wesl materials by

Article
Molecularly Imprinted Polyacrylamide with
Fluorescent Nanodiamond for Creatinine Detection

Reim A. Almotiri, Kathryn J. Ham‘”, Vineeth M. Vijayan and Shane A. Catledge *

Center for Biophysical Sciences and Engineering (CBSE), Department of Physics, University of Alabama at
Birmingham, 421 Campbell Hall, 1300 University Blvd, Birmingham, AL 35294, USA
* Correspondence: Catledge@uab.edu; Tel.: +1-205-934-3693

check for
Received: 26 April 2019; Accepted: 26 June 2019; Published: 29 June 2019 updates

Abstract: Creatinine measurement in blood and urine is an important diagnostic test for assessing
kidney health. In this study, a molecularly imprinted polymer was obtained by incorporating
fluorescent nanodiamond into a creatinine-imprinted polyacrylamide hydrogel. The quenching
of peak nanodiamond fluorescence was significantly higher in the creatinine-imprinted polymer
compared to the non-imprinted polymer, indicative of higher creatinine affinity in the imprinted
polymer. Fourier transform infrared spectroscopy and microscopic imaging was used to investigate
the nature of chemical bonding and distribution of nanodiamonds inside the hydrogel network.
Nanodiamonds bind strongly to the hydrogel network, but as aggregates with average particle
diameter of 3.4 + 1.8 pym and 3.1 + 1.9 um for the non-imprinted and molecularly imprinted polymer,
respectively. Nanodiamond fluorescence from nitrogen-vacancy color centers (NV~ and NV?) was
also used to detect creatinine based on nanodiamond-creatinine surface charge interaction. Results
show a 15% decrease of NV~/NV? emission ratio for the creatinine-imprinted polymer compared to
the non-imprinted polymer, and are explained in terms of changes in the near-surface band structure
of diamond with addition of creatinine. With further improvement of sensor design to better disperse
nanodiamond within the hydrogel, fluorescent sensing from nitrogen-vacancy centers is expected to
yield higher sensitivity with a longer range (Coulombic) interaction to imprinted sites than that for a
sensor based on acceptor/donor resonance energy transfer.
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1. Introduction

The physical, chemical, and biological properties of diamond make it an attractive substitute
to organic dyes, fluorescent proteins, and semiconductor nanocrystals (quantum dots) to probe the
interaction of biomolecules. In the form of nanodiamonds, these properties provide attractive features
that can be used in various biological applications [1-6].

Organic dyes and fluorescent proteins have disadvantages such as photo-bleaching which make
them unsuitable for prolonged use. An alternative to such dyes and proteins is quantum dots, which
are semiconductor nanoparticles with fluorescence capabilities. Quantum dots typically have high
tolerance to photo-bleaching, broad excitation ranges, and narrow emission spectra [7]. However, they
are often toxic, which may limit their use for testing in humans unless they have undergone surface
modification to reduce their toxicity [8]. Nanodiamonds offer a suitable alternative to quantum dots
since they not only have high threshold for photo-bleaching but are considered much less toxic than
quantum dots [5]. A further advantage of nanodiamonds over quantum dots is that they have more
stable photo-physical properties. On the contrary, the surface modifications to quantum dots, either
when being functionalized or to reduce toxicity, have been reported to change their photo-physical
properties [8]. This limits the extent to which they can be modified and therefore restricts their
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Figure 1. The emission spectrum of nanodiamond and the location of zero phonon lines from both
nitlgi‘&ﬂlﬂlaczﬂ& %gﬁﬁg)@\segggw%panodiamond and the location of zero phonon lines from both

nitrogen-vacancy centers (Aexc =532 nm).
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Such hydrogen bonding enabled the CDs to be incorporated into the gel network during the
polymerization stage, and thus offered a means for detecting sites of the molecularly imprinted
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stage, and thus offered a means for detecting sites of the molecularly imprinted polymers occupied
by glucose following subsequent glucose treatment [15]. The fluorescence of the incorporated CDs is
determined by the binding or release of glucose from the binding site on the molecularly imprinted
polymer. Where glucose binds into its site on the molecularly imprinted polymer, the fluorescence
from the CDs is quenched. On the contrary, recovery of the fluorescence is achieved after releasing
glucose molecules from a molecularly imprinted polymer-CD network [15].

In this work, we show that fluorescence quenching of nanodiamonds imbedded in a
creatinine-imprinted polyacrylamide (PAAm) hydrogel can be used in the detection of this small
molecule. This quenching is detectable not only from the overall broad nanodiamond fluorescence
(with peak intensity around 700 nm), but also from the intensity ratio of nitrogen-vacancy centers
(NV7/NV?). The ratiometric sensor offers an advantage in that it is specific to surface chemical
potentials at the near nanodiamond surface and may be less prone to fluorescence from unwanted
background (e.g., polymer-induced fluorescence). The fluorescent sensing is expected to provide
reliable sensitivity of trace level quantities of creatinine.

