / / Y (v, Y0)ik (. yo)dyody. (34)
Ye Ye O

Note the the total amount of recovered individuals obtained by the integration above
(34) is precisely the number at the equilibrium with no waning (22). In the instance
of recovery occurring at a constant level of antibody y, (10), we obtain

o]

_pyE] w [
R (y) = %(y* — 30 € f i (s Y0)dYo.- (35)
0

Observe that recovered individuals at the lower bound of antibody level satis-
fies 7x(yc) = 0 when pu > & (natural death rate greater than waning rate), and
rx(yc) = 400 when u < &, however the total amount of recovered individuals stays
finite by (34).

Furthermore, as mentioned previously, primary Dengue infection induces a period
of temporary cross-immunity. The simplest way to include this feature is to assume
that

0 y>y

, (36)
,35 Yy <JYp

i) = Bil{yey,) =

so that the vector to host transmission rate is a piecewise function where there exists
a threshold antibody level y, providing complete protection above it. In this case,
let ¢ := rk]l{ vy} and s; = rk]l{ y<yp}e denoting density of recovered individuals
with cross-immunity and susceptible to secondary infection, respectively. From (4),
we derive
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der(t,y) _ dx(Mek(t, ¥))
ot ay

Loy / vy, Y0)ik(t, y, yo)dyo — puri(t, y),
(37)

Isr(r,y)  O(wr(¥)si(t, y))
ot ay

y<>,,}/ V(s yo)ik (t, y, yo)dyo — pusi(t, y)

— BIDsi(t, (1),
Sk(t7 yp) = Ck(t7 yp)s
ok (Ye)sk(t, ye) = yli{go wr(y)er(t, y) = 0. (33)

Previous results requiring constant vector—host transmission ﬁ{f, in particular The-
orem 1, Proposition 5 and explicit equilibria formulas (19) and (30), can be extended
to this case of piecewise constant ﬂl]f (). To see this first note that for integrals in the
formulae for Ry, Rk p and equilibria, the upper limit of integration y, will appear
(in place of oo) wherever ,Bk (y) appears. Also for Rmv, 7k (y) can be replaced by
5k (y), which makes the arguments in proof of Theorem 1 work for this case of piece-
wise constant ,B,Ij (y). Furthermore for the symmetric coexistence equilibrium (30), the
recovered equation formulas will be altered as follows:

| o0 y Yp
ck(y) = feXP / P_ds fyk(a, yo)ik(a, yo)dyoda, y >y
wr(y) i (s) J
ﬂ I] Yp
_ + B}
5(y) = / pEPL ¢ / ye(a@. yo)ic(a. yo)dyoda
wk(y) i (s) !
wk(yp) o+ Bl
+ ck(yp) ex /—ds ,
i (y) Kp)e i (s)
Ip

where y <y, for the domain of s¢(y). The secondary vector-host force infection at
equilibrium then depends upon si (y). The component r¢(y) in boundary equilibrium
remains as is in (19) (with upper limit of integration y), as can be seen in the above

formula when removing secondary infection (I] = 0), where ry = cx + sx.

In numerical simulations, we first consider the case of susceptible point distribution
(A(y) = Ad(y5), SO, y) = Soé(ys)). We compute time dependent solutions from
initial conditions corresponding to outbreak initiation, which are shown in Fig. 4b,
d, f. Observe how waning and temporary cross-immunity shape the distribution of
recovered and secondary infected individuals with respect to y in this example, as
opposed to the previous case with constant vector—host transmission and no waning.
In particular, the waning allows for secondary infected cases in the window of antibody
level causing DHEF, resulting in around 2 DHF cases per time unit instead of zero in
previous case without waning. Note that since there is only one susceptible antibody
level, the variable step size partition of antibody level y (equivalent to transforming y
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Fig. 5 Equilibria recovered host density distribution (blue curve) and total secondary infected cases (red
curve) with respect to initial antibody size yy for distinct cases, when waning rate is constant &, the
transmission rate S, (y) is constant (describing temp. cross immunity), u > &, recovery rate is chosen as:
y(y, yo) = e P¥ (G5 | {fi(1)<0}> and susceptible antibody distribution §(y() is truncated normal. a Death
rate larger than waning rate (i > &) leads to recovered distribution 7 () to go to zero as y “\{ y¢, b on the
other hand if u < &, 7(y) goes to oo as y \{ y¢. Other parameters, besides &, y (-), u are same as in Fig. 6
(colour figure online)

