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Stochastic variability of key abiotic factors including temperature, precipitation and
the availability of light and nutrients greatly influences species’ ecological function and
evolutionary fate. Despite such influence, ecologists have typically ignored the effect
of abiotic stochasticity on the structure and dynamics of ecological networks. Here
we help to fill that gap by advancing the theory of how abiotic stochasticity, in the
form of environmental noise, affects the population dynamics of species within food
webs. We do this by analysing an allometric trophic network model of Lake Constance
subjected to positive (red), negative (blue), and non-autocorrelated (white) abiotic
temporal variability (noise) introduced into the carrying capacity of basal species. We
found that, irrespective of the colour of the introduced noise, the temporal variability
of the species biomass within the network both reddens (i.e. its positive autocorrela-
tion increases) and dampens (i.e. the magnitude of variation decreases) as the environ-
mental noise is propagated through the food web by its feeding interactions from the
bottom to the top. The reddening reflects a buffering of the noise-induced population
variability by complex food web dynamics such that non-autocorrelated oscillations
of noise-free deterministic dynamics become positively autocorrelated. Our research
helps explain frequently observed red variability of natural populations by suggesting
that ecological processing of environmental noise through food webs with a range of
species’ body sizes reddens population variability in nature.

Keywords: coloured noise, ecosystem dynamics, environmental stochasticity

Introduction

Interactions between environmental variation and biological systems are key concerns
within ecology, evolutionary biology, and in the management of many species
populations. These concerns are becoming increasingly relevant due to the rapid
changes in the abiotic environment caused by humans that are altering the structure
and dynamics of populations and ecosystems (Walther et al. 2002, Ceballos et al.
2017). More specifically, temporal variation in temperature, precipitation, and the
availability of light and nutrients can produce species extinctions, pest outbreaks,
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and dramatic changes in the composition of communities.
Despite the centrality and urgency of these concerns, theory
about how complex biological communities respond to sto-
chastic variation in their abiotic environment focuses almost
entirely on the dynamics of one or a few interacting species
(Kaitala et al. 1997, Ripa et al. 1998, Ruokolainen et al.
2009a). Here, we extend such theory (Ripa et al. 1998) by
analysing how environmental stochasticity propagates within
a well-studied complex food web.

In addition to the magnitude of variability, time series of
environmental variables and population abundances often
exhibit a distinct temporal structure (Halley 1996) that is
characterized in terms of the colour of temporal variability
often referred to as ‘noise’ (Ruokolainen et al. 2009a). Red
noise characterizes the slow change of variables whose con-
secutive values in a time series are relatively similar, that is,
their fluctuations are positively auto-correlated. Conversely,
blue noise characterizes the rapid change of variables (e.g.
from high to low values) whose fluctuations are negatively
auto-correlated. Finally, white noise characterizes variables
that are temporally uncorrelated (for empirical examples,
Ruokolainen et al. 2009a). Natural fluctuations of envi-
ronmental variables (Vasseur and Yodzis 2004) and popula-
tion abundances (Pimm and Redfearn 1988, Cohen 1995,
Sugihara 1995, Burgers 1999) tend to be red coloured, with
marine variables more red than terrestrial ones (Vasseur and
Yodzis 2004), with the noticeable exception of El Nifio south-
ern oscillation which is characterized by blue noise (Burgers
1999). Nonetheless, theory about deterministic population
dynamics have not managed to capture the mechanisms that
lead to red-coloured variations. Cohen (1995) showed that
chaotic dynamics of a range of commonly applied determin-
istic single-population models tend to be blue. Cohen (1995)
concluded that ‘It is not yet known whether this dilemma
can be resolved by expanding the models to take account of
environmental fluctuations, the interactions of single species
with other species, or the age structure and spatial distribu-
tion of populations.”

Indeed, incorporation of coloured environmental noise
into single-species population dynamics models has dem-
onstrated that population variability reflects the interaction
between environmental noise and demography. Population
fluctuations resulting from such interactions can be of virtu-
ally any colour, depending on population stability, growth
rate, and the extent to which population dynamics are cha-
otic (Sugihara 1995, Kaitala et al. 1997). It thus remains
unsolved, which mechanism present across a broad range of
natural populations is responsible for the reddening (i.e. pop-
ulation variation tending to be positively autocorrelated irre-
spective of the colour of environmental noise they are affected
by). Kaitala et al. (1997) detected an association of increased
complexity of single-species dynamics with increased red-
dening, suggesting that oversimplified population models
might be responsible for the mismatch between theory and
observations (reviewed in the previous paragraph). Indeed,
analyses of simple two-species food webs demonstrate that

