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Abstract:

Among the biggest threats to coastal water quality are freshwater discharges. It is difficult to
predict the spatial extent of freshwater plumes at marine beaches because processes governing
mass transport in the surf zone are complex. Participatory science approaches could facilitate
collecting shoreline data, although volunteer sampling campaigns can be challenged by data
quality and volunteer retention. The goals of this study were to (1) work with volunteers to
estimate safe swimming distances at beaches that receive polluted discharges, and (2) test
whether informational feedback to volunteers increased retention. Forty-six volunteers
participated over 12 weeks in 2019 by collecting 1,452 salinity measurements at beaches near
the mouths of two central California freshwater discharges and completing participation
surveys. These measurements resulted in 145 distinct estimates of safe swimming distances
(Dgo), spanning a range of environmental conditions during rainy and dry periods. Median Dgos
were 150 and 100 m at San Pedro Creek south and north, and 490 and 330 m at San Lorenzo
River west and east, respectively. Dgo was significantly associated with adjacent freshwater
discharge rate at both discharges and tide level at one discharge. On average, the odds of
volunteers conducting sampling decreased by 4% (95% Cl: 1%, 7%) with each successive week.
A randomized intervention providing repeated data feedback via email to volunteers did not

affect their retention in the study.

Key words: participatory science, citizen science, water quality, beach pollution, volunteer

participation, coastal discharges, surf zone, pollutant transport, community monitoring
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Novelty of work. This study presents a novel framework for estimating safe swimming
distances at beaches and is the first participatory environmental science study to

experimentally test strategies for increasing volunteer retention.

Environmental significance statement. Runoff from land can carry high concentrations of
contaminants, including pathogens, nutrients, and trace organic chemicals to coastal waters.
This research investigated the factors that control the shoreline extent of runoff plumes and
found that discharge rate of the runoff source, as well as tide level at one beach, were
associated with plume extents. A unique aspect of this study is that sampling was performed by
local volunteers. Utilizing a randomized control experiment, we found that volunteers who
received project results during the study were not more likely to stay active in the study than
other volunteers. This work contributes to understanding factors that affect coastal water

quality, as well as best practices for engaging volunteers in environmental science projects.
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Introduction

Forty-four percent of the world’s population resides within 150 km of a coastline, and eight
of the world’s ten largest cities are coastal.? Shoreline and coastal waters are valuable natural
resources that provide numerous cultural, economic, and ecological benefits.?® Despite the
economic and cultural importance of clean coastal waters, human impacts on water quality
along the world’s coastlines threaten ecosystem and human health.%>

Among the biggest threats to coastal water quality are small-scale (flow rate on the order of
10 m3/s or less) freshwater discharges from rivers, streams, tidal outlets, and storm drains.®
These are common along US coastlines’ and often contain urban and agricultural runoff,® feces
from wildlife,>'° and wastewater treatment plant effluent, as well as septage®! or raw sewage
when treatment systems perform poorly or are overwhelmed.'?13 Incoming waves affect the
mixing and transport of these freshwater discharges by opposing the freshwater jet’s cross-
shore momentum, rapidly mixing the water column, and driving an alongshore current in the
direction of the waves’ shoreline approach.'**> At wave-dominated beaches, much of the
freshwater plume from these small-scale discharges may be entrained in the surf zone, the
region between the shoreline and the wave breaker line.® This freshwater can remain trapped
near the shoreline, where it spreads in the alongshore direction along with any pollutants it
contains.®> 7 A surf zone tracer study conducted at two tidal outlets in southern California
found that the alongshore flux of surf zone water was 50-300 times greater than the cross-
shore flux.!” This is important for beach water quality because it means that freshwater
pollutants may spread considerable distances along the shoreline, increasing beachgoers’

pollutant exposure.
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It is difficult to predict the spatial extent of freshwater plumes along the shoreline using
analytical models because the processes governing mass transport in the surf zone are

1417-22 One empirical method to estimate the length scale of freshwater

numerous and complex.
plumes in the surf zone is to use salinity as a naturally occurring tracer. This approach is
advantageous because salinity measurements are analytically simple to make. However, to
capture the variability in the freshwater plume extent at a beach, many measurements must be
made across space (to estimate spatial variation in freshwater content) and time (to span the
range of physical conditions present at a beach). Additionally, measurement must be
undertaken by hand, since sensor deployment in the surf zone may be impeded by waves and
tides, permitting requirements, and beachgoers, particularly if deployment across multiple days
is required.

Working with local community members to gather frequent samples could help meet these
sampling requirements. In recent years, participatory science (also “citizen science”) has grown
increasingly popular among academics and practitioners for gathering environmental data.?*%*
Volunteer-based participatory science offers the potential benefits of gathering many
observations in a cost-effective way,?3?>2¢ enhancing public scientific knowledge and skills,?’
and elevating the perceived value of the issue or environment under study.® Two primary
challenges for participatory science are data quality and volunteer retention. To mitigate
potential data quality problems, methods and protocols must be appropriate for volunteer skill
levels and the logistical challenges of numerous participants independently contributing data.?®
Quality control (QC) measures specific to the protocols used by volunteers must also be

developed to ensure that data are of adequate quality for their intended purpose.
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Data quality concerns are common to all scientific studies. In contrast, volunteer retention

30-32 Retaining volunteers in

is a unique and important challenge for participatory science.
longitudinal studies is particularly difficult, and poor retention can threaten a study’s success.3°
Therefore, understanding how specific aspects of project design or management affect
sustained volunteer participation could improve outcomes for participatory science studies.
Indeed, a growing number of studies has sought to understand drivers of volunteer
participation and retention.33**! The use of cross-sectional or observational designs, however,
has precluded any participatory environmental science study from inferring causality between
project or volunteer characteristics and volunteer retention. The present study seeks to test the
effect of providing motivationally-targeted feedback to volunteers in a scientific study using a
managed experimental design.

