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ABSTRACT
In this paper, we aim to optimize the process of Connected and

Automated Vehicles (CAVs) merging at a traffic intersection while

guaranteeing the state, control and safety constraints. We decom-

pose the task of automatic merging for all the CAVs in a control

zone around a merging point into same-lane safety constraints

and different-lane safe merging, and implement these requirements

using control barrier functions (CBFs). We consider two main ob-

jectives. First, to minimize travel time, we make the CAVs reach the

road maximum speed with exponentially stabilizing control Lya-

punov functions (CLF). Second, we penalize energy consumption as

a cost in an optimization problem. We then decompose the merging

problem into decentralized subproblems formulated as a sequence

of quadratic programs (QP), which are solved in real time. Our

simulations and comparisons show that the method proposed here

outperforms ad hoc controllers used in traffic system simulators

and provides comparable results to the optimal control solution of

the merging problem in earlier work.
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1 INTRODUCTION
Traffic management at merging points (usually, highway on-ramps)

is one of the most challenging problems within a transportation

system in terms of safety, congestion, and energy consumption, in

addition to being a source of stress for many drivers [19, 22, 25].

Advancements in next generation transportation system technolo-

gies and the emergence of CAVs (also known as self-driving cars or

autonomous vehicles) have the potential to drastically improve a

transportation network’s performance by better assisting drivers

in making decisions, ultimately reducing energy consumption, air

pollution, congestion and accidents. One of the very early efforts ex-

ploiting the benefit of CAVs was proposed in [10], where an optimal

linear feedback regulator was introduced for the merging problem

to control a single string of vehicles. An overview of automated

intelligent vehicle-highway systems was provided in [23].

There has been significant research in assisted traffic merging

offering guidance to drivers so as to avoid congestion and collisions.

A Classification and Regression Tree (CART) method was used in

[26] to model merging behavior and assist decisions in terms of the

time-to-collision between vehicles. The Long Short-Term Memory

(LSTM) network was used in [7] to predict possible long-term con-

gestion. In [30], a Radial Basis Function-Artificial Neural Network

(RBF-ANN) is used to forcast the traffic volume in a merging area.

However, such assisted merging methods do not take advantage of

autonomous driving so as to possibly automate the merging process

in a cooperative manner.

A number of centralized or decentralizedmerging controlmechan-

sims have been proposed [6, 12–15, 17, 18, 22]. In the case of de-

centralized control, all computation is performed on board each

vehicle and shared only with a small number of other vehicles

which are affected by it. Optimal control problem formulations are

used in some of these approaches, while Model Predictive Control

(MPC) techniques are employed in others, primarily to account

for additional constraints and to compensate for disturbances by

re-evaluating optimal actions. The objectives specified for optimal

control problems may target the minimization of acceleration as

in [17] or the maximization of passenger comfort (measured as the

acceleration derivative or jerk) as in [14, 16]. MPC approaches were

used in [6, 13], as well as in [14] where inequality constraints were

added to the originally considered optimal control problem.

The optimal control approaches to the merging problem usually

assume that no constraints are active in order to get simple analyti-

cal solutions for the controller or they become complicated when

the constraints are included in the derivation of optimal trajecto-

ries [11, 14, 28, 29]. The number of possible constrained cases is

determined by the number of constraints, and the constraints may

even recursively become active, which makes this problem very

https://doi.org/10.1145/3302509.3311054
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expensive computationally when there are many constraints. In the

existing work, the objective functions are also restricted to simple

forms, such as the 2-norm square of the control input. Moreover,

the dynamics are restricted to linear when analytical solutions are

desired.

In this paper, we combine all the constraints in a quadratic pro-

gram (QP) or linear program (LP) by using control barrier functions

(CBF) [4, 5, 21] and solve it in real time. Therefore, the enumer-

ation of specific cases is avoided, which makes our method easy

to implement even under many constraints. We can accommodate

complex objective functions and nonlinear dynamics since we solve

the optimization problem in discrete time. Most recent work in the

merging problem is restricted to minimizing acceleration and jerk

[14, 16] or just to achieving safe merging [6, 13]. In addition to

minimizing energy consumption, we also consider minimization of

travel time, while satisfying all the state, control, safety, and safe

merging constraints. We regard travel time as another objective

using control Lyapunov functions (CLF) [2, 3, 20]. As in [28], we

also solve the merging problem in a decentralized way in this paper.

Finally, our solution provides an increased degree of robustness

since the merging problem is solved in real time and can therefore

deal with perturbations or noise.

The rest of the paper is structured as follows. In Section 2 we

include some preliminaries. In Section 3, we introduce the merging

process model and formulate the merging control problem, includ-

ing all the safety requirements that must be satisfied at all times. In

Sections 4 and 5, we present the control strategy and discuss the

feasibility of the merging problem, respectively. We illustrate the

proposed method with simulations in Section 6 and conclude with

final remarks in Section 7.

2 PRELIMINARIES
Definition 2.1. Class K function [9]: A continuous function α :

[0,a) → [0,∞),a > 0 is said to belong to class K if it is strictly

increasing and α(0) = 0.