species interactions markedly complicate the ways in which
environmental variability manifests in population dynam-
ics (Ripa et al. 1998). Ripa et al. (1998) found conditions
for food webs of predators and preys interacting via linear
functional responses where the species not subjected to envi-
ronmental noise generally express redder (i.e. more positively
autocorrelated) variation than the species subjected to noise.
However, these conditions regarding the value of Jacobian
matrices and the restriction to linear interactions limit the
generality of this finding, especially with respect to more
realistically complex food webs with nonlinear interactions
and populations structured according to life history (Mougi
2017). Here, we study a food web with these complexities
to explore how coloured environmental noise (Ripa et al.
1998, Fig. 1) combined with changing magnitudes of envi-
ronmental variability (Ruokolainen et al. 2009a), may alter
the dynamics of populations and the ecosystem.

Allometric trophic network (ATN) theory has substan-
tially improved ecologists™ abilities to understand and predict
complex food web dynamics (Brose et al. 2006, Berlow et al.
2009, Boit et al. 2012), by basing the rates of consumer—
resource interactions on the straight-forward and empirically
well-founded allometric scaling with body size (Brose et al.
2006). For example, an ATN model of the Lake Constance
(Alpine lake in central Europe; hereafter LC) explained up to
82% of variability in seasonal dynamics of 24 species within
the lake’s complex food web (Boit et al. 2012). Based on this
success, we use the LC ATN model as an empirically cor-
roborated template to study food-web dynamics. More spe-
cifically, we use a version of the LC ATN model that includes
the age-structured dynamics of fishes (Kuparinen et al. 2016)
to study how environmental noise introduced into basal pro-
duction filters through the food web and manifests at differ-
ent trophic levels up to fishes at the top of the food web. The
complexities of age-structured fish populations and nonlinear
interactions within our LC ATN model make it impossible to
predict our model’s population colour spectra based on previ-

ously published theory (V. Kaitala pers. comm.).

Material and methods

Deterministic ATN model for Lake Constance (LC) food
web dynamics

The LC ATN model is an allometric trophic network model
of the lake’s food web dynamics developed and parameter-
ized by Boit et al. (2012) and modified by Kuparinen et al.
(2016) to better address the life-history structure of fishes.
The modelled network contains 133 feeding links among 30
functionally distinct guilds of which six are basal producers,
seven are heterotrophic microbes, seven are invertebrates,
and 10 are five life-history stages (larvae, juveniles, 2 years,
3 years, and 4 years and older hereafter denoted as 4+) of two
species of fish (perch and whitefish, Fig. 2, Supplementary
material Appendix 1 Table Al).
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Figure 1. Schematic illustration of the temporal variability in the most common primary producer guild when exposed to red, white and
blue noise (autocorrelation 0.4, 0 and —0.4 respectively; SD is 15% of K;). The guild is filamentous blue and green algae (Alg3, Supplementary
material Appendix 1). Each panel also show the lag 1 autocorrelation and the colour index for the temporal variability of the guild biomass

abundance.

The dynamics of the system are divided into two parts.
In the first part, the food web dynamics for year Y are simu-
lated in continuous time during the ‘growth season’. This part
includes the producer growth, consumer and fish feeding,
maintenance of organism’s bodily functions, and the alloca-
tion of portion of adult fish biomass for reproduction. These
dynamics are modelled as a system of ordinary differential
equations (ODEs). The second part of the system dynamics
is called ‘reproduction and aging’ and it consists of the birth
of new fish larvae and the transfer of fish biomass to the next
life stage for year Y+ 1.

Growth season dynamics
The core biomass dynamics of species or groups of func-
tionally similar species (i.e. guilds, denoted by their index
i; Supplementary material Appendix 1 for detailed guild
information) within the growth season of year Y are
described by a set of ordinary differential equations. The
biomass of guild 7 and its derivative with respect to time are
denoted by B, (#) and Byl (t) respectively, where # € [£™,
#]. The vector of all guild biomasses is denoted by By (?).
The length of the growth season is 90 days, and thus we
set #"*=0 and #"=90. For notational simplicity, we omit
the year ¥ and time # from the description of the growth
season dynamics.

