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Stochastic variability of key abiotic factors including temperature, precipitation and 
the availability of light and nutrients greatly influences species’ ecological function and 
evolutionary fate. Despite such influence, ecologists have typically ignored the effect 
of abiotic stochasticity on the structure and dynamics of ecological networks. Here 
we help to fill that gap by advancing the theory of how abiotic stochasticity, in the 
form of environmental noise, affects the population dynamics of species within food 
webs. We do this by analysing an allometric trophic network model of Lake Constance 
subjected to positive (red), negative (blue), and non-autocorrelated (white) abiotic 
temporal variability (noise) introduced into the carrying capacity of basal species. We 
found that, irrespective of the colour of the introduced noise, the temporal variability 
of the species biomass within the network both reddens (i.e. its positive autocorrela-
tion increases) and dampens (i.e. the magnitude of variation decreases) as the environ-
mental noise is propagated through the food web by its feeding interactions from the 
bottom to the top. The reddening reflects a buffering of the noise-induced population 
variability by complex food web dynamics such that non-autocorrelated oscillations 
of noise-free deterministic dynamics become positively autocorrelated. Our research 
helps explain frequently observed red variability of natural populations by suggesting 
that ecological processing of environmental noise through food webs with a range of 
species’ body sizes reddens population variability in nature.
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Introduction

Interactions between environmental variation and biological systems are key concerns 
within ecology, evolutionary biology, and in the management of many species’ 
populations. These concerns are becoming increasingly relevant due to the rapid 
changes in the abiotic environment caused by humans that are altering the structure 
and dynamics of populations and ecosystems (Walther  et  al. 2002, Ceballos  et  al. 
2017). More specifically, temporal variation in temperature, precipitation, and the 
availability of light and nutrients can produce species extinctions, pest outbreaks, 
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and dramatic changes in the composition of communities. 
Despite the centrality and urgency of these concerns, theory 
about how complex biological communities respond to sto-
chastic variation in their abiotic environment focuses almost 
entirely on the dynamics of one or a few interacting species 
(Kaitala  et  al. 1997, Ripa  et  al. 1998, Ruokolainen  et  al. 
2009a). Here, we extend such theory (Ripa et al. 1998) by 
analysing how environmental stochasticity propagates within 
a well-studied complex food web.

In addition to the magnitude of variability, time series of 
environmental variables and population abundances often 
exhibit a distinct temporal structure (Halley 1996) that is 
characterized in terms of the colour of temporal variability 
often referred to as ‘noise’ (Ruokolainen et al. 2009a). Red 
noise characterizes the slow change of variables whose con-
secutive values in a time series are relatively similar, that is, 
their fluctuations are positively auto-correlated. Conversely, 
blue noise characterizes the rapid change of variables (e.g. 
from high to low values) whose fluctuations are negatively 
auto-correlated. Finally, white noise characterizes variables 
that are temporally uncorrelated (for empirical examples, 
Ruokolainen  et  al. 2009a). Natural fluctuations of envi-
ronmental variables (Vasseur and Yodzis 2004) and popula-
tion abundances (Pimm and Redfearn 1988, Cohen 1995, 
Sugihara 1995, Burgers 1999) tend to be red coloured, with 
marine variables more red than terrestrial ones (Vasseur and 
Yodzis 2004), with the noticeable exception of El Niño south-
ern oscillation which is characterized by blue noise (Burgers 
1999). Nonetheless, theory about deterministic population 
dynamics have not managed to capture the mechanisms that 
lead to red-coloured variations. Cohen (1995) showed that 
chaotic dynamics of a range of commonly applied determin-
istic single-population models tend to be blue. Cohen (1995) 
concluded that ‘It is not yet known whether this dilemma 
can be resolved by expanding the models to take account of 
environmental fluctuations, the interactions of single species 
with other species, or the age structure and spatial distribu-
tion of populations.’

Indeed, incorporation of coloured environmental noise 
into single-species population dynamics models has dem-
onstrated that population variability reflects the interaction 
between environmental noise and demography. Population 
fluctuations resulting from such interactions can be of virtu-
ally any colour, depending on population stability, growth 
rate, and the extent to which population dynamics are cha-
otic (Sugihara 1995, Kaitala  et  al. 1997). It thus remains 
unsolved, which mechanism present across a broad range of 
natural populations is responsible for the reddening (i.e. pop-
ulation variation tending to be positively autocorrelated irre-
spective of the colour of environmental noise they are affected 
by). Kaitala et al. (1997) detected an association of increased 
complexity of single-species dynamics with increased red-
dening, suggesting that oversimplified population models 
might be responsible for the mismatch between theory and 
observations (reviewed in the previous paragraph). Indeed, 
analyses of simple two-species food webs demonstrate that 