The basis for this experimental treatment, which aims to enhance learning-oriented
benefits of volunteering by regularly presenting volunteers with data collected during the
study, is a framework for understanding volunteer retention from the field of functional
psychology. This framework posits that volunteer participation is more likely sustained when
specific motivations for volunteering align with perceived benefits of participating. Motivations
alone, divorced from corresponding perceived benefits, are insufficient to sustain volunteer
participation.?** Randomized experiments assessing the impact of motivationally-targeted
communication materials on volunteer participation have been conducted in the human
services sector* and in a massive online participatory physics study.* The present study is the
first known participatory environmental science study to test the effect of informational

feedback on sustaining participation with an experimental design.
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This study sought to address knowledge gaps in beach water quality (WQ) and participatory
science (PS) research by investigating the following four questions: WQ1: How far along the
shoreline are two polluted freshwater discharges at popular beaches likely to have meaningful
public health impacts? WQ2: How does variation in environmental conditions at these sites
affect these alongshore extents? PS1: How much is volunteer retention increased by regularly
presenting to volunteers the data that they collect? PS2: To what extent is this effect
moderated by motivations for volunteering? This study provides data to inform safe swimming
distances from discharges at recreational beaches, a systematic framework for assessing
volunteer data quality that may be adapted to other studies, and insight into best practices for

sustaining volunteer engagement in participatory environmental science.

Methods

Study sites. Study sites (Figure 1) were located at the receiving beaches for two freshwater
discharges in California, USA. San Pedro Creek in Pacifica (37.596560°, -122.505785°), which
discharges to Pacifica State Beach, and San Lorenzo River, which discharges to Main and
Seabright Beaches in Santa Cruz (36.963278°, -122.012892°), were selected because they

46-49 3nd pathogens,®°° discharge to

frequently contain unsafe levels of fecal indicator bacteria
popular recreational beaches, and differ in scale.® Both discharges are located in watersheds
that experience distinct wet and dry seasons, with most precipitation typically falling from

November to March.>! The shoreline on each side of each discharge was considered a sampling

site. These four sites are referred to as San Pedro Creek south (meaning the shoreline to the
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south of San Pedro Creek’s mouth), San Pedro Creek north, San Lorenzo River west, and San

Lorenzo River east (Figure 1).

Volunteer recruitment and communication. Volunteers were recruited online and in-person
from nearby communities (see Supporting Information (SI)) and were required to attend one of
several in-person trainings. Following training, all communication with volunteers was via email,
until after the project’s end date when all volunteers were invited to results presentations.
Volunteers were required to be at least 18 years of age and were not compensated for their
participation in this study. This study was approved by Stanford University’s Institutional

Review Board (protocol IRB-37740).

Field sampling. Volunteers were assigned to sample at one sampling site and conducted field
sampling between February and May 2019. All volunteers received a kit of sampling supplies
with a detailed sampling protocol (see Sl), as well as one 90-minute in-person training held in a
classroom setting. The training included background information on beach water quality, an
overview of project goals, and detailed step-by-step instructions for performing field sampling
and project logistics. Volunteers were asked to conduct sampling once per week for twelve
weeks. During each sampling event, volunteers were asked to collect samples in ankle deep
water, on an incoming wave, at a minimum of five points along the shoreline. Volunteers
recorded the salinity of each sample using a low-cost analog refractometer (Agriculture
Solutions, Dual Scale Refractometer). The measurements made during a sampling event are

collectively referred to as a salinity profile. Other relevant meta-data were also recorded (see
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SI). Volunteers were asked to select locations that spanned a full range of salinity values, from
the salinity at the mouth of the discharge (as low as 0 PSU) to background marine salinity of 34
PSU. Volunteers then recorded the GPS coordinates of each location using a smartphone app
(Save Location GPS, Rayo Infotech).

Data were recorded, and GPS coordinates were transcribed on paper data sheets. Following
each sampling event, volunteers deposited a data sheet along with one of the water samples
for which they recorded salinity at an adjacent drop-off point hosted by a local establishment.
Project staff collected samples each week and returned them to the lab for validation of salinity
measurement accuracy and data digitization. To prevent data digitization errors, all data sheets

were digitized twice by different project staff, and mismatches were identified and corrected.

