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Abstract:  8 

Among the biggest threats to coastal water quality are freshwater discharges. It is difficult to 9 

predict the spatial extent of freshwater plumes at marine beaches because processes governing 10 

mass transport in the surf zone are complex. Participatory science approaches could facilitate 11 

collecting shoreline data, although volunteer sampling campaigns can be challenged by data 12 

quality and volunteer retention. The goals of this study were to (1) work with volunteers to 13 

estimate safe swimming distances at beaches that receive polluted discharges, and (2) test 14 

whether informational feedback to volunteers increased retention. Forty-six volunteers 15 

participated over 12 weeks in 2019 by collecting 1,452 salinity measurements at beaches near 16 

the mouths of two central California freshwater discharges and completing participation 17 

surveys. These measurements resulted in 145 distinct estimates of safe swimming distances 18 

(D90), spanning a range of environmental conditions during rainy and dry periods. Median D90s 19 

were 150 and 100 m at San Pedro Creek south and north, and 490 and 330 m at San Lorenzo 20 

River west and east, respectively. D90 was significantly associated with adjacent freshwater 21 

discharge rate at both discharges and tide level at one discharge. On average, the odds of 22 

volunteers conducting sampling decreased by 4% (95% CI: 1%, 7%) with each successive week. 23 

A randomized intervention providing repeated data feedback via email to volunteers did not 24 

affect their retention in the study.  25 

 26 
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 31 

Novelty of work. This study presents a novel framework for estimating safe swimming 32 

distances at beaches and is the first participatory environmental science study to 33 

experimentally test strategies for increasing volunteer retention. 34 

 35 

Environmental significance statement. Runoff from land can carry high concentrations of 36 

contaminants, including pathogens, nutrients, and trace organic chemicals to coastal waters. 37 

This research investigated the factors that control the shoreline extent of runoff plumes and 38 

found that discharge rate of the runoff source, as well as tide level at one beach, were 39 

associated with plume extents. A unique aspect of this study is that sampling was performed by 40 

local volunteers. Utilizing a randomized control experiment, we found that volunteers who 41 

received project results during the study were not more likely to stay active in the study than 42 

other volunteers. This work contributes to understanding factors that affect coastal water 43 

quality, as well as best practices for engaging volunteers in environmental science projects.  44 
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Introduction 45 

Forty-four percent of the world’s population resides within 150 km of a coastline, and eight 46 

of the world’s ten largest cities are coastal.1 Shoreline and coastal waters are valuable natural 47 

resources that provide numerous cultural, economic, and ecological benefits.2,3 Despite the 48 

economic and cultural importance of clean coastal waters, human impacts on water quality 49 

along the world’s coastlines threaten ecosystem and human health.4,5  50 

Among the biggest threats to coastal water quality are small-scale (flow rate on the order of 51 

10 m3/s or less) freshwater discharges from rivers, streams, tidal outlets, and storm drains.6 52 

These are common along US coastlines7 and often contain urban and agricultural runoff,8 feces 53 

from wildlife,9,10 and wastewater treatment plant effluent, as well as septage11 or raw sewage 54 

when treatment systems perform poorly or are overwhelmed.12,13 Incoming waves affect the 55 

mixing and transport of these freshwater discharges by opposing the freshwater jet’s cross-56 

shore momentum, rapidly mixing the water column, and driving an alongshore current in the 57 

direction of the waves’ shoreline approach.14,15 At wave-dominated beaches, much of the 58 

freshwater plume from these small-scale discharges may be entrained in the surf zone, the 59 

region between the shoreline and the wave breaker line.16 This freshwater can remain trapped 60 

near the shoreline, where it spreads in the alongshore direction along with any pollutants it 61 

contains.15–17 A surf zone tracer study conducted at two tidal outlets in southern California 62 

found that the alongshore flux of surf zone water was 50-300 times greater than the cross-63 

shore flux.17 This is important for beach water quality because it means that freshwater 64 

pollutants may spread considerable distances along the shoreline, increasing beachgoers’ 65 

pollutant exposure. 66 
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It is difficult to predict the spatial extent of freshwater plumes along the shoreline using 67 

analytical models because  the processes governing mass transport in the surf zone are 68 

numerous and complex.14,17–22 One empirical method to estimate the length scale of freshwater 69 

plumes in the surf zone is to use salinity as a naturally occurring tracer. This approach is 70 

advantageous because salinity measurements are analytically simple to make. However, to 71 

capture the variability in the freshwater plume extent at a beach, many measurements must be 72 

made across space (to estimate spatial variation in freshwater content) and time (to span the 73 

range of physical conditions present at a beach). Additionally, measurement must be 74 

undertaken by hand, since sensor deployment in the surf zone may be impeded by waves and 75 

tides, permitting requirements, and beachgoers, particularly if deployment across multiple days 76 

is required.  77 

Working with local community members to gather frequent samples could help meet these 78 

sampling requirements. In recent years, participatory science (also “citizen science”) has grown 79 

increasingly popular among academics and practitioners for gathering environmental data.23,24 80 

Volunteer-based participatory science offers the potential benefits of gathering many 81 

observations in a cost-effective way,23,25,26 enhancing public scientific knowledge and skills,27 82 

and elevating the perceived value of the issue or environment under study.28 Two primary 83 

challenges for participatory science are data quality and volunteer retention. To mitigate 84 

potential data quality problems, methods and protocols must be appropriate for volunteer skill 85 

levels and the logistical challenges of numerous participants independently contributing data.29 86 

Quality control (QC) measures specific to the protocols used by volunteers must also be 87 

developed to ensure that data are of adequate quality for their intended purpose. 88 
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Data quality concerns are common to all scientific studies. In contrast, volunteer retention 89 

is a unique and important challenge for participatory science.30–32 Retaining volunteers in 90 

longitudinal studies is particularly difficult, and poor retention can threaten a study’s success.30 91 