to time-since-infection t with fixed step size in t) is advantageous for reducing error,
as described in Sect. 4. In contrast for the next simulation where A(y) is a distribution,
we utilize the fixed antibody level (Ay) step size partition combined with interpolation
of the within-host ODE solver output on to this partition (see Sect. 4).

5.3 Heterogeneity among susceptible antibody level

In this section, for the (initial) distribution of susceptible antibody level given by
A(y), we choose the symmetric truncated normal distribution with support on the
interval [y,, — &, y,, + o] (insert in Fig. 7a). First, in Fig. 5, we display calculations of
equilibrium recovered and secondary infected distributions for two different cases of
waning rates (§), u > & and u < & (u is host death rate), displaying different limiting
behavior as antibody level y approaches lower bound y.. Note that we analytically
derived this limit dichotomy in (35), and larger waning (i < &) corresponds to larger
accumulation of individuals in DHF risk window before 71 (y) — oo as y N\ yc in
this case.

Next we perform simulations utilizing the finite difference and multi-scale method
outlined in Sect. 4. The numerical solutions (shown in Fig. 6) are computationally
more expensive due to the distribution (with width 2¢) of susceptible antibody level.
Comparing to the previous case of susceptible point distribution at y,,, the number of
DHF cases increases to eventually around 8 per unit time, however this may partially
be due to the altered numerical algorithm which utilizes interpolation and fixed step
size Ay. Observe how the current and pre-existent antibody levels in recovered and
secondary infected populations, respectively, evolve with time after initial outbreak
in Fig. 6¢, d. In particular, individuals with pre-existent susceptible antibody levels
recover with a certain boosted antibody level offering temporary cross-immunity until
waning spreads recovered individuals’ antibody levels to intermediate levels at risk of
DHF with accumulation at smaller antibody titres for the chosen parameter regime,
resulting in secondary and DHF cases.
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Fig.6 Numerical simulations in the case of susceptible antibody distribution as symmetric truncated normal
having support on [y, — «, ym + o] (Fig. 7a) where y;; = 0.11 and @ = 0.03, along with initial conditions
Iv1 0) = 0.025, 13 (0) = 0.02 and other components starting at (disease-free equilibrium) &y (outbreak
scenario). a Total infected by strain k versus time; b secondary infected and (secondary) DHF cases versus
time; ¢ density of (strain 1) recovered individuals with respect to antibody level y, r{ (¢, y), evolving with
time f; d density of secondary infected individuals with pre-existent antibody level yg (imported from
population r1 (¢, yp) at time of infection) as function of ¢

For the last set of numerical simulations, we consider how shifting the mean anti-
body level in a naive susceptible population affects disease incidence, especially DHF
cases, upon introduction of both Dengue strains. In this way, we investigate how
population level antibody level can determine risk of severe dengue infection. In
particular, this can help explore the consequences of a Dengue vaccination boost-
ing cross-reactive antibody levels. As before, consider the distribution of susceptible
antibody level (given by A(y)) as the symmetric truncated normal distribution with
support on the interval [y,, — o, v, + «] (Fig. 7a). Fixing «, we vary the mean anti-
body level y,, and calculate reproductive numbers, along with (severe) DHF cases at
coexistence equilibrium &, and initial DHF transmission level.