Producer guild (i€ {1, ..., 6}) dynamics are driven by their
intrinsic (logistic) growth and the feeding subjected to them

by their herbivore predators. The ODE for the biomass of

producer guild 7 during the growth season is

loss to consumer j
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where 7, is the mass- speciﬁc intrinsic growth rate of producer
i (Boit et al. 2012); G, (B)=1- ( —producersCj ])/[( is the

limiting factor in the logistic growth model of the produc-
ers, and it includes producer competition coefficients ¢, and
carrying capacity coeflicient K shared by all autotrophs, 5, is
the fraction of exudation; x, is the mass-specific metabolic
rate of consumer 7 based on allometric scaling; y, is the
maximum consumption rate of guild 7 feeding on gulld Je;is
the assimilation efficiency descrlbmg the fraction of mgested
biomass lost by egestion. F,(B) is the functional response
(see below).

Consumer guild (including bacterial detritivores; i €
{7, ..., 20}) dynamics consists of the maintenance of bodily
functions, gains from feeding on their prey, and losses due to

getting fed on by their predators, and the ODE is

lossto consumer j
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Figure 2. A schematic illustration of the analysis of the effects of environmental noise on the Lake Constance food web dynamics. Each
spherical node represents one of the 30 trophic groups. Trophic groups were aggregated into three functional groups for certain analyses.
Producers include all the algae guilds (Alg1-Alg5) and the autotrophic picoplankton guild (APP) at the bottom of the food web. Consumers
include all other trophic groups such as ciliates (Cil1-Cil5), rotifers (Rot1-Rot3) and Daphnia (Dap). Fishes include all the age classes of
the Whitefish (WhtO—Wht4) and Perch (Per0—Per4). Dissolved organic carbon (DOC) is supplied by heterotrophic egestion and autotro-
phic exudation and is consumed by bacteria (Bac). Guild labels and colours are further explained in Supplementary material Appendix 1
Table Al. Links represent energetic pathways from guilds at the pointed end to guilds on the thicker end. In the simulations of the food
web dynamics, differing magnitudes and colours of environmental noise is introduced into the phytoplankton community carrying capacity
(K). The impacts of the environmental noise on each individual guild and aggregated functional groups is then investigated by analysing
the coefficient of variation (CV) and the colour index of the time series of their biomasses.

where f, is the fraction of assimilated carbon respired by
maintenance of basic body functions; and £, is the fraction
of assimilated carbon used for production of consumers
biomass under activity (1 —£, is respired). Ej(B) is the con-
sumer and fish species’ normalized functional response to
prey species densities

F,(B)= @B 3)
’ ) Boijq + d’]BZBOZ * leresourceswilqu

where @, is the relative prey preference of consumer
species i feeding on resource species j; ¢=1.2 which

forms a relatively stable version of the Holling type-II
functional response (Williams and Martinez 2008); B0, is
the half saturation constant of resource species j at which
consumer species 7 achieves half of its maximum feeding
rate on species j; d, is the coeflicient of intraspecific feed-
ing interference of species i while feeding on species ;.
The parameter d; also accounts for prey resistance to
consumption.

The fish guilds have indices 21-30 so that whitefish have
odd and perch have even indices. The growth season dynam-
ics of the larval and juvenile fish guilds (7 € {21, ..., 24}) are
identical to the consumers’ dynamics, i.e.
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The adult fish guilds (7 € {25, ..., 30}) have no predators in
our model and they allocate a portion of the surplus biomass
from growth to reproduction (only if there is surplus, i.c.
gains from feeding are greater than the maintenance costs).
The ODE modelling the biomass of adult fish guild 7 can,
thus, be written as
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Here P, denotes the proportion of mature biomass in adult
fish guild 7, and 7, denotes the fraction of the mature sur-
plus biomass that is invested into reproduction. The biomass
allocated to reproduction is not available for growth and is
thus considered in (5). We use B to denote the rate of bio-
mass allocation to reproduction by adult fish guild 7 during
the growth season, and add

Bt_+ =PI, .max(O,—fmxl.Bl. + fox, BEJ)/Z] 1]( )), ©)
ie{2s,...,30}
to the system of ODEs.

The detritus (i=0) dynamics consists of the egestion
caused by feeding, producer exudation, and loss to consump-
tion by detritivores (bacteria):

ingestion of resource j
by consumer or fish i

———"———— egestion exudation by producer
5 xi}’ijBinj (B) _ e A _
By=3[%, 2 (1- g, I+ 5, 5BG,(B)s, -,

i

The simulation starts at year ¥Y=1, and the initial biomass
vector B, (#™) consists of the biomasses at the system’s equilib-
rium and the initial value for By, =0,Vie{25,...,30},VY .
The system of ODE:s is then solved for the growth season.

