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Linear matrix inequalities (LMIs) are ubiquitous in real 
algebraic geometry, semidefinite programming, control theory 
and signal processing. LMIs with (dimension free) matrix 
unknowns are central to the theories of completely positive 
maps and operator algebras, operator systems and spaces, and 
serve as the paradigm for matrix convex sets. The matricial 
feasibility set of an LMI is called a free spectrahedron.
In this article, the bianalytic maps between a very general 
class of ball-like free spectrahedra (examples of which include 
row or column contractions, and tuples of contractions) and 
arbitrary free spectrahedra are characterized and seen to have 
an elegant algebraic form. They are all highly structured 
rational maps. In the case that both the domain and codomain 
are ball-like, these bianalytic maps are explicitly determined 
and the article gives necessary and sufficient conditions for the 
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existence of such a map with a specified value and derivative 
at a point. In particular, this result leads to a classification 
of automorphism groups of ball-like free spectrahedra. The 
proofs depend on a novel free Nullstellensatz, established 
only after new tools in free analysis are developed and 
applied to obtain fine detail, geometric in nature locally and 
algebraic in nature globally, about the boundary of ball-like 
free spectrahedra.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Fix a positive integer g. For positive integers n, let Mn(C)g denote the set of g-tuples 

X = (X1, . . . , Xg) of n ×n matrices with entries from C. Given a tuple E = (E1, . . . , Eg)

of d × e matrices, the sequence BE = (BE(n))n defined by
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BE(n) = {X ∈ Mn(C)g : ‖
∑

Ej ⊗ Xj‖ ≤ 1}

is a spectraball. The spectraball at level one, BE(1), is a rotationally invariant closed 

convex subset of C
g. Conversely, a rotationally invariant closed convex subset of C

g

can be approximated by sets of the form BE(1). A spectraball BE is not determined 

by BE(1). For example, letting F1 = (1 0), F2 = (0 1), and Ej = F ∗
j , we have 

BE(1) = BF (1) = B
2, the unit ball in C2, but BE(2) �= BF (2). Indeed, BF (resp. BE) is 

the two variable row ball (resp. column ball) equal the set of pairs (X1, X2) such that 

X1X∗
1 + X2X∗

2 � I (resp. X∗
1 X1 + X∗

2 X2 � I), where the inequality T � 0 indicates 

the selfadjoint matrix T is positive semidefinite. Another well-known example is the

free polydisc. It is the spectraball BE determined by the tuple E = (e1e∗
1, . . . , ege∗

g) ∈

Mg(C)g, where {e1, . . . , eg} is the standard orthonormal basis for Cg. Thus BE(n) is the 

set of tuples X ∈ Mn(C)g such that ‖Xj‖ ≤ 1 for each j.

For A ∈ Md(C)g, let LA(x, y) denote the monic pencil

LA(x, y) = I +
∑

Ajxj +
∑

A∗
j yj ,

and let

Lre
A (x) = LA(x, x∗) = I +

∑
Ajxj +

∑
A∗

j x∗
j

denote the corresponding hermitian monic pencil. The set DA(1) consisting of x ∈ C
g

such that Lre
A(x) � 0 is a spectrahedron. Spectrahedra are basic objects in a number of 

areas of mathematics; e.g. semidefinite programming, convex optimization and in real 

algebraic geometry [10]. They also figure prominently in determinantal representations 

[12,22,47,53], in the solution of the Kadison-Singer paving conjecture [44], the solution 

of the Lax conjecture [34], and in systems engineering [11,52].

For A ∈ Md×e(C)g, the homogeneous linear pencil ΛA(x) =
∑

j Ajxj evaluates at 

X ∈ Mn(C)g as

ΛA(X) =
∑

Aj ⊗ Xj ∈ Md×e(C) ⊗ Mn(C).

In the case A is square (d = e), the hermitian monic pencil Lre
A evaluates at X as

Lre
A (X) = I + ΛA(X) + ΛA(X)∗ = I +

∑
Aj ⊗ Xj +

∑
A∗

j ⊗ X∗
j .

