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Abstract

We present a novel method to rapidly assess drug efficacy in targeted cancer therapy, where antineoplastic agents are
conjugated to antibodies targeting surface markers on tumor cells. We have fabricated and characterized a device
capable of rapidly assessing tumor cell sensitivity to drugs using multifrequency impedance spectroscopy in
combination with supervised machine learning for enhanced classification accuracy. Currently commercially available
devices for the automated analysis of cell viability are based on staining, which fundamentally limits the subsequent
characterization of these cells as well as downstream molecular analysis. Our approach requires as little as 20 uL of
volume and avoids staining allowing for further downstream molecular analysis. To the best of our knowledge, this
manuscript presents the first comprehensive attempt to using high-dimensional data and supervised machine
learning, particularly phase change spectra obtained from multi-frequency impedance cytometry as features for the

support vector machine classifier, to assess viability of cells without staining or labelling.

Introduction

Cancer continues to be one of the leading causes of
death worldwide. The primary treatment options for
cancer include surgery’, chemotherapy?, radiation ther-
apy’, hormonal therapy”, targeted therapy®, and palliative
care®. The choice of therapy mainly depends upon the
type and stage of cancer, legal issues, clinical infra-
structure, past response rates, and the patient’s health
conditions. Chemotherapy is non-specific and results in
killing non-targeted cells, which results in many side
effects including hair loss and serious gastrointestinal
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issues. A targeted approach, where only tumor cells are
eliminated, with minimal effect on non-tumor cells would
result in higher efficacy with minimal side effects. New
therapeutic agents as well as diagnostic tools predicting
patient response are urgently needed. In this work we
present a novel method to rapidly assess drug efficacy in
targeted cancer therapy, where antineoplastic agents are
conjugated to antibodies targeting surface markers on
tumor cells. “Activated” matriptase, a membrane-bound
protease, is overexpressed in various epithelial cancer
cells, including B-cell lymphoma, multiple myeloma, and
epithelial carcinomas”®. Given the importance of
matriptase in tumor behavior and its expression on a wide
variety of tumor cell types, the targeted delivery of cancer
drugs to the tumor site shows great promise for enhan-
cing drug efficacy and minimizing toxicity toward

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecormmons.org/licenses/by/4.0/.


www.nature.com/micronano
http://orcid.org/0000-0003-2175-2263
http://orcid.org/0000-0003-2175-2263
http://orcid.org/0000-0003-2175-2263
http://orcid.org/0000-0003-2175-2263
http://orcid.org/0000-0003-2175-2263
http://creativecommons.org/licenses/by/4.0/
mailto:mehdi.javanmard@rutgers.edu

Ahuja et al. Microsystems & Nanoengineering (2019)5:34

noncancerous cells. Cell sensitivity to drug can be asses-
sed by qualitatively analyzing the surface markers on the
tumor cells to determine whether the targeted therapy
will be effective or not. Cells sensitive to the anti-
matriptase-conjugated drug will undergo apoptosis (cell
death), while the cells which are insensitive to the drug
will remain alive. We have fabricated and characterized a
device capable of rapidly assessing cancer cell viability in
response to anti-matriptase-conjugated drugs using mul-
tifrequency impedance spectroscopy in combination with
machine learning for enhanced classification accuracy,
without the need for any staining or labeling of the cells.

The gold standard for automated cell viability analysis is
the Vi-Cell instrument developed by Beckman Coulter”. It
uses the trypan blue dye exclusion method to perform
analysis of cell viability. Staining fundamentally limits the
subsequent characterization of cells as well as down-
stream molecular analysis and requires bulky optical
instrumentation to assess the viability. In addition, this
method requires 0.5-1 mL of sample volume. In addition,
various assays are available for measuring different mar-
kers which indicate cell death (cytotoxicity assay), the
mechanism of cell death, and the quantity of live cells
(viability assay)”'’. Drug screening platforms utilizing
nano and microfluidic channels have been widely
explored"'™°. The use of microfluidic channels can help
reduce sample volumes and the cost of reagents. Recently
droplet microfluidics has been effectively used for drug
screening of cancer cell lines®®. Apart from microfluidic
techniques, optical coherence tomography (OCT) has
been used to track cell death®’. Although OCT is label
free and can quantitatively track cell death, the use of
optical techniques requires bulky optical instrumentation,
making it less compatible with the needs of point-of-care.
Screening cells based on their electrical properties can
enable label-free assessment of cell viability. The use of
dielectropheresis has been vastly explored to assess cell
viability, growth, and immuno-reactivity”>**, The primary
drawback of dielectropheresis is that for each cell, sorting/
analysis based on dielectric properties is performed only
at a single frequency. The use of multiple frequencies
simultaneously can provide a snapshot of a cell’s dielectric
properties over a wide range of frequencies, resulting in
higher classification accuracy.