In this paper, we consider affine control systems of the form

Ûx = f (x) + д(x)u, (1)

where f : Rn → Rn and д : Rn → Rn×q are locally Lipschitz,

x ∈ Rn denotes the state vector and u ∈ U ⊂ Rq (U denotes the

control constraint set). Solutions x of (1) are forward complete.

Definition 2.2. A set C is forward invariant for system (1) if its

solutions starting at all x(t0) ∈ C satisfy x(t) ∈ C for ∀t ≥ t0.

Definition 2.3. Control barrier function (CBF) [4]: Let C := {x ∈

Rn : h(x) ≥ 0}, where h : Rn → R is continuously differentiable. A

function B : C → R is a control barrier function (CBF) for system

(1) if there exist class K functions β1, β2 and γ > 0 such that

1

β1(h(x))
≤ B(x) ≤

1

β2(h(x))
, (2)

in f
u ∈U

[Lf B(x) + LдB(x)u −
γ

B(x)
] ≤ 0, (3)

for all x ∈ Int(C), where Lf , Lд denote the Lie derivatives [1] along

f and д, respectively, and Int(C) is the interior of C .

Given a CBF B, any Lipschitz continuous controlleru ∈ Kcbf (x),
with

Kcbf (x) := {u ∈ U : Lf B(x) + LдB(x)u −
γ

B(x)
≤ 0},

renders set C forward invariant [4] for affine control system (1).

Definition 2.4. Control Lyapunov function (CLF) [2]: A continu-

ously differentiable function V : Rn → R is a globally and expo-

nentially stabilizing control Lyapunov function (CLF) if there exist

constants c1 > 0, c2 > 0, c3 > 0 such that

c1 | |x | |
2 ≤ V (x) ≤ c2 | |x | |

2
(4)

in f
u ∈U

[Lf V (x) + LдV (x)u + c3V (x)] ≤ 0. (5)

for ∀x ∈ Rn .

Given an exponentially stabilizing CLF V , any Lipschitz contin-

uous controller u ∈ Kcl f (x), with

Kcl f (x) := {u ∈ U : Lf V (x) + LдV (x)u + c3V (x) ≤ 0},

exponentially stabilizes system (1) to its zero dynamics (defined

by the dynamics of the internal part if we transform the system to

standard form and set the output to zero [9]).

3 PROBLEM FORMULATION AND
APPROACH

The merging problem arises when traffic must be joined from two

different roads, usually associated with a main lane and a merging

lane as shown in Fig. 1. We consider the case where all traffic

consists of CAVs randomly arriving from two lanes joined at the

Merging Point (MP)M , where collisions may occur. The segments

from the origins O and O ′
to the merging pointM are assumed to

have the same length L, and are referred to as the Control Zone

(CZ). We assume that CAVs do not overtake each other in the CZ. A

coordinator is associated with the MPwhose function is to maintain

a First-In-First-Out (FIFO) queue of CAVs based on their arrival

time at the CZ and enable real-time communication with the CAVs

that are in the CZ as well as the last one leaving the CZ (see Fig. 1).

The FIFO assumption imposed so that CAVs cross the MP in their

order of arrival is made for simplicity and often to ensure fairness,

but can be relaxed through dynamic resequencing schemes, e.g., as

described in [31].

3.1 Vehicle Dynamics
Let S(t) be the set of CAV indices in the CZ at time t , including the

vehicle that has just left the CZ (whose index is 0 as shown in Fig.

1). Let N (t) be the cardinality of S(t). Therefore, the next arriving
CAV will be assigned index N (t). All the vehicle indices decrease
by one when a vehicle leaves the CZ and the vehicle whose index

is −1 is dropped.

The vehicle dynamics for each CAV i ∈ S(t) along the lane to

which it belongs take the form

mi
dvi (t)

dt
= ui (t) − Fr (vi (t)), (6)

where ui (t) is the control input of CAV i ,mi denotes its mass, and

vi (t) is its the velocity. Fr (vi (t)) denotes the resistance force, which



Decentralized Merging Control in Traffic Networks:
A Control Barrier Function Approach ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

Figure 1: The traffic merging problem: CAVs randomly arrive at O and O ′ and merge atM , where collisions may occur.

is normally expressed [9] as:

Fr (vi (t)) = α0sдn(vi (t)) + α1vi (t) + α2v
2

i (t), (7)

where α0 > 0,α1 > 0 and α2 > 0 are scalars determined empirically,

and sдn is the signum function. The first term in Fr (vi (t)) denotes
the Coulomb friction force, the second term denotes the viscous

friction force and the last term denotes the aerodynamic drag.

With xi (t) := (xi (t),vi (t)), we can rewrite the vehicle dynamics

in standard form:[
Ûxi (t)
Ûvi (t)

]
︸     ︷︷     ︸

Ûxi (t )

=

[
vi (t)

− 1

mi
Fr (vi (t))

]
︸                  ︷︷                  ︸

f (xi (t ))

+

[
0

1

mi

]
︸   ︷︷   ︸
д(xi (t ))

ui (t), (8)

where xi (t) denotes the distance to the originO (O ′
) along the main

(merging) lane if the vehicle i is located in the main (merging) lane.

3.2 Objectives and Constraints
The following objectives and constraints are exactly the same as

the ones from [28] to enable the comparison presented later in the

paper.