species interactions markedly complicate the ways in which 
environmental variability manifests in population dynam-
ics (Ripa  et  al. 1998). Ripa  et  al. (1998) found conditions 
for food webs of predators and preys interacting via linear 
functional responses where the species not subjected to envi-
ronmental noise generally express redder (i.e. more positively 
autocorrelated) variation than the species subjected to noise. 
However, these conditions regarding the value of Jacobian 
matrices and the restriction to linear interactions limit the 
generality of this finding, especially with respect to more 
realistically complex food webs with nonlinear interactions 
and populations structured according to life history (Mougi 
2017). Here, we study a food web with these complexities 
to explore how coloured environmental noise (Ripa  et  al. 
1998, Fig. 1) combined with changing magnitudes of envi-
ronmental variability (Ruokolainen et al. 2009a), may alter 
the dynamics of populations and the ecosystem.

Allometric trophic network (ATN) theory has substan-
tially improved ecologists’ abilities to understand and predict 
complex food web dynamics (Brose et al. 2006, Berlow et al. 
2009, Boit  et  al. 2012), by basing the rates of consumer–
resource interactions on the straight-forward and empirically 
well-founded allometric scaling with body size (Brose et al. 
2006). For example, an ATN model of the Lake Constance 
(Alpine lake in central Europe; hereafter LC) explained up to 
82% of variability in seasonal dynamics of 24 species within 
the lake’s complex food web (Boit et al. 2012). Based on this 
success, we use the LC ATN model as an empirically cor-
roborated template to study food-web dynamics. More spe-
cifically, we use a version of the LC ATN model that includes 
the age-structured dynamics of fishes (Kuparinen et al. 2016) 
to study how environmental noise introduced into basal pro-
duction filters through the food web and manifests at differ-
ent trophic levels up to fishes at the top of the food web. The 
complexities of age-structured fish populations and nonlinear 
interactions within our LC ATN model make it impossible to 
predict our model’s population colour spectra based on previ-
ously published theory (V. Kaitala pers. comm.).

Material and methods

Deterministic ATN model for Lake Constance (LC) food 
web dynamics

The LC ATN model is an allometric trophic network model 
of the lake’s food web dynamics developed and parameter-
ized by Boit et al. (2012) and modified by Kuparinen et al. 
(2016) to better address the life-history structure of fishes. 
The modelled network contains 133 feeding links among 30 
functionally distinct guilds of which six are basal producers, 
seven are heterotrophic microbes, seven are invertebrates, 
and 10 are five life-history stages (larvae, juveniles, 2 years, 
3 years, and 4 years and older hereafter denoted as 4+) of two 
species of fish (perch and whitefish, Fig. 2, Supplementary 
material Appendix 1 Table A1).
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The dynamics of the system are divided into two parts. 
In the first part, the food web dynamics for year Y are simu-
lated in continuous time during the ‘growth season’. This part 
includes the producer growth, consumer and fish feeding, 
maintenance of organism’s bodily functions, and the alloca-
tion of portion of adult fish biomass for reproduction. These 
dynamics are modelled as a system of ordinary differential 
equations (ODEs). The second part of the system dynamics 
is called ‘reproduction and aging’ and it consists of the birth 
of new fish larvae and the transfer of fish biomass to the next 
life stage for year Y + 1.

Growth season dynamics
The core biomass dynamics of species or groups of func-
tionally similar species (i.e. guilds, denoted by their index 
i; Supplementary material Appendix 1 for detailed guild 
information) within the growth season of year Y are 
described by a set of ordinary differential equations. The 
biomass of guild i and its derivative with respect to time are 
denoted by BY,i(t) and �B tY i, ( ) , respectively, where t ϵ [tinit, 
tend]. The vector of all guild biomasses is denoted by BY(t). 
The length of the growth season is 90 days, and thus we 
set tinit = 0 and tend = 90. For notational simplicity, we omit 
the year Y and time t from the description of the growth 
season dynamics.