Refractometer QC. An experiment to determine a threshold for acceptable refractometer
accuracy among volunteers, incorporating both variability due to field conditions and
differences across refractometers, was conducted as follows. One trained project staff member
made five measurements with each of ten refractometers in the field, mimicking the salinity
profiles requested of volunteers. Accuracy of these fifty measurements was determined by
comparing them to measurements made in the lab using a digital Sonde probe (YSI-30), and the
acceptable accuracy threshold was set at the level of error containing 95 percent of
measurements, equal to +/- 2.3 PSU. Further investigation of refractometer accuracy and

repeatability is described in the SI.
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Volunteer data QC criteria. To ensure that data collected by volunteers were sufficiently
accurate to produce scientifically defensible estimates of 90 percent dilution distances (Dggs),
we implemented a strict QC procedure. The QC framework was divided into three conceptual
categories: (1) completeness, the requirement that data collection tasks were completed
sufficiently for data to be interpretable; (2) reasonableness, the requirement that data were
plausible; and (3) usefulness, the requirement that the data collected could be used to answer
the scientific questions of this study. Each category was operationalized by multiple criteria
(Table 1). For example, measurement accuracy is one criterion under the reasonableness
category. Salinity accuracy was determined by using a digital salinity probe (YSI, Model 30,
Yellow Springs, Ohio) to measure the salinity of volunteers’ submitted samples, representing
about 20 percent of all recorded measurements. If a volunteer’s measurement of a submitted
sample had error exceeding 2.3 PSU, all measurements recorded by that volunteer on that day

were discarded.

Dgo estimation. After QC, refractometer instrument bias was corrected to increase salinity
measurement accuracy (see Sl). Salinity was transformed to freshness, defined as f = (salyg —
SQlmeas) / salng, Where f is freshness, saly, is background coastal salinity (34.5 PSU was used,
based on measurements made by staff at field sites during low discharge flow conditions), and
Salmeas is the measured salinity. Salinity values below 0 were assigned 0 PSU and above 34.5
assigned 34.5 PSU to ensure that freshness was bounded by [0, 1]. Note that measured values

above 37 or below -3 PSU were discarded (Table 1).
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To compute shoreline distances from GPS-labeled sampling locations, several intermediate
approximations were made (see Sl). Then, nonlinear regression was used to estimate how
freshness decayed with alongshore distance from each discharge datum. A two-parameter
exponential decay model was fit to each freshness profile:

fij = kyjexp(—kyjdi;) + €  &~N(0,07).
where f = freshness (dimensionless) of the it" point in the j freshness profile; d = distance from
discharge (m); k; = best fit freshness at discharge mouth (dimensionless); k2 = spatial decay rate
of freshness (m™); € = regression residual (dimensionless). Non-linear regression of freshness
values was used rather than linear regression on log-transformed data because freshness
residuals were normal and additive on the untransformed scale.>?

Finally, Dgg, the alongshore distance from the creek or river at which freshwater was diluted
by 90 percent, was estimated for each freshness profile by setting each f; to 0.1 and solving for
d;. Ninety percent was used because fecal indicator bacteria (FIB) levels in San Pedro Creek and
San Lorenzo River from 2016 to 2018 were frequently greater than the CA single sample
criterion used to protect public health, but rarely exceeded ten times the criterion, indicating
that 90 percent dilution is typically sufficient to reduce FIB to levels considered safe in

individual samples (Figure S2).

Associations between Dgp and hydrodynamic variables. Linear association between Dgp and
tide level, flow rate, and alongshore current were investigated. Verified six-minute tide level
data were obtained from NOAA (San Francisco Station, 9414290) with mean lower low water

datum.>? Fifteen-minute flow rates of San Lorenzo River were retrieved from a USGS gage near

11
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the river mouth.>* Hourly flow rates of San Pedro Creek were predicted from weekly flow
measurements (handheld flow meter, FP101, Global Water) and hourly precipitation data using
random forest regression (see Sl). Alongshore velocity was estimated using an equation
proposed by Inman et al.,** which is a function of surf zone wave height and angle (output from
the Coastal Data Information Program model®®), beach slope (for San Lorenzo River, calculated
in QGIS using a USGS digital elevation model;>® for San Pedro Creek, taken from Wong et al.¢),
and bottom drag (taken from Inman et al.'#) (see Sl). Velocity estimates were z-standardized
and interpreted as relative values.

To evaluate associations between Dgg and hydrodynamic variables, linear ordinary least
squares regression was used. One model was estimated for each of the two discharges (San
Pedro Creek and San Lorenzo River). Models were specified as:

\/E = Bo + P1 X tide + B, X log,o(discharge) + B3 X Zeyrrent + €  €~N(0,02)
where tide is tide level (relative to mean lower low water) at the time of sampling, discharge is
volumetric flow rate at the time of sampling, and Zcurren: is the z-standardized alongshore
current velocity at the time of sampling. Dgo was square-root transformed to reduce
heteroscedasticity in the residuals. Variance inflation factors were used to check for
multicollinearity. Wilcoxon rank sum tests were used to test several hypotheses regarding
whether excluding the Dqos that failed certain QC criteria biased Dy statistics. Specifically, Dgo
estimates that were excluded due to insufficient spatial coverage of samples (Figure S7) were
compared to other Dggs with respect to magnitude and correlations with hydrodynamic
variables. Throughout this paper, an alpha level of 0.05 was used to determine statistical

significance.
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Randomized informational feedback. All participants received twice-monthly emails with
recommendations for resolving common data collection issues observed by project staff or
reported by volunteers. To test whether increasing scientific feedback to volunteers affected
sampling effort, emails sent to one half of volunteers also prominently featured a link to access
a report of data collected over the previous two weeks (“data reports”). Treatment condition
(receive or not receive links to data reports) was randomly assigned after stratifying the
volunteers by gender and sampling location. Data reports included plots and descriptions of
aggregated salinity data collected by volunteers, along with discharge flow data and FIB
measurements (see Sl). Emails were sent with Mail Chimp; click data were retrieved to

determine the number of data reports viewed by each volunteer.

