

Article

Molecularly Imprinted Polyacrylamide with Fluorescent Nanodiamond for Creatinine Detection

Reim A. Almotiri, Kathryn J. Ham[®], Vineeth M. Vijayan and Shane A. Catledge *

Center for Biophysical Sciences and Engineering (CBSE), Department of Physics, University of Alabama at Birmingham, 421 Campbell Hall, 1300 University Blvd, Birmingham, AL 35294, USA

* Correspondence: Catledge@uab.edu; Tel.: +1-205-934-3693

Received: 26 April 2019; Accepted: 26 June 2019; Published: 29 June 2019

Abstract: Creatinine measurement in blood and urine is an important diagnostic test for assessing kidney health. In this study, a molecularly imprinted polymer was obtained by incorporating fluorescent nanodiamond into a creatinine-imprinted polyacrylamide hydrogel. The quenching of peak nanodiamond fluorescence was significantly higher in the creatinine-imprinted polymer compared to the non-imprinted polymer, indicative of higher creatinine affinity in the imprinted polymer. Fourier transform infrared spectroscopy and microscopic imaging was used to investigate the nature of chemical bonding and distribution of nanodiamonds inside the hydrogel network. Nanodiamonds bind strongly to the hydrogel network, but as aggregates with average particle diameter of $3.4 \pm 1.8 \,\mu m$ and $3.1 \pm 1.9 \,\mu m$ for the non-imprinted and molecularly imprinted polymer, respectively. Nanodiamond fluorescence from nitrogen-vacancy color centers (NV⁻ and NV⁰) was also used to detect creatinine based on nanodiamond-creatinine surface charge interaction. Results show a 15% decrease of NV⁻/NV⁰ emission ratio for the creatinine-imprinted polymer compared to the non-imprinted polymer, and are explained in terms of changes in the near-surface band structure of diamond with addition of creatinine. With further improvement of sensor design to better disperse nanodiamond within the hydrogel, fluorescent sensing from nitrogen-vacancy centers is expected to yield higher sensitivity with a longer range (Coulombic) interaction to imprinted sites than that for a sensor based on acceptor/donor resonance energy transfer.

Keywords: nanodiamond; creatinine; fluorescence; molecularly imprinted polymer

1. Introduction

The physical, chemical, and biological properties of diamond make it an attractive substitute to organic dyes, fluorescent proteins, and semiconductor nanocrystals (quantum dots) to probe the interaction of biomolecules. In the form of nanodiamonds, these properties provide attractive features that can be used in various biological applications [1–6].

Organic dyes and fluorescent proteins have disadvantages such as photo-bleaching which make them unsuitable for prolonged use. An alternative to such dyes and proteins is quantum dots, which are semiconductor nanoparticles with fluorescence capabilities. Quantum dots typically have high tolerance to photo-bleaching, broad excitation ranges, and narrow emission spectra [7]. However, they are often toxic, which may limit their use for testing in humans unless they have undergone surface modification to reduce their toxicity [8]. Nanodiamonds offer a suitable alternative to quantum dots since they not only have high threshold for photo-bleaching but are considered much less toxic than quantum dots [5]. A further advantage of nanodiamonds over quantum dots is that they have more stable photo-physical properties. On the contrary, the surface modifications to quantum dots, either when being functionalized or to reduce toxicity, have been reported to change their photo-physical properties [8]. This limits the extent to which they can be modified and therefore restricts their

applications being publication and approach the without long the physical properties [8,9].

The Intrigues are accompanient in the land as point in the latter of the Contract of a contract of the latter of t

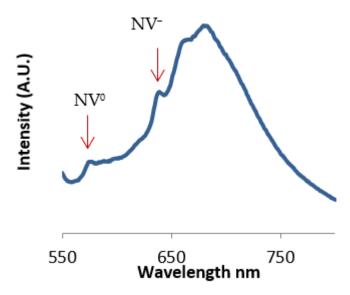


Figure 1. The emission spectrum of nanodiamond and the location of zero phonon lines from both nitrogen-vacancy centers (λεχς = 532 nm).

In this work, we show that the fluorescence from nanodiamond, and in particular that from the nitrogen-to-averley-vershop without the diverse continuous proximation of the continuous pro

test because under another and the amount of creatinine in serum or urine is an important diagnostic test because under the theorem of the amount of creatinine in serum or urine is an important diagnostic test because under the theorem of the the

patantially bationed and dealers (CDs) with molecularly imprinted polymers has been shown to be effective to identify the construction of the cons

Materials **2019**, 12, 2097 3 of 13

stage, and thus offered a means for detecting sites of the molecularly imprinted polymers occupied by glucose following subsequent glucose treatment [15]. The fluorescence of the incorporated CDs is determined by the binding or release of glucose from the binding site on the molecularly imprinted polymer. Where glucose binds into its site on the molecularly imprinted polymer, the fluorescence from the CDs is quenched. On the contrary, recovery of the fluorescence is achieved after releasing glucose molecules from a molecularly imprinted polymer-CD network [15].