Reproduction and aging
After the growth season of year Y, the accumulated biomass
allocated to reproduction By, (tmd) by the adult fish guild

translates to initial larvae biomass for the next year’s growth
season. The initial biomass of the larvae for year Y+ 1 for a
given fish species is the sum of the larvae produced by the
different adult life-stages of that fish species, i.c.

init 4 + en
BY+I,;‘ (t ) = ZFZ BY,z'+2a (t ‘ )’
The initial biomasses of the juveniles (age 1), and the two first
adult life stages (ages 2 and 3) for year Y+ 1 are the biomasses
of the previous life stages at the end of the growth season of
year ¥,

e{21,22}. 8)
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The oldest life stage (age 4+) consists of the 4-year old fish and
all the older fish, and thus the initial biomass of the 4+ group
for year Y+ 1 is a sum of the 4+ and 3 group biomasses at the
end of the growth season of year ¥,

By, (¢")=B,,(¢)+ By, (+*).i € {29,30}. (10)
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Parameterization for Lake Constance food web

The ATN model parameterization for Lake Constance food
web utilized in the present study was first developed and
validated by Boit et al. (2012) and then further extended
by Kuparinen et al. (2016) to account for fish life-history
dynamics. Functional guilds, i.e. nodes in the food web,
along with their feeding links and guild properties are given
in Supplementary material Appendix 1 Table Al. Among
producers, interspecific competition (¢, 7#;) was set to 1 and
intraspecific producer competition (c,, 7=j) was set to a value
(2.0225) that creates (Chesson and Kuang 2008) determin-
istic dynamics of the producers, consumers and fishes with
white-coloured oscillations about the equilibrium, which

loss to detritivore j
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facilitates analyzing the effects of environmental noise on our
model’s dynamics. Table 1 for other parameter values.

Environmental noise scenarios

Our objective was to explore how environmental noise
propagates through the food web from its bottom to the
top of the food web and interacts with species properties.
To this end, we introduced annually (i.e. for each growth
season) environmental noise into the producers’ commu-
nity-level carrying capacity, K. We did this by calculat-
ing K for year ¢ as: K, =(1—K)K0 +KkK,  +v,, where K,
estimates Lake Constance’s long-term carrying capacity for
primary producers (Supplementary material Appendix 1)
as 540 000pgC m™ (Boit et al. 2012, Kuparinen et al.
2016), |k|<1 is the autqcorrelation between K and K _,,
and 1, ~N(0,6° (l—lc2 ) is a normally distributed ran-
dom variable, The expected value £(K) = K and the standard
deviation SD(K) =0 for all # (Ruokolainen et al. 2009). X,

t

is restricted to be positive by rejecting sampled value if it is



Table 1. Summary of the ATN model parameters for Lake Constance. Adapted from Kuparinen et al. (2016).

Parameter Unit Value Description Reference

K pgCm= 540 000 phytoplankton carrying capacity Boit et al. (2012)

X; day™ 0.04-0.18 mass-specific metabolic rate’ Brose et al. (2006)

r, day™! 0.6-1.09 mass-specific growth rate for autotrophs'  Brose et al. (2006)

o 1(2.0225 for i=)) producer competition coefficient Boitetal. (2012)

f, 0.4 activity metabolism coefficient Humphreys (1979)

f, 0.1 maintenance respiration coefficient Humphreys (1979)

Vi 10 maximum ingestion rate Yodzis and Innes (1992), Brose et al. (2006)
e; 0.66 assimilation efficiency Nielsen and Olsen (1989)

d; m? pg C™ 0-0.5 feeding interference coefficient Skalski and Gilliam (2001), Boit et al. (2012)
q 1.2 functional response shape parameter Boitetal. (2012)

@ 0-0.5 relative prey preference Boit et al. (2012)

p; 0-1 fraction of resource species shared Boitetal. (2012)

S; 0.2 fraction of exudation Boit et al. (2012)

BO, pgCm 1500-700 000  half-saturation densities Boit et al. (2012)

'Relative rates with respect to guild 1; Supplementary material Appendix 1 Table AT.

non-positive. Environmental noise scenarios are character-
ized by the magnitude (8D) and ‘colour’ (autocorrelation, )
of variation in K, (Ruokolainen et al. 2009a; Fig. 1). We set
SD(K) to 5%, 10%, 15% or 20% of K. We set k to 0 for
white (uncorrelated) noise, 0.4 for red (positively autocor-
related) noise, and —0.4 for blue (negatively autocorrelated)
noise.

Simulation design and output variables

Initial biomasses for each guild emerged from simulating
150 years (growth seasons) of deterministic model dynam-
ics with the (noise-free) constant X set to K. We discarded
the first 50 ‘burn-in’ years during which the guilds settled
into their dynamic equilibrium that we analysed during the
following 100 years. Each simulation scenario was replicated
for 100 times (larger number of replicates gave analogous
results).