Observe that R is unimodal with respect to y,, initially increasing, peaking at
a relatively small antibody level and then decaying as the population antibody level
increases further (Fig. 7a), as opposed to invasion reproduction number R, which is
decreasing (Fig. 7b). The initial rise in R follows from the host-vector transmission, as
found in Fig. 3b, caused by increasing within-host peak viral load from ADE. However,
decreasing infectious period also occurs with the increasing viral load leading R to
peak at smaller antibody level than the observed absolute maximum in DHF cases
(Fig. 7a). Here the total DHF cases, calculated at equilibrium & in the immuno-
epidemiological model for each y,,, bears some resemblance the unimodal shape of
peak viral load on the within-host scale (Fig. 1c), but there are more “across-scale”
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Fig. 7 Epidemiological quantities (R, R;;,) and disease incidence (DHF) versus immune antibody (y)
distribution among susceptible population with mean antibody level, y;;. Susceptible (naive individuals)
recruitment rate, A(y), is chosen as symmetric truncated normal distribution on [y, — o, y + o] with
mean Yy, . In the simulations here, we fix @ = 0.03 and vary yj;, in order to compute a basic reproduction
number R (blue solid line), and DHF cases at coexistence equilibrium & (orange solid line), b invasion
reproduction number R, ¢ secondary infected DHF cases at £., d DHF cases per infected vector in a
(naive) susceptible population (colour figure online)

forces to decipher. In particular, first there is a local maximum caused by an overall
peak in cases at maximal R¢. Next, population antibody levels rise to the intermediate
window where ADE causes severe primary infection leading to a second (much larger)
peak in DHF cases. However the decreasing R applies an opposing dampening force
on total equilibrium DHF cases, and thus the absolute maximum in DHF cases occurs
around y,, = 0.2, whereas the maximum peak viral load on the within-host scale (Fig.
I¢) occurs around yg = 0.5. The sharp rise in DHF cases as a function of y,, to the
second maximum is caused by primary infections, as the DHF cases from secondary
infections (Fig. 7c) is relatively small and peaks around y,, = 0.1 for the chosen
parameters.

Even though DHF cases at &£, decreases to zero at around y, = 0.52 when Ry
becomes less than one, the rate of initial DHF cases per infected vector in a susceptible
population is large and at maximum value for all y,, € [y; + «, y, — «] (when
A(y) has support in the window of antibody level causing DHF), which is centered
around y, = 0.5, as shown in Fig. 7d. Here we measure this rate of initial DHF

cases by ﬁ—” / y.yl” A(y)dy. Thus, there can be a conflict between reduction or even
elimination/prevention of dengue cases by a cross-reactive antibody boosting vaccine
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administered to a naive population and a (possibly temporary) rise in DHF cases. Since
DHEF cases can cause death and should be avoided, an effective Dengue vaccine would
need to boost antibody levels of vaccinated individuals to a sufficiently large level.
This can be achieved by increased vaccine efficacy or only vaccinating individuals
with large enough pre-existent antibody levels (from prior exposure to Dengue) that
can be boosted past the intermediate window of DHF risk.

6 Discussion

In this paper, we develop an immuno-epidemiological model of Dengue tracking
dynamic host cross-reactive antibody levels through infection by multiple strains and
waning, which affect the overall infection trajectory and severity across the within-
host and between-host scales. The model recapitulates: (i) how intermediate levels of
preexistent cross-reactive antibodies enhance infection within a host, and (ii) how to
scale up to distributions of antibody levels among epidemiological classes in the host
population to determine risk of DHF prevalence. The system is novel in its multi-scale
connection of host immunity and infectious disease dynamics, and provides a unified
model of Dengue with ADE phenomenon.

Our mathematical model consists of two linked systems, namely immunological
(within-host) and epidemiological (between-host). First, we formulate ordinary dif-
ferential equations describing dynamics of virus and immune response for primary or
secondary Dengue infection. The model is motivated by experimental and epidemio-
logical evidence that certain levels of pre-existent cross-reactive antibodies cause the
more severe DHF infection. Indeed, we show that our inclusion of distinct binding and
neutralizing kinetics with ADE phenomenon in cross-reactive [gG (memory antibod-
ies), along with neutralizing specific IgG, induce severe infection solely by varying
pre-existent cross-reactive IgG in an intermediate window of concentration.