In this work, we show that fluorescence quenching of nanodiamonds imbedded in a creatinine-imprinted polyacrylamide (PAAm) hydrogel can be used in the detection of this small molecule. This quenching is detectable not only from the overall broad nanodiamond fluorescence (with peak intensity around 700 nm), but also from the intensity ratio of nitrogen-vacancy centers (NV^-/NV^0). The ratiometric sensor offers an advantage in that it is specific to surface chemical potentials at the near nanodiamond surface and may be less prone to fluorescence from unwanted background (e.g., polymer-induced fluorescence). The fluorescent sensing is expected to provide reliable sensitivity of trace level quantities of creatinine.

2. Materials and Methods

2.1. Chemicals

Acrylamide monomer, bis-acrylamide (a cross-linker agent), creatinine powder (99+%), N-hydroxysuccinimide (NHS, 98+%), Tetramethylethylendiamine (TEMED) and ammonium persulfate (APS) were purchased from Fisher Scientific, Waltham, MA, USA. Fluorescent nanodiamond (70 nm average particle size, 1 mg/mL in deionized (DI) water with >300 nitrogen-vacancy centers per particle) was purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Preparation of Molecularly Imprinted Polyacrylamide for the Detection of Creatinine

PAAm hydrogels were formed by co-polymerization of acrylamide and bis-acrylamide. The chemical reaction is vinyl addition polymerization initiated by APS and TEMED. TEMED accelerates the rate of formation of free radicals from APS, which, in turn, catalyzes the polymerization process. Polyacrylamide gels are described in terms of two parameters. The total monomer concentration, or %T, is defined as:

%T = (grams a crylamide + grams crosslinker)/total volume (mL) × 100%

The weight percentage of crosslinker, or %C, is defined as:

 $%C = grams crosslinker/(grams acrylamide + grams crosslinker) \times 100%.$

Our hydrogel optimization process led to a composition having 15%T and 5%C in 7 mL of DI water. Molecularly imprinted and a non-imprinted polymer (NIP), as control, were prepared under identical conditions to contain 300 μ L of 1 mg/mL of nanodiamond suspension in 7 mL of polymerization solution, except that the non-imprinted polymer control was made without addition of creatinine during polymerization. A concentration of 85 μ L of 0.3 mM creatinine in 7 mL of molecularly imprinted polymer solution was used in this process. Further details for polymerization, washing and rebinding processes can be found in our previous work [16].

2.3. Analysis Method

The photoluminescence of nanodiamond was collected from a modular Raman/fluorescence spectrometer (Dilor, Lille, France) with a 532 nm laser, 1200 groove/mm grating, and a 100× microscope objective. The emission from nanodiamonds was measured before and after the addition of creatinine to the molecularly imprinted and non-imprinted polymers, respectively.

Materials **2019**, 12, 2097 4 of 13

2.4. Calculation of Imprinting Factor Based on Quenching of Peak Nanodiamond Emission

The imprinting factor was measured from the change in fluorescence from the peak emission intensity of nanodiamond (around 700 nm) before and after the creatinine quencher was added in Materials 2019 12, X FOR PEER REVIEW to the rebinding tests. The imprinting Factor (IF) is defined as: IF = (Quenching ratio of molecularly imprinted polymer)/(Quenching ratio of non-imprinted polymer), where: the rebinding tests. The imprinting Factor (IF) is defined as: IF = (Quenching ratio of molecularly imprinted polymer)/(Quenching ratio peaks of the contribution of the co

 $Quenching \ ratio = \frac{\text{Maximum peak intensity of nanodiamonds before the addition of creatinine}}{\text{Maximum peak intensity of nanodiamonds after the addition of creatinine}}$ 2.5. Polymer Synthesis for Stern-Volmer Analysis

2.5. Polymer by the six for spory Neuraca to the concentration of 15%T and 5%C with 300 µL of 1 mg/mL fluorescent nanodiamond. PAAm samples were prepared with four different creatinine imprinting PAAm hydrogel was polymerized to the concentration of 15%T and 5%C with 300 µL of 9 concentrations below: mg/mL fluorescent nanodiamond. PAAm samples were prepared with four different creatinine imprinting the land of the concentration of 15%T and 5%C with 300 µL of 1 mg/mL of 15%T and 5%C with 300 µL of 1 mg/mL of 1 mg/mL of 15%T and 5%C with 300 µL of 1 mg/mL of 15%T and 5%C with 300 µL of 1 mg/mL of 1 mg/mL of 15%T and 5%C with 300 µL of 1 mg/mL of 1 mg/mL

Sample 4: Nanodiamond-incorporated molecularly imprinted polymer with 6.20 µM creatinine. After polymerization was completed the hydrogel was washed with DI water to remove the creativities and vorteization was completed the hydrogel was repeated withed hydratholes were the inequivalent and the pusces and also antisy in the water per test & titues and samples reasonate in the water gel expensive the financial problem was larger than the samples reasonable week hydrogel expensive the financial problem was a shown in Figure 2.

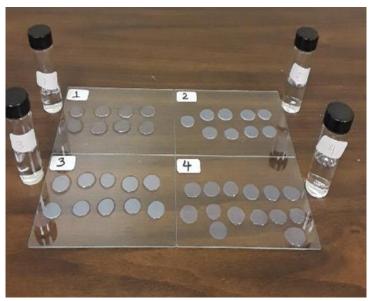


Figure 2. Nanodiamond-incorporated molecularly imprinted polymer hydrogel samples containing the four different concentrations of creatinine (0.82 µW, 2.40 µW, 4.10 µW, 6.20 µW).