Objective 1 (Minimizing travel time): Let t0i and tmi denote the

times that CAV i ∈ S(t) arrive at the originO orO ′
and the merging

point M , respectively. We wish to minimize the travel time tmi − t0i
for CAV i .

Objective 2 (Minimizing energy consumption): We also want

to minimize the energy consumption for each vehicle i ∈ S(t)

expressed as

Ji (t
m
i ,ui (t)) =

∫ tmi

t 0i
C(ui (t))dt, (9)

where C(·) is a class K function of its argument.

Constraint 1 (Safety): Let ip denote the index of the CAV that

immediately precedes i in the same lane in the CZ (if one is present).

We require that the distance zi ,ip (t) := xip (t)−xi (t) be constrained
by the speed vi (t) of vehicle i ∈ S(t) so that

zi ,ip (t) ≥ φvi (t) + l, ∀t ∈ [t0i , t
m
i ], (10)

where φ denotes the reaction time (the general rule φ = 1.8 is used

as in [24]). If we define zi ,ip to be the distance from the center of

CAV i to the center of CAV ip , then l is a constant determined by

the length of these two CAVs (generally dependent on i and ip but

taken to be a constant over all CAVs for simplicity) .

Constraint 2 (Safe merging): There should be enough safe space

at the merging pointM , i.e., the distance between the vehicle at M
and the preceding one should satisfy:

z1,0(t
m
1
) ≥ φv1(t

m
1
) + l, (11)

Constraint 3 (Vehicle limitations): Finally, there are constraints

on the speed and control input for each i ∈ S(t), i.e., vi (t) ∈

[vmin,vmax ] and ui (t) ∈ [−cdmiд, camiд] for all t ∈ [t0i , t
m
i ],

wherevmax ≥ 0 andvmin ≥ 0 denote the maximum and minimum

speeds allowed in the road, cd > 0 and ca > 0 are deceleration and

acceleration coefficients, respectively, and д is the gravity constant.
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3.3 Problem Formulation
Problem 1. Our goal is to determine control laws to achieve Ob-

jectives 1, 2 subject to Constraints 1, 2, 3, for each vehicle i ∈ S(t)
governed by dynamics (8).

Constraints 1, 2, 3 are safety critical constraints (or hard con-

straints) that should be always satisfied. To enforce them, we will

use CBFs. Unlike [28] that forms a convex combination explicitly

for Objectives 1, 2, we indirectly achieve Objective 1 through a CLF

so as to exponentially stabilize the speed vi (t) to vmax . We also

capture Objective 2 as the optimization objective function, which

is combined implicitly as shown in the next section.

4 PROBLEM REFORMULATION
In this section, we formulate Problem 1 as a nonlinear constrained

optimization problem.

Recall that ip is the index of the CAV that immediately (in the

same lane) precedes CAV i ∈ S(t). We need to distinguish between

the following two cases:

• (i) ip = i − 1, i.e., ip is the CAV immediately preceding i in
the FIFO queue (such as CAVs 3 and 5 in Fig. 1), and

• (ii) ip < i − 1 (such as CAVs 2 and 4 in Fig.1), which implies

CAV i − 1 is in the different lane as i .

We can solve Problem 1 for all i ∈ S(t) in a decentralized way, in

the sense that CAV i can solve Problem 1 using only its own local

information (position, velocity and acceleration) along with that of

its “neighbor” CAVs i − 1 and ip (in case (ii) only). Observe that if

ip = i − 1, then (11) is a redundant constraint. Otherwise, we need

to consider (10) and (11) independently.

4.1 Safety & Vehicle Limitations (Constraints 1
& 3)

We can use CBFs to map the safety constraints and limitations

from the state xi (t) to control input ui (t). Consider the function
Bi ,q (xi (t)) :=

1

hi ,q (xi (t ))
, where q ∈ {1, 2, 3}, hi ,1(xi (t)) = vmax −

vi (t),hi ,2(xi (t)) = vi (t) − vmin,hi ,3(xi (t)) = zi ,ip (t) − φvi (t) − l .
Therefore, in Definition 2.3, we choose β1(hi ,q ) = β2(hi ,q ) = hi ,q ,
γ = 1. Then, each Bi ,q (xi (t)) is a CBF. Any control input ui (t)
should satisfy

−Fr (vi (t ))
mi (vmax −vi (t ))2︸                    ︷︷                    ︸

Lf Bi ,1(xi (t ))

+
1

mi (vmax −vi (t ))2︸                    ︷︷                    ︸
LдBi ,1(xi (t ))

ui (t ) ≤vmax − vi (t )︸            ︷︷            ︸
1

Bi ,1(xi (t ))

(12)

Fr (vi (t ))
mi (vi (t ) −vmin )2︸                   ︷︷                   ︸

Lf Bi ,2(xi (t ))

+
−1

mi (vi (t ) −vmin )2︸                   ︷︷                   ︸
LдBi ,2(xi (t ))

ui (t ) ≤vi (t ) − vmin︸           ︷︷           ︸
1

Bi ,2(xi (t ))

(13)

−
mi (vip (t) −vi (t)) + φFr (vi (t))

mi (zi ,ip (t) − φvi (t) − l)2︸                                     ︷︷                                     ︸
Lf Bi ,3(xi (t ))

+
φ

mi (zi ,ip (t) − φvi (t) − l)2︸                           ︷︷                           ︸
LдBi ,3(xi (t ))

ui (t) ≤ zi ,ip (t) − φvi (t) − l︸                   ︷︷                   ︸
1

Bi ,3(xi (t ))

(14)

∀t ∈ [t0i , t
m
i ]. Note that ui (t) ∈ [−cdmiд, camiд] is already a con-

straint on the control input, hence, we do not need to use the CBF

for it.