We focus on investigating how the different environmen-
tal noise scenarios affect the magnitude and the nature of
variability in the guild biomass within the food web (Fig. 2),
and how such variability may be explained by the properties
of the guild. Throughout these analyses, biomasses at the end
of each growth season, after the production of new larvae, is
the central response variable. This limits our shortest observa-
tion scale to the scale at which variability is introduced to the
system and thus avoids biasing our results with trivial positive
correlations between subsequent time steps within a growth
season. We quantify the magnitude of the year-to-year vari-
ability through the coefficient of variation (CV) across the
last 100 years of each simulation, estimated by dividing the
sample SD with the sample average. We estimated the colour
of the variability using a colour index of the time series of
each guild’s biomass (Blarer and Doebeli 1996). This colour
index integrates across relative contributions of low and high
frequency fluctuations across the time series. Dominance of
low or high frequency fluctuations corresponds to red or blue
noise and to positive or negative autocorrelation, respectively.
White noise occurs when the spectrum is relatively evenly

distributed across all frequencies (Blarer and Doebeli 1996,
Kaitala et al. 1997, Ripa et al. 1998). We calculated the raw
power spectrum (using spec function in R, which produces
frequency spectrum for a time series; <www.r-project.org>) for
each replicated run across a 100-year time period and divided
the average of the spectral values for frequencies 0-0.25 by
the average of the spectral values for frequencies 0.25-0.5.
Values above 1, close to 1, or below 1 indicate red, white,
or blue noise, respectively. In addition to the colour index
integrating over the lags in temporal autocorrelation, we also
estimated simple autocorrelation coeflicients for lag=1 (i.e.
AR(1)), which are commonly utilized to explore the colour
of variation in environmental time series (Ruokolainen et al.

2009a).

Guild covariates and statistical analyses

We analysed the temporal variation in the biomasses of the
guild both separately and also grouped into producers, non-
fish consumers (hereafter just ‘consumers’), or fishes. Due to
skewness, the colour index values were log-transformed. The
magnitude (CV) and the log-transformed colour index were
explored through ANOVAs, with the autocorrelation k of
the input noise, SD and species type, and their interactions
as explanatory variables. Differences in the log-transformed
average colour index values between the species types were
further investigated through #tests. We explored whether the
magnitude (CV) and the colour index of biomass variations
of individual guilds can be explained by the guild properties.
These properties include the natural logarithm of their body
size; guild’s connectivity defined by the number of guilds
it is connected to (as a predator or a prey) standardized by
2 X L/S, where L is the total number of links in the food web
and S is the total number of guilds; and their short-weighted
trophic level (Williams and Martinez 2008, Carscallen et al.
2012). The effects of these covariates were explored through
linear models explaining the magnitude (CV) and the log-
transformed colour index (responses) of biomass variability
(response variables) with SD, k, and their interaction as well



as each of the guild’s covariates separately (due to collinearity
among the covariates) as explanatory variables. Normality of

the residuals was explored through qq-plots.

Data deposition

Data available from the Dryad Digital Repository: <htep://
dx.doi.org/10.5061/dryad.75mg6b1> (Kuparinen et al.
2018). Data and codes used in this manuscript are included
in the Supplementary material Appendix 1.

Results

In the fully deterministic ‘baseline’ scenario, where no noise
was introduced into K|, the temporal variability in the bio-
mass of producers, consumers and fishes showed similar
year-to-year variation reflecting the deterministic oscilla-
tions (wave length of 4 years) emerging from the food web
dynamics (Fig. 3). In the stochastic scenarios, where noise

was introduced into X, the biomass variability (as reflected in
the CVs) generally increased most prominently at low trophic
levels. Producers and fishes displayed the largest and smallest
variation, respectively, at each noise magnitude and colour
scenario. In all cases, the food web consistently dampens
(i.e. reduces) the variation as the trophic level increases, as
is seen in the decreasing vertical positions and in the heights
of the CV boxplots in Fig. 3. Within producers, consumers
and fishes, increasing the noise magnitude (SD) resulted in
increased biomass variability, whereas changing the noise
colour had little effect on the amount of biomass variability
(Fig. 3).