Next, we connect the within-host dynamics to population scale through a hybrid
ODE-PDE vector—host system structured by host antibody level. Several features of
the linking and model structure are distinguished from prior work:

— The epidemic model is size-structured with respect to a within-host immune vari-
able as opposed to the infection age utilized in most immuno-epidemiological
studies. The one-to-one relationship between cross-reactive memory antibodies
(y(7)) and infection age t allows us to formulate epidemiological parameters as
functions of within-host variables, similar to Gandolfi et al. (2015).

— Immune status, in particular antibody level, is traced through multiple infections
by distinct strains and waning during recovery stage, with across-scale feedback
on within-host and between-host dynamics.

— Heterogeneity in immune response among susceptible individuals given by preex-
istent antibody level distribution. Different from Pugliese (2011), our structuring
variable for susceptible population is dynamic through epidemiological stages
described above.
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The interplay across scales between host immunity and infection severity exhibited in
Dengue induced by ADE motivate the above characteristics of our modeling frame-
work.

On the epidemiological scale, in addition to boundedness of solutions, certain
threshold dynamics are determined by strain (basic) reproduction number Ry and
invasion reproduction number R{nv, and these quantities depend upon within-host
variables. By linearizing the system around disease-free and single-strain equilibria,

we show that local stability is sharply determined by Ry or R{nv. Furthermore, we
derive the formula for a unique coexistence equilibrium &, in the case of no waning and
a transcendental equation for existence of £, when waning occurs, under the assump-
tion of symmetric strains. Lastly, for certain choices of vector—host transmission 8, (y)
and waning rates p (y) representing temporary cross-immunity and exponential decay
of antibodies, we obtain explicit formula for equilibria. Further results are difficult
given the model complexity; for instance there may be backward bifurcation pre-
venting global stability of disease-free equilibrium. Future work will explore stronger
analytical results such as uniform persistence of strain j when Ri]n , > L
Moreover, we construct a multi-scale numerical scheme in order to verify the equi-
libria calculations and to determine DHF risk landscape in different scenarios. To
accomplish this, we develop a finite difference algorithm combined with numerical
solutions of ODE (Runge-Kutta method) and numerical integration of antibody depen-
dent functions in order to simulate the model on both scales. The complexity of the
intertwined systems challenges efficient numerical computation. Indeed, the combi-
nation of heterogeneity in susceptible antibody distribution, and tracking antibody
levels through recovery, waning and re-infection, leads us to utilize interpolation of
within-host ODE numerical solutions nested in the discretized size-structured epi-
demic model. The resulting error magnifies with increasing antibody step size Ay,
causing an unavoidable tradeoff between speed and accuracy. It may be possible to
efficiently transform the problem to infection-age structured system (with sufficiently
small number of meshpoints), as we did for the homogenous susceptible antibody dis-
tribution (point distribution). Future work will explore this idea, along with employing
higher order finite difference methods to increase accuracy of numerical solutions.
The numerical simulations suggest that waning after primary infection can lead to
a buildup of individuals with antibody levels in risk window for DHF upon secondary
infection with a distinct strain. Different from prior Dengue epidemic modeling stud-
ies with ADE, DHF is not simply caused by secondary infection, rather it depends
upon preexistent cross-reactive antibody titre, as shown in biological literature. The
model allows us to calculate the exact distribution of host population under risk for
severe infection, along with DHF prevalence. Indeed, by varying the mean of sus-
ceptible antibody level distribution (y,,), we observe that the reproduction numbers
are decreasing in precisely the window of y,, where DHF prevalence is rising. This
suggests there can be conflict between reduction or even elimination of dengue cases
by cross-reactive antibody boosting vaccine administered to naive population and a
rise in DHF cases. An effective Dengue vaccine would need to boost antibody levels to
sufficiently large level to avoid increased DHF incidence which can lead to fatalities.
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Future work can build upon the epidemiological implications by explicitly incor-
porating vaccination into the model to inform Dengue vaccine policy. The controversy
surrounding apparent rise in DHF among certain vaccinated individuals after a vac-
cination campaign (Aguiar et al. 2016; Yang et al. 2017) and questions into how to
safely vaccinate Dengue-at-risk populations, motivates the need for predictive mod-
eling frameworks including effects of targeted vaccination on population antibody
levels. Such a model would also require robust parameter estimation and identifia-
bility analysis extending prior work in multi-scale data fitting (Tuncer et al. 2016).
Ideally, the model may suggest whom to target for vaccination dependent on cross-
reactive antibody level measured by blood samples, in order to prevent DHF incidence
and ultimately eradicate the disease.
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Appendix: Numerical convergence rates