Therefore, understanding how specific aspects of project design or management affect 92 

sustained volunteer participation could improve outcomes for participatory science studies. 93 

Indeed, a growing number of studies has sought to understand drivers of volunteer 94 

participation and retention.33–41 The use of cross-sectional or observational designs, however, 95 

has precluded any participatory environmental science study from inferring causality between 96 

project or volunteer characteristics and volunteer retention. The present study seeks to test the 97 

effect of providing motivationally-targeted feedback to volunteers in a scientific study using a 98 

managed experimental design.  99 

The basis for this experimental treatment, which aims to enhance learning-oriented 100 

benefits of volunteering by regularly presenting volunteers with data collected during the 101 

study, is a framework for understanding volunteer retention from the field of functional 102 

psychology. This framework posits that volunteer participation is more likely sustained when 103 

specific motivations for volunteering align with perceived benefits of participating. Motivations 104 

alone, divorced from corresponding perceived benefits, are insufficient to sustain volunteer 105 

participation.42,43 Randomized experiments assessing the impact of motivationally-targeted 106 

communication materials on volunteer participation have been conducted in the human 107 

services sector44 and in a massive online participatory physics study.45 The present study is the 108 

first known participatory environmental science study to test the effect of informational 109 

feedback on sustaining participation with an experimental design. 110 
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This study sought to address knowledge gaps in beach water quality (WQ) and participatory 111 

science (PS) research by investigating the following four questions: WQ1: How far along the 112 

shoreline are two polluted freshwater discharges at popular beaches likely to have meaningful 113 

public health impacts? WQ2: How does variation in environmental conditions at these sites 114 

affect these alongshore extents? PS1: How much is volunteer retention increased by regularly 115 

presenting to volunteers the data that they collect? PS2: To what extent is this effect 116 

moderated by motivations for volunteering? This study provides data to inform safe swimming 117 

distances from discharges at recreational beaches, a systematic framework for assessing 118 

volunteer data quality that may be adapted to other studies, and insight into best practices for 119 

sustaining volunteer engagement in participatory environmental science. 120 

 121 

Methods 122 

Study sites. Study sites (Figure 1) were located at the receiving beaches for two freshwater 123 

discharges in California, USA. San Pedro Creek in Pacifica (37.596560, -122.505785), which 124 

discharges to Pacifica State Beach, and San Lorenzo River, which discharges to Main and 125 

Seabright Beaches in Santa Cruz (36.963278, -122.012892), were selected because they 126 

frequently contain unsafe levels of fecal indicator bacteria46–49 and pathogens,8,50 discharge to 127 

popular recreational beaches, and differ in scale.8 Both discharges are located in watersheds 128 

that experience distinct wet and dry seasons, with most precipitation typically falling from 129 

November to March.51 The shoreline on each side of each discharge was considered a sampling 130 

site. These four sites are referred to as San Pedro Creek south (meaning the shoreline to the 131 
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south of San Pedro Creek’s mouth), San Pedro Creek north, San Lorenzo River west, and San 132 

Lorenzo River east (Figure 1). 133 

 134 

Volunteer recruitment and communication. Volunteers were recruited online and in-person 135 

from nearby communities (see Supporting Information (SI)) and were required to attend one of 136 

several in-person trainings. Following training, all communication with volunteers was via email, 137 

until after the project’s end date when all volunteers were invited to results presentations. 138 

Volunteers were required to be at least 18 years of age and were not compensated for their 139 

participation in this study. This study was approved by Stanford University’s Institutional 140 

Review Board (protocol IRB-37740). 141 

 142 

Field sampling. Volunteers were assigned to sample at one sampling site and conducted field 143 

sampling between February and May 2019. All volunteers received a kit of sampling supplies 144 

with a detailed sampling protocol (see SI), as well as one 90-minute in-person training held in a 145 

classroom setting. The training included background information on beach water quality, an 146 

overview of project goals, and detailed step-by-step instructions for performing field sampling 147 

and project logistics. Volunteers were asked to conduct sampling once per week for twelve 148 

weeks. During each sampling event, volunteers were asked to collect samples in ankle deep 149 

water, on an incoming wave, at a minimum of five points along the shoreline. Volunteers 150 

recorded the salinity of each sample using a low-cost analog refractometer (Agriculture 151 

Solutions, Dual Scale Refractometer). The measurements made during a sampling event are 152 

collectively referred to as a salinity profile. Other relevant meta-data were also recorded (see 153 
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SI). Volunteers were asked to select locations that spanned a full range of salinity values, from 154 

the salinity at the mouth of the discharge (as low as 0 PSU) to background marine salinity of 34 155 

PSU. Volunteers then recorded the GPS coordinates of each location using a smartphone app 156 

(Save Location GPS, Rayo Infotech).  157 

Data were recorded, and GPS coordinates were transcribed on paper data sheets. Following 158 

each sampling event, volunteers deposited a data sheet along with one of the water samples 159 

for which they recorded salinity at an adjacent drop-off point hosted by a local establishment. 160 

Project staff collected samples each week and returned them to the lab for validation of salinity 161 

measurement accuracy and data digitization. To prevent data digitization errors, all data sheets 162 

were digitized twice by different project staff, and mismatches were identified and corrected. 163 