Introduction of noise into K] caused this variability to dif-
ferentiate, such that the colour index values were reddened
with increasing trophic level or, in other words, the colour
index systematically increases as one goes from producers
through consumers to fishes (Fig. 4). Producers’ temporal
biomass variability closely mirrored the variability introduced
into K, such that white noise led to producer colour index
values close to one, red noise to values larger than one, and
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Figure 3. Coeflicients of variation (CV) for the biomasses of producers, consumers, and fishes under alternative noise scenarios. The stan-
dard deviations of normally distributed noise introduced into the phytoplankton carrying capacity are indicated on the x-axis (0.05-0.2)
and the noise colour scenarios as well as deterministic food web dynamics in the absence of noise are shown in separate panels. Medians are
indicated by horizontal lines, boxes span the inter-quartile range, and whiskers encompass values 1.5 box lengths away from the box.
Averages are plotted with black bullets. Outliers are not shown.
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Figure 4. Colour indexes for the temporal biomass variability of producers, consumers, and fishes under alternative noise scenarios. Colour
index values below one (horizontal line) indicate blue (negatively autocorrelated) variation, values above one red (positively autocorrelated)
variation, and values close to 1 indicate white (non-autocorrelated) variation. Other figure elements are the same as in Fig. 3. The distribu-
tions of the colour index values were highly skewed, which is reflected in the discrepancy between the averages and the medians, the latter

being generally more robust with respect to outliers than the former.

blue noise to values lower than one, indicative of white, red,
and blue variability, respectively. In contrast, the temporal
biomass variability of consumers and fishes was red (colour
index values above one) irrespective of the colour of the noise
introduced into K. Still, the shades of this red variability
shifted from the least to the most red as the colour of the
noise introduced into the producer carrying capacity shifted
from blue through white to red. Increasing the magnitude of
the noise (SD) typically reduced the amount of reddening of
the variability of producers, consumers and fishes (Fig. 4).
Variability measured by autocorrelations at lag=1 showed
similar results: the variability of consumers and fishes was
always redder (positive autocorrelation), whereas the colour
of the producers’ variability more closely reflected the colour
of the noise introduced into K, (Supplementary material
Appendix 1 Fig. Al).

Analyses of variance of the magnitude (CV) and the log-
transformed colour index of biomass variability largely con-
firmed the patterns detected visually. Most of the variation
in CV was associated with the SD of the noise introduced

into K, species type, and their two-way interaction, whereas
the colour of the noise had negligible effects (Table 2). The
variation in the colour index values was largely attributable to
the effects of the colour of the noise and species type whereas
SD had an order-of-magnitude lower effect (Table 2). To
confirm that the variation of consumer and fish biomasses
is red irrespective of the colour of the noise introduced into
K, one-way t-tests were performed to compare the log-trans-
formed colour index values with the threshold value 0 (log of
1). Across all the simulation scenarios, the log-transformed
colour index was significantly larger than 0 for both the con-
sumers (mean: 1.34, 95% CI: 1.32-1.36, t-value: 115.84,
df: 16799, p<0.001) and the fishes (mean: 1.73, 95% CI:
1.71-1.76, t-value: 129.66, df: 11999, p<0.001). Similarly,
log-transformed colour indexes were significantly higher
among fishes than among consumers (t-value: 22.205, df:
26210, p<0.001).

The analyses of the guild covariates reflected the patterns
seen in Fig. 3, 4. In general, low CVs and high colour index
values were associated with large body size (and, thus, high



Table 2. Analyses of variances of the biomass coefficient of variation (CV) and the log-transformed colour index for biomass variation as
responses, explained by the magnitude (D) and colour (white, red, blue) of the environmental noise and species type (producer, consumer,

fish).

Resp. Variable df Sum Sq Mean Sq F-value p-value

Biomass CV colour 2 17.2 8.62 33.9 2.034e-15
SD 1 747.7 747.7 2936.7 <2.2e-16
species type 2 479.8 239.9 942.3 <2.2e-16
colour x noise 2 4.1 2.07 8.13 2.95Te-4
colour x species type 4 5.1 1.27 4.99 5.131e-4
SDxtypes 2 235.6 117.79 462.7 <2.2e-16
colourxSDxsp. type 4 0.7 0.17 0.6739 0.6100
residuals 36012 9168.4 0.25 - -

log(colour index) colour 2 9368 4683.8 3458.5 <2.2e-16
SD 1 193 193.3 142.7 <2.2e-16
species types 2 10 845 5422.7 4004.1 <2.2e-16
colour x noise 2 29 14.6 10.75 2.141e-5
colour x species type 4 403 100.6 74.31 <2.2e-16
SDxtypes 2 127 63.6 46.94 <2.2e-16
colourxSDxsp. type 4 15 3.7 2.74 0.02693
residuals 35982 48 730 1.4 - -

trophic level as these two variables are strongly correlated;
Fig. 5, 6). In the linear models, the log-transformed body
mass performed best in explaining the variation in CV. The
proportions of variation (R?) in CV explained by the models
with log-transformed body mass, trophic level, and connec-
tivity as covariates were 14.3%, 11.2% and 10.1%, respec-
tively, whereas R? for a model without guild covariates was
7.8%. For the log-transformed colour index, trophic level
slightly outperformed log-transformed body mass and con-
nectivity had virtually no effect (R¥s were 33.8%, 27.7% and
15.8% for models with trophic level, log-transformed body
mass and connectivity, respectively, and 15.4% for the model
without guild covariates).