2. Materials and Methods

2.1. Chemicals

Acrylamide monomer, bis-acrylamide (a cross-linker agent), creatinine powder (99+%),
N-hydroxysuccinimide (NHS, 98+%), Tetramethylethylendiamine (TEMED) and ammonium persulfate
(APS) were purchased from Fisher Scientific, Waltham, MA, USA. Fluorescent nanodiamond (70 nm
average particle size, 1 mg/mL in deionized (DI) water with >300 nitrogen-vacancy centers per particle)
was purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Preparation of Molecularly Imprinted Polyacrylamide for the Detection of Creatinine

PAAm hydrogels were formed by co-polymerization of acrylamide and bis-acrylamide.
The chemical reaction is vinyl addition polymerization initiated by APS and TEMED. TEMED accelerates
the rate of formation of free radicals from APS, which, in turn, catalyzes the polymerization process.
Polyacrylamide gels are described in terms of two parameters. The total monomer concentration, or
%T, is defined as:

%T = (grams acrylamide + grams crosslinker)/total volume (mL) x 100%
The weight percentage of crosslinker, or %C, is defined as:
%C = grams crosslinker/(grams acrylamide + grams crosslinker) x 100%.

Our hydrogel optimization process led to a composition having 15%T and 5%C in 7 mL of DI water.
Molecularly imprinted and a non-imprinted polymer (NIP), as control, were prepared under identical
conditions to contain 300 pL of 1 mg/mL of nanodiamond suspension in 7 mL of polymerization
solution, except that the non-imprinted polymer control was made without addition of creatinine
during polymerization. A concentration of 85 pL of 0.3 mM creatinine in 7 mL of molecularly imprinted
polymer solution was used in this process. Further details for polymerization, washing and rebinding
processes can be found in our previous work [16].

2.3. Analysis Method

The photoluminescence of nanodiamond was collected from a modular Raman/fluorescence
spectrometer (Dilor, Lille, France) with a 532 nm laser, 1200 groove/mm grating, and a 100X microscope
objective. The emission from nanodiamonds was measured before and after the addition of creatinine
to the molecularly imprinted and non-imprinted polymers, respectively.
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2.4. Calculation of Imprinting Factor Based on Quenching of Peak Nanodiamond Emission

The imprinting factor was measured from the change in fluorescence from the peak emission
intensity of nanodiamond (around 700 nm) before and after the creatinine quencher was added in

Pderistsi203nis 25 R HHEE RRpFfting Factor (IF) is defined as: IF = (Quenching ratio of molectil¥rl
t 5@%&%%%%%&%?@%3?}%}%{% %ggtrcl)??ﬁ?]fg lggfgl 312? ?lt")'!\f elfgﬁching ratio of molecularly
imprinted polymer)/(Qasashing paie paesitinpHnird RRHoRs)bubesehe addition of creatinine

uenching ratio = , - - — -
Mtadiimum peak intensity of memasdi tmendd deftuettie adidition of ereatinine

Maximum peak intensity of nanodiamonds after the addition of creatinine
2.5. Polymer Synthesis for Stern-Volmer Analysis
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Sample 4: Nanodiamond-incorporated molecularly imprinted polymer with 6.20 uM creatinine.
After polymerization was completed the hydrogel was washed ‘with DI water to remove the
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prepared for fluorescence measurements, as shown in Figure 2.

Quenching ratio =

Figure 2. Nanediamend-ineorporated meolecularly imprinted pelymer hydrogel samples eontaining
the four different coneanralions of ciealiminge (D32 11, 24D 1, 4 HO 1N, 201N

The intensity of the nansdiamend fAusrescence (arotnd 708 nm) was meastred Before and after
the addition of creatinine. The Stern-Volmer eqration ok Ot SRRt iR SN i SRRk 3%

h=KfE] +1

where Io and I are the fluorescence intensity maxima in the absence of creatinine and in the presence
of creatinine, respectively; K is the Stern-Volmer constant determined as the slope of the best-fit line
to the data; and [C] is the concentration of creatinine.

3. Results and Discussion
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where I and I are the fluorescence intensity maxima in the absence of creatinine and in the presence of
creatinine, respectively; K is the Stern-Volmer constant determined as the slope of the best-fit line to
the data; and [C] is the concentration of creatinine.

3. Results and Discussion

3.1. Fourier Transform Infrared Shpectroscopy (FTIR) of Fluorescent Nanodiamond
Materials 2019, 12, x FOR PEER REVIEW 5 of 13
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Fi ure 3. (a) Fourier transform infrared spectroscopy (FTIR) spectrum of the as-received fluorescent
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spectral interpretation of nanodiamonds [I8]. FTIR spectral analys1s cle rly reveals
polyfunctional surface groups such as OH, COOH, ethers and hydrogen. The monomer/crosslinker
used in the current study for molecular imprinting process was acrylamide, which was found to
undergo hydrogen bonding interactions [19]. We hypothesize that during molecularly imprinted
polymer formation, similar hydrogen bonding interactions (both inter- and intra-molecular) occurs
between the surface hydroxyl groups of the nanodiamonds with the different hydroxyl groups
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surface groups such as OH, COOH, ethers and hydrogen. The monomer/crosslinker used in the current
study for molecular imprinting process was acrylamide, which was found to undergo hydrogen
bonding interactions [19]. We hypothesize that during molecularly imprinted polymer formation,
similar hydrogen bonding interactions (both inter- and intra-molecular) occurs between the surface
hydroxyl groups of the nanodiamonds with the different hydroxyl groups present on the acrylamide.
This could facilitate strong interaction of the nanodiamonds with the polymer network and is expected
Me'sdala 1R et YRSTHEY FARY washing/rebinding steps. We find that the nanodiamond fluoré3&nice
Sapenlassftereshing e hydrowel incudiog i lvasanic Phuaier bt Theangdiamonds
e iR papcighslgrous Ao e B L R S R
Figure 3 grotp