 164 

Refractometer QC. An experiment to determine a threshold for acceptable refractometer 165 

accuracy among volunteers, incorporating both variability due to field conditions and 166 

differences across refractometers, was conducted as follows. One trained project staff member 167 

made five measurements with each of ten refractometers in the field, mimicking the salinity 168 

profiles requested of volunteers. Accuracy of these fifty measurements was determined by 169 

comparing them to measurements made in the lab using a digital Sonde probe (YSI-30), and the 170 

acceptable accuracy threshold was set at the level of error containing 95 percent of 171 

measurements, equal to +/- 2.3 PSU. Further investigation of refractometer accuracy and 172 

repeatability is described in the SI.  173 

 174 
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Volunteer data QC criteria. To ensure that data collected by volunteers were sufficiently 175 

accurate to produce scientifically defensible estimates of 90 percent dilution distances (D90s), 176 

we implemented a strict QC procedure. The QC framework was divided into three conceptual 177 

categories: (1) completeness, the requirement that data collection tasks were completed 178 

sufficiently for data to be interpretable; (2) reasonableness, the requirement that data were 179 

plausible; and (3) usefulness, the requirement that the data collected could be used to answer 180 

the scientific questions of this study. Each category was operationalized by multiple criteria 181 

(Table 1). For example, measurement accuracy is one criterion under the reasonableness 182 

category. Salinity accuracy was determined by using a digital salinity probe (YSI, Model 30, 183 

Yellow Springs, Ohio) to measure the salinity of volunteers’ submitted samples, representing 184 

about 20 percent of all recorded measurements. If a volunteer’s measurement of a submitted 185 

sample had error exceeding 2.3 PSU, all measurements recorded by that volunteer on that day 186 

were discarded.  187 

 188 

D90 estimation. After QC, refractometer instrument bias was corrected to increase salinity 189 

measurement accuracy (see SI). Salinity was transformed to freshness, defined as f = (salbg – 190 

salmeas) / salbg, where f is freshness, salbg is background coastal salinity (34.5 PSU was used, 191 

based on measurements made by staff at field sites during low discharge flow conditions), and 192 

salmeas is the measured salinity. Salinity values below 0 were assigned 0 PSU and above 34.5 193 

assigned 34.5 PSU to ensure that freshness was bounded by [0, 1]. Note that measured values 194 

above 37 or below -3 PSU were discarded (Table 1). 195 
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To compute shoreline distances from GPS-labeled sampling locations, several intermediate 196 

approximations were made (see SI). Then, nonlinear regression was used to estimate how 197 

freshness decayed with alongshore distance from each discharge datum.  A two-parameter 198 

exponential decay model was fit to each freshness profile: 199 𝑓𝑖𝑗 = 𝑘1𝑗 exp(−𝑘2𝑗𝑑𝑖𝑗) +  𝜀𝑖𝑗      𝜀𝑗~𝑁(0, 𝜎𝑗2).  200 

where f ≡ freshness (dimensionless) of the ith point in the jth freshness profile; d ≡ distance from 201 

discharge (m); k1 ≡ best fit freshness at discharge mouth (dimensionless); k2 ≡ spatial decay rate 202 

of freshness (m-1); ε ≡ regression residual (dimensionless). Non-linear regression of freshness 203 

values was used rather than linear regression on log-transformed data because freshness 204 

residuals were normal and additive on the untransformed scale.52 205 

Finally, D90, the alongshore distance from the creek or river at which freshwater was diluted 206 

by 90 percent, was estimated for each freshness profile by setting each fj to 0.1 and solving for 207 

dj. Ninety percent was used because fecal indicator bacteria (FIB) levels in San Pedro Creek and 208 

San Lorenzo River from 2016 to 2018 were frequently greater than the CA single sample 209 

criterion used to protect public health, but rarely exceeded ten times the criterion, indicating 210 

that 90 percent dilution is typically sufficient to reduce FIB to levels considered safe in 211 

individual samples (Figure S2). 212 

 213 

Associations between D90 and hydrodynamic variables. Linear association between D90 and 214 

tide level, flow rate, and alongshore current were investigated. Verified six-minute tide level 215 

data were obtained from NOAA (San Francisco Station, 9414290) with mean lower low water 216 

datum.53 Fifteen-minute flow rates of San Lorenzo River were retrieved from a USGS gage near 217 
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the river mouth.54 Hourly flow rates of San Pedro Creek were predicted from weekly flow 218 

measurements (handheld flow meter, FP101, Global Water) and hourly precipitation data using 219 

random forest regression (see SI). Alongshore velocity was estimated using an equation 220 

proposed by Inman et al.,14 which is a function of surf zone wave height and angle (output from 221 

the Coastal Data Information Program model55), beach slope (for San Lorenzo River, calculated 222 

in QGIS using a USGS digital elevation model;56 for San Pedro Creek, taken from Wong et al.16), 223 

and bottom drag (taken from Inman et al.14) (see SI). Velocity estimates were z-standardized 224 

and interpreted as relative values. 225 

To evaluate associations between D90 and hydrodynamic variables, linear ordinary least 226 

squares regression was used. One model was estimated for each of the two discharges (San 227 

Pedro Creek and San Lorenzo River). Models were specified as: 228 √𝐷90 = 𝛽0 + 𝛽1 × 𝑡𝑖𝑑𝑒 + 𝛽2 × log10(𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) + 𝛽3 × 𝑍𝑐𝑢𝑟𝑟𝑒𝑛𝑡  +  𝜀        𝜀~𝑁(0, 𝜎2) 229 

where tide is tide level (relative to mean lower low water) at the time of sampling, discharge is 230 

volumetric flow rate at the time of sampling, and Zcurrent is the z-standardized alongshore 231 

current velocity at the time of sampling. D90 was square-root transformed to reduce 232 

heteroscedasticity in the residuals. Variance inflation factors were used to check for 233 

multicollinearity. Wilcoxon rank sum tests were used to test several hypotheses regarding 234 

whether excluding the D90s that failed certain QC criteria biased D90 statistics. Specifically, D90 235 

estimates that were excluded due to insufficient spatial coverage of samples (Figure S7) were 236 

compared to other D90s with respect to magnitude and correlations with hydrodynamic 237 

variables. Throughout this paper, an alpha level of 0.05 was used to determine statistical 238 

significance.  239 



 13 

 240 

Randomized informational feedback. All participants received twice-monthly emails with 241 

recommendations for resolving common data collection issues observed by project staff or 242 

reported by volunteers. To test whether increasing scientific feedback to volunteers affected 243 

sampling effort, emails sent to one half of volunteers also prominently featured a link to access 244 

a report of data collected over the previous two weeks (“data reports”). Treatment condition 245 