In this section, we provide tables showing computed rates and order of convergence for
numerical experiments of the finite difference and multi-scale simulation procedure
described in Sect. 4. For the numerical tests, we calculate the error in norm between
computed solutions of the 7, y stepping method at certain step sizes At,h = Ay
and reference solutions at some final time t = 7. We utilize three different types
of reference solutions: (i) the numerically approximated equilibrium given by our
derived formula (31), (ii) solution of the numerical scheme with smallest step sizes
At,h= A v, and (iii) solution of the numerical scheme with step sizes multiplied by
factorof 1/2, %, % For each error calculation at step size i, ej,, we form a sequence by
successively decreasing step size by 1/2, whereby we compute order of convergence
by log,(en/en/2). Furthermore, we consider two different scenarios: (a) we start the
initial condition where infected vectors, 1 Ul A 3 are slightly perturbed from &y (outbreak
scenario) with final time 7 = 50 days, (b) we start the initial condition at numerically
calculated equilibrium with final time 7" = 500 days. For the former scenario (a), we
do not use numerically calculated equilibrium as a reference solution since this may
be far off from simulation at = 50.

We compute the different orders of convergence because there are several sources
of error and to test different initial condition scenarios. Our method relies on distinct
algorithms in addition to the finite difference scheme, such as Runge-Kutta method
for within-host ODE (ode45 in MatLab), interpolation, integration and, in the case
of numerical equilibrium formula, nonlinear root-finding. Each routine can produce
error, which can also propagate in the form of discontinuities in recovered distribution
corresponding to an influx of recovery from primary infected individuals with pre-
existent antibody levels at a certain mesh points from the initial susceptible antibody
distribution. In order to efficiently reduce error we utilize the trapezoidal integration
when integrating with respect to initial susceptible antibody level y, but left endpoint
integration for other antibody variables since there is small number of mesh points
(My) for s(-, yo) when compared to the range of antibody levels after infection and
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Table 5 Error analysis of i{'(SO, v, yo) with initial Iv1 0) = 13 (0) = 0.02, and other components starting

.h)2
0.0g375) and l{z/

at &, for step size Ay = h compared to reference solution i {’ (h = , respectively, in L!

norm
At h=Ay Hz{l - i{; Order Hz{l - i?/zH Order

0.02 0.03 524.6908885 91.15745068

0.01 0.015 270.1464444 0.957726043 88.82019677 0.037472811
0.005 0.0075 102.1797402 1.402632521 52.36309638 0.762337357
0.0025 0.00375 27.53347556 1.891850535 27.53347556 0.927363678

Table 6 Error analysis of i {’2 (50, y, yog) with initial 11} 0) = 13 (0) = 0.02, and other components starting

0.0(%375) and -h/2

at &, for step size Ay = h compared to reference solution i {'2 (h = i15", respectively, in L!