Given that the environmental noise induced to the K can
affect producers with differing growth rates differently, we
explored the robustness of our results by implementing noise
directly to producer growth dynamics through

loss to consumer j

B.F,(B
B,-Z(GBiGz-(B)—FBiﬁ)(l—xi)—Ej—xjyji £ (B)

gain from producer growth

(11)
e

where € is the environmental noise term. Otherwise, the simu-
lation design was the same. This alternative method produced
results analogous to those presented above (Supplementary
material Appendix 1 Fig. A2, A3), thus confirming the
robustness of our results to the way in which noise was intro-
duced to the bottom of the food web.

Discussion

The present study demonstrates how environmental noise
introduced at the basal level of a food web both reddens and
dampens as it is propagated from the bottom to the top of
the food web by species’ feeding interactions. We introduce

noise at the bottom level of the food web because environ-
mental stochasticity can be expected to more acutely impact
autotrophs’ critical resources such as light and nutrient avail-
ability than the intrinsic growth rates of the species or het-
erotrophs’ critical resources such as prey species’ abundances.
Additionally, altering the intrinsic growth rates of the primary
producers in our model would require altering six parameters
instead of the one (the community-level carrying capacity)
that we alter in our simulations. However, ultimately the way
in which environmental noise is implemented does not mat-
ter. Analyses of simple population models suggest that unless
the population growth rate is extremely high, it does not
make any difference in population dynamics whether envi-
ronmental noise alters the carrying capacity or the growth
rate (Mutshinda and O’Hara 2010). Our robustness analy-
ses (Supplementary material Appendix 1) confirm this also
in the case of our complex food web model, at least as long
as the dynamics are close to the equilibrium (as was the case
in our study).

The reddening with increasing trophic level reflects the
buffering of the noise-induced population variability by com-
plex food web dynamics such that the non-autocorrelated
deterministic dynamics become positively autocorrelated
(Fig. 3, 4), indicating increased similarity among population
states between consecutive seasons. These observations are
consistent among individual species of consumers, producers
and fishes (Fig. 5, 6, Table 1, 2), suggesting that the patterns
observed might reflect more generic properties of the food
web dynamics rather than just the highly dominant impacts
of certain guilds or species life-history stages.

Species’ body size and trophic level, which are also closely
correlated, explained some but not all of the reddening and
dampening of the variation (Fig. 4, 5, Table 1, 2), implying
that the pattern is not a straightforward function of the food
web guild properties, but instead might be more related to the
complex ways the species’ positions and functioning interact
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Figure 5. Coeflicients of temporal biomass variation for each guild with respect to log-transformed body size of each guild. Individual points

represent simulation runs across SD scenarios.

within the food web. Our research illuminates how abiotic
variation may interact with complex ecological dynamics and
provides a mechanistic and empirically realistic explanation
why the observed fluctuations in ecological time series are
often red irrespective of the colour of the environmental vari-
ables (Pimm and Redfearn 1988, Cohen 1995, Ripa et al.
1998). Whilst our analysis focussed on only one — albeit
empirically well founded — aquatic food web, it sets the stage
for the potential generalization of our results by studying a
broader range of food webs. Such generality may be expected
given the low reactivity of the predator—prey interaction net-
works to perturbations compared to mutualistic and com-
petitive networks (Caravelli and Staniczenko 2016).

Most previous studies investigating the role of coloured
environmental noise on species dynamics have focussed
on a single species and explored how environmental noise
introduced into the demographic processes alters the fluc-
tuations in the population dynamics (Kaitala et al. 1997,
Reuman et al. 2008). These studies consistently find that the
emerging fluctuations can be of any colour depending on the
species’ growth rates (Kaitala et al. 1997). A work more com-
parable to ours (Ripa et al. 1998) found that when coloured

noise is introduced into the prey species abundance in a
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two-species food web model, the variation in the predator
population was generally redder than the variation in the prey
population. Our current study demonstrates similar redden-
ing of the variations as a result of the species” feeding interac-
tions in a more complex, partly life-history structured food
web, while at the same time emphasizing the need to explore
the generality of this phenomenon using a larger set of mod-
elled and empirically tested food webs and across alternative
pathways through which the environmental noise is intro-
duced into the food webs.