Producer guild (i ϵ {1, …, 6}) dynamics are driven by their 
intrinsic (logistic) growth and the feeding subjected to them 

by their herbivore predators. The ODE for the biomass of 
producer guild i during the growth season is
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where ri is the mass-specific intrinsic growth rate of producer 
i (Boit et al. 2012); G c B Ki j ij jB( ) = - ( )=1 S producers /  is the 
limiting factor in the logistic growth model of the produc-
ers, and it includes producer competition coefficients cij and 
carrying capacity coefficient K shared by all autotrophs; si is 
the fraction of exudation; xi is the mass-specific metabolic 
rate of consumer i based on allometric scaling; yij is the 
maximum consumption rate of guild i feeding on guild j; eji is 
the assimilation efficiency describing the fraction of ingested 
biomass lost by egestion. Fji(B) is the functional response  
(see below).

Consumer guild (including bacterial detritivores; i ϵ  
{7, …, 20}) dynamics consists of the maintenance of bodily 
functions, gains from feeding on their prey, and losses due to 
getting fed on by their predators, and the ODE is
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Figure 1. Schematic illustration of the temporal variability in the most common primary producer guild when exposed to red, white and 
blue noise (autocorrelation 0.4, 0 and −0.4 respectively; SD is 15% of K0). The guild is f﻿ilamentous blue and green algae (Alg3, Supplementary 
material Appendix 1). Each panel also show the lag 1 autocorrelation and the colour index for the temporal variability of the guild biomass 
abundance.
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where fm is the fraction of assimilated carbon respired by 
maintenance of basic body functions; and fa is the fraction 
of assimilated carbon used for production of consumers’ 
biomass under activity (1 − fa is respired). Fij(B) is the con-
sumer and fish species’ normalized functional response to 
prey species densities
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where ωij is the relative prey preference of consumer 
species i feeding on resource species j; q = 1.2 which  

forms a relatively stable version of the Holling type-II 
functional response (Williams and Martinez 2008); B0ij is 
the half saturation constant of resource species j at which 
consumer species i achieves half of its maximum feeding 
rate on species j; dij is the coefficient of intraspecific feed-
ing interference of species i while feeding on species j.  
The parameter dij also accounts for prey resistance to 
consumption.

The fish guilds have indices 21–30 so that whitefish have 
odd and perch have even indices. The growth season dynam-
ics of the larval and juvenile fish guilds (i ϵ {21, …, 24}) are 
identical to the consumers’ dynamics, i.e.

Figure 2. A schematic illustration of the analysis of the effects of environmental noise on the Lake Constance food web dynamics. Each 
spherical node represents one of the 30 trophic groups. Trophic groups were aggregated into three functional groups for certain analyses. 
Producers include all the algae guilds (Alg1–Alg5) and the autotrophic picoplankton guild (APP) at the bottom of the food web. Consumers 
include all other trophic groups such as ciliates (Cil1–Cil5), rotifers (Rot1–Rot3) and Daphnia (Dap). Fishes include all the age classes of 
the Whitefish (Wht0–Wht4) and Perch (Per0–Per4). Dissolved organic carbon (DOC) is supplied by heterotrophic egestion and autotro-
phic exudation and is consumed by bacteria (Bac). Guild labels and colours are further explained in Supplementary material Appendix 1 
Table A1. Links represent energetic pathways from guilds at the pointed end to guilds on the thicker end. In the simulations of the food 
web dynamics, differing magnitudes and colours of environmental noise is introduced into the phytoplankton community carrying capacity 
(Kt). The impacts of the environmental noise on each individual guild and aggregated functional groups is then investigated by analysing 
the coefficient of variation (CV) and the colour index of the time series of their biomasses.
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The adult fish guilds (i ϵ {25, …, 30}) have no predators in 
our model and they allocate a portion of the surplus biomass 
from growth to reproduction (only if there is surplus, i.e. 
gains from feeding are greater than the maintenance costs). 
The ODE modelling the biomass of adult fish guild i can, 
thus, be written as
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Here Pi denotes the proportion of mature biomass in adult 
fish guild i, and Ii denotes the fraction of the mature sur-
plus biomass that is invested into reproduction. The biomass 
allocated to reproduction is not available for growth and is 
thus considered in (5). We use �Bi

+  to denote the rate of bio-
mass allocation to reproduction by adult fish guild i during 
the growth season, and add
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to the system of ODEs.
The detritus (i = 0) dynamics consists of the egestion 

caused by feeding, producer exudation, and loss to consump-
tion by detritivores (bacteria):
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The simulation starts at year Y = 1, and the initial biomass 
vector B1(tinit) consists of the biomasses at the system’s equilib-
rium and the initial value for B i YY i, , , , ,+ = ∀ ∈ …{ } ∀0 25 30 . 
The system of ODEs is then solved for the growth season.