norm
At h = Ay Hi{’z — ilﬁz H Order Hi{’z — 1'112/2 H Order

0.04 0.06 0.675368267 0.006352265

0.02 0.03 0.258213027 1.38711261 0.157617642 —4.633

0.01 0.015 0.064940472 1.991372007 0.045005349 1.808260627
0.005 0.0075 0.013576682 2.257986926 0.010354484 2.119840769
0.0025 0.00375 0.002644786 2.359908155 0.002644786 1.969032926

Table 7 Error analysis of r{’(SO, y) with initial 13 0) = 13(0) = 0.02, and other components starting at

0.0(%375) and rf'/Z

&, for step size Ay = h compared to reference solution r{‘ (h = , respectively, in L!

norm
At h = Ay r{' — r{' ) Order r{' — ril/z H Order

0.04 0.06 199.170148 19.71504953

0.02 0.03 153.0385939 0.380105906 132.3873372 —2.747395896
0.01 0.015 87.31621564 0.809574014 81.85961804 0.693541296
0.005 0.0075 37.51280945 1.218866289 35.05161783 1.223670901
0.0025 0.00375 15.17871831 1.305333341 15.17871831 1.20743106

waning. We do also provide one numerical test with only left-endpoint integration
shown in last two tables, which gives more error than trapezoidal, but has more reg-
ular order of convergence pattern. In addition, we include comparisons with a larger
step size (Ay = 0.006) for scenarios (a) and the last two tables, which forces a point
distribution for susceptible antibody levels, creating different error structure. Overall,
from the different numerical tests, we observe convergence to certain error rates within
a particular compartment and/or test scenario, ranging from orders that are sub-linear
(< 1) to larger than quadratic (> 2). When comparing with reference solutions com-
puted by numerical simulation at smaller step size, the order of convergence is mostly
faster than linear (Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16).
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Table 8 Error analysis of IJ'h(SO) with initial I,)1 ) = Iv2 (0) = 0.02, and other components starting at

0.03375 ) and 15/2

&, for step size Ay = h compared to reference solution Ilf’ (h = , respectively, in L!

norm
At h= Ay - Iuﬁ Order - Il},'/2 H Order

0.04 0.06 0.011545595 0.000253176

0.02 0.03 0.011798771 —0.031294078 0.002043507 —3.012833819
0.01 0.015 0.009755265 0.274383701 0.003205022 —0.649287231
0.005 0.0075 0.006550243 0.574632587 0.003355452 —0.066172867
0.0025 0.00375 0.003194791 1.035826728 0.003194791 0.07078528

Table 9 Error analysis of sh (50, y) with initial IU1 ) = IU2 (0) = 0.02, and other components starting at

0.0%375) and sh/2

&, for step size Ay = h compared to reference solution sh(h = , respectively, in L!

norm

At h = Ay Hsh _sh Order ‘sh —sh/2 H Order

0.04 0.06 332.6520601 41.58150751

0.02 0.03 62.96919952 2.401295736 132.3873372 —1.670751168
0.01 0.015 49.82665921 0.33772848 81.85961804 0.693541296
0.005 0.0075 32.64463389 0.610071986 35.05161783 1.223670901
0.0025 0.00375 15.64718881 1.060942377 15.17871831 1.20743106

Table 10 Error analysis of i {’ (500, y, yo) with initial condition set at numerically calculated equilibrium

i1(y, yo) for step sizes Ay = h compared to i1, reference solution i{; (h = .00375) and i{'/z, respectively,
in L1 norm

At h= Ay i{’ -0 H Order Hz{’ _ih H Order Hz{‘ — if'/z H Order

0.02 0.03 324.5169207 47.41855063 36.62544876

0.0 0.015  196.0711709 0.726916278 6.727908881 2.817221495 5.311540273 2.785644248
0.005 0.0075 105.7195462 0.891135289 0.846383875 2.99077412 0.846383875 2.649746236
0.0025 0.00375 56.5106755 0.903646798