4.2 Safe Merging (Constraint 2)
We want to avoid collision when CAVs from different lanes arrive

at the merging pointM . Note that the safe merging constraint (11)

is only imposed at tm
1

and does not vary continuously in time. For

example, vehicles 4 and 3 in Fig. 1 are not constrained before they

arrive at themerging pointM , but have to satisfy (11) at themerging

pointM . In order to use a CBF approach, we need a version of (11)

that is continuous in time when i − 1 > ip .
Vehicles i and i − 1 both arrive randomly at O or O ′

, and the

minimum distance along the lane zi ,i−1(t
0

i ) between vehicle i and
i − 1 is 0, i.e., these two CAVs are allowed to arrive at the origin O
or O ′

at the same time. The coordinator FIFO queue preserves the

order in which i and i−1 arrive at the merging pointM according to

the order in which they arrive at the originO orO ′
. When vehicles

i and i − 1 arrive at the merging pointM , they will merge into the

same lane. Therefore, we want the distance between vehicle i and
i − 1 to be greater than or equal to φvi (t

m
i ), which is in the form

of (11). However, we have some freedom in choosing the reaction

time φ from Eqn, (11) for vehicle i (i − 1 > ip ) ∀t ∈ (t0i , t
m
i ). In the

following, we provide a definition for the allowed variation of φ as

an approximation to the optimal reaction time variation in [28]:

Definition 4.1. The variation of reaction time φ for vehicle i
(i − 1 > ip ) is a class K function Φ : R→ R that satisfies the initial

condition Φ(xi (t
0

i )) = − l
vi (t 0i )

and final condition Φ(xi (t
m
i )) = φ.

For example, in Fig. 1, xi (t
0

i ) = 0 and xi (t
m
i ) = L, e.g., Φ(xi (t)) =

φxi (t )
L . Examples of variation functions Φ are shown in Fig.2. The

lower bound of the distance from Eqn. (11) becomes greater as

vehicle i approaches the merging pointM such that there is enough

space for the vehicle in the merging lane to merge into the main

lane. Therefore, a continuous version of the constraint from Eqn.

(11) on i for i − 1 > ip in the control zone is:

zi ,i−1(t) ≥ Φ(xi (t))vi (t) + l,∀t ∈ [t0i , t
m
i ]. (15)

To enforce safe merging, we employ a control barrier function

that is similar to the ones used for safety: Bi ,4(xi (t)) =
1

hi ,4(xi (t ))
,

where hi ,4(xi (t)) = zi ,i−1(t) − Φ(xi (t))vi (t) − l . Any control input

ui (t) should satisfy

−
(vi−1(t )−vi (t ))+

Φ(xi (t ))
mi

Fr (vi (t ))− ÛΦ(xi (t ))vi (t )

(zi ,i−1(t )−Φ(xi (t ))vi (t ) − l )2︸                                                                 ︷︷                                                                 ︸
Lf Bi ,4(xi (t ))

+
Φ(xi (t ))

mi (zi ,i−1(t )−Φ(xi (t ))vi (t ) − l )2︸                                        ︷︷                                        ︸
LдBi ,4(xi (t ))

ui (t ) ≤zi ,i−1(t )−Φ(xi (t ))vi (t )−l︸                              ︷︷                              ︸
1

Bi ,4(xi (t ))

(16)

∀t ∈ [t0i , t
m
i ].
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Figure 2: The CAVs reaction time variation between origin
O and merging pointM for the vehicle i (i − 1 > ip ). Blue, red
and black lines denote three different choices.

4.3 Minimizing Travel Time (Objective 1)
The lower bound to the minimum travel time is achieved when

a vehicle runs at vmax in the control zone. Therefore, the lower

bound is
L

vmax
. If the traffic is heavy, the speed of vehicle i ∈ S(t)

is constrained by the physically preceding vehicle ip . However, we
can try to drive the speed to vmax as fast as possible such that the

travel time is close to the lower bound under heavy traffic, which

can be done using a CLF.

We define an output yi (t) := vi (t) − vmax , and choose a CLF

V (yi (t)) = y
2

i (t) with c1 = c2 = 1 and c3 = ϵ > 0 in Definition 2.4.

Any control input ui (t) should satisfy

−
2(vi (t) −vmax )

mi
Fr (vi (t))︸                             ︷︷                             ︸

Lf V (yi (t ))

+ ϵ(vi (t) −vmax )
2︸               ︷︷               ︸

ϵV (yi (t ))

+
2(vi (t) −vmax )

mi︸               ︷︷               ︸
LдV (yi (t ))

ui (t) ≤ δi (t)

(17)

∀t ∈ [t0i , t
m
i ]. Here δi (t) denotes a relaxation variable that makes

(17) become a soft constraint. We show how to minimize δ2i (t) in
Sec. 4.4.