Thus Lre
A (X)∗ = Lre

A (X). Similarly, if Y ∈ Mn(C)g, then LA(X, Y ) = I + ΛA(X) +

ΛA∗(Y ). In particular, Lre
A(X) = LA(X, X∗).

The free spectrahedron determined by A ∈ Mr(C)g is the sequence of sets DA =

(DA(n)), where

DA(n) = {X ∈ Mn(C)g : Lre
A (X) � 0}.
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The spectraball BE is a spectrahedron since BE = DB for B = ( 0 E
0 0

). Free spectrahedra 

arise naturally in applications such as systems engineering [16] and in the theories of 

matrix convex sets, operator algebras and operator spaces and completely positive maps 

[17,27,48,49]. They also provide tractable useful relaxations for spectrahedral inclusion 

problems that arise in semidefinite programming and control theory such as the matrix 

cube problem [8,15,28].

The interior of the free spectrahedron DA is the sequence int(DA) = (int(DA(n)))n, 

where

int(DA(n)) = {X ∈ Mn(C)g : Lre
A (X) 	 0}.

A free mapping ϕ : int(DB) → int(DA) is a sequence of maps ϕn : int(DB(n)) →

int(DA(n)) such that if X ∈ int(DB(n)) and Y ∈ int(DB(m)), then

ϕn+m

((
X 0
0 Y

))
=

(
ϕn(X) 0

0 ϕm(Y )

)
,

and if X ∈ int(DB(n)) and S is an invertible n × n matrix such that

S−1XS =
(
S−1X1S, . . . , S−1XgS

)
∈ int(DB(n)),

then

ϕn(S−1XS) = S−1ϕn(X)S.

Often we omit the subscript n and write only ϕ(X). The free mapping ϕ is analytic if 

each ϕn is analytic.

The central result of this article, Theorem 1.1, explicitly characterizes the free bian-

alytic mappings ϕ between int(BE) and int(DA). These maps are birational and highly 

structured. Up to affine linear change of variable, they are what we call convexotonic

(see Subsection 1.1 below). In the special case that DA = BC is also a spectraball, given 

b ∈ int(BC) and a g × g matrix M , Corollary 1.3 gives explicit necessary and suffi-

cient algebraic relations between E and C for the existence of a free bianalytic mapping 

ϕ : int(BE) → int(BC) satisfying ϕ(0) = b and ϕ′(0) = M . As an illustration of the 

result, this corollary classifies, from first principles, the free automorphisms of the ma-

trix balls – the row and column balls are special cases – and of the free polydiscs. See 

Remark 1.2(d) and Subsubsections 5.3.1 and 5.3.2.

There are two other results we would like to highlight in this introduction. Theo-

rem 1.6, establishes an equivalence between an algebraic irreducibility condition on the 

defining polynomial of a spectraball and a geometric property of its boundary critical 

in the study of bianalytic maps between free spectrahedra. Its proof requires detailed 

information, both local and global, about the boundary of a spectraball, collected in 

Section 4. As a consequence of Theorem 1.6, we obtain a version of the main result from 



J.W. Helton et al. / Journal of Functional Analysis 278 (2020) 108472 5

[3] characterizing bianalytic maps between free spectrahedra that send the origin to the 

origin with elegant irreducibility and minimality hypotheses on the free spectrahedra re-

placing our earlier cumbersome geometric conditions. See Theorem 1.5 in Subsection 1.3. 

Another consequence of Theorem 1.6, and an essential ingredient in the proof of Theo-

rem 1.1, is an of independent interest Nullstellensatz. It is stated as Proposition 1.7 in 

Subsection 1.5. Roughly, it says that a matrix-valued analytic free polynomial, singular 

on the boundary of a spectraball, is 0.