(receive or not receive links to data reports) was randomly assigned after stratifying the 246 

volunteers by gender and sampling location. Data reports included plots and descriptions of 247 

aggregated salinity data collected by volunteers, along with discharge flow data and FIB 248 

measurements (see SI). Emails were sent with Mail Chimp; click data were retrieved to 249 

determine the number of data reports viewed by each volunteer.  250 

 251 

Volunteer survey overview. Three online surveys were administered to each volunteer over 252 

the course of the project (see SI). Prior to commencing sampling, volunteers were administered 253 

a pre-project survey, which included one battery of items based on the Volunteer Functions 254 

Inventory43 to gauge volunteer motivations for participating, and a battery of items to gauge 255 

expected obstacles to participating (see Data analysis: motivations and obstacles). A mid-256 

project survey was administered during weeks 6-7 of sampling, and a post-project survey was 257 

administered immediately following conclusion of field sampling. Both mid and post surveys 258 

asked participants about sampling and participation problems they had experienced, and 259 

repeated questions from the Volunteer Functions Inventory to gauge perceived benefits of 260 

participating up to that point. All surveys were conducted via the Qualtrics online platform (see 261 
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SI). Links to surveys were emailed to participants, and up to four follow-up emails were sent to 262 

volunteers to encourage survey completion.  263 

 264 

Survey constructs and analysis: motivations, benefits, and obstacles. We evaluated six 265 

motivations for and corresponding benefits of volunteering in this project: learning-, values-, 266 

social-, career-, recreation-, and child-oriented. The first four were proposed by Clary et al.,43 267 

and we added the last two after administering an open-ended survey during a pilot version of 268 

this project in 2017. Motivational constructs were defined in terms of volunteers’ perception of 269 

opportunities offered by volunteering with the project, as follows. Learning-oriented 270 

motivation is the perception that volunteering with this project offers opportunities to learn or 271 

exercise knowledge or skills. Values-oriented motivation is the perception that volunteering 272 

with this project offers opportunities to contribute to an issue the volunteer is concerned 273 

about. Social-oriented motivation is the perception that volunteering with this project offers 274 

opportunities to develop social relationships. Career-oriented motivation is the perception that 275 

volunteering with this project offers opportunities to develop one’s career. Recreation-oriented 276 

motivation is the perception that volunteering with this project offers opportunities to engage 277 

in an enjoyable activity. Child-oriented motivation is the perception that volunteering with this 278 

project offers opportunities to participate in an activity with one’s children.  279 

Corresponding benefit constructs were measured in the mid- and post-project surveys, and 280 

differed from motivation constructs in that they addressed retrospective, rather than 281 

prospective, project experience. Benefit constructs were defined similarly to motivation 282 
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constructs. For example, learning-oriented benefits are the perception that volunteering with 283 

this project offered opportunities to learn or exercise knowledge or skills.  284 

Construct indicators, each corresponding to one survey item, permitted integer responses 285 

from 1 to 5, corresponding to ‘strongly disagree’ to ‘strongly agree’ with 3 as ‘neither agree nor 286 

disagree’. Three indicators operationalized each of the learning-, values-, and social-oriented 287 

motivational constructs, while one indicator operationalized each of the career, recreational, 288 

and child-oriented motivations (Table S1 lists individual indicators). This design was used to 289 

constrain the length of the survey while including other crucial survey items. Learning- and 290 

values-oriented motivational constructs were prioritized because they were expected to be 291 

common among volunteers, based on pilot surveys conducted in 2017, and because volunteers 292 

of either orientation were theorized to plausibly respond positively to the informational 293 

intervention. The social-oriented construct was prioritized to serve as a control: we theorized 294 

that volunteers with social-oriented motivations would be unaffected by the intervention. 295 

Confirmatory factor analysis could not be performed on the motivational constructs due to 296 

statistical concerns (see SI). To determine a volunteer’s primary motivation, a score was 297 

calculated for each motivation as either the average response value (for constructs with 298 

multiple indicators) or the response value (for constructs with a single indicator). A volunteer 299 

was classified as learning oriented if their learning score was greater than 3 and at least as high 300 

as all other motivation scores. 301 

Obstacles to participating were surveyed and defined as the logistical, financial, or 302 

physiological hindrances that make participation more effortful. These hindrances included low 303 

time availability (indicated by self-reported employment status), high travel time to project site 304 
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(volunteers’ self-reported estimates), having to pay for parking at field sites (self-reported), and 305 

physical difficulty of performing sampling tasks (self-reported). Surveyed obstacles and scoring 306 

details are provided in Table S2 and Figure S4. 307 

 308 

Analysis of volunteer retention. The null hypothesis corresponding to research question PS1 309 

was that receiving data reports was not associated with retention (referred to as the 310 