4.4 Decentralized Optimization Problem
To achieve Objective 2, we consider minimizing the square of the

CAV’s acceleration since energy consumption is proportional to it

[8]. Therefore, Problem 1 for CAV i ∈ S(t) can be formalized as:

u∗i (t) = argmin

ui (t )

(
ui (t) − Fr (vi (t))

mi

)
2

+ piδ
2

i (t) (18)

subject to (8), (12)-(14), (17) if i − 1 = ip and (8), (12)-(14), (16), (17)

if i − 1 > ip , ui (t) ∈ [−cdmiд, camiд],∀i ∈ S(t), where pi > 0 is a

penalty coefficient and ui (t) := (ui (t), δi (t)).
This decentralized problem,which is defined for∀t ∈ [t0i , t

m
i ],∀i ∈

S(t), is hard to solve because both the objective and the constraints

are nonlinear. In the next section we provide an approximate solu-

tion to this problem that is based on partitioning the time interval

[t0i , t
m
i ] and defining the solution as a piecewise constant controller.

5 SOLUTION
We assume that all the constraints are strict at t0i (if not, we can

include a feasibility enforcement zone [32]):

Assumption 1: The speed constraint (in Constraint 3) and the

safety constraint (10) are not active at t0i , ∀i ∈ S(t). The arrival

times for i and i − 1 at O or O ′
in case (ii) are not the same, i.e.,

zi ,i−1(t
0

i ) > 0, if i − 1 > ip .

We begin by partitioning the continuous time interval set [t0i , t
m
i ]

into equal time intervals {[t0i +k∆t, t
0

i + (k + 1)∆t)},k = 0, 1, 2, . . . .

In each interval [t0i + k∆t, t
0

i + (k + 1)∆t), we assume the control

is constant and find a solution to the optimization problem in Eqn.

(18). Specifically, at t = t0i + k∆t (k = 0, 1, 2, . . . ), we solve (18) and

update (8) for ∀t ∈ (t0i +k∆t, t
0

i + (k+1)∆t). The workflow is shown

in Fig. 3.

Figure 3: Decentralized problem workflow for CAV i.
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For the QP in (18), the constraint set is a polyhedron with ui (t)
and δi (t) as decision variables for each i ∈ S(t). We need to make

sure that this polyhydron is non-empty so that a feasible solution of

(18) always exists. Therefore, we make the following assumption:

Assumption 2: ca, cd ,vmin and vmax are such that (13), (12)

and ui (t) ∈ [−cdmiд, camiд] form a full-dimensional (basis) poly-

hedron P in the ui (t) - δi (t) space, ∀i ∈ S(t),∀t ∈ [t0i , t
m
i ].

Because each i has limited control input (Constraint 3), we define

a receding horizon in the form of aminimum braking time (distance)

horizon to avoid the violation of the control constraint. Under

Assumption 2, we only have to deal with the conflicts between

(14), (16) and the basis polyhydron P . First, consider (16) that may

conflict with ui (t) ∈ [−cdmiд, camiд]. Vehicle i ∈ S(t) should stop

at least at a safe distance (zi ,i−1(t +T ) ≥ Φ(xi (t +T ))vi (t +T )+ l =
Φ(xi (t +T ))vi−1(t +T )+ l) when its speedvi (t +T ) approaches the
speed vi−1(t +T ) of vehicle i − 1 (where T denotes the minimum

braking time under the maximum braking ui (t) = −cdmiд)[4].

Suppose we choose Φ(xi (t)) =
φxi (t )

L in this case (Let l = 0 for

simplicity).

It is safe to drop the resistance force term in (6) since Fr (vi (t))
can only make the braking distance shorter. Assuming vi−1(t) does
not change during [t, t +T ] when calculating the minimum braking

timeT , we have zi ,i−1(t +T ) ≥ Φ(xi (t +T ))vi−1(t)+ l . The braking
distance should be taken into consideration only if vi (t) ≥ vi−1(t).
Therefore, zi ,i−1(t +T ) ≥ Φ(xi (t +T ))vi (t) + l ⇒ zi ,i−1(t +T ) ≥
Φ(xi (t +T ))vi−1(t) + l .

The minimum braking time is

vi (t +T ) −vi (t) = vi−1(t) −vi (t) = −Tcdд. (19)

Then, we have

T =
vi−1(t) −vi (t)

−cdд
. (20)

The distance between vehicle i and i − 1 after time T is

zi ,i−1(t+T ) = zi ,i−1(t) +

∫ T

0

vi−1(t) −vi (t + τ )dτ

= zi ,i−1(t)+

∫ T

0

vi−1(t)−vi (t)+τcdдdτ

= zi ,i−1(t) −
1

2

(vi−1(t) −vi (t))
2

cdд
.