The intensity of the nanodiamond fluorescence (around 700 nm) was measured before and after the addition of creatinine. The Stern-Volmer equation for our experiment is given in general as:

where I_0 and I are the fluorescence intensity maxima in the absence of creatinine and in the presence of creatinine, respectively; K is the Stern-Volmer constant determined as the slope of the best-fit line to the data; and [C] is the concentration of creatinine.

3. Results and Discussion

Materials 2019, 12, 2097 5 of 13

where I_0 and I are the fluorescence intensity maxima in the absence of creatinine and in the presence of creatinine, respectively; K is the Stern-Volmer constant determined as the slope of the best-fit line to the data; and [C] is the concentration of creatinine.

3. Results and Discussion

3.1. Fourier Transform Infrared Spectroscopy (FTIR) of Fluorescent Nanodiamond Materials 2019, 12, x FOR PEER REVIEW

5 of 13

Nanodiamond surface chemistry can impact relative fluorescence emission from nitrogen-vacancy color control diamond ferrane harbersistes [42]. Impresore at inspersor residentistic maintain the color control and the color control and the color color control and the color color color and the color c grvapynyaddiseotemevith ditterent dyseratyt a 1221. Therefore in the impertant delenitist in pertant delenitist delenitist in pertant delenitistis delenitist in pertant delenit predoctional groups that exist posting a redismond surface an order to be tablished exchange termination for differently charged adsorbates. Such interaction between hanodiamonds and creatinine molecules can tor differently charged adsorbates. Such interaction between nanodiamonds and creatining molecules occur near and within the binding sites of the molecularly imprinted polymer network [17].

can occur near and within the binding sites of the molecularly imprinted polymer network [17].

an occur near and within the binding sites of the molecularly imprinted polymer network [17].

To explore the nature of surface functionalization of the as-received nanodiamonds. Fourier Transform infrared spectroscopy (FTIR) was performed. The FTIR spectrum of the nanodiamonds transform infrared spectroscopy (FTIR) was performed. The FTIR spectrum of the nanodiamonds shown in Figure 3 reveals multiple peaks ranging from 3385 to 1047 cm⁻¹. Table 1 describes the shown in Figure 3 reveals multiple peaks ranging from 3385 to 1047 cm⁻¹. Table 1 describes the complete peak assignment of the FTIR spectral analysis.

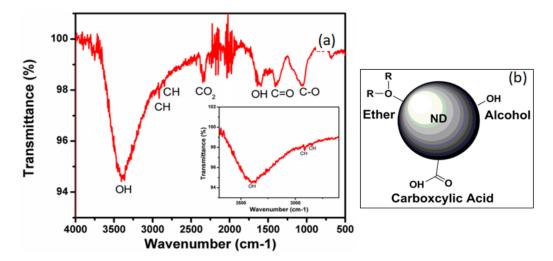


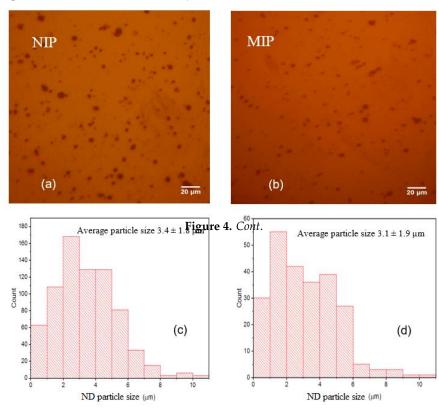
Figure 3. (a) Fourier transform infrared spectroscopy (FTIR) spectrum of the as-received fluorescent Figure 3. (a) Fourier transform infrared spectroscopy (FTIR) spectrum of the as-received fluorescent nanodiamond (inset of the figure represents the spectral region from 2300–3800 cm⁻¹ showing OH and CH groups). (b) Schematic showing several functional groups that exist on the surface of the as-received nanodiamond.

(b) Schematic showing several functional groups that exist on the surface of the as-received nanodiamond.

received nanodiamond.

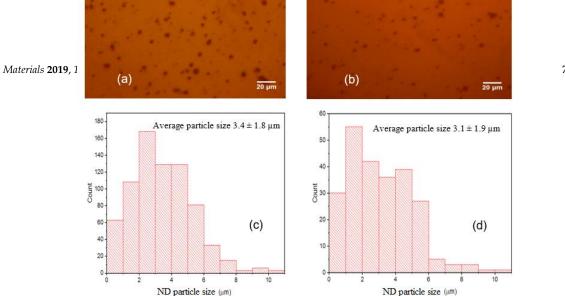
Table 1. FTIR peak assignments from as-received nanodiamond. Table 1. FTIR peak assignments from as-received nanodiamond

Transmittance Frequency with ance	Assignment Assignment
Frequency (cm ⁻¹)	OH stretching attributed to the hydroxyl groups on nanodiamonds
3385 3385	OH stretching, attributed to the hydroxyl groups on nanodiamonds.
2940 2940	OH stretching, attributed to the hydroxyl groups on nanodiamonds OH stretching attributed to the hydroxyl groups on nanodiamonds CH ₂ asymmetric stretching, attributed to the symmetric stretching modes of various CH ₂ asymmetric stretching attributed to the symmetric stretching modes of
2841 2841	CH ₂ symmetric stret ोरामिष्ट्र भाषानी राज्य अभिनामिष्टमिष्टमिष्टमिष्टमिष्टमिष्टमिष्टमिष्ट
2841 2335	various CCO₂ stoetphiong wähncadiaans onds
159 2 335	OH bending, attributed tretheiny dribry lignrups on nanodiamonds
1406591	C=Ogypunatriagtertehingattributed to the certoxy bernuns on manoritiam onds
1047406	C=& Systratehing tattribute, atto: that by drang and expression annothin monds
1047	C-O stretching, attributed to the hydroxyl and ether groups on nanodiamonds