“information hypothesis”). Since receiving data reports was a randomly assigned condition, this 311 

association was interpreted as being causal. The null hypothesis corresponding to PS2 was that 312 

retention of volunteers who received data reports and whose motivations were learning-313 

oriented was equal to retention of other volunteers (referred to as the “motivation 314 

hypothesis”). Since motivation type was not a randomly assigned condition, this association 315 

was not interpreted as being causal. 316 

Generalized Estimating Equations (GEE) models with logit links were fit to test each of these 317 

two hypotheses. In both models, the binary outcome was whether a volunteer conducted 318 

sampling on a given day. Each of the 45 volunteers that completed the pre-project survey and 319 

attended training was included over the 85-day duration of their sampling campaign.44 An 320 

exchangeable correlation structure with robust standard errors was used to account for 321 

repeated observations of each volunteer. Predictors for the information hypothesis model were 322 

obstacles score, treatment group (coded 0/1 for control/treatment), time (in days, coded 0 for 323 

training day to 84), and a treatment group by time interaction. Predictors for the motivation 324 

hypothesis model were obstacles score, target group (to be distinguished from a true treatment 325 

group, coded 0/1 for other volunteers/volunteers who received data reports and were learning 326 
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motivated), time (in days), and a target group by time interaction. The coefficient estimate of 327 

the treatment (or target) group by time interaction term in each model tests the corresponding 328 

hypothesis regarding retention. Exponentiating this coefficient yields an odds ratio, describing 329 

how the odds of conducting sampling for volunteers in the treatment (target) group change 330 

over time compared to the control group, i.e., volunteer retention. Obstacles score was 331 

included to control for factors expected to impact retention that were not accounted for in the 332 

randomized treatment assignment, including age- and access-related factors. Participant age 333 

was correlated with obstacles score (Pearson’s r = -0.57; 95% CI = -0.74, -0.34; Figure S5), so age 334 

was excluded from regression models. 335 

 336 

Results 337 

Salinity measurements. 1,452 salinity measurements were submitted by 36 participants 338 

between Feb 2 and May 4, 2019. Sampling occurred on 55 and 73 out of 92 possible days at San 339 

Pedro Creek and San Lorenzo River, respectively. Forty-five percent of measurements did not 340 

meet the QC criteria for the analysis of D90 (Figure S6). The criterion most commonly failed was 341 

accuracy (17 percent of all measurements), followed by failing to sample a sufficiently long 342 

beach extent to estimate D90 (“sufficient spatial coverage”, 11 percent) and failing to perform 343 

calibration (7 percent). Grouping discarded data by QC category revealed that 10 percent of 344 

measurements were discarded due to insufficient completeness, 21 percent due to insufficient 345 

reasonableness, and 14 percent due to insufficient usefulness with respect to the specific 346 

analysis aims of this study. After QC, 804 observations across the four study beaches, 347 

constituting 145 salinity profiles, were used to estimate D90 values. D90s excluded due to 348 
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insufficient spatial coverage tended to be longer than included D90s (p<0.05, Figure S7) at San 349 

Pedro south, San Lorenzo west, and San Lorenzo east. At San Pedro south, excluded D90s were 350 

associated with higher discharge rates. At San Lorenzo west, excluded D90s were associated 351 

with higher discharge rates and higher tide levels. San Lorenzo east showed no associations 352 

between data exclusion due to spatial coverage and hydrodynamic variables. At San Pedro 353 

north, no D90s failed the sufficient spatial coverage criterion.  354 

 355 

Distance to 90 percent dilution. Exponential decay models fit freshness profiles well, judged by 356 

residual standard deviations for each profile (example fits in Figure S8). Median (minimum, 357 

maximum) residual standard deviation across profiles was 0.07 (0.00, 0.36) in units of 358 

freshness. Thirty-five, 39, 27, and 44 D90s were estimated and passed QC criteria at San Pedro 359 

Creek south, San Pedro Creek north, San Lorenzo River west, and San Lorenzo River east, 360 

respectively (Figure 2). The median (25th, 75th percentiles) D90s were 150 (100, 180) m at San 361 

Pedro Creek south, 100 (70, 180) m at San Pedro Creek north, 490 (320, 720) m at San Lorenzo 362 

River west, and 330 (210, 520) m at San Lorenzo River east.  363 

During sampling events that passed QC, discharge ranged from 5.9  10-2 to 1.4  100 m3/s 364 

with a mean of 3.8  10-1 m3/s in San Pedro Creek, and from 2.7  100 to 1.6  102 m3/s with a 365 

mean of 1.7  101 m3/s in San Lorenzo River. Alongshore current velocities were northward for 366 

all 74 D90s at San Pedro Creek and eastward for all 71 profiles at San Lorenzo River. For linear 367 

regression modeling, alongshore current velocities were coded such that the direction of the 368 

corresponding D90 with respect to the discharge mouth is positive. The mean (range) velocity 369 

magnitude was 1.8 (0.6, 3.0) m/s in Pacifica, and 1.9 (0.7, 3.2) m/s in Santa Cruz. These values 370 
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exceeded ranges previously reported for similar conditions by up to an order of magnitude.16,17 371 

Thus, velocities were interpreted as relative values.  372 

Linear regression models of D90 incorporating discharge rate, alongshore current, and tide 373 

level were estimated for each of the two discharges. The model for San Pedro Creek explained 374 

about one-third of the variation (R2 = 0.38) in D90 (Table S3). The model for San Lorenzo River 375 

explained about one-tenth of the variation in D90 (adj. R2 = 0.11). At San Pedro Creek, a 10-fold 376 

increase in discharge (m3/s) was significantly associated with a 16 m (95% CI: 6, 30 m) increase 377 

in D90. A 1 m increase in tide level was significantly associated with a 4 m (1, 10 m) decrease in 378 

D90. Alongshore current velocity was not statistically associated with D90.  379 

At San Lorenzo River, a 10-fold increase in discharge was significantly associated with a 19 380 

m (0, 17 m) increase in D90. Tide level was not statistically associated with D90. A 1-standard 381 

deviation increase in alongshore current velocity was statistically associated with a 2 m (0, 9 m) 382 

decrease in D90.  383 

Due to the perfect collinearity between alongshore current velocity direction and discharge 384 

side (north/south at San Pedro Creek, east/west at San Lorenzo River), dummy variables for 385 

discharge side were not included in the model. This correlation made it impossible to use 386 

regression to distinguish the effects of alongshore current direction on D90 from effects of other 387 

features specific to each side of a discharge, such as discharge mouth or coastal morphology. 388 