(21)

The distance travelled by vehicle i after T is:

xi (t +T ) − xi (t) = vi (t)T −
1

2

cdдT
2 =

1

2

v2i (t) −v2i−1(t)

cdд
. (22)

After maximum braking, the distance should still be

zi ,i−1(t +T ) ≥
φ(xi (t) +

1

2

v2

i (t )−v
2

i−1(t )
cdд

)vi (t)

L
+ l . (23)

Therefore,

zi ,i−1(t ) ≥
φ(xi (t )+ 1

2

v2

i (t )−v
2

i−1(t )
cdд

)vi (t )

L
+
1

2

(vi−1(t )−vi (t ))2

cdд
+ l . (24)

Then we can use a CBF Bi ,5(xi (t)) =
1

hi ,5(xi (t ))
with hi ,5(xi (t))

defined as

hi ,5(xi (t)) = zi ,i−1(t) −
1

2

(vi−1(t) −vi (t))
2

cdд

−
φ(xi (t) +

1

2

v2

i (t )−v
2

i−1(t )
cdд

)vi (t)

L
− l .

(25)

Then, the control input ui (t) should satisfy

Lf Bi ,5(xi (t )) + LдBi ,5(xi (t ))ui (t ) ≤
1

Bi ,5(xi (t ))
. (26)

Similarly, we can also use a CBF Bi ,6(xi (t)) =
1

hi ,6(xi (t ))
with

hi ,6(xi (t)) defined as

hi ,6(xi (t)) = zi ,ip (t)−
1

2

(vip (t)−vi (t))
2

cdд
−φvi (t)−l (27)

for (14) when considering the conflict withui (t) ∈ [−cdmiд, camiд],∀i ∈
S(t). The control input ui (t) should satisfy

Lf Bi ,6(xi (t)) + LдBi ,6(xi (t))ui (t) ≤
1

Bi ,6(xi (t))
. (28)

Then at time t = t0i + k∆t (k = 0, 1, 2, . . . ), we can form a new

feasible QP:

QP:
t=t 0i +k∆t

u∗i (t) = argmin

ui (t )

1

2

ui (t)
THui (t) + F

Tui (t) (29)

ui (t)=

[
ui (t )
δi (t )

]
,H =

[
2

m2

i
0

0 2pi

]
, F =

[
−2Fr (vi (t ))

m2

i
0

]
subject to

A
clf
ui (t) ≤ b

clf
, if i ∈ S(t)

A
cbf_lim

ui (t) ≤ b
cbf_lim

, if i ∈ S(t)

A
cbf_safety

ui (t) ≤ b
cbf_safety

, if i ∈ S(t)

A
cbf_merge

ui (t) ≤ b
cbf_merge

, if i − 1 > ip

where the constraint parameters are

A
clf
= [LдV (yi (t)), −1],

b
clf
= −Lf V (yi (t)) − ϵV (yi (t)).

(30)

A
cbf_lim

=


LдBi ,1(xi (t)), 0

LдBi ,2(xi (t)), 0

1, 0

−1, 0

 ,

b
cbf_lim

=


−Lf Bi ,1(xi (t)) +

1

Bi ,1(xi (t ))
−Lf Bi ,2(xi (t)) +

1

Bi ,2(xi (t ))
camiд
cdmiд


.

(31)

A
cbf_safety

=

[
LдBi ,3(xi (t)), 0

LдBi ,6(xi (t)), 0

]
,

b
cbf_safety

=

[
−Lf Bi ,3(xi (t)) +

1

Bi ,3(xi (t ))
−Lf Bi ,6(xi (t)) +

1

Bi ,6(xi (t ))

]
.

(32)
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A
cbf_merge

=

[
LдBi ,4(xi (t)), 0

LдBi ,5(xi (t)), 0

]
,

b
cbf_merge

=

[
−Lf Bi ,4(xi (t)) +

1

Bi ,4(xi (t ))
−Lf Bi ,5(xi (t)) +

1

Bi ,5(xi (t ))

]
.

(33)

Remark 1:Wehave conducted an approximate calculationwhen

calculating the minimum braking time T by assuming vi−1(t) does
not change during [t, t +T ]. This can still work well as long as ∆t is
chosen small enough to handle the error due to the approximation.

The following theorem ensures the existence of a choice for

the simulation time ∆t to ensure the feasiblity of (29) due to the

discretization of (18).

Theorem 5.1. Under Assumptions 1 and 2, ∃δ > 0, 0 < ∆t <
δ , such that hi ,q (xi (t)) > 0,∀q ∈ {1, 2, 3, 4, 5, 6},∀i ∈ S(t),∀t ∈

[t0i , t
m
i ].

Proof. Assumption 1 ensured that all functions hi ,q (xi (t)),q ∈

{1, 2, 3, 4, 5, 6} are greater than 0 at t0i ,∀i ∈ S(t), and Assumption 2
together with (26), (28) make the decentralized problem feasible. We

solve (29) at each t = t0i + k∆t (k = 0, 1, 2, . . . ), and then we update

(8) for ∀t ∈ (t0i + k∆t, t
0

i + (k + 1)∆t) with the u∗i (t
0

i + k∆t) solved

from (29). System (8) will be “uncontrolled" for ∀t ∈ (t0i + k∆t, t
0

i +

(k + 1)∆t) because we have a constant control input u∗i (t
0

i + k∆t).
From [4], we know that CBFs are allowed to grow and decrease.