The observed peaks were assigned appropriately after referencing with previously reported FTIR The observed peaks were assigned appropriately after referencing with previously reported spectral interpretation of nanodiamonds [16]. FTIR spectral analysis clearly reveals polyfunctional FTIR spectral interpretation of nanodiamonds [18]. FTIR spectral analysis clearly reveals polyfunctional surface groups such as OH, COOH, ethers and hydrogen. The monomer/crosslinker used in the current study for molecular imprinting process was acrylamide, which was found to undergo hydrogen bonding interactions [19]. We hypothesize that during molecularly imprinted polymer formation, similar hydrogen bonding interactions (both inter- and intra-molecular) occurs between the surface hydroxyl groups of the nanodiamonds with the different hydroxyl groups

Materials **2019**, 12, 2097 6 of 13

surface groups such as OH, COOH, ethers and hydrogen. The monomer/crosslinker used in the current study for molecular imprinting process was acrylamide, which was found to undergo hydrogen bonding interactions [19]. We hypothesize that during molecularly imprinted polymer formation, similar hydrogen bonding interactions (both inter- and intra-molecular) occurs between the surface hydroxyl groups of the nanodiamonds with the different hydroxyl groups present on the acrylamide. This could facilitate strong interaction of the nanodiamonds with the polymer network and is expected Materials 2011 the treatment of the treatment washing/rebinding steps. We find that the nanodiamond fluorescence emission lasts after washing the hydrogel (including in an ultrasonic DI water bath). The nanodiamonds that the nanodiamond fluorescence emission lasts after washing the hydrogel (including in an ultrasonic DI water bath). The nanodiamonds that the nanodiamond fluorescence emission lasts after washing the hydrogel (including in an ultrasonic DI water bath). The nanodiamonds that the nanodiamond fluorescence emission lasts after washing the hydrogel (including in an ultrasonic DI water bath). The nanodiamonds that the nanodiamond fluorescence emission lasts after washing the hydrogel (including in an ultrasonic DI water bath). The nanodiamonds that the nanodiamond fluorescence emission lasts after washing the hydrogel (including in an ultrasonic DI water bath). The nanodiamonds used in this work have functional groups with in the schematic of Figure 3.


3.2. Nanodiamond Cluster Size and Fluorescence inside PAAm Hydrogel 3.2. Nanodiamond Cluster Size and Fluorescence inside PAAm Hydrogel

Optical microscopy was used to obtain images of molecularly imprinted polymer and non-imprinted polymer for PAAm hydrogel inings. Figure 4a,b shows nanodiamond clusters for imprinted polymer for PAAm hydrogel films. Figure 4a, b shows nanodiamond clusters for both non-both non-imprinted and molecularly imprinted polymers, respectively. The limages reveal that imprinted and molecularly imprinted polymers, respectively. The images reyeal that manediamonds hanodiamonds tend to aggregate in dusters. The corresponding particle size and distribution was tend, to aggregate in clusters. The corresponding particle size and distribution was analyzed using analyzed using "Imagel" software (Version 1.47V) with results shown in Figure 4c d. Both non-imprinted and and and molecularly imprinted polymers show similar average nanodiamond particle size and distribution molecularly imprinted polymers show similar average nanodiamond particle size and distribution (3.4 ± 1.3 µm and 3.1 ± 1.9 µm, respectively). We studied the relation between the cluster size and (3.4 ± 1.8 µm and 3.1 ± 1.9 µm, respectively). We studied the relation between the cluster size and its its fluorescence emission for both molecularly imprinted and non-imprinted polymer hydrogels. tluorescence emission for both molecularly imprinted and non-imprinted polymer hydrogels. We we found that the emission intensity of nanodiamond-incorporated hydrogel for a given cluster size is found that the emission intensity of panodiamond-incorporated hydrogel for a given cluster size is similar to within 2%. The corresponding emission for several nanodiamond clusters of 4.8 ± 0.2 µm similar to yi shown in Figure 2.100 carresmission for minimum anodiam or nutrogers of 4.8 ± 0.2 µm similar to yi shown in Figure 2.100 carresmission for minimum anodiam or nutrogers of 4.8 ± 0.2 µm similar to yi shown in Figure 2.100 carresmission for minimum anodiam or nutrogers of 4.8 ± 0.2 µm similar to yi shown in Figure 2.100 carresmission for several national distributions. diameter is shown in Figure 5. We can estimate the minimum number of nitrogen-vacancy centers per 70 nm per particle based on the manufacturer's specifications 300 nitrogen-yacaney senters per 70 nm average particle size of 4.8° ± 0.2 rum would average particle size). Given this, an average nanodiamond cluster size of 4.8 ± 0.2 µm would yield a vield a minimum of 21,000 ± 860 nitrogen vacancy centers. However, it should be noted that only minimum of 21,000 ± 860 nitrogen-vacancy centers. However, it should be noted that only those those nitrogen-vacancy centers near the nanodiamond surface are likely to impact changes in the nitrogen-vacancy centers near the nanodiamond surface are likely to impact changes in the surface surface chemical potential during creatinine binding, thus leading to querching of the NV INV ratio. chemical potential during creatinine binding, thus leading to quenching of the NV-NV0 ratio. For this reason, measurements of fluorescence quenching in this study were consistently performed on this reason, measurements of fluorescence quenching in this study were consistently performed on nanodiamond particles of diameter $4.8\pm0.2\,\mu\text{m}$. nanodiamond particles of diameter $4.8 \pm 0.2 \,\mu m$.