Variance inflation factors for reported model variables were approximately 1, indicating that 389 

multi-collinearity was not a problem in these models. 390 

 391 
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Volunteer participation and data report viewing rates. Of over 60 people who expressed 392 

interest in volunteering by completing a preliminary survey, 46 people attended a training and 393 

were given sampling kits. Of those 46, 45 completed the pre-project survey, 31 completed the 394 

mid-project survey, and 29 completed the post-project survey. Thirty-six volunteers completed 395 

sampling at least once. Participation trends are shown Figure 3 and Figure S9, and participation 396 

rates and the number of data reports viewed by each volunteer are shown in Figure S10. 397 

Volunteers who received links to data reports conducted an average of 5.7 (σ = 4.5) out of 12 398 

requested sampling events, and volunteers who did not receive links conducted an average of 399 

5.6 (4.4) sampling events. Volunteers who received data report links viewed an average of 2.2 400 

(σ = 2.1) of the 6 data reports, and the number of reports viewed was significantly, positively 401 

associated with participation rate (Spearman’s ρ = 0.51, p = 0.02). Note that this correlation 402 

does not indicate a causal relationship between receiving data reports and participation. 403 

 404 

Effect of data reports on volunteer retention. Data from 45 volunteers who completed the pre-405 

project survey were included in the model testing the information hypothesis. Among the 21 406 

volunteers who received data reports, median (range) age category was 35-44 (18-24, 65-74) 407 

years. Fifteen were female, and 6 were male. Among the 24 volunteers who did not receive 408 

data reports, median age was 35-44 (18-24, 75-84) years. Twenty were female, and 4 were 409 

male. Aggregating across treatment groups, the odds of volunteers conducting sampling 410 

decreased by 4 percent (OR = 0.96, 95% CI: [0.93, 0.99]) with each successive week. The 411 

information hypothesis model (Table S4), described in Methods, indicates that a 1-unit increase 412 

in composite obstacles score was associated with a 37 percent reduction (OR = 0.63, [0.46, 413 
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0.86]) in the odds of conducting sampling. A one unit increase in obstacles scores is equal to 414 

any combination of obstacles scores in Table S2 that sums to 1. For each passing week, the odds 415 

of conducting sampling among the control group declined by 4 percent, though this was not 416 

statistically significant. Furthermore, the interaction between time and treatment was not 417 

statistically significant, indicating that receiving links to data reports did not alter retention.  418 

 419 

Association between data reports and retention for learning-oriented volunteers. Of 45 420 

volunteers, 7 received data reports and were learning-oriented. Characteristics of these 421 

volunteers are presented in Table S5. The motivation hypothesis model (Table S4) indicates 422 

that, adjusting for obstacles to participation, learning-oriented volunteers who received data 423 

reports had statistically significantly lower retention than other volunteers (i.e. volunteers who 424 

either did not receive data reports or who received data reports but were not learning 425 

motivated). Specifically, for each one week increase in time, the odds of conducting sampling 426 

among learning-oriented volunteers who received data reports dropped 10 percent compared 427 

to other volunteers (OR = 0.90, [0.83, 0.98]). This result is driven by the fall in participation after 428 

day 60 among learning-oriented volunteers who received data reports, as retention prior to day 429 

60 is not statistically different between target and control groups (Figure 3). 430 

 431 

Discussion  432 

Safe swimming distances from freshwater discharges to two marine beaches were identified 433 

through participatory science. Median safe swimming distances (D90s) were 130 m at San 434 

Pedro Creek and 380 m at San Lorenzo River. San Mateo County, where San Pedro Creek is 435 
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located, currently encourages beachgoers to remain at least 300 ft (90 m) from a flowing creek 436 

or storm drain when making water contact. This distance corresponds to the 30th percentile of 437 

D90s measured at San Pedro Creek in this study. To be more health protective, San Mateo 438 

County could consider increasing the recommended swimming distance to 130 m (420 ft) or 439 

180 m (580 ft), which would be sufficiently far to result in 90 percent dilution of San Pedro 440 

Creek water in approximately half or three quarters, respectively, of days in winter and spring. 441 

We did not measure FIB in our study since high levels of fecal contamination have been 442 

extensively documented at both sites,8,57 resulting in both sites currently being listed on the US 443 

Clean Water Act 303(d) list.48,49 Measuring salinity, rather than FIB, is advantageous because it 444 

allows the spatial impact from freshwater discharges to be isolated from other nearby FIB 445 

sources. Efforts similar to those described in this paper could be undertaken with volunteers at 446 

other beaches to refine beach management and protect beachgoers from exposure to 447 

pollutant-laden runoff. 448 

 449 

Freshwater discharge rate was positively associated with D90 at both discharge sites. In fact, 450 

the effect size was similar at both sites, despite site-specific differences in beach and coastline 451 

morphology and wave action. Furthermore, the intercepts of the two models, which 452 

correspond to the estimated average D90 with a 0 m tide (mean lower low), 1 m3/s discharge 453 

rate, and mean alongshore velocity, were nearly identical, reinforcing the idea that the spatial 454 

impact of freshwater is similar at both sites. This suggests that the estimated effects of 455 

discharge rate on D90 may be generalizable to other ocean-exposed marine beaches. 456 

 457 
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Lower tides were associated with longer D90s at San Pedro Creek. The intertidal zone at San 458 