Volunteer survey overview. Three online surveys were administered to each volunteer over
the course of the project (see Sl). Prior to commencing sampling, volunteers were administered
a pre-project survey, which included one battery of items based on the Volunteer Functions
Inventory*® to gauge volunteer motivations for participating, and a battery of items to gauge
expected obstacles to participating (see Data analysis: motivations and obstacles). A mid-
project survey was administered during weeks 6-7 of sampling, and a post-project survey was
administered immediately following conclusion of field sampling. Both mid and post surveys
asked participants about sampling and participation problems they had experienced, and
repeated questions from the Volunteer Functions Inventory to gauge perceived benefits of

participating up to that point. All surveys were conducted via the Qualtrics online platform (see

13
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Sl). Links to surveys were emailed to participants, and up to four follow-up emails were sent to

volunteers to encourage survey completion.

Survey constructs and analysis: motivations, benefits, and obstacles. We evaluated six
motivations for and corresponding benefits of volunteering in this project: learning-, values-,
social-, career-, recreation-, and child-oriented. The first four were proposed by Clary et al.,*
and we added the last two after administering an open-ended survey during a pilot version of
this project in 2017. Motivational constructs were defined in terms of volunteers’ perception of
opportunities offered by volunteering with the project, as follows. Learning-oriented
motivation is the perception that volunteering with this project offers opportunities to learn or
exercise knowledge or skills. Values-oriented motivation is the perception that volunteering
with this project offers opportunities to contribute to an issue the volunteer is concerned
about. Social-oriented motivation is the perception that volunteering with this project offers
opportunities to develop social relationships. Career-oriented motivation is the perception that
volunteering with this project offers opportunities to develop one’s career. Recreation-oriented
motivation is the perception that volunteering with this project offers opportunities to engage
in an enjoyable activity. Child-oriented motivation is the perception that volunteering with this
project offers opportunities to participate in an activity with one’s children.

Corresponding benefit constructs were measured in the mid- and post-project surveys, and
differed from motivation constructs in that they addressed retrospective, rather than

prospective, project experience. Benefit constructs were defined similarly to motivation
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constructs. For example, learning-oriented benefits are the perception that volunteering with
this project offered opportunities to learn or exercise knowledge or skills.

Construct indicators, each corresponding to one survey item, permitted integer responses
from 1 to 5, corresponding to ‘strongly disagree’ to ‘strongly agree’ with 3 as ‘neither agree nor
disagree’. Three indicators operationalized each of the learning-, values-, and social-oriented
motivational constructs, while one indicator operationalized each of the career, recreational,
and child-oriented motivations (Table S1 lists individual indicators). This design was used to
constrain the length of the survey while including other crucial survey items. Learning- and
values-oriented motivational constructs were prioritized because they were expected to be
common among volunteers, based on pilot surveys conducted in 2017, and because volunteers
of either orientation were theorized to plausibly respond positively to the informational
intervention. The social-oriented construct was prioritized to serve as a control: we theorized
that volunteers with social-oriented motivations would be unaffected by the intervention.
Confirmatory factor analysis could not be performed on the motivational constructs due to
statistical concerns (see Sl). To determine a volunteer’s primary motivation, a score was
calculated for each motivation as either the average response value (for constructs with
multiple indicators) or the response value (for constructs with a single indicator). A volunteer
was classified as learning oriented if their learning score was greater than 3 and at least as high
as all other motivation scores.

Obstacles to participating were surveyed and defined as the logistical, financial, or
physiological hindrances that make participation more effortful. These hindrances included low

time availability (indicated by self-reported employment status), high travel time to project site
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(volunteers’ self-reported estimates), having to pay for parking at field sites (self-reported), and
physical difficulty of performing sampling tasks (self-reported). Surveyed obstacles and scoring

details are provided in Table S2 and Figure S4.

Analysis of volunteer retention. The null hypothesis corresponding to research question PS1
was that receiving data reports was not associated with retention (referred to as the
“information hypothesis”). Since receiving data reports was a randomly assigned condition, this
association was interpreted as being causal. The null hypothesis corresponding to PS2 was that
retention of volunteers who received data reports and whose motivations were learning-
oriented was equal to retention of other volunteers (referred to as the “motivation
hypothesis”). Since motivation type was not a randomly assigned condition, this association
was not interpreted as being causal.

Generalized Estimating Equations (GEE) models with logit links were fit to test each of these
two hypotheses. In both models, the binary outcome was whether a volunteer conducted
sampling on a given day. Each of the 45 volunteers that completed the pre-project survey and
attended training was included over the 85-day duration of their sampling campaign.* An
exchangeable correlation structure with robust standard errors was used to account for
repeated observations of each volunteer. Predictors for the information hypothesis model were
obstacles score, treatment group (coded 0/1 for control/treatment), time (in days, coded 0 for
training day to 84), and a treatment group by time interaction. Predictors for the motivation
hypothesis model were obstacles score, target group (to be distinguished from a true treatment

group, coded 0/1 for other volunteers/volunteers who received data reports and were learning

16



327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

motivated), time (in days), and a target group by time interaction. The coefficient estimate of
the treatment (or target) group by time interaction term in each model tests the corresponding
hypothesis regarding retention. Exponentiating this coefficient yields an odds ratio, describing
how the odds of conducting sampling for volunteers in the treatment (target) group change
over time compared to the control group, i.e., volunteer retention. Obstacles score was
included to control for factors expected to impact retention that were not accounted for in the
randomized treatment assignment, including age- and access-related factors. Participant age
was correlated with obstacles score (Pearson’s r = -0.57; 95% Cl = -0.74, -0.34; Figure S5), so age

was excluded from regression models.