Figure 4. Optical micrographs (**a**,**b**) and particle size distributions (**c**,**d**) for the non-imprinted and molecularly imprinted polymers, respectively.

Figure 4. Optical micrographs (**a,b**) and particle size distributions (**c,d**) for the non-imprinted and **Figure 4.** Optical micrographs (**a,b**) and particle size distributions (**c,d**) for the non-imprinted and molecularly imprinted polymers, respectively.

MaterStile1201V/ol2nx1FOkoPferNtervoelvirmond-Incorporated PAAm Hydrogel

7 of 13

3.3. Stern-Volmer Plot for Nanodiamond-Incorporated PAAm Hydrogel
Common fluorescence quenching mechanisms include Fluorescence Resonance Energy Transfer (FRET), and collisional or static quenching. In FRET, radiation-less energy transfer can occur from a fRET), and collisional or static quenching. In FRET, radiation-less energy transfer can occur from a donor molecule (which absorbs a photon) to an acceptor molecule close to the donor. The probability of energy transfer in FRET is dependent on the overlap between the emission spectrum of the donor and absorption spectrum of the acceptor. FRET efficiency varies with the inverse sixth power of the distance between donor and is therefore a very short-range effect. Since the absorption of creatinine is distance between donor and is therefore a very short-range effect. Since the absorption of creatinine in the ultraviolet region near 230 nm and our nanodiamond emission is in the range of 560-860 nm, no find the ultraviolet region near 230 nm and our nanodiamond emission is in the range of 560-860 nm, FRET interaction is expected to occur between nanodiamond and creatinine [20]. However, a chemical no FRET interaction is expected to occur between nanodiamond and creatinine [21]. However, a chemical no FRET interaction as expected to occur between nanodiamond surface induced by a positively charged such as creatinine can impact fluorescence by changing occupation of nitrogen-vacancy center charge effect such as creatinine can impact fluorescence by changing occupation of nitrogen-vacancy center charge states with interaction range proportional to 1/R² [12]. We investigated upon addition of creatinine, and then by observing how the emission intensity from NV changed upon addition of creatinine, and then by observing how the emission intensity from NV changed upon addition of creatinine, and then by observing how the emission intensity from NV changed upon addition.

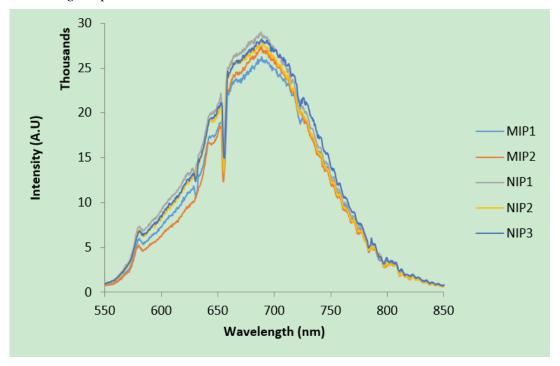
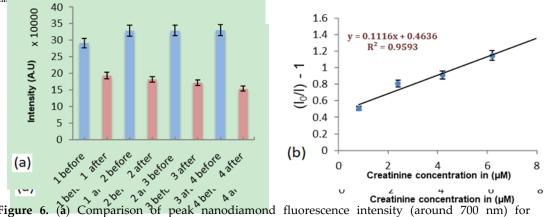



Figure 5: Comparison of emission from similar nanodiamond clusters of $4.8 \pm 0.2 \,\mu m$ diameter.

Equilibrium adsorption tests were first performed by measuring the nanodiamond fluorescence peak intensity (around 700 nm) from molecularly imprinted polymers for creatinine concentrations of 0.82 μM , 2.40 μM , 4.10 μM and 6.20 μM , separately. In order to minimize uncertainty in fluorescence intensity measurements, the laser spot of 2 μm was consistently focused onto

Materials **2019**, 12, 2097 8 of 13

Equilibrium adsorption tests were first performed by measuring the nanodiamond fluorescence peak intensity (around 700 nm) from molecularly imprinted polymers for creatinine concentrations of 0.82 μM, 2.40 μM, 4.10 μM and 6.20 μM, separately. In order to minimize uncertainty in fluorescence intensity measurements, the laser spot of 2 μm was consistently focused onto nanodiamond particles Matricks 2019812 0.20 km Free first showed nanodiamond fluorescence quenching for all four concentrations mass shown in Figure 6a. A Stern-Volmer plot for this data was generated as shown in Figure 6b. of 13

molecularly imprinted polymer, before and, after the addition of four different creatinine.