in the schematic o . o . . .
predominantly negatiVe charge termination as shown in the schematic of Figure 3.

3.2. Nanodiamond Cluster Size and Fluorescence inside PAAm Hydrogel
3.2. Nanodiamond Cluster Size and Fluorescence inside PAAm Hydrogel
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nanodiamond particles of diameter 4.8 + 0.2 um.
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Figure 4. Optical micrographs (a,b) and particle size distributions (c,d) for the non-imprinted and

moleciilarlyy imprinted nolvmere recernectively
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Figure 8: Comparison of emission from similar Ranediamend eclusters of 4.8 + @2 ym diameter:

Equilibrium adsorption tests were first performed by measuring the nanodiamond fluorescence
peak intensity (around 700 nm) from molecularly imprinted polymers for creatinine concentrations
of 0.82 pM, 2.40 uM, 4.10 pM and 6.20 uM, separately. In order to minimize uncertainty in
fluorescence 1ntens1ty measurements the laser spot of 2 pm was c0n51stently focused onto
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Equilibrium adsorption tests were first performed by measuring the nanodiamond fluorescence
peak intensity (around 700 nm) from molecularly imprinted polymers for creatinine concentrations of
0.82 uM, 2.40 uM, 4.10 uM and 6.20 uM, separately. In order to minimize uncertainty in fluorescence
intensity measurements, the laser spot of 2 um was consistently focused onto nanodiamond particles
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respectively, as shown in the near-surface band structure schematic of Figure 8a for negatively

terminated nanodiamond. Once creatinine is bound to imprinted sites in the vicinity of nanodiamond,

electrons are transferred from the valence band to compensate for the positive charge induced at

the diamond surface by creatinine. This contributes to an upwards surface band bending shown in
MPigials28, The HPRVEEERBRNA Bdnding leaves NV~ states unoccupied (above the Fermi level) at a Shefllgw

distance below the nanodiamond surface and therefore cannot contribute to luminescence [12,22,23].
lupninesoeRged Lreapec td BRISYERY S RXRRS I JONDSe Y abeR i RE AN Yo Nevingreenre selatige
taN¥psese thereeatiieaisashayndirdhsgpelrgularly imprinted polymer.

Conduction band ‘ Energy
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rigds JoNanpdiamershand ssiurghoming hard bending asaths sirface (s iere ersatinine
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unocculglcﬁ{llblf ~ states ne?ﬁt e nalaocham d surface.
unoccup states near the nanodiamond surtace.
4. Measurements of Nanodiamond Quenching

4. Measurements of Nanodiamond Quenching
The imprinting factor is defined as the fluorescence quenching ratio of molecularly imprinted

polThteiarvintag perer it dsbnegd 5 dheJuRsssaapssaugsbipmeatinef malsmgariieRdbitte.
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polymer is quenched 30% more than the non-imprinted polymer.
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5. Conclusmns

5. Conclusion o ) ) o
In this study, we report creatinine detection using an artificial receptor based on a molecularly

impriHtedis SHher WeeFRBErt TFRAEEHBSIAR e hoBpas MBIy itdbipiot e REPIRIcPAsEEnTh Al s by
iHeRr Eredi Rl Imep rre BIogo T Rer ensRa P dPESRRT 3L BN IR BORAHB A  Atores gsednansrtisearad
fiBiR alEeatinineRpripiedal priamidad sdvogab ki emeling of panRdiaBend paskdiupegeense
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HidEEch S e A AR WERVGlekdh b RICECHII G h RO RBIELRE) THAACh SFOB R tE A A% (s IEROH,

ethers, and hydrogen. Creatinine was detected based on nanodiamond-creatinine charge interaction

resulting in an expected surface band-bending and quenching of NV- charge states. Results show a
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an expected surface band-bending and quenching of NV~ charge states. Results show a significant
decrease of NV~/NV? emission for the molecularly imprinted polymer while the same emission ratio
for the non-imprinted polymer did not change. An advantage of the ratiometric sensor is that it
is specific to surface chemical potentials at the near-nanodiamond surface and may be less prone
to fluorescence from unwanted background (e.g., polymer-induced fluorescence). The fluorescent
sensing is expected to provide reliable sensitivity of trace level quantities of creatinine with a longer
range (Coulombic, 1/R?) interaction to imprinted sites than that for a sensor based on acceptor/donor
resonance energy transfer (FRET, 1/RO).
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