Electrical impedance spectroscopy/cytometry enables
measuring AC electrical properties of particles in sus-
pension through which the frequency dependent dielec-
tric parameters of the particles can be obtained. The
primary advantage of impedance cytometry is that it is
label free, and analysis can be performed at a single cell
level. The use of bio-impedance measurements can date
back to the early 20th century**** where low and high
frequency conductivity of erythrocytes were measured.
Since then, there have been many advancements in the
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field of microfluidic single cell impedance analysis®.
Microfluidic impedance cytometry has shown promising
results in various fields such as analysis and differentiation
of leukocytes27 and plateletszg, whole blood cell differ-
entiation®®, nano-electronic barcoding of particlesgo,
tumor cell characterization and classification®', and
PicoMolar level detection of protein biomarkers®?, among
other fields. In the past, multifrequency impedance cyto-
metry has also been used to analyze membrane potential
and viability of Bacillus megaterium cells*. Although
multifrequency impedance cytometry was used, only one
frequency (10 MHz) was used to analyze cell viability of
Bacillus megaterium cells. One frequency may not be
sufficient to accurately classify whether a cell is live or
dead. We extend the advancements made in impedance
cytometry toward a new direction where analysis of cell
viability of the cancer cells is based on their impedance
response in conjunction with machine learning for
enhanced classification accuracy.

A field of computer science that enables computers to
learn without explicitly being programmed is machine
learning. Evolved from the study of pattern recognition
and computational learning theory in artificial intelli-
gence, machine learning plays a pivotal role in the study
and construction of algorithms, which learn and make
predictions on data. Support vector machines (SVMs) are
supervised learning models that have algorithms asso-
ciated with them to analyze data for classification and
regression>*, SVM’s are efficient in performing nonlinear
classification, implicitly mapping their inputs to high-
dimensional feature spaces. Machine learning has found
wide applications within biology and bioinformatics to
make accurate predictions®® >, We demonstrate the use
of machine learning toward building a portable point-of-
care diagnostic tool for assessing patient response to
targeted cancer therapy. A patient’s cancer cells are
treated with antibody-conjugated drugs, and the proposed
impedance cytometer determines the percentage of live
and dead tumor cells in the sample. A larger proportion of
dead cells in the sample is indicative that the cells express
activated matriptase and that the targeted therapy will be
effective.

Figure 1 illustrates the schematic diagram of the system.
This includes a microfluidic channel embedded on a glass
wafer with gold electrodes (Fig. 2), a multifrequency lock
in amplifier (Zurich Instruments®), and software to record
and analyze the data. Figure 2a represents microfabricated
electrodes integrated in the channel and Fig. 2b represents
cancer cells (T47D) flowing through the microfluidic
channel. Impedance cytometry experiments were con-
ducted after the fabrication of devices. In this work we
conducted experiments with T47D cancer cells, T47D
cancer cells treated with target drug and T47D dead
cancer cells. We conducted the impedance cytometry
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Fig. 1 Schematic diagram of the system. Multifrequency impedance cytometry measures the response across a broad range of frequencies for
assessment of cellular response to target drug. Live cells and dead cells are assessed using machine learning algorithm to predict their viability
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Fig. 2 Device micrograph. a Microfabricated electrodes at the channel. b Cancer cells flowing through the microfluidic channel
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measurements at discrete frequencies ranging from
300kHz to 30 MHz. For each cell type we performed a
series of measurements at four discrete frequencies
simultaneously. We always used f= 500 kHz as one of the
frequencies for each set of measurements.

After the cell culture was performed, and cells were
treated with drug for different durations, the cells in the
media (RPMI 1640) were centrifuged (290¢ for 5 min)
and suspended in 1x PBS (~400 cells/uL) to perform the
impedance cytometry experiments. Impedance cytometry
experiments were immediately conducted after their via-
bility was assessed using the Vi-CELL™ Series Cell Via-
bility Analyzer (Beckman Coulter, Carlsbad, CA). We
performed impedance cytometry measurements for the
following viability percentages: (1) 100% live cells; (2)
100% dead cells; (3) 90% live cells; 82% live cells; 50% live

cells. Different viability percentages were obtained by
exposing the drug to longer incubation periods.