Pedro Creek is rocky and slopes downward. At low tides, the creek spreads along the beach, 459 

reducing the momentum with which it meets the surf zone.16 This lower momentum may result 460 

in greater wave trapping of freshwater against the shoreline, where salinity measurements for 461 

this study were made.16 At San Lorenzo River, where tide level was not associated with D90, the 462 

tidally-influenced interaction between the river mouth and marine water is more complex. For 463 

example, the San Lorenzo River mouth morphology can be highly tidally influenced, with 464 

increasing mouth curvature and width at high tide, and exposed sand bars at low tide forming 465 

following heavy rains. Thus, potential impacts of tide level on D90 may not be captured by this 466 

simple linear model.  467 

 468 

Alongshore current effects on D90 could not be distinguished from other beach-specific 469 

effects. The estimated negative effect of alongshore current on D90 at San Lorenzo River 470 

contradicted expectations. Wave-driven alongshore currents in the surf zone are expected to 471 

have a positive effect on D90 by bending the freshwater jet in the current’s direction.16 472 

However, larger alongshore currents may also have resulted in strong rip currents which can 473 

eject water from the surf zone.14 Further study, including in situ current measurements, is 474 

required to understand the effects of alongshore currents on freshwater mixing and transport 475 

in the surf zone at these sites.  476 

 477 

Although QC resulted in discarding nearly half of collected data, remaining data were 478 

sufficient in quantity and quality to address the study’s research questions. A common 479 
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concern in participatory science is that measurements made by volunteers may be of poor 480 

quality.31,58 Many studies cite data quality concerns, asserting that volunteer-made 481 

measurements are inferior in accuracy or precision to measurements made by trained 482 

scientists.59–63 However, studies often do not clearly define reasonable criteria for data quality 483 

acceptability specific to the methods utilized by volunteers, and recent review articles point out 484 

that data quality inferiority assertions are frequently supported by weak evidence or biased 485 

assumptions.63,64 Although acceptable data quality will be specific to each project’s methods 486 

and objectives, there is a lack of systematic data quality evaluation present in the participatory 487 

science literature. This study sought to rigorously assess volunteer-collected data quality by 488 

thoroughly assessing the accuracy of the instruments used by volunteers, implementing 489 

sampling procedures that reduce these instruments’ inaccuracies, and defining accuracy criteria 490 

specific to these instruments under field conditions so that instrument accuracy and volunteer-491 

associated errors were not confounded. Although our QC criteria resulted in discarding 45 492 

percent of all measurements, the remaining data were of high quality and sufficient in number 493 

to investigate the stated water quality research questions. The QC constructs of data 494 

completeness, reasonableness, and usefulness proposed in this study are sufficiently broad that 495 

they could be applied to other studies and operationalized with project-specific QC criteria. QC 496 

failures in each of these three categories can be ameliorated by improving sampling protocols 497 

and providing feedback to volunteers about how to make data more complete, reasonable, and 498 

useful. 499 

 500 
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Volunteer retention did not differ between volunteers who received data reports and those 501 

who did not. Previous findings from survey-based analyses indicate that it is highly important 502 

to volunteers that results from their work are shared with them.34 Experimental findings from 503 

this study do not support the proposition that regularly sharing results with volunteers via a link 504 

in an email affects retention. This may be due to data reports not providing additional learning-505 

oriented benefits beyond those experienced by all participants through other project 506 

experiences, such as training and sampling. This hypothesis is supported by responses in mid- 507 

and post-project surveys indicating that learning-oriented benefits of participating were high 508 

(>4 out of 5) for both treatment and control groups. Furthermore, volunteers who received 509 

data reports did not report experiencing learning-oriented benefits different from other 510 

volunteers in either survey (Wilcoxon rank sum, p>0.05). Note that a randomized experimental 511 

design enables us to distinguish the positive correlation between viewing data reports and 512 

participation rates among volunteers in the treatment group from the null causal effect of 513 

receiving data reports. 514 

 515 

Volunteers who were learning-oriented and received data reports had lower retention than 516 

other volunteers. A second, explicitly functional psychological hypothesis was also tested to 517 

determine whether volunteer motivations moderated the effect of the informational 518 

intervention. Specifically, since the informational intervention was designed to increase 519 

learning-oriented benefits of volunteering via increased access to study data, it was 520 

hypothesized that learning-oriented volunteers would be most positively affected. Model 521 

results, however, indicated the opposite: learning-oriented volunteers who received the 522 
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informational intervention had statistically lower retention than other volunteers. Since 523 

learning-oriented volunteers who received data reports did not report a statistically significant 524 

difference in learning-oriented benefits compared to other volunteers in either mid- or post-525 

project survey, this finding is not easily explained by the functional psychology framework used 526 

in this paper.  527 

Several post-hoc explorations were undertaken to better understand the reduced retention 528 

of learning-oriented volunteers. First, we hypothesized that, by providing evidence to 529 

volunteers that the data they collected were being quickly processed and used by project staff, 530 

data reports may have enhanced volunteers’ perception that they were contributing to a 531 

worthwhile project. This perception would correspond to an increase in perceived values-532 

oriented benefits relative to learning-oriented benefits. To test whether the intervention 533 

affected retention of values-oriented volunteers, the motivation regression model was fit for 534 

values-oriented volunteers. Model results did not indicate that the intervention statistically 535 

affected retention of values-oriented volunteers compared to other volunteers. 536 