1.1. Convexotonic maps

A g-tuple of g × g matrices (Ξ1, . . . , Ξg) ∈ Mg(C)g satisfying

ΞkΞj =

g∑

s=1

(Ξj)k,sΞs,

for each 1 ≤ j, k ≤ g, is a convexotonic tuple. The expressions p =
(
p1 · · · pg

)
and 

q =
(
q1 · · · qg

)
whose entries are

pi(x) =
∑

j

xje∗
j (I − ΛΞ(x))−1ei and qi(x) =

∑
xje∗

j (I + ΛΞ(x))−1ei,

that is, in row form,

p(x) = x(I − ΛΞ(x))−1 and q = x(I + ΛΞ(x))−1,

are convexotonic maps. Here p evaluates at X ∈ Mn(C)g as

p(X) = (X1 · · · Xg )

⎛
⎝Ign −

g∑

j=1

Ξj ⊗ Xj

⎞
⎠

−1

and the output p(X) ∈ Mn×gn(C) = Mn(C)g is interpreted as a g-tuple of n ×n matrices. 

It turns out the mappings p and q are free rational maps (as explained in Section 2) and 

inverses of one another (see [3, Proposition 6.2]).

Convexotonic tuples arise naturally as the structure constants of a finite dimensional 

algebra. If A ∈ Mr(C)g is linearly independent (meaning the set {A1, . . . , Ag} ⊆ Mr(C)

is linearly independent) and spans an algebra, then, e.g. by Lemma 2.7 below, there is a 

uniquely determined convexotonic tuple Ξ = (Ξ1, . . . , Ξg) ∈ Mg(C)g such that

AkAj =

g∑

s=1

(Ξj)k,sAs. (1.1)
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1.2. Free bianalytic maps from a spectraball to a free spectrahedron

A tuple E ∈ Md×e(C)g is ball-minimal (for BE) if there does not exist E′ of size 

d′ × e′ with d′ + e′ < d + e such that BE = BE′ . In fact, if E is ball-minimal and 

BE′ = BE , then d ≤ d′ and e ≤ e′, by Lemma 3.2(9)5 and E is unique in the following 

sense. Given another tuple F ∈ Md×e(C)g, the tuples E and F are ball-equivalent if 

there exists unitaries W and V of sizes d ×d and e ×e respectively such that F = WEV . 

Evidently if E and F are ball-equivalent, then BE = BF . Conversely, if E and F are 

both ball-minimal and BE = BF , then E and F are ball-equivalent (see Lemma 3.2(9)

and more generally [21]).

Given A ∈ Mr(C)g, we say LA (or Lre
A ) is minimal for a free spectrahedron D if 

D = DA and if for any other B ∈ Mr′(C)g satisfying D = DB it follows that r′ ≥ r. A 

minimal LA for DA exists and is unique up to unitary equivalence [26,57]. We can now 

state Theorem 1.1, our principal result on bianalytic mappings from a spectraball onto a 

free spectrahedron. Since the hypotheses of Theorem 1.1 are invariant under affine linear 

change of variables, the normalizations f(0) = 0 and f ′(0) = I are simply a matter 

of convenience. Given B ∈ Md(C)g, by a free bianalytic map f : int(DB) → int(DA), 

we mean f is a free analytic map and there exists a free analytic map g : int(DA) →

int(DB) such that gn(fn(X)) = X and fn(gn(Y )) = Y for each n, X ∈ int(DB(n)) and 

Y ∈ int(DA(n)).

Theorem 1.1. Suppose E ∈ Md×e(C)g and A ∈ Mr(C)g are linearly independent. If 

f : int(BE) → int(DA) is a free bianalytic mapping with f(0) = 0 and f ′(0) = Ig, then f

is convexotonic.

If, in addition, A is minimal for DA, then there is convexotonic tuple Ξ ∈ Mg(C)g

such that equation (1.1) holds, and f is the corresponding convexotonic map, namely

f(x) = x(I − ΛΞ(x))−1. (1.2)

In particular, {A1, . . . , Ag} spans an algebra.

If A is minimal for DA and E is ball-minimal, then max{d, e} ≤ r ≤ d + e and there 

is an r × r unitary matrix U such that, up to unitary equivalence,

A = U

(
E 0
0 0

)
. (1.3)

Conversely, given a linearly independent E ∈ Md×e(C)g, an integer r ≥ max{d, e}

and an r ×r unitary matrix U , let A be given by equation (1.3). If there is a tuple Ξ such 

that equation (1.1) holds, then f of equation (1.2) is a free bianalytic map f : int(BE) →

int(DA).

5 See also [23, Section 5 or Lemma 1.2].
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Proof. See Corollary 2.5 and Section 5.2. �

Remark 1.2.

(a) The normalizations f(0) = 0 and f ′(0) = Ig can easily be enforced. Given a g × g

matrix Δ and a tuple C ∈ Md×e(C)g, let Δ · C ∈ Md×e(C)g denote the tuple

(Δ · C)j =
∑

k

Δj,kCk. (1.4)

In the case f : int(BE) → int(DA) is bianalytic, but f(0) = b �= 0 or f ′(0) = M �= I, 

let λ : DA → DF denote the affine linear map λ(x) = x · M + b, where

F = M · (HAH) and H = Lre
A (b)−1/2.

By Proposition 3.3, h = λ−1 ◦ f : int(BE) → int(DF ) is bianalytic with h(0) = 0

and h′(0) = Ig and, if A is minimal for DA, then B is minimal for DF . In particular, 

f is, up to affine linear equivalence, convexotonic.

Further, with a bit of bookkeeping the algebraic conditions of equations (1.3)

and (1.1) can be expressed intrinsically in terms of E and A. In the case DA is a 

spectraball, these conditions are spelled out in Corollary 1.3 below.

(b) In the context of Theorem 1.1 (and Remark 1.2), f−1 extends analytically to an 

open set containing DA and if DA is bounded, then f extends analytically to an open 

set containing BE . The precise result is stated as Theorem 2.1 below. Theorem 2.1

is an elaboration on [3, Theorem 1.1].

(c) Given A as in equation (1.3) and writing U = (Uj,k)2
j,k=1 in the natural block form, 

equation (1.1) is equivalent to EkU11Ej =
∑

s(Ξj)k,sEs.

(d) Corollary 6.2 and Theorem 6.1 extend Theorem 1.1 to cases where the codomain 

is matrix convex,6 but not, by assumption, the interior of a free spectrahedron 

assuming the inverse of the bianalytic map is rational.

(e) Here is an example of a free spectrahedron that is not a spectraball, but is biana-

lytically equivalent to a spectraball. Let

E = I2, E1 =

(
0 0
1 0

)
, U =

(
0 0 1
1 0 0
0 1 0

)

and set

A = U

(
E 0
0 0

)
∈ M3(C)2.

6 In the present setting, matrix convex is the same as the convexity at each level.
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With Ξ1 = ( 0 1
0 0

) and Ξ2 = 0, the tuples A and Ξ satisfy equation (1.1) and the 

corresponding convexotonic map is given by f(x1, x2) = (x1, x2 + x2
1). It is thus 

bianalytic from int(BE) to int(DA). Moreover, DA is not a spectraball since DA(1)

is not rotationally invariant. �

For a matrix T with ‖T‖ ≤ 1, let DT denote the positive square root of I − T ∗T . 

Thus, if T is k × �, then DT is � × � and DT ∗ is k × k.

Corollary 1.3. Suppose E ∈ Md×e(C)g and C ∈ Mk×�(C)g are linearly independent 

and ball-minimal, b ∈ int(BC) and M ∈ Mg(C). There exists a free bianalytic mapping 

ϕ : int(BE) → int(BC) such that ϕ(0) = b and M = ϕ′(0) if and only if E and C have 

the same size (that is, k = d and � = e) and there exist d × d and e × e unitary matrices 

W and V respectively and a convexotonic g-tuple Ξ ∈ Mg(C)g such that

(a) −EjV
∗ΛC(b)∗W Ek =

∑
s(Ξk)j,sEs = (Ξk · E)j; and

(b) DΛC(b)∗W EjV
∗DΛC(b) =

∑
s MjsCs = (M · C)j,

for all 1 ≤ j, k ≤ g. Moreover, in this case ϕ = ψ · M + b, where ψ is the convexotonic 

map associated to Ξ; i.e., ψ(x) = x(I − ΛΞ(x))−1.

The proof of Corollary 1.3 appears in Subsubsection 5.3.3.

Remark 1.4.

(a) If BE and BC are bounded (equivalently E and C are linearly independent [26, 

Proposition 2.6(2)]), then any free bianalytic map ϕ : int(BE) → int(BC) is, up to 

an affine linear bijection, convexotonic without any further assumptions (e.g., C

and E need not be ball-minimal). Indeed, simply replace E and C by ball-minimal 

E′ and C ′ with BE′ = BE and BC′ = BC and apply Corollary 1.3. The ball-minimal 

hypothesis allows for an explicit description of ϕ.

(b) While M is not assumed invertible, both the condition M = ϕ′(0) (for a bianalytic 

ϕ) and the identity of Corollary 1.3(b) (since E is assumed linearly independent) 

imply it is.

(c) Assuming E and C of Corollary 1.3 are ball-minimal, by using the relation between 

E and C from Corollary 1.3(b), item (a) can be expressed purely in terms of C as

CjD−1
ΛC(b)ΛC(b)∗D−1

ΛC (b)∗
Ck ∈ span{C1, . . . , Cg}. (1.5)

In particular, given a ball-minimal tuple C ∈ Md×e(C)g and b ∈ int(BC), if equation 

(1.5) holds then, for any choice of M, W and V and solving equation (b) for E, there 

is a free bianalytic map ϕ : int(BE) → int(BC) such that ϕ(0) = b and ϕ′(0) = M .

(d) Among the results in [45] is a complete analysis of the free bianalytic maps between 

the free versions of matrix balls, antecedents and special cases of which appear 
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elsewhere in the literature such as [29] and [50]. The connection between the results 

in [45] on free matrix balls and Corollary 1.3 is worked out in Subsubsection 5.3.2. 

Subsubsection 5.3.1 gives a complete classification of free automorphisms of free 

polydiscs. �

1.3. Main result on maps between free spectrahedra

The article [3] characterizes the triples (p, A, B) such that p : DA → DB is bianalytic 

under unconventional geometric hypotheses (sketched in Subsection 1.4 below), cf. [3, 

§7]. Here we obtain Theorem 1.5 by converting those geometric hypotheses to algebraic 

irreducibility hypotheses that we now describe.

For a tuple of rectangular matrices E = (E1, . . . , Eg) ∈ Md×e(C)g denote

QE(x, y) := I − ΛE∗(y)ΛE(x), LE(x, y) :=

(
I ΛE(x)

ΛE∗(y) I

)
,

ker(E) :=

g⋂

j=1

ker(Ej) = ker(

⎛
⎝

E1

...
Eg

⎞
⎠), ran(E) = ran((E1 . . . Eg )).

Thus LE(x, y) = LF (x, y) where

F =

(
0 E
0 0

)
.

We also let Lre
E denote the hermitian monic pencil,

L
re
E (x) := LE(x, x∗) = LF (x, x∗) = Lre

F (x)

and likewise

Qre
E (x) = QE(x, x∗).

Observe BE = DLre
E

:= {X : LE(X, X∗) � 0} = DF . Finally, for a monic pencil LA, let

ZLA
= {(X, Y ) : det(LA(X, Y )) = 0}, Zre

LA
= {X : det(Lre

A (X)) = 0}.

We also use the notation ZQE
= ZLE

.

Let C <x > denote the free algebra of noncommutative polynomials in the letters 

x = {x1, . . . , xg}. Thus elements of C <x > are finite C-linear combinations of words in 

the letters {x1, . . . , xg}. For each positive integer n, an element p of C <x > naturally 

induces a function, also denoted p, mapping Mn(C)g → Mn(C) by replacing the letter 

x1, . . . , xg by n × n matrices X1, . . . , Xg. In this way, we view p