Results

Salinity measurements. 1,452 salinity measurements were submitted by 36 participants
between Feb 2 and May 4, 2019. Sampling occurred on 55 and 73 out of 92 possible days at San
Pedro Creek and San Lorenzo River, respectively. Forty-five percent of measurements did not
meet the QC criteria for the analysis of Dgo (Figure S6). The criterion most commonly failed was
accuracy (17 percent of all measurements), followed by failing to sample a sufficiently long
beach extent to estimate Dgp (“sufficient spatial coverage”, 11 percent) and failing to perform
calibration (7 percent). Grouping discarded data by QC category revealed that 10 percent of
measurements were discarded due to insufficient completeness, 21 percent due to insufficient
reasonableness, and 14 percent due to insufficient usefulness with respect to the specific
analysis aims of this study. After QC, 804 observations across the four study beaches,

constituting 145 salinity profiles, were used to estimate Dgg values. Dgos excluded due to
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insufficient spatial coverage tended to be longer than included Dgos (p<0.05, Figure S7) at San
Pedro south, San Lorenzo west, and San Lorenzo east. At San Pedro south, excluded Dgos were
associated with higher discharge rates. At San Lorenzo west, excluded Dggs were associated
with higher discharge rates and higher tide levels. San Lorenzo east showed no associations
between data exclusion due to spatial coverage and hydrodynamic variables. At San Pedro

north, no Dgos failed the sufficient spatial coverage criterion.

Distance to 90 percent dilution. Exponential decay models fit freshness profiles well, judged by
residual standard deviations for each profile (example fits in Figure S8). Median (minimum,
maximum) residual standard deviation across profiles was 0.07 (0.00, 0.36) in units of
freshness. Thirty-five, 39, 27, and 44 Dqos were estimated and passed QC criteria at San Pedro
Creek south, San Pedro Creek north, San Lorenzo River west, and San Lorenzo River east,
respectively (Figure 2). The median (25, 75% percentiles) Doos were 150 (100, 180) m at San
Pedro Creek south, 100 (70, 180) m at San Pedro Creek north, 490 (320, 720) m at San Lorenzo
River west, and 330 (210, 520) m at San Lorenzo River east.

During sampling events that passed QC, discharge ranged from 5.9 x 102 to 1.4 x 10° m3/s
with a mean of 3.8 x 10" m3/s in San Pedro Creek, and from 2.7 x 10° to 1.6 x 102 m3/s with a
mean of 1.7 x 10' m3/s in San Lorenzo River. Alongshore current velocities were northward for
all 74 Dgps at San Pedro Creek and eastward for all 71 profiles at San Lorenzo River. For linear
regression modeling, alongshore current velocities were coded such that the direction of the
corresponding Dgp with respect to the discharge mouth is positive. The mean (range) velocity

magnitude was 1.8 (0.6, 3.0) m/s in Pacifica, and 1.9 (0.7, 3.2) m/s in Santa Cruz. These values
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exceeded ranges previously reported for similar conditions by up to an order of magnitude.®
Thus, velocities were interpreted as relative values.

Linear regression models of Dgg incorporating discharge rate, alongshore current, and tide
level were estimated for each of the two discharges. The model for San Pedro Creek explained
about one-third of the variation (R? = 0.38) in Dy (Table S3). The model for San Lorenzo River
explained about one-tenth of the variation in Dgo (adj. R> = 0.11). At San Pedro Creek, a 10-fold
increase in discharge (m?3/s) was significantly associated with a 16 m (95% Cl: 6, 30 m) increase
in Dgo. A 1 mincrease in tide level was significantly associated with a 4 m (1, 10 m) decrease in
Dgo. Alongshore current velocity was not statistically associated with Dqg.

At San Lorenzo River, a 10-fold increase in discharge was significantly associated with a 19
m (0, 17 m) increase in Dgo. Tide level was not statistically associated with Dgo. A 1-standard
deviation increase in alongshore current velocity was statistically associated witha 2 m (0, 9 m)
decrease in Doo.

Due to the perfect collinearity between alongshore current velocity direction and discharge
side (north/south at San Pedro Creek, east/west at San Lorenzo River), dummy variables for
discharge side were not included in the model. This correlation made it impossible to use
regression to distinguish the effects of alongshore current direction on Dgo from effects of other
features specific to each side of a discharge, such as discharge mouth or coastal morphology.
Variance inflation factors for reported model variables were approximately 1, indicating that

multi-collinearity was not a problem in these models.
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Volunteer participation and data report viewing rates. Of over 60 people who expressed
interest in volunteering by completing a preliminary survey, 46 people attended a training and
were given sampling kits. Of those 46, 45 completed the pre-project survey, 31 completed the
mid-project survey, and 29 completed the post-project survey. Thirty-six volunteers completed
sampling at least once. Participation trends are shown Figure 3 and Figure S9, and participation
rates and the number of data reports viewed by each volunteer are shown in Figure S10.
Volunteers who received links to data reports conducted an average of 5.7 (o = 4.5) out of 12
requested sampling events, and volunteers who did not receive links conducted an average of
5.6 (4.4) sampling events. Volunteers who received data report links viewed an average of 2.2
(o =2.1) of the 6 data reports, and the number of reports viewed was significantly, positively
associated with participation rate (Spearman’s p = 0.51, p = 0.02). Note that this correlation

does not indicate a causal relationship between receiving data reports and participation.