Figigard, 6(a) (4) one apparation of peaker and after the addition of four different creatinine concentrations. (b) Stern-Volmer plot generated from the data molecularly simprinted polymer before molecularly simprinted polymer before molecular are addition different creatificing concentrations.

The second way to measure changes in nanodiamond fluorescence from interactions with creatining in shell way to measure changes in nanodiamond fluorescence from interactions with creatining in shell way to measure changes in nanodiamond fluorescence from interactions with creatining in the second way to measure changes in nanodiamond fluorescence from interactions with creatining in the second way to measure changes in the second fluorescence from interactions with creatining the second way to measure changes in the second fluorescence from interactions with creating the second fluorescence fluorescence from interactions with creating the second fluorescence fluorescence from interactions with creating the second fluorescence fluores

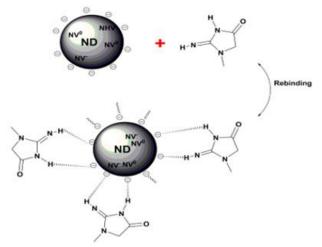


Figure 7. Schematic showing Coulomb interaction between nanodiamonds and creatinine molecules

Figure 7. Schematic showing cuttash interaction between nanodiamonds and creatinine molecules

where charge state of near-surface nitrogen-vacancy centers can be affected.

Figure 7. Schematic showing cuttash interaction between the affected control cutoff in the surface nitrogen-vacancy centers can be affected.

Figure 7. Schematic showing cuttash interaction between nanodiamond creatinine molecules

where charge state of near-surface nitrogen-vacancy centers can be affected.

Figure 8. Schematic showing cuttash interaction between nanodiamond creatinine molecules

where charge state of near-surface nitrogen-vacancy centers can be affected.

Figure 8. Schematic showing cuttash interaction between nanodiamonds and creatinine molecules

where charge state of near-surface nitrogen-vacancy centers can be affected.

Figure 7. Schematic showing cuttash interaction between nanodiamonds and creatinine molecules

where charge state of near-surface nitrogen-vacancy centers can be affected.

Figure 8. Schematic showing cuttash interaction between nanodiamonds and creatinine molecules

where charge state of near-surface nitrogen-vacancy centers and be affected.

Figure 7. Schematic showing creatinine molecules

where charge state of near-surface nitrogen-vacancy centers and creatinine molecules

where charge state of near-surface nitrogen-vacancy centers and creatinine molecules

where charge state of near-surface nitrogen-vacancy centers and creatinine molecules

where charge state of near-surface nitrogen-vacancy centers can be affected.

Figure 7. Schematic state of near-surface nitrogen-vacancy centers can be affected.

Figure 8. Schematic state of near-surface nitrogen-vacancy centers can be affected.

Figure 7. Schematic state of near-surface nitrogen-vacancy centers can be affected.

Figure 7. Schematic state of near-surface nitrogen-vacancy centers can be affected.

Figure 7. Schematic state of near-surface nitrogen-vaca

nanodiamond, electrons are transferred from the valence band to compensate for the positive charge, terminated hanodiamond. Once creatinine is bound to imprinted sites in the vicinity of induced among electrons surface by creatinine, the valence band to an upwersate surface band bending.

Materials **2019**, 12, 2097 9 of 13

respectively, as shown in the near-surface band structure schematic of Figure 8a for negatively terminated nanodiamond. Once creatinine is bound to imprinted sites in the vicinity of nanodiamond, electrons are transferred from the valence band to compensate for the positive charge induced at the diamond surface by creatinine. This contributes to an upwards surface band bending shown in MFigure 2019. The Epperatorial Dending leaves NV⁻ states unoccupied (above the Fermi level) at a Shallow distance below the nanodiamond surface and therefore cannot contribute to luminescence [12,22,23]. luminescence [12,22,23]. In this way quenching of NV- havinescence relative to NV- bound the creating in the creating of NV- bound the creating is the property of the property in the popular polymer.

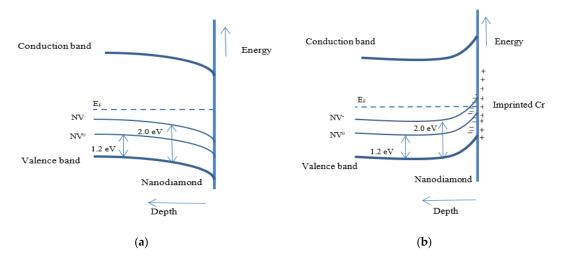


Figure 8. Nanodiamond band structure showing band bending near the surface (a) before creatinine addition with negative surface termination resulting in downward band bending and fully occupied addition with negative surface termination resulting in downward band bending and fully occupied nitrogen-vacancy centers and (b) after creatinine addition resulting in upward band bending and nitrogen-vacancy centers and (b) after creatinine addition resulting in upward band bending and unoccupied NV- states near the nanodiamond surface.