Reproduction and aging
After the growth season of year Y, the accumulated biomass 
allocated to reproduction B tY i,

+ ( )end  by the adult fish guild i 
translates to initial larvae biomass for the next year’s growth 
season. The initial biomass of the larvae for year Y + 1 for a 
given fish species is the sum of the larvae produced by the 
different adult life-stages of that fish species, i.e.

B t B t iY i Y i aa+ +
+

=( ) = ( ) Î{ }å1 22

4 21 22, , , , .init end 	  (8)

The initial biomasses of the juveniles (age 1), and the two first 
adult life stages (ages 2 and 3) for year Y + 1 are the biomasses 
of the previous life stages at the end of the growth season of 
year Y,

B t B t iY i Y i+ -( ) = ( ) Î{ }1 2 23 28, , , ,..., .init end 	  (9)

The oldest life stage (age 4+) consists of the 4-year old fish and 
all the older fish, and thus the initial biomass of the 4+ group 
for year Y + 1 is a sum of the 4+ and 3 group biomasses at the 
end of the growth season of year Y,

B t B t B t iY i Y i Y i+ −( ) = ( ) + ( ) ∈{ }1 2 29 30, , , , , .init end end 	  (10)

Parameterization for Lake Constance food web

The ATN model parameterization for Lake Constance food 
web utilized in the present study was first developed and 
validated by Boit  et  al. (2012) and then further extended 
by Kuparinen  et  al. (2016) to account for fish life-history 
dynamics. Functional guilds, i.e. nodes in the food web, 
along with their feeding links and guild properties are given 
in Supplementary material Appendix 1 Table  A1. Among 
producers, interspecific competition (cij, i ≠ j) was set to 1 and 
intraspecific producer competition (cij, i = j) was set to a value 
(2.0225) that creates (Chesson and Kuang 2008) determin-
istic dynamics of the producers, consumers and fishes with 
white-coloured oscillations about the equilibrium, which 

facilitates analyzing the effects of environmental noise on our 
model’s dynamics. Table 1 for other parameter values.

Environmental noise scenarios

Our objective was to explore how environmental noise 
propagates through the food web from its bottom to the 
top of the food web and interacts with species properties. 
To this end, we introduced annually (i.e. for each growth 
season) environmental noise into the producers’ commu-
nity-level carrying capacity, K. We did this by calculat-
ing K for year t as: K K Kt t t= -( ) + +-1 0 1k k n , where K0 
estimates Lake Constance’s long-term carrying capacity for 
primary producers (Supplementary material Appendix 1)  
as 540  000 μg C m−3 (Boit  et  al. 2012, Kuparinen  et  al. 
2016), |κ| < 1 is the autocorrelation between Kt and Kt−1, 
and n s kt N∼ 0 12 2, −( )( )  is a normally distributed ran-
dom variable. The expected value E(Kt) = K0 and the standard 
deviation SD(Kt) = σ for all t (Ruokolainen  et  al. 2009). Kt 
is restricted to be positive by rejecting sampled value if it is 
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non-positive. Environmental noise scenarios are character-
ized by the magnitude (SD) and ‘colour’ (autocorrelation, κ) 
of variation in Kt (Ruokolainen et al. 2009a; Fig. 1). We set 
SD(Kt) to 5%, 10%, 15% or 20% of K0. We set κ to 0 for 
white (uncorrelated) noise, 0.4 for red (positively autocor-
related) noise, and −0.4 for blue (negatively autocorrelated) 
noise.

Simulation design and output variables

Initial biomasses for each guild emerged from simulating 
150 years (growth seasons) of deterministic model dynam-
ics with the (noise-free) constant Kt set to K0. We discarded 
the first 50 ‘burn-in’ years during which the guilds settled 
into their dynamic equilibrium that we analysed during the 
following 100 years. Each simulation scenario was replicated 
for 100 times (larger number of replicates gave analogous 
results).

We focus on investigating how the different environmen-
tal noise scenarios affect the magnitude and the nature of 
variability in the guild biomass within the food web (Fig. 2), 
and how such variability may be explained by the properties 
of the guild. Throughout these analyses, biomasses at the end 
of each growth season, after the production of new larvae, is 
the central response variable. This limits our shortest observa-
tion scale to the scale at which variability is introduced to the 
system and thus avoids biasing our results with trivial positive 
correlations between subsequent time steps within a growth 
season. We quantify the magnitude of the year-to-year vari-
ability through the coefficient of variation (CV) across the 
last 100 years of each simulation, estimated by dividing the 
sample SD with the sample average. We estimated the colour 
of the variability using a colour index of the time series of 
each guild’s biomass (Blarer and Doebeli 1996). This colour 
index integrates across relative contributions of low and high 
frequency fluctuations across the time series. Dominance of 
low or high frequency fluctuations corresponds to red or blue 
noise and to positive or negative autocorrelation, respectively. 
White noise occurs when the spectrum is relatively evenly 