Effect of data reports on volunteer retention. Data from 45 volunteers who completed the pre-
project survey were included in the model testing the information hypothesis. Among the 21
volunteers who received data reports, median (range) age category was 35-44 (18-24, 65-74)
years. Fifteen were female, and 6 were male. Among the 24 volunteers who did not receive
data reports, median age was 35-44 (18-24, 75-84) years. Twenty were female, and 4 were
male. Aggregating across treatment groups, the odds of volunteers conducting sampling
decreased by 4 percent (OR = 0.96, 95% Cl: [0.93, 0.99]) with each successive week. The
information hypothesis model (Table S4), described in Methods, indicates that a 1-unit increase

in composite obstacles score was associated with a 37 percent reduction (OR = 0.63, [0.46,

20



414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

0.86]) in the odds of conducting sampling. A one unit increase in obstacles scores is equal to
any combination of obstacles scores in Table S2 that sums to 1. For each passing week, the odds
of conducting sampling among the control group declined by 4 percent, though this was not
statistically significant. Furthermore, the interaction between time and treatment was not

statistically significant, indicating that receiving links to data reports did not alter retention.

Association between data reports and retention for learning-oriented volunteers. Of 45
volunteers, 7 received data reports and were learning-oriented. Characteristics of these
volunteers are presented in Table S5. The motivation hypothesis model (Table S4) indicates
that, adjusting for obstacles to participation, learning-oriented volunteers who received data
reports had statistically significantly lower retention than other volunteers (i.e. volunteers who
either did not receive data reports or who received data reports but were not learning
motivated). Specifically, for each one week increase in time, the odds of conducting sampling
among learning-oriented volunteers who received data reports dropped 10 percent compared
to other volunteers (OR = 0.90, [0.83, 0.98]). This result is driven by the fall in participation after
day 60 among learning-oriented volunteers who received data reports, as retention prior to day

60 is not statistically different between target and control groups (Figure 3).

Discussion
Safe swimming distances from freshwater discharges to two marine beaches were identified
through participatory science. Median safe swimming distances (Dgos) were 130 m at San

Pedro Creek and 380 m at San Lorenzo River. San Mateo County, where San Pedro Creek is
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located, currently encourages beachgoers to remain at least 300 ft (90 m) from a flowing creek
or storm drain when making water contact. This distance corresponds to the 30" percentile of
Dgos measured at San Pedro Creek in this study. To be more health protective, San Mateo
County could consider increasing the recommended swimming distance to 130 m (420 ft) or
180 m (580 ft), which would be sufficiently far to result in 90 percent dilution of San Pedro
Creek water in approximately half or three quarters, respectively, of days in winter and spring.
We did not measure FIB in our study since high levels of fecal contamination have been
extensively documented at both sites,®>’ resulting in both sites currently being listed on the US
Clean Water Act 303(d) list.*®4° Measuring salinity, rather than FIB, is advantageous because it
allows the spatial impact from freshwater discharges to be isolated from other nearby FIB
sources. Efforts similar to those described in this paper could be undertaken with volunteers at
other beaches to refine beach management and protect beachgoers from exposure to

pollutant-laden runoff.

Freshwater discharge rate was positively associated with Dgp at both discharge sites. In fact,
the effect size was similar at both sites, despite site-specific differences in beach and coastline
morphology and wave action. Furthermore, the intercepts of the two models, which
correspond to the estimated average Dgo with a 0 m tide (mean lower low), 1 m3/s discharge
rate, and mean alongshore velocity, were nearly identical, reinforcing the idea that the spatial
impact of freshwater is similar at both sites. This suggests that the estimated effects of

discharge rate on Dgg may be generalizable to other ocean-exposed marine beaches.
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Lower tides were associated with longer Dgos at San Pedro Creek. The intertidal zone at San
Pedro Creek is rocky and slopes downward. At low tides, the creek spreads along the beach,
reducing the momentum with which it meets the surf zone.® This lower momentum may result
in greater wave trapping of freshwater against the shoreline, where salinity measurements for
this study were made.® At San Lorenzo River, where tide level was not associated with Dgo, the
tidally-influenced interaction between the river mouth and marine water is more complex. For
example, the San Lorenzo River mouth morphology can be highly tidally influenced, with
increasing mouth curvature and width at high tide, and exposed sand bars at low tide forming
following heavy rains. Thus, potential impacts of tide level on Dgp may not be captured by this

simple linear model.

Alongshore current effects on Do could not be distinguished from other beach-specific
effects. The estimated negative effect of alongshore current on Dy at San Lorenzo River
contradicted expectations. Wave-driven alongshore currents in the surf zone are expected to
have a positive effect on Doo by bending the freshwater jet in the current’s direction.®
However, larger alongshore currents may also have resulted in strong rip currents which can
eject water from the surf zone.'® Further study, including in situ current measurements, is
required to understand the effects of alongshore currents on freshwater mixing and transport

in the surf zone at these sites.