More recent work has explored these issues in models with
more than one species. To the best of our knowledge, only
the work of Lin and Sutherland (2013) has previously evalu-
ated the effect of environmental noise and its colour on the
dynamics of complex ecological networks. Contrary to our
study, which incorporates environmental stochasticity only
into the dynamics of the basal species of a single empirically
well-parameterized food web, Lin and Sutherland introduce
environmental stochasticity into the dynamics of all the spe-
cies of hundreds of algorithmically-generated networks con-
taining different types of species interactions (i.e. predation,
parasitism and mutualism). The authors found that among
several factors including the type of interspecific interactions,
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sent simulation runs across SD scenarios.

both the synchrony of environmental noise across species and
also the colour of the environmental noise explained most of
the variation of the community dynamics. More specifically,
white unsynchronized noise dampened and produced cycles
in the population dynamics of the species within the net-
works, while red synchronized noise produced sudden out-
breaks and crashes. The differences between this latter result
and ours may be explained by their methodological choice of
introducing the same stochasticity into every species in the
network as well as forcing synchrony of the environmental
noise across species. These two choices together most likely
produce the dramatic oscillations experienced by their mod-
els with red noise (Lin and Sutherland 2013).

Historically, community ecologists have largely focused on
how environmental fluctuations affect community structure
and species coexistence (Chesson 1986). This focus has been
mostly related to the long-standing debate of whether neutral
(e.g. demographic stochasticity) or non-neutral (e.g. niche-
based deterministic dynamics) processes determine the struc-
ture of ecological communities (Hutchinson 1961, Levins
1979, Chesson and Warner 1981, Loreau and Mazancourt
2008). In that context, Ruokolainen et al. (2009b) used a
metacommunity approach to evaluate how different assembly

conditions such as environmental stochasticity, dispersal rate,
and competition affect the similarity among local communi-
ties. The authors found that the environmental stochasticity
introduced into the population dynamics of all species in each
local community has no effect on the similarity of neutral
communities in terms of species composition and abundance
distributions. Likewise, white noise did not change the simi-
larity of non-neutral communities, but red noise decreased
the similarity of non-neutral communities. These results
suggest that under the more realistic auto-correlated noise
scenario, the structure of communities governed by deter-
ministic competitive processes is less predictable than the
structure of neutral communities. This contradicts our find-
ing that a complex food web dampens the population fluctu-
ations produced by red environmental noise, which suggests
that non-neutral consumer—resource interactions within a
community can increase the predictability of its structure
(Betlow et al. 2009). However, the implicit assumption that
the temporal similarity in our study is comparable to spatial
similarity in studies of neutrality (Ruokolainen et al. 2009b)
may be responsible for this discrepancy.

From an applied point of view, the present study pro-
vides important insights for environmental managers. Our

11



results illustrate how successive predator-prey interac-
tions stabilize food webs by reducing both the magnitude
and temporal variability of species. Increased reddening
from the bottom to the top of the food web also implies
increased predictability (positive autocorrelation) in
the transient dynamics of the population (Caravelli and
Staniczenko 2016) which, in the present study, emerge in
response to yearly changes in the ecosystem productivity.
This suggests that, besides maintaining single species of
high conservation value, it is also important to maintain
entire food webs including the long food chains on which
such species depend. Likewise, our study emphasizes that
multispecies modelling may more effectively elucidate how
environmental noise affects population dynamics, whose
colour may substantially affect the risk of extinction (Ripa
and Lundberg 1996) among other population behaviours
of much applied significance.

From a theoretical point of view, our network approach
provides a powerful platform to build a theory able to predict
the structure and dynamics of biological communities under
environmental fluctuations. Future directions include explor-
ing the effects of different network architectures (Williams
and Martinez 2008), and interaction parameterizations such
as those between parasites and hosts (Dunne et al. 2013)
and between plants and their pollinators (Valdovinos et al.
2016). Generalities discovered through such exploration,
such as, consistent changes in the colour with trophic level
or interaction type (e.g. parasitism versus pollination) could
be quantitatively tested against empirical data to determine
the predictive ability of the theory. A theory that passes these
tests could do much to elucidate the sensitivity of ecological
systems to the profound changes in environmental variability
currently being introduced into these systems.
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