Suppose we have a initial ∆t > 0, If the u∗i (t
0

i + k∆t) we get from

(29) happens to make Lf Bi ,q (xi (t)) + LдBi ,q (xi (t))u
∗
i (t

0

i + k∆t) ≤

0 for ∀t ∈ [t0i + k∆t, t0i + (k + 1)∆t), i.e., ÛBi ,q (xi (t)) ≤ 0, since

Bi ,q (xi (t)) =
1

hi ,q (xi (t ))
, then hi ,q (xi (t)) ≥ hi ,q (xi (t0i + k∆t)) > 0

for ∀t ∈ [t0i + k∆t, t
0

i + (k + 1)∆t). Bi ,q (xi (t)) may grow during

some time intervals and decrease during others. If hi ,q (xi (t)) never
goes to zero during the “uncontrolled" time interval, hi ,q (xi (t)) >

0,∀t ∈ [t0i , t
m
i ]. Otherwise, by the continuity of (8), there will be

a time δi ,q,k > 0 that the function hi ,q (xi (t)) will reach 0 during

each [t0i +k∆t, t
0

i + (k + 1)∆t). Let δ = min

i ∈S (t )

6

min

q=1

t 0i +k∆t ≤t
m
i

min

k=0
δi ,q,k .

If we choose a new 0 < ∆t < δ , then hi ,q (xi (t)) > 0 for ∀i ∈

S(t),∀q ∈ {1, 2, 3, 4, 5, 6},∀t ∈ [t0i , t
m
i ]. �

Remark 2: For i = 0, we can just set zi ,ip = ∞ if there are no

restrictions on the first vehicle in the FIFO queue. Theorem 5.1

cannot ensure that the zeno behavior is prevented, and we will do

future study about the zeno behavior in future work. In general,

the CBFs will always make hi ,q (xi (t)) > 0 if hi ,q (xi (t)) is initially
positive. If we choose ∆t small enough such that the CBFs can

regulate the control input ui (t) according to the state changes of

itself and other vehicles, the set C of each CBF will be rendered

forward invariant. We may even choose a different ∆t for each step

k to make the computation more efficient.

Complexity: The time complexity of QP (active-set method) is

polynomial in the dimension of decision variables on average. In

general, the complexity isO(n3), where n denotes the dimension of

the decision variable space. In the merging problem, if the number

of time intervals is Ni for CAV i , then the complexity for CAV

i is O(Nin
3) in the control zone. The complexity for the overall

merging problem isO(S(t)n3) at time t . In our case, n = 2. The time

consumption should be fast enough for real time application, and

the time consumption in MATLAB to get optimal control for (29)

at each step is less than 0.01s (Intel(R) Core(TM) i7-8700 CPU @

3.2GHz 3.2GHz). We may consider the state errors that are due to

the computation time as noise to be studied in future work.

6 IMPLEMENTATION AND CASE STUDIES
We implemented the method described above in MATLAB. We

used qadprog for solving QPs and ode45 to integrate dynam-

ics. In our implementation, all the CAVs solve (29) and update (8)

independently, and they are connected to a coordinator.

We considered the scenario shown in Fig. 1 with cars arriving

randomly (the arriving is sampled from a uniform distribution over

(0,1) and determined by the arrival rate) at the origins O and O ′
,

respectively. We assume that all vehicles enter the control zone with

the same speed 20m/s, i.e., the initial conditions are (xi (t0i ),vi (t
0

i )) =

(0, 20), for all i ∈ S(t). The parameters for (29) and (8) are given in

Table 1.

In order to emphasize the main features of the proposed method,

we provide four comparisons. First, we compare the results of our

methodwith those produced by the IntersectionMethod [11]. Second,
we change the cost from (29) to a linear cost and compare our QP

results with the ones obtained from the corresponding LP. Third, we

compare our CBF approach with the optimal control approach from

[28]. Fourth, we compare our results with those obtained using the

off-the-shelf tool for simulation of traffic networks Vissim, which

is based on the model from [27].

In order to provide meaningful comparisons, we use the fuel

consumption metamodel proposed in [8], which is a function of

speed vi (t) and acceleration ai (t) :=
ui (t )−Fr (vi (t ))

mi
. The model is

defined as

Ûfv (t) = Ûfcruise (t) + Ûfaccel (t), (34)

where

Ûfcruise (t) = ω0 + ω1vi (t) + ω2v
2

i (t) + ω3v
3

i (t),

Ûfaccel (t) = (r0 + r1vi (t) + r2v
2

i (t))ai (t),

andω0,ω1,ω2,ω3, r0, r1 and r2 are positive coefficients (we used the

values reported in [8]). The unit of fuel consumption is in milliliter

(mL). It is assumed that during braking from a high velocity when

ai (t) < 0, no fuel is consumed.

Comparison with the Intersection Method [11]: The ap-

proach proposed in [11] has a constant safety constraint for all

CAVs. We set this constant as the value of the safety constraint

under maximum speed in this paper because CAVs tend to reach

vmax when they arrive atM in [11]. The simulations are conducted

simultaneously with the same input and all parameters are the

same.

We calculate the average fuel consumption and travel time for

all vehicles that pass over the merging pointM under four different

traffic conditions (light traffic, arrival rate = 0.01), normal traffic

(arrival rate =0.05), heavy traffic (arrival rate =0.10) and very heavy

traffic (arrival rate =0.15)). The results are shown in Figs. 4 and 5.