Although QC resulted in discarding nearly half of collected data, remaining data were

sufficient in quantity and quality to address the study’s research questions. A common
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concern in participatory science is that measurements made by volunteers may be of poor
quality.3>® Many studies cite data quality concerns, asserting that volunteer-made
measurements are inferior in accuracy or precision to measurements made by trained
scientists.”>®3 However, studies often do not clearly define reasonable criteria for data quality
acceptability specific to the methods utilized by volunteers, and recent review articles point out
that data quality inferiority assertions are frequently supported by weak evidence or biased
assumptions.?¥%% Although acceptable data quality will be specific to each project’s methods
and objectives, there is a lack of systematic data quality evaluation present in the participatory
science literature. This study sought to rigorously assess volunteer-collected data quality by
thoroughly assessing the accuracy of the instruments used by volunteers, implementing
sampling procedures that reduce these instruments’ inaccuracies, and defining accuracy criteria
specific to these instruments under field conditions so that instrument accuracy and volunteer-
associated errors were not confounded. Although our QC criteria resulted in discarding 45
percent of all measurements, the remaining data were of high quality and sufficient in number
to investigate the stated water quality research questions. The QC constructs of data
completeness, reasonableness, and usefulness proposed in this study are sufficiently broad that
they could be applied to other studies and operationalized with project-specific QC criteria. QC
failures in each of these three categories can be ameliorated by improving sampling protocols
and providing feedback to volunteers about how to make data more complete, reasonable, and

useful.
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Volunteer retention did not differ between volunteers who received data reports and those
who did not. Previous findings from survey-based analyses indicate that it is highly important
to volunteers that results from their work are shared with them.3* Experimental findings from
this study do not support the proposition that regularly sharing results with volunteers via a link
in an email affects retention. This may be due to data reports not providing additional learning-
oriented benefits beyond those experienced by all participants through other project
experiences, such as training and sampling. This hypothesis is supported by responses in mid-
and post-project surveys indicating that learning-oriented benefits of participating were high
(>4 out of 5) for both treatment and control groups. Furthermore, volunteers who received
data reports did not report experiencing learning-oriented benefits different from other
volunteers in either survey (Wilcoxon rank sum, p>0.05). Note that a randomized experimental
design enables us to distinguish the positive correlation between viewing data reports and
participation rates among volunteers in the treatment group from the null causal effect of

receiving data reports.

Volunteers who were learning-oriented and received data reports had lower retention than
other volunteers. A second, explicitly functional psychological hypothesis was also tested to
determine whether volunteer motivations moderated the effect of the informational
intervention. Specifically, since the informational intervention was designed to increase
learning-oriented benefits of volunteering via increased access to study data, it was
hypothesized that learning-oriented volunteers would be most positively affected. Model

results, however, indicated the opposite: learning-oriented volunteers who received the
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informational intervention had statistically lower retention than other volunteers. Since
learning-oriented volunteers who received data reports did not report a statistically significant
difference in learning-oriented benefits compared to other volunteers in either mid- or post-
project survey, this finding is not easily explained by the functional psychology framework used
in this paper.

Several post-hoc explorations were undertaken to better understand the reduced retention
of learning-oriented volunteers. First, we hypothesized that, by providing evidence to
volunteers that the data they collected were being quickly processed and used by project staff,
data reports may have enhanced volunteers’ perception that they were contributing to a
worthwhile project. This perception would correspond to an increase in perceived values-
oriented benefits relative to learning-oriented benefits. To test whether the intervention
affected retention of values-oriented volunteers, the motivation regression model was fit for
values-oriented volunteers. Model results did not indicate that the intervention statistically
affected retention of values-oriented volunteers compared to other volunteers.

Second, we surmised that learning-oriented volunteers may have had lower retention than
other volunteers, regardless of receiving data reports. However, our modeling suggested that,
ignoring treatment condition, learning-oriented volunteers did not differ from other volunteers
in terms of retention. Thus, no evidence was found that lower retention for learning-oriented
volunteers who received data reports was driven by lower retention among all learning-
oriented volunteers.

Finally, it is possible, although counter to expectations, that learning-oriented volunteers

perceived the data reports particularly negatively, driving down their retention. In the final
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survey, volunteers who received data reports were asked whether data reports had a positive
impact on their volunteering experience. Unfortunately, an insufficient number of people
responded to the final survey to partition respondents by motivational orientation. Thus, the
hypothesis that learning-oriented volunteers perceived data reports more negatively than
others could not be tested.

These post-hoc analyses did not explain the finding that learning-oriented volunteers who
received data reports, intended to be a learning-oriented benefit, had lower retention than
other volunteers. Together, these post-hoc analyses and the survey responses regarding
learning-oriented benefits suggest that receiving data reports had little impact on the perceived
benefits of volunteering. Given this finding and the small number of volunteers who were
learning oriented and received data reports, the association between learning-oriented
volunteers who received data reports and retention may be attributable to unmeasured factors
or spurious.

It also worth noting that although we classified volunteers as learning oriented or not, many
volunteers had multiple motivational orientations. We defined a motivational orientation as a
motivation with a score greater than three and at least as high as all other motivation scores,
which is aligns with previous work.**#* Under this definition, thirty-one volunteers had a single
motivational orientation, while fourteen volunteers had more than one motivational
orientation (Table S6), which supports Clary and Snyder’s finding that volunteers are often
multiply motivated.*? In this study, the values orientation was most common among volunteers
with single motivational orientations (seventeen of thirty-one) and among volunteers with

multiple orientations, followed by the enjoyment and then the learning orientation. Future
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participatory environmental science studies should consider strategies for increasing retention
that explicitly target values-oriented motivations, potentially in conjunction with enjoyment or

learning motivations.