distributed across all frequencies (Blarer and Doebeli 1996, 
Kaitala et al. 1997, Ripa et al. 1998). We calculated the raw 
power spectrum (using spec function in R, which produces 
frequency spectrum for a time series; <www.r-project.org>) for 
each replicated run across a 100-year time period and divided 
the average of the spectral values for frequencies 0–0.25 by 
the average of the spectral values for frequencies 0.25–0.5. 
Values above 1, close to 1, or below 1 indicate red, white, 
or blue noise, respectively. In addition to the colour index 
integrating over the lags in temporal autocorrelation, we also 
estimated simple autocorrelation coefficients for lag = 1 (i.e. 
AR(1)), which are commonly utilized to explore the colour 
of variation in environmental time series (Ruokolainen et al. 
2009a).

Guild covariates and statistical analyses

We analysed the temporal variation in the biomasses of the 
guild both separately and also grouped into producers, non-
fish consumers (hereafter just ‘consumers’), or fishes. Due to 
skewness, the colour index values were log-transformed. The 
magnitude (CV) and the log-transformed colour index were 
explored through ANOVAs, with the autocorrelation κ of 
the input noise, SD and species type, and their interactions 
as explanatory variables. Differences in the log-transformed 
average colour index values between the species types were 
further investigated through t-tests. We explored whether the 
magnitude (CV) and the colour index of biomass variations 
of individual guilds can be explained by the guild properties. 
These properties include the natural logarithm of their body 
size; guild’s connectivity defined by the number of guilds 
it is connected to (as a predator or a prey) standardized by 
2 × L/S, where L is the total number of links in the food web 
and S is the total number of guilds; and their short-weighted 
trophic level (Williams and Martinez 2008, Carscallen et al. 
2012). The effects of these covariates were explored through 
linear models explaining the magnitude (CV) and the log-
transformed colour index (responses) of biomass variability 
(response variables) with SD, κ, and their interaction as well 

Table 1. Summary of the ATN model parameters for Lake Constance. Adapted from Kuparinen et al. (2016).

Parameter Unit Value Description Reference

K μg C m–3 540 000 phytoplankton carrying capacity Boit et al. (2012)
xi day–1 0.04–0.18 mass-specific metabolic rate1 Brose et al. (2006)
ri day–1 0.6–1.09 mass-specific growth rate for autotrophs1 Brose et al. (2006)
cij 1 (2.0225 for i = j) producer competition coefficient Boit et al. (2012)
fa 0.4 activity metabolism coefficient Humphreys (1979)
fm 0.1 maintenance respiration coefficient Humphreys (1979)
yij 10 maximum ingestion rate Yodzis and Innes (1992), Brose et al. (2006)
eij 0.66 assimilation efficiency Nielsen and Olsen (1989)
dij m3 μg C–1 0–0.5 feeding interference coefficient Skalski and Gilliam (2001), Boit et al. (2012)
q 1.2 functional response shape parameter Boit et al. (2012)
ωij 0–0.5 relative prey preference Boit et al. (2012)
pij 0–1 fraction of resource species shared Boit et al. (2012)
si 0.2 fraction of exudation Boit et al. (2012)
B0ij μg C m–3 1500–700 000 half-saturation densities Boit et al. (2012)

1Relative rates with respect to guild 1; Supplementary material Appendix 1 Table A1.
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as each of the guild’s covariates separately (due to collinearity 
among the covariates) as explanatory variables. Normality of 
the residuals was explored through qq-plots.

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.75mg6b1 > (Kuparinen  et  al. 
2018). Data and codes used in this manuscript are included 
in the Supplementary material Appendix 1.

Results

In the fully deterministic ‘baseline’ scenario, where no noise 
was introduced into Kt, the temporal variability in the bio-
mass of producers, consumers and fishes showed similar 
year-to-year variation reflecting the deterministic oscilla-
tions (wave length of 4 years) emerging from the food web 
dynamics (Fig.  3). In the stochastic scenarios, where noise 

was introduced into Kt, the biomass variability (as reflected in 
the CVs) generally increased most prominently at low trophic 
levels. Producers and fishes displayed the largest and smallest 
variation, respectively, at each noise magnitude and colour 
scenario. In all cases, the food web consistently dampens 
(i.e. reduces) the variation as the trophic level increases, as 
is seen in the decreasing vertical positions and in the heights 
of the CV boxplots in Fig. 3. Within producers, consumers 
and fishes, increasing the noise magnitude (SD) resulted in 
increased biomass variability, whereas changing the noise 
colour had little effect on the amount of biomass variability 
(Fig. 3).

Introduction of noise into Kt caused this variability to dif-
ferentiate, such that the colour index values were reddened 
with increasing trophic level or, in other words, the colour 
index systematically increases as one goes from producers 
through consumers to fishes (Fig.  4). Producers’ temporal 
biomass variability closely mirrored the variability introduced 
into Kt, such that white noise led to producer colour index 
values close to one, red noise to values larger than one, and 
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blue noise to values lower than one, indicative of white, red, 
and blue variability, respectively. In contrast, the temporal 
biomass variability of consumers and fishes was red (colour 
index values above one) irrespective of the colour of the noise 
introduced into Kt. Still, the shades of this red variability 
shifted from the least to the most red as the colour of the 
noise introduced into the producer carrying capacity shifted 
from blue through white to red. Increasing the magnitude of 
the noise (SD) typically reduced the amount of reddening of 
the variability of producers, consumers and fishes (Fig.  4). 
Variability measured by autocorrelations at lag = 1 showed 
similar results: the variability of consumers and fishes was 
always redder (positive autocorrelation), whereas the colour 
of the producers’ variability more closely reflected the colour 
of the noise introduced into Kt (Supplementary material 
Appendix 1 Fig. A1).

 Analyses of variance of the magnitude (CV) and the log-
transformed colour index of biomass variability largely con-
firmed the patterns detected visually. Most of the variation 
in CV was associated with the SD of the noise introduced 

into Kt, species type, and their two-way interaction, whereas 
the colour of the noise had negligible effects (Table 2). The 
variation in the colour index values was largely attributable to 
the effects of the colour of the noise and species type whereas 
SD had an order-of-magnitude lower effect (Table  2). To 
confirm that the variation of consumer and fish biomasses 
is red irrespective of the colour of the noise introduced into 
Kt, one-way t-tests were performed to compare the log-trans-
formed colour index values with the threshold value 0 (log of 
1). Across all the simulation scenarios, the log-transformed 
colour index was significantly larger than 0 for both the con-
sumers (mean: 1.34, 95% CI: 1.32–1.36, t-value: 115.84, 
df: 16799, p < 0.001) and the fishes (mean: 1.73, 95% CI: 
1.71–1.76, t-value: 129.66, df: 11999, p < 0.001). Similarly, 
log-transformed colour indexes were significantly higher 
among fishes than among consumers (t-value: 22.205, df: 
26210, p < 0.001).

The analyses of the guild covariates reflected the patterns 
seen in Fig. 3, 4. In general, low CVs and high colour index 
values were associated with large body size (and, thus, high 
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trophic level as these two variables are strongly correlated; 
Fig.  5, 6). In the linear models, the log-transformed body 
mass performed best in explaining the variation in CV. The 
proportions of variation (R2) in CV explained by the models 
with log-transformed body mass, trophic level, and connec-
tivity as covariates were 14.3%, 11.2% and 10.1%, respec-
tively, whereas R2 for a model without guild covariates was 
7.8%. For the log-transformed colour index, trophic level 
slightly outperformed log-transformed body mass and con-
nectivity had virtually no effect (R2’s were 33.8%, 27.7% and 
15.8% for models with trophic level, log-transformed body 
mass and connectivity, respectively, and 15.4% for the model 
without guild covariates).

Given that the environmental noise induced to the K can 
affect producers with differing growth rates differently, we 
explored the robustness of our results by implementing noise 
directly to producer growth dynamics through

�
� ����� �����

B r B G B si i i i i i= ( ) + −( )( )B e 1

gain from producer growth

−−
( )

Σ j
j ji j ji
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e

B
loss toconsumer� ��� ���

	  (11)

where ε is the environmental noise term. Otherwise, the simu-
lation design was the same. This alternative method produced 
results analogous to those presented above (Supplementary 
material Appendix 1 Fig.  A2, A3), thus confirming the 
robustness of our results to the way in which noise was intro-
duced to the bottom of the food web.

Discussion

The present study demonstrates how environmental noise 
introduced at the basal level of a food web both reddens and 
dampens as it is propagated from the bottom to the top of 
the food web by species’ feeding interactions. We introduce 

noise at the bottom level of the food web because environ-
mental stochasticity can be expected to more acutely impact 
autotrophs’ critical resources such as light and nutrient avail-
ability than the intrinsic growth rates of the species or het-
erotrophs’ critical resources such as prey species’ abundances. 
Additionally, altering the intrinsic growth rates of the primary 
producers in our model would require altering six parameters 
instead of the one (the community-level carrying capacity) 
that we alter in our simulations. However, ultimately the way 
in which environmental noise is implemented does not mat-
ter. Analyses of simple population models suggest that unless 
the population growth rate is extremely high, it does not 
make any difference in population dynamics whether envi-
ronmental noise alters the carrying capacity or the growth 
rate (Mutshinda and O’Hara 2010). Our robustness analy-
ses (Supplementary material Appendix 1) confirm this also 
in the case of our complex food web model, at least as long 
as the dynamics are close to the equilibrium (as was the case 
in our study).

The reddening with increasing trophic level reflects the 
buffering of the noise-induced population variability by com-
plex food web dynamics such that the non-autocorrelated 
deterministic dynamics become positively autocorrelated 
(Fig. 3, 4), indicating increased similarity among population 
states between consecutive seasons. These observations are 
consistent among individual species of consumers, producers 
and fishes (Fig. 5, 6, Table 1, 2), suggesting that the patterns 
observed might reflect more generic properties of the food 
web dynamics rather than just the highly dominant impacts 
of certain guilds or species life-history stages.

Species’ body size and trophic level, which are also closely 
correlated, explained some but not all of the reddening and 
dampening of the variation (Fig. 4, 5, Table 1, 2), implying 
that the pattern is not a straightforward function of the food 
web guild properties, but instead might be more related to the 
complex ways the species’ positions and functioning interact 

Table 2. Analyses of variances of the biomass coefficient of variation (CV) and the log-transformed colour index for biomass variation as 
responses, explained by the magnitude (SD) and colour (white, red, blue) of the environmental noise and species type (producer, consumer, 
fish).

Resp. Variable df Sum Sq Mean Sq F-value p-value

Biomass CV colour 2 17.2 8.62 33.9 2.034e-15
SD 1 747.7 747.7 2936.7 <2.2e-16
species type 2 479.8 239.9 942.3 <2.2e-16
colour × noise 2 4.1 2.07 8.13 2.951e-4
colour × species type 4 5.1 1.27 4.99 5.131e-4
SD × types 2 235.6 117.79 462.7 <2.2e-16 
colour × SD × sp. type 4 0.7 0.17 0.6739 0.6100
residuals 36 012 9168.4 0.25 – –

log(colour index) colour 2 9368 4683.8 3458.5 <2.2e-16
SD 1 193 193.3 142.7 <2.2e-16
species types 2 10 845 5422.7 4004.1 <2.2e-16
colour × noise 2 29 14.6 10.75 2.141e-5
colour × species type 4 403 100.6 74.31 <2.2e-16
SD × types 2 127 63.6 46.94 <2.2e-16
colour × SD × sp. type 4 15 3.7 2.74 0.02693
residuals 35 982 48 730 1.4 – –
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within the food web. Our research illuminates how abiotic 
variation may interact with complex ecological dynamics and 
provides a mechanistic and empirically realistic explanation 
why the observed fluctuations in ecological time series are 
often red irrespective of the colour of the environmental vari-
ables (Pimm and Redfearn 1988, Cohen 1995, Ripa  et  al. 
1998). Whilst our analysis focussed on only one – albeit 
empirically well founded – aquatic food web, it sets the stage 
for the potential generalization of our results by studying a 
broader range of food webs. Such generality may be expected 
given the low reactivity of the predator–prey interaction net-
works to perturbations compared to mutualistic and com-
petitive networks (Caravelli and Staniczenko 2016).

Most previous studies investigating the role of coloured 
environmental noise on species’ dynamics have focussed 
on a single species and explored how environmental noise 
introduced into the demographic processes alters the fluc-
tuations in the population dynamics (Kaitala  et  al. 1997, 
Reuman et al. 2008). These studies consistently find that the 
emerging fluctuations can be of any colour depending on the 
species’ growth rates (Kaitala et al. 1997). A work more com-
parable to ours (Ripa et al. 1998) found that when coloured 
noise is introduced into the prey species abundance in a 

two-species food web model, the variation in the predator 
population was generally redder than the variation in the prey 
population. Our current study demonstrates similar redden-
ing of the variations as a result of the species’ feeding interac-
tions in a more complex, partly life-history structured food 
web, while at the same time emphasizing the need to explore 
the generality of this phenomenon using a larger set of mod-
elled and empirically tested food webs and across alternative 
pathways through which the environmental noise is intro-
duced into the food webs.

More recent work has explored these issues in models with 
more than one species. To the best of our knowledge, only 
the work of Lin and Sutherland (2013) has previously evalu-
ated the effect of environmental noise and its colour on the 
dynamics of complex ecological networks. Contrary to our 
study, which incorporates environmental stochasticity only 
into the dynamics of the basal species of a single empirically 
well-parameterized food web, Lin and Sutherland introduce 
environmental stochasticity into the dynamics of all the spe-
cies of hundreds of algorithmically-generated networks con-
taining different types of species interactions (i.e. predation, 
parasitism and mutualism). The authors found that among 
several factors including the type of interspecific interactions, 
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represent simulation runs across SD scenarios.
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both the synchrony of environmental noise across species and 
also the colour of the environmental noise explained most of 
the variation of the community dynamics. More specifically, 
white unsynchronized noise dampened and produced cycles 
in the population dynamics of the species within the net-
works, while red synchronized noise produced sudden out-
breaks and crashes. The differences between this latter result 
and ours may be explained by their methodological choice of 
introducing the same stochasticity into every species in the 
network as well as forcing synchrony of the environmental 
noise across species. These two choices together most likely 
produce the dramatic oscillations experienced by their mod-
els with red noise (Lin and Sutherland 2013).

Historically, community ecologists have largely focused on 
how environmental fluctuations affect community structure 
and species coexistence (Chesson 1986). This focus has been 
mostly related to the long-standing debate of whether neutral 
(e.g. demographic stochasticity) or non-neutral (e.g. niche-
based deterministic dynamics) processes determine the struc-
ture of ecological communities (Hutchinson 1961, Levins 
1979, Chesson and Warner 1981, Loreau and Mazancourt 
2008). In that context, Ruokolainen  et  al. (2009b) used a 
metacommunity approach to evaluate how different assembly 

conditions such as environmental stochasticity, dispersal rate, 
and competition affect the similarity among local communi-
ties. The authors found that the environmental stochasticity 
introduced into the population dynamics of all species in each 
local community has no effect on the similarity of neutral 
communities in terms of species composition and abundance 
distributions. Likewise, white noise did not change the simi-
larity of non-neutral communities, but red noise decreased 
the similarity of non-neutral communities. These results 
suggest that under the more realistic auto-correlated noise 
scenario, the structure of communities governed by deter-
ministic competitive processes is less predictable than the 
structure of neutral communities. This contradicts our find-
ing that a complex food web dampens the population fluctu-
ations produced by red environmental noise, which suggests 
that non-neutral consumer–resource interactions within a 
community can increase the predictability of its structure 
(Berlow et al. 2009). However, the implicit assumption that 
the temporal similarity in our study is comparable to spatial 
similarity in studies of neutrality (Ruokolainen et al. 2009b) 
may be responsible for this discrepancy.

From an applied point of view, the present study pro-
vides important insights for environmental managers. Our 
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results illustrate how successive predator-prey interac-
tions stabilize food webs by reducing both the magnitude 
and temporal variability of species. Increased reddening 
from the bottom to the top of the food web also implies 
increased predictability (positive autocorrelation) in 
the transient dynamics of the population (Caravelli and 
Staniczenko 2016) which, in the present study, emerge in 
response to yearly changes in the ecosystem productivity. 
This suggests that, besides maintaining single species of 
high conservation value, it is also important to maintain 
entire food webs including the long food chains on which 
such species depend. Likewise, our study emphasizes that 
multispecies modelling may more effectively elucidate how 
environmental noise affects population dynamics, whose 
colour may substantially affect the risk of extinction (Ripa 
and Lundberg 1996) among other population behaviours 
of much applied significance.

From a theoretical point of view, our network approach 
provides a powerful platform to build a theory able to predict 
the structure and dynamics of biological communities under 
environmental fluctuations. Future directions include explor-
ing the effects of different network architectures (Williams 
and Martinez 2008), and interaction parameterizations such 
as those between parasites and hosts (Dunne  et  al. 2013) 
and between plants and their pollinators (Valdovinos  et  al. 
2016). Generalities discovered through such exploration, 
such as, consistent changes in the colour with trophic level 
or interaction type (e.g. parasitism versus pollination) could 
be quantitatively tested against empirical data to determine 
the predictive ability of the theory. A theory that passes these 
tests could do much to elucidate the sensitivity of ecological 
systems to the profound changes in environmental variability 
currently being introduced into these systems.
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