Results and discussions

In our design, we assume an ideal polarizable electrode
system with no faradic reactions as we used gold as the
electrode material. When a voltage is applied across the
two electrodes, it results in a double layer of ions with
opposing polarity forming a boundary and acting as a
capacitance, which is commonly referred to as the double-
layer capacitance. Thus, we use a simplified circuit model
(Fig. 3) with a double-layer capacitance (Cq4) at each
electrode in series with the solution resistance (R;) in
parallel with the coupling capacitance between two elec-
trodes in the cell (C.). Passage of cells trough the pore
results in modulation of ionic resistance. The
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Fig. 3 Device circuit model. Equivalent circuit model of the electrode-electrolyte interface in the microchannel along with the readout circuit for

measurements were performed using a lock in amplifier
and software to record the data.

The recorded data was then post processed using an
algorithm to detrend and denoise the data which helped to
analyze the cytometry data with minimal error. After
detrending and denoising the data we extracted two sig-
nificant features from the data: amplitude change and phase
change. Amplitude change was termed as change in
amplitude level when a cell passes by, which is obtained by
finding the difference between the baseline voltage and the
peak voltage of a cell passing by. This change in amplitude
was calculated for each single cell passing by with respect to
its baseline for all the frequencies at which measurements
were conducted. Phase change was termed as the change in
angular position of the excitation frequency when a cell
passes by. This was calculated from the real and imaginary
data points obtained from the data. Again, change in phase
was calculated for each single cell passing by for all the
frequencies at which measurements were conducted.

Support vector machine classifier

SVMs are among the best “off-the-shelf” supervised
learning algorithms widely used for classification and
regression. In other words, when provided a labeled
training data set, the algorithm will output an optimal
hyperplane that can be used to classify test data. To
improve the classification accuracy, we used SVM with a
Gaussian Kernel. A kernel function is a form of mapping
done to the training data to transform the data in higher
dimensions. Mapping data in higher dimensions using a
kernel function enables working with highly complex data
without significant computational complexity. We used a
Gaussian Kernel, which works by calculating the square of
the Euclidian distance between two feature vectors. The
data used for training consist of features extracted from
100% live and 100% dead cells (based on Vi-Cell data). For
training the data, we labeled the features from live cells as

1 and features from dead cells as 0. The training data set
size was more than 1000 events (peaks from the impe-
dance data corresponding to a cell passing over the
electrodes) to make sure the SVM classifier does not face
the problem of overfitting. To evaluate the robustness and
accuracy of our SVM classifier, we tested it using three
different tumor cell test samples, with differing viability
percentages (90% live, 50% live, and 82% live). The
number of 1’s predicted by a classifier divided by the total
number of samples gave us the viability percentage pre-
dicted by the SVM classifier.

Performance of the SVM classifier

To evaluate the performance of our SVM classifier, we
used a confusion matrix on a set of test data for which the
true values were known. A part of the training data, which
included features from 100% live, and 100% dead cells was
used for testing. The confusion matrix was built using this
data. The following performance metric was used to
evaluate the SVM classifier:

Accuracy = (TP + TN)/N (1)

TP (True Positive) is the number of the times the
classifier accurately predicted the cell is live, provided the
cell was actually alive, TN (True Negative) is the number
of times the classifier accurately predicted the cell was
dead, provided the cell was actually dead and N is the total
number of data points.

Amplitude change as feature for classification

We studied amplitude change at different frequencies as
features for our SVM classifier. Figure 4a, b represents the
normalized impedance response of live cancer cells and
dead cancer cells (T47D cancer cells) at 500 kHz, 20 MHz,
and 30 MHz. Higher frequencies (>10 MHz) probe the
internal properties of the cell*’. Figure 5 presents the
spectrum of amplitude change for live and dead cancer
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cells at a wide range of frequencies. We used amplitude
change at 500kHz, 20 MHz, 25MHz, and 30 MHz as
features for our SVM classifier. Figure 6a, b shows scatter
plots representing amplitude change for live cancer cells
and dead cancer cells at various frequencies. The confu-
sion matrix for the SVM classifier using amplitude change
as the feature is shown in Fig. 7a. Our classifier reported
an accuracy of 89.7%, with a TP and TN rate of 90% each.
Figure 7b represents a bar graph comparing the cell via-
bility obtained using Trypan Blue staining (ground truth)
and multifrequency impedance spectroscopy with SVM
using amplitude change as features for the SVM classifier.

Phase change as feature for the SVM classifier
For phase change, we observed a general trend wherein
the change (in phase) was negative at lower frequencies

(<1MHz) and positive at higher frequencies. Figure 8a, b
presents scatter plots representing phase change for live
cancer cells and dead cancer cells (T47D cancer cells) at
various frequencies. We tested our SVM classifier for all
four frequency sets. The frequency set consisting of phase
change at 500kHz, 20MHz, 25MHz, and 30 MHz
reported higher accuracy for samples containing different
percentages of viable cells.

The confusion matrix for the SVM classifier, using
phase change as the feature is shown in Fig. 9a. Our
classifier reported to have an accuracy of 90.6%, a TP rate
of 90% and a TN rate of 93%. Figure 9b represents a bar
graph comparing the analysis of cell viability by Trypan
Blue staining method (ground truth) and multifrequency
impedance spectroscopy with SVM using phase change as
features for the SVM classifier.
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Amplitude change and phase change as features for the
SVM classifier

Lastly, we explored the use of amplitude change and
phase change as features for the SVM classifier. Since, for
the same frequency sets (500 kHz, 20 MHz, 25 MHz, and
30 MHz) amplitude change and phase change individually
gave good results, we built an 8-feature matrix which
included both amplitude change and phase change. Before
training the 8-feature matrix with the SVM classifier, the
data points were normalized to ensure that all the data
points lie within a specified range. The confusion matrix
for the SVM classifier with amplitude change and phase
change as features is shown in Fig. 10a. Our classifier had
an accuracy of 95.9%, a TP rate of 95% and a TN rate of
97%. Figure 10b represents a bar graph comparing the
analysis of cell viability by Trypan Blue staining (ground
truth) and multifrequency impedance spectroscopy with
SVM using amplitude change and phase change as fea-
tures for the SVM classifier. The prediction accuracy for
Sample 1 saw no improvement, compared to when only
phase or amplitude change was used for training.

Conclusion

In this work we built a device capable of rapidly ana-
lyzing cell viability without staining of cells, which allows
for further downstream molecular analysis. We explored
the use of phase change at different frequencies as fea-
tures for the SVM classifier. We found that phase change
follows a trend, negative at lower frequencies and positive
at higher frequencies, but the quantitative change in phase
for different types of cells enables higher accuracy

classification. Compared to optical techniques for label-
free analysis of cell viability, our novel method can rapidly
analyze cell viability with minimal cost. We envision using
this device as a point-of-care diagnostic for assessing
patient response and personalization of therapeutics.
Although beyond the scope of this study, we also consider
ultimate practical implementation in the clinical setting.
When dealing with patient samples, this drug sensitivity
assay can be used for screening dissociated cells obtained
from a tumor biopsy. Various protocols and Kkits are
available commercially to dissociate cells into suspension
from human tissues and tumors®. In case heterogeneity
of tumor cells from patient-to-patient ends up being
significant, for each test subject, it may be necessary to
train the classifier on live cells from the tumor (untreated
with drug) and tumor cells killed via heat shock. The
trained classifier would then be capable of testing viability
of cells incubated with the drug to assess efficacy. Future
efforts will be dedicated toward testing with clinical
samples.

Materials and methods

Electrodes are fabricated on glass using standard pho-
tolithography on a 3” fused silica wafer. The process
consists of photo-patterning resist on the fused silica
wafer, electron beam metal evaporation, and liftoff pro-
cessing. The process of photo-patterning includes wafer
cleaning, spin coating the photoresist, soft bake of the
resist, ultraviolet light exposure through a chromium
mask printed on a 4” x 4” glass plate, resist development,
and hard bake of the resist. Following the photo-



Ahuja et al. Microsystems & Nanoengineering (2019)5:34

Page 8 of 11

\.

a o5 + Drug insensitive (live) cells
4 % Drug sensitive (dead) cells
2 =
N
-
o 15F
N 4
“-“, ) +
S 1t ’
j
© &
<
o
3 o05f
©
£
o
0F
_0-5 1 1 1 L L 1 L ]
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
Phase change at 500 kHz
+ Drug insensitive (live) cells
; % Drug sensitive (dead) cells
2+
E '
= 15 i
o b W
[$) . 4 o
© L i Ay +
S 1F . g B gt
j
«© +
< +
3] + '
s +
& 05}
<
o
0 +
_05 1 1 1 1 1 1 1 1
-0.7 —0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Phase change at 500 kHz
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patterning process, a 100-nm-gold layer is deposited on
the substrate using electron beam evaporation. A 10-nm
layer of chromium is used to enhance the adhesion of gold
to the glass wafer; otherwise the gold film gets peeled off
easily. We chose gold as the electrode due to its resistance
to corrosion and its inert nature. The width of the elec-
trodes was 20 um and spacing between the two electrodes
was 25 pm.

Microfluidic channel fabrication

We fabricated the microfluidic channel itself in PDMS
(Poly-dimethylsiloxane) by using soft lithography. A layer
of SU-8 was patterned onto a 3” Silicon wafer that acts as
a master mold. The SU-8 photo-patterning process
involves standard cleaning, spin coating, soft baking,
exposure, development, and hard baking. After the master
mold was fabricated, PDMS (10:1 prepolymer/curing

agent) was poured onto the master mold and baked at
80°C over 2h for curing. The PDMS channel was then
peeled off from the mold. A 5-mm hole and a 1.5-mm
hole were then punched to form the inlet and outlet,
respectively. The PDMS substrate was then aligned and
bonded to the electrode chip after both substrates have
undergone oxygen plasma treatment. The bonded chip
was then baked at 70 °C for 30 min to form the irreversible
bond. Our microfluidic channel had a width of 100 um
and height of 30 um. Figure 2a represents microfabricated
electrodes bonded with the channel and cancer cells
flowing through the microfluidic channel as shown in
Fig. 2b.

Cell culture and cytotoxicity test
T47D breast cancer cell line (in American Tissue Cul-
ture Collection also known as-HB-133) is a luminal type-
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A breast cancer cell line obtained from a pleural effu-
sion from a ductal breast cancer carcinoma patient. The
cell line is also classified according to the expression of
the receptors for hormonal therapy and thus classified
as ER+ (Estrogen receptor positive), PR+ (Progester-
one receptor positive), and HER2— (Herceptin receptor
2 negative).

For cell culture, RPMI 1640 media and fetal bovine
serum albumin from Invitrogen (Fischer Scientific) were

used. For the cytotoxicity assay, 5000 T47D cells per well
were plated in RPMI 1640 media (Gibco) supplemented
with 10% FBS (Invitrogen). After overnight culture, spent
media was removed and fresh media containing drug was
added and plates were incubated for 72 h. To assess cell
viability of the T47D breast cancer cell line, at the end of
the experiment the 3-(4,5-dimethylthiazol-2-yl)-5-(3-car-
boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,

inner salt (MTS) assay was performed according to the
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CellTiter 96 Aqueous One Solution protocol (Promega,
Madison, WI) according to manufacturer’s protocol.

The cells were collected after the drug incubation time
(72h) and cell viability was determined using the Vi-
CELL™ Series Cell Viability Analyzer (Beckman Coulter,
Carlsbad, CA). The cytotoxicity data were further ana-
lyzed using GraphPad Prism 4 software (GraphPad Soft-
ware Inc., CA). The 50% inhibitory concentration (IC50;
the drug concentration required to obtain 50% cell kill
compared to control) was determined using the nonlinear
regression curve fit of the graphs drawn by GraphPad
Prism 4 software. All experiments were performed in
triplicate wells, and all experiments were repeated at least
three times. The cells in logarithmic phase of growth were
analyzed. T47D cells treated with our antibody-drug
conjugate undergoes apoptosis, thus the cell membrane
ruptures and modifies the structure of the cell, changing
cell shape and diameter analyzed by the Vi-CELL
analyzer.

Microfluidic channel operation

For all experiments, we relied on gravity flow to pump
the fluid through the microchannel without relying on
syringe pumps; given that syringe and tubing itself often
introduces electronic noise and interference into the
system as well. As we relied on gravity flow, this required
that the channel walls be hydrophilic so that the capillary
action would allow the fluid to be wicked easily and thus
not impede the movement of fluid once in the channel.
PDMS (Poly-dimethylsiloxane) is hydrophobic in nature,
thus before every experiment we treated the bonded
microchannel with oxygen plasma for 30s to make the
channel hydrophilic. The channel was filled with phos-
phate buffer saline (PBS) to preserve hydrophilicity. The
difference in height resulted in a pressure difference
between the inlet and the outlet, which generates flow. All
measurements were performed inside a metal box to
minimize external interference with the sensor and 60 Hz
coupling.
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