4. Measurements of Nanodiamond Quenching 4. Measurements of Nanodiamond Quenching

The imprinting factor is defined as the fluorescence quenching ratio of molecularly imprinted polyfile imprinted didectined as the of worsemps near polymer interesting which didectined as the of worsemps near polymer interesting which presented by the quenchine and not imprimed polymer prepared identify away in reaction of some interesting process of the solution of creating interesting of creating was considered and not imprinted as the fluorescence of identification of creating of creating of screating was a solution of screating was a solution of screating was a solution of creating was a solution of screating was a solution of screati

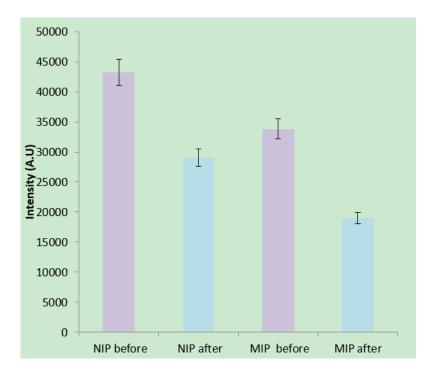
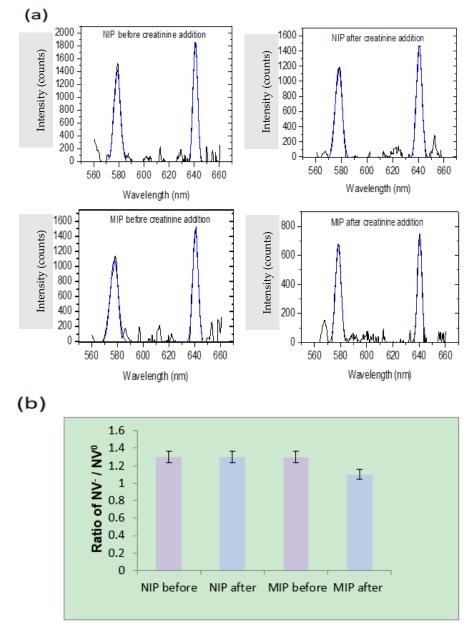



Figure 9. Fluorescence quenching of nanodiamond (peak around 700 nm) for molecularly imprinted and non-imprinted polymers before and after the addition of creatinine.

Therefore, the calculated imprinting factor was 1.3 ± 0.1 . While low, this is comparable to imprinting factors from other studies using fluorescent polymers or quantum dots as a signal transducer for the detection of creatinine [7,24,25]. Not all creatinine molecules can be expected to be totally removed from the hydrosold utinary which approaches we wound not previously [10], this may emplain plan quantumly him rether interpretations for property of the polymer property of the

As mentioned, the escendap period of we necessary evaluation and have respected exclusive the description of the extension of the entire of th

Figure 10. (a) Photoluminescence peak fits in the range of nitrogen-vacancy centers after background **Figure 10.** (a) Photoluminescence peak fits in the range of nitrogen-vacancy centers after background subtraction and using a Gaussian fitting profile for non-imprinted and molecularly imprinted (before and after creatinine addition). (b) Nanodiamond nitrogen-vacancy center intensity ratios polymer (before and after creatinine addition). (b) Nanodiamond nitrogen-vacancy center intensity (NV-/NV) before and after the addition of creatinine for non-imprinted and molecularly imprinted ratios (NV-/NV) before and after the addition of creatinine for non-imprinted and molecularly polymers. Error bars indicate standard deviation, n = 9 for both polymers.

5. Conclusions

5. Conclusion

In this study, we report creatinine detection using an artificial receptor based on a molecularly imprilited is styller weethou! The siniser detection using an artificial receptor based on a molecularly imprilited is styller weethou! The siniser detection in this is the property of the property of the property of the continuous property of the

Materials **2019**, 12, 2097

an expected surface band-bending and quenching of NV^- charge states. Results show a significant decrease of NV^-/NV^0 emission for the molecularly imprinted polymer while the same emission ratio for the non-imprinted polymer did not change. An advantage of the ratiometric sensor is that it is specific to surface chemical potentials at the near-nanodiamond surface and may be less prone to fluorescence from unwanted background (e.g., polymer-induced fluorescence). The fluorescent sensing is expected to provide reliable sensitivity of trace level quantities of creatinine with a longer range (Coulombic, $1/R^2$) interaction to imprinted sites than that for a sensor based on acceptor/donor resonance energy transfer (FRET, $1/R^6$).

Author Contributions: Conceptualization, S.A.C.; Formal analysis, R.A.A., K.J.H. and V.M.V.; Investigation, R.A.A. and K.J.H.; Project administration, S.A.C.; Supervision, S.A.C.; Visualization, R.A.A.; Writing—original draft, R.A.A.; Writing—review and editing, S.A.C.

Funding: This material is based upon work supported by the National Science Foundation (NSF) EPSCoR RII-Track-1 Cooperative Agreement OIA-1655280. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Funding also provided by the Physics Department at University of Alabama at Birmingham, The Saudi Arabian Cultural Mission (SACM) and King AbduAziz University in Saudi Arabia.