Table 11 Error analysis of i {’2 (500, y, yp) with initial condition set at numerically calculated equilibrium

i12(y, yo) for step sizes Ay = h compared to 5, reference solution i{'z (h = .00375) and 1{12/ 2, respectively,

in L1 norm
At h= Ay Hi{‘Q - lleH Order Hi{’z - i{‘Q H Order Hi{‘z - t%zH Order
0.02 0.03 8.783517629 6.042508363 3.481283278

0.01 0.015 4.503971602 0.963601096 1.631284321 1.88913931 1.082280827 1.685544319
0.005 0.0075 2.240824134 1.007168304 0.32158709 2.342726861 0.32158709 1.7507935
0.0025 0.00375 1.175949762 0.930202999
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Table 12 Error analysis of r{‘ (500, y) with initial condition set at numerically calculated equilibrium 7y (y)

/2

for step sizes Ay = h compared to 7, reference solution r{' (h = .00375) and r{l , respectively, in L!

norm

At h = Ay Hr{’ -7 H Order Hr{’ —rh H Order ‘

r{’ — rf'ﬂH Order

0.02  0.03 618.0541417 775.4388502 599.9811402

0.01 0.015 461.0633089 0.422768362 356.8297922 1.119776945 285.8162025 1.069829449
0.005 0.0075 392.9077021 0.230774413 143.9789694 1.309377976 143.9789694 0.989229606
0.0025 0.00375 357.6509033 0.135638364

Table 13 Error analysis of I,} oh (500) with initial condition set at numerically calculated equilibrium I, for
step sizes Ay = h compared to I, reference solution 15‘ (h = .00375) and 15' / 2, respectively

At h= Ay I,ﬁ' — I Order 15’ - 15 Order

151 - 13/2‘ Order

0.02  0.03 0.006679126 0.00106215 0.0008444

0.01 0.015 0.007472821 —0.161993635 0.00021775 2.286242828 0.000181798 2.215591493
0.005 0.0075 0.007599984 —0.024343416 3.60E—05 2.598522051 3.60E—05  2.338184328
0.0025 0.00375 0.007596424  0.000675948

Table 14 Error analysis of sh (500, y) with initial condition set at numerically calculated equilibrium §(y)

for step sizes Ay = h compared to 5, reference solution sf‘ (h = .00375) and s/, respectively, in L! norm
At h= Ay Hsh — EH Order ‘sh _sh H Order Hsh —sh/2 H Order
0.02  0.03 462.4651032 45.73632432 33.06512108

0.0  0.015 518.3459247—0.164570714 78.8058773 — 0.784962803 31.29116995 0.079554584
0.005 0.0075 526.9051322—0.023628012 47.51537534 0.729908803 47.51537534— 0.602638825
0.0025 0.00375 526.0055158 0.002465304

Table 15 Error analysis with initial condition set at numerically calculated equilibrium &, for step sizes
Ay = h compared to &, using left-end point approximation integration.

At Ay 5(500, y) Order i1(500, y, yg) Order i12(500, y, yo) Order

04  0.06 660.9536 14.97353256 32.78271708

0.2 0.03 2696.278157 —2.0283484371830.012949 — 6.93329542334.9009843 —0.090332293
0.1  0.015 1728915761 0.64110176 641.6430016 1.51201112 12.19733364  1.516701918
0.05 0.0075 1078.164779 0.68128989 214.2830149 1.582253332 4.159619189 1.552042445
0.025 0.00375 695.6780402 0.632086 74.63216773 1.521648004 1.541971374 1.431675474
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Table 16 Error analysis with initial condition set at numerically calculated equilibrium &, for step sizes
Ay = h compared to &, using left-end point approximation integration

At Ay r1(500, y) Order 1} (500) Order

0.4 0.06 2522.062793 0.001742764

0.2 0.03 2166.277168 0.582119138 0.038248294 — 4.455946151
0.1 0.015 1559.573153 0.694509637 0.024707943 0.63042051
0.05 0.0075 1167.784572 0.667748654 0.015523692 0.670503164
0.025 0.00375 942.6623956 0.619407636 0.010085476 0.622192549
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