Participation rates did not differ between the 2019 study described in this paper and a 2017
pilot study. In contrast to the 2019 study, the pilot study was designed to have minimal contact
and feedback between volunteers and project staff. No in-person training was conducted, and
no project update emails were sent during the project unless volunteers explicitly asked for
input. Sampling protocols were very similar, occurred at the same sites during the same season,
and the volunteers (n = 53), although all different individuals, were recruited by the same
means from the same population of local NGOs and beachgoers. Interestingly, average
participation rates did not statistically differ between the pilot study and the study presented in
this manuscript (Figure S11), despite the increased time required of project staff in the 2019

study to provide training and data reports.

Conclusions

This study presents a novel framework for estimating safe swimming distances at beaches and
is the first participatory environmental science study to experimentally test strategies for
increasing volunteer retention. The empirical estimates of freshwater plume extents presented
in this work will be useful for future surf zone circulation studies. They also provide scientific
grounding for guidance provided to swimmers by beach managers about safe swimming

distances from freshwater discharges. This work shows that by implementing thorough data
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quality control measures, volunteers using low-cost instruments can implement complex
sampling schemes to collect water quality data in the surf zone, which is a complex, data-poor
environment. Furthermore, although receiving project feedback is commonly cited as
motivating to volunteers, results from this study’s experimental intervention suggest that
managers of participatory science projects should not rely on disseminating project data via

email to promote retention.

Acknowledgments

We acknowledge the anonymous volunteers for contributing to this project; Monterey Bay
Aguarium Sanctuary Exploration Center, Santa Cruz Museum of Natural History, Sonlight
Surfshop, and Soul Grind Coffee for serving as sample drop-off locations; and Jana Hennig,

Jackie Mogensen, and Emily Williams for producing a volunteer recruitment video.

Disclosures
This study was supported by NSF CBET grant number 1644300. WCJ was supported by the NSF

GRFP. The authors declare no competing financial interest.

Supporting Information

SI document includes supporting text and figures. Additional documents referenced in text are

available as separate files, described in SI document.

29



610 Table 1. Volunteer data QC criteria. Criteria are presented in the order in which they were
611 applied to the data.

Category Criterion Description Data@liscarded@f@ailed

Completeness  Calibration Calibration@neasurement@ecorded EntireBalinity@rofile
performed

Reasonableness ValidatedBample® Volunteer@neasurement@vithin@ntervaldvalidationl EntireBalinity@rofile
accurate measurement/-2.3@SU]

Completeness  GPSRoordsHully@  GPSEoordinates@Enustihave®BRigits@ollowing@ecimal Single@latalointl
transcribed

Reasonableness Salinity@angel Salinity@easonable@Eiven@cceptable@efractometer@rror@®f/- Single@latapoint
reasonable 2.3@SU:mvithing-3,B7]@SU

Reasonableness GPSEoords@ni Coordslie@vithin@easonable@each@olygon Single@ataBoint?
targettbeach

Reasonableness GPSEoords@nl ShorelineBEpproximatediby@uadraticHitEolI@ataBoints;B  Single@atakoint
shoreline coordsnust@all@vithinBBtandard@leviationsBbf@uadraticHit

Usefulness SufficientBhumber®  MinimumBfEGointsiperirofile@pass@uality@ontrol@riteria;@ EntireBalinity@rofile
offbointsierirofile necessaryoit@xponentialdunction

Usefulness Sufficient@Bpatial@  Sufficient@istancelongBhoreline@ndBufficientBalinity@ Entire@alinity@rofile

612 coverage range@neasured@occurately@stimatey, .BeeBIHor@etails.k

613
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Figure 1. All salinity measurements that passed QC at (A) San Pedro Creek and (B) San Lorenzo
River. Note that apparent differences in distance from the water reflect the dynamic location of
the land-water interface, which is influenced by tides. (C) depicts the California coast spanning

from San Francisco in the north to Monterrey Bay in the south.

31



623
624

625

626
627
628
629

1000 4
C — 8004
o £
1 53
= 8 001 ®
© -
28
c>O U_') 400 ° ogp
o) © i
2004
O_
San San San San
Pedro Pedro Lorenzo Lorenzo
south north west east

Figure 2. Boxplots representing distributions of Dgg distances at each beach. Boxplot centerlines
are medians, bottoms and tops of boxes are 25" and 75t percentiles, and whiskers extend to
the furthest data point within a distance of 1.5 x interquartile range from the 25t and 75t
percentiles, respectively. Individual points are displaced horizontally to aid visualization.

32



630
631

632
633
634
635
636
637

0.37A — DR
— No DR
0.21
()
©0.15
cC
O
80.0-
O
5 (B
— DR & learnin
20.4- °
M
()
=

Figure 3. Mean participation rate by study day. Mean participation rate is the number of
volunteers out of 45 total who sampled on a given day. Volunteers conducted sampling over an
85-day window. Volunteers are disaggregated by (A) treatment group for the informational
hypothesis and (B) target group for the motivational hypothesis. “DR” means received links to
data reports; “learning” means volunteers who were learning oriented. Trend lines are linear
fits.
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