Acknowledgments: The authors would like to acknowledge support from Bernabe Tucker for his useful discussions involving FTIR measurements.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

- 1. Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. *Nat. Nanotechnol.* **2012**, *7*, 11–23. [CrossRef] [PubMed]
- 2. Raty, J.-Y.; Galli, G. Optical properties and structure of nanodiamonds. *J. Electroanal. Chem.* **2005**, *584*, 9–12. [CrossRef]
- 3. Aleksenskii, A.; Osipov, V.Y.; Vul, A.Y.; Ber, B.Y.; Smirnov, A.; Melekhin, V.; Adriaenssens, G.; Iakoubovskii, K. Optical properties of nanodiamond layers. *Phys. Solid State* **2001**, *43*, 145–150. [CrossRef]
- 4. Havlik, J.; Petrakova, V.; Rehor, I.; Petrak, V.; Gulka, M.; Stursa, J.; Kucka, J.; Ralis, J.; Rendler, T.; Lee, S.-Y. Boosting nanodiamond fluorescence: Towards development of brighter probes. *Nanoscale* **2013**, *5*, 3208–3211. [CrossRef] [PubMed]
- 5. Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. *J. Am. Chem. Soc.* **2005**, 127, 17604–17605. [CrossRef] [PubMed]
- 6. Laube, C.; Oeckinghaus, T.; Lehnert, J.; Griebel, J.; Knolle, W.; Denisenko, A.; Kahnt, A.; Meijer, J.; Wrachtrup, J.; Abel, B. Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds. *Nanoscale* **2019**, *11*, 1770–1783. [CrossRef] [PubMed]
- 7. Ren, X.; Chen, L. Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. *Biosens. Bioelectron.* **2015**, *64*, 182–188. [CrossRef]
- 8. Rosenthal, S.J.; Chang, J.C.; Kovtun, O.; McBride, J.R.; Tomlinson, I.D. Biocompatible quantum dots for biological applications. *Chem. Biol.* **2011**, *18*, 10–24. [CrossRef]
- 9. Kaur, R.; Badea, I. Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems. *Int. J. Nanomed.* **2013**, *8*, 203.
- 10. Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C. The nitrogen-vacancy colour centre in diamond. *Phys. Rep.* **2013**, *528*, 1–45. [CrossRef]
- 11. Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. *Annu. Rev. Phys. Chem.* **2014**, *65*, 83–105. [CrossRef] [PubMed]
- 12. Petráková, V.; Taylor, A.; Kratochvílová, I.; Fendrych, F.; Vacík, J.; Kučka, J.; Štursa, J.; Cígler, P.; Ledvina, M.; Fišerová, A. Luminescence of nanodiamond driven by atomic functionalization: Towards novel detection principles. *Adv. Funct. Mater.* **2012**, 22, 812–819. [CrossRef]
- 13. Killard, A.J.; Smyth, M.R. Creatinine biosensors: Principles and designs. *Trends Biotechnol.* **2000**, *18*, 433–437. [CrossRef]

Materials **2019**, 12, 2097

14. Mohabbati-Kalejahi, E.; Azimirad, V.; Bahrami, M.; Ganbari, A. A review on creatinine measurement techniques. *Talanta* **2012**, *97*, 1–8. [CrossRef] [PubMed]

- 15. Wang, H.; Yi, J.; Velado, D.; Yu, Y.; Zhou, S. Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH. *ACS Appl. Mater. Interf.* **2015**, 7, 15735–15745. [CrossRef]
- 16. Almotiri, R.; Catledge, S.A. Molecular Imprinted Polyacrylamide as a Receptor for Creatinine Detection. *Adv. Sci. Eng. Med.* **2019**, *11*, 394–400. [CrossRef]
- 17. Fan, Z.; Ilnitska, H.; Lysakovskyi, V.; Ivakhnenko, S.; Kovalenko, T. Effect of physicochemical action on the aggregative properties of detonation-synthesized nanodiamonds. In *IOP Conference Series: Materials Science and Engineering*; IOP Publishing: Bristol, UK, 2018; Volume 292, p. 012069.
- 18. Petit, T.; Puskar, L. FTIR spectroscopy of nanodiamonds: Methods and interpretation. *Diam. Relat. Mater.* **2018**, *89*, 52–66. [CrossRef]
- 19. Patyukova, E.; Rottreau, T.; Evans, R.; Topham, P.D.; Greenall, M.J. Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment. *Macromolecules* **2018**, *51*, 7032–7043. [CrossRef]
- 20. Tsai, H.-A.; Syu, M.-J. Synthesis and characterization of creatinine imprinted poly (4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor. *Anal. Chim. Acta* **2005**, *539*, 107–116. [CrossRef]
- 21. Nebel, C.E. Surface transfer-doping of H-terminated diamond with adsorbates. *New Diam. Front Carbon Technol.* **2005**, *15*, 247–264.
- 22. Ristein, J.; Riedel, M.; Ley, L. Electrochemical surface transfer doping the mechanism behind the surface conductivity of hydrogen-terminated diamond. *J. Electrochem. Soc.* **2004**, *151*, E315–E321. [CrossRef]
- 23. Maier, F.; Riedel, M.; Mantel, B.; Ristein, J.; Ley, L. Origin of surface conductivity in diamond. *Phys. Rev. Let.* **2000**, *85*, 3472. [CrossRef] [PubMed]
- 24. Syu, M.-J.; Hsu, T.-J.; Lin, Z.-K. Synthesis of recognition matrix from 4-methylamino-N-allylnaphthal-imide with fluorescent effect for the imprinting of creatinine. *Anal. Chem.* **2010**, *82*, 8821–8829. [CrossRef] [PubMed]
- 25. Lin, H.-Y.; Ho, M.-S.; Lee, M.-H. Instant formation of molecularly imprinted poly (ethylene-co-vinyl alcohol)/quantum dot composite nanoparticles and their use in one-pot urinalysis. *Biosen. Bioelectron.* **2009**, 25, 579–586. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).