Second, we surmised that learning-oriented volunteers may have had lower retention than 537 

other volunteers, regardless of receiving data reports. However, our modeling suggested that, 538 

ignoring treatment condition, learning-oriented volunteers did not differ from other volunteers 539 

in terms of retention. Thus, no evidence was found that lower retention for learning-oriented 540 

volunteers who received data reports was driven by lower retention among all learning-541 

oriented volunteers. 542 

Finally, it is possible, although counter to expectations, that learning-oriented volunteers 543 

perceived the data reports particularly negatively, driving down their retention. In the final 544 
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survey, volunteers who received data reports were asked whether data reports had a positive 545 

impact on their volunteering experience. Unfortunately, an insufficient number of people 546 

responded to the final survey to partition respondents by motivational orientation. Thus, the 547 

hypothesis that learning-oriented volunteers perceived data reports more negatively than 548 

others could not be tested. 549 

These post-hoc analyses did not explain the finding that learning-oriented volunteers who 550 

received data reports, intended to be a learning-oriented benefit, had lower retention than 551 

other volunteers. Together, these post-hoc analyses and the survey responses regarding 552 

learning-oriented benefits suggest that receiving data reports had little impact on the perceived 553 

benefits of volunteering. Given this finding and the small number of volunteers who were 554 

learning oriented and received data reports, the association between learning-oriented 555 

volunteers who received data reports and retention may be attributable to unmeasured factors 556 

or spurious. 557 

It also worth noting that although we classified volunteers as learning oriented or not, many 558 

volunteers had multiple motivational orientations. We defined a motivational orientation as a 559 

motivation with a score greater than three and at least as high as all other motivation scores, 560 

which is aligns with previous work.43,44 Under this definition, thirty-one volunteers had a single 561 

motivational orientation, while fourteen volunteers had more than one motivational 562 

orientation (Table S6), which supports Clary and Snyder’s finding that volunteers are often 563 

multiply motivated.42 In this study, the values orientation was most common among volunteers 564 

with single motivational orientations (seventeen of thirty-one) and among volunteers with 565 

multiple orientations, followed by the enjoyment and then the learning orientation. Future 566 
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participatory environmental science studies should consider strategies for increasing retention 567 

that explicitly target values-oriented motivations, potentially in conjunction with enjoyment or 568 

learning motivations. 569 

 570 

Participation rates did not differ between the 2019 study described in this paper and a 2017 571 

pilot study. In contrast to the 2019 study, the pilot study was designed to have minimal contact 572 

and feedback between volunteers and project staff. No in-person training was conducted, and 573 

no project update emails were sent during the project unless volunteers explicitly asked for 574 

input. Sampling protocols were very similar, occurred at the same sites during the same season, 575 

and the volunteers (n = 53), although all different individuals, were recruited by the same 576 

means from the same population of local NGOs and beachgoers. Interestingly, average 577 

participation rates did not statistically differ between the pilot study and the study presented in 578 

this manuscript (Figure S11), despite the increased time required of project staff in the 2019 579 

study to provide training and data reports. 580 

 581 

Conclusions 582 

This study presents a novel framework for estimating safe swimming distances at beaches and 583 

is the first participatory environmental science study to experimentally test strategies for 584 

increasing volunteer retention. The empirical estimates of freshwater plume extents presented 585 

in this work will be useful for future surf zone circulation studies. They also provide scientific 586 

grounding for guidance provided to swimmers by beach managers about safe swimming 587 

distances from freshwater discharges. This work shows that by implementing thorough data 588 
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quality control measures, volunteers using low-cost instruments can implement complex 589 

sampling schemes to collect water quality data in the surf zone, which is a complex, data-poor 590 

environment. Furthermore, although receiving project feedback is commonly cited as 591 

motivating to volunteers, results from this study’s experimental intervention suggest that 592 

managers of participatory science projects should not rely on disseminating project data via 593 

email to promote retention. 594 
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Table 1. Volunteer data QC criteria. Criteria are presented in the order in which they were 610 

applied to the data. 611 

 612 

  613 

Category Criterion Description Data	discarded	if	failed

Completeness Calibration	

performed

Calibration	measurement	recorded Entire	salinity	profile

Reasonableness Validated	sample	

accurate

Volunteer	measurement	within	interval	[validation	

measurement	+/-	2.3	PSU]

Entire	salinity	profile

Completeness GPS	coords	fully	

transcribed

GPS	coordinates	must	have	6	digits	following	decimal Single	data	point	

Reasonableness Salinity	range	

reasonable

Salinity	reasonable	given	acceptable	refractometer	error	of	+/-	

2.3	PSU:	within	[-3,	37]	PSU

Single	data	point

Reasonableness GPS	coords	on	

target	beach

Coords	lie	within	reasonable	beach	polygon Single	data	point	

Reasonableness GPS	coords	on	

shoreline

Shoreline	approximated	by	quadratic	fit	to	all	data	points;	

coords	must	fall	within	3	standard	deviations	of	quadratic	fit

Single	data	point

Usefulness Sufficient	number	

of	points	per	profile

Minimum	of	4	points	per	profile	pass	quality	control	criteria;	

necessary	to	fit	exponential	function

Entire	salinity	profile

Usefulness Sufficient	spatial	

coverage

Sufficient	distance	along	shoreline	and	sufficient	salinity	

range	measured	to	accurately	estimate	D90 .	See	SI	for	details.	

Entire	salinity	profile



 31 

 614 

 615 

 616 
Figure 1. All salinity measurements that passed QC at (A) San Pedro Creek and (B) San Lorenzo 617 

River. Note that apparent differences in distance from the water reflect the dynamic location of 618 

the land-water interface, which is influenced by tides. (C) depicts the California coast spanning 619 

from San Francisco in the north to Monterrey Bay in the south.  620 

 621 

  622 
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 623 

 624 

 625 

Figure 2. Boxplots representing distributions of D90 distances at each beach. Boxplot centerlines 626 

are medians, bottoms and tops of boxes are 25th and 75th percentiles, and whiskers extend to 627 

the furthest data point within a distance of 1.5  interquartile range from the 25th and 75th 628 

percentiles, respectively. Individual points are displaced horizontally to aid visualization.  629 
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