The average travel time of our method is close to [11] when

traffic is very light, but performs a little better in both metrics, and

the improvement becomes greater as the traffic load increases. In

short, this means our method can handle more heavy traffic and

results in lower fuel consumption.
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Table 1: Simulation parameters

Parameter Value Units

φ 1.8 s

Φ(xi (t)) φxi (t)/L s

L 400 m

l 0 m

mi 1650 kд

g 9.81 m/s2

α0 0.1 N

α1 5 Ns/m

α2 0.25 Ns2/m

vmax 30 m/s

vmin 0 m/s

∆t 0.1 s

ϵ 10 unitless

ca 0.4 unitless

cd 0.6 unitless

pi 1 unitless

Figure 4: Fuel consumption comparison with the Intersec-
tion Method [11]

Comparison between quadratic and linear costs: The objec-
tive function (18) may not be the best form for the fuel model (34).

Therefore, we can also define a feasible LP by just replacing (18)

with

u∗i (t) = argmin

ui (t )
|ui (t) − Fr (vi (t))| + piδi (t) (35)

subject to the same constraints as in the original QP (δi (t) ≥ 0).

We compared the simulation results between the QP and the

LP methods under two traffic conditions, as shown in Figs. 6 and

7. The LP tends to have a little more travel time than the QP, but

it consumes less fuel, which is consistent with the fact that LP

objective form (35) is closer to the fuel model (34). The LP is solved

using linprog (active-set) inMATLAB. The runtime ratio between

the QP and the LP methods is 1.3.

Figure 5: Travel time comparison with the Intersection
Method [11]

Figure 6: QP and LP fuel consumption comparison

Comparison with [28] and with Vissim: Finally, we used the

Vissim microscopic multi-model traffic flow simulation tool as a

baseline to compare our CBF-basedmethodwith the optimal control

approach from [28]. The car following model in Vissim is based on

[27] and it simulates human psycho-physiological driving behavior.

In this framework, the vehicles in the merging lane give priority to

the main lane vehicles when there is conflict at the merging point.

The simulation results are shown in Table 2 (OC denotes the

optimal control method from [28], CBF-QP stands for the approach

from this paper, and α ∈ [0, 1] denotes the weight factor on travel

time with respect to energy consumption). We need to consider the

trade-off between time and energy consumption. The CBF method

results inmuch lower travel time than Vissim. The fuel consumption

in CBF is greater than Vissim. However, this can be due to the

different forms of objective functions ((18) compared to (34)). If
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Figure 7: QP and LP travel time comparison

Table 2: Comparison among the method from this paper
(CBF-QP), the optimal control approach from [28] (OC), and
Vissim (ui (t) denotes the acceleration for all the methods).

Items CBF-QP OC Vissim

Weight α=0.26 α=0.41

Ave. time(s) 14.6978 17.1989 15.3132 25.0813

Main time(s) 14.7000 17.2109 15.3261 17.9935

Merg. time(s) 14.6956 17.1867 15.3000 32.3267

Ave.
1

2
u2i (t) 26.2678 4.9517 10.7603 20.0918

Main
1

2
u2i (t) 26.9178 4.9027 10.6644 9.4066

Merg.
1

2
u2i (t) 25.6034 5.0018 10.8583 31.0144

Ave. fuel(mL) 57.9532 47.6372 67.2234 36.9954
Main fuel(mL) 57.7028 47.6971 67.0743 42.6925
Merg. fuel(mL) 58.2092 47.5759 67.3757 31.1717

we look at both travel time and fuel consumption (i.e., the trade-

off between these two metrics), the CBF method is better since it

consumes half of the travel time as Vissim (α can be viewed as

1 since we significantly care travel time and drive vi (t) to vmax
as fast as possible). The CBF method tends to favor travel time

compared with the OC method, but the fuel consumption may be

worse depending on the weight factor α in the OC method.

The results for the method proposed in this paper are only pre-

liminary as we can see that the CBF method is too aggresive in

travel time, and thus, has bigger average
1

2
u2i (t) compared with OC.

We will study further how to relax the travel time and make the

CBF method approach the OC method in objectives 1-2 under any

α values as in [28]. This allows us to further investigate the tradeoff

between travel time and energy consumption.

7 CONCLUSIONS & FUTURE WORK
In this paper, we brought together control barrier functions (CLF),

control Lyapunov functions (CLF), and optimal control to provide

an efficient solution to the merging problem in traffic networks. Our

approach provides a decentralized implementation that requires

minimal communication with a coordinator in a control zone sur-

rounding the merging point. The complexity of our algorithm is

linear in the number of CAVs in the control zone. The calculation

can be performed on each vehicle individually, which makes this

method expandable to large traffic networks. We compared our

method with a recently developed optimal control approach and

with an off-the-shelf tool for simulation of traffic networks. The

results show that our approach provides significant improvements

in terms of fuel consumption and travel time.

In future work, we plan to consider different choices of the vari-

ation in reaction time, and study their effect on the results of the

optimization problem. We will also consider more sophisticated

policies to manage the queue (not necessarily FIFO) in order to

accommodate different traffic rates and possibly different lane pri-

orities. Finally, we will extend these results to roads with multiple

lanes, where we will consider lane switching strategies to avoid

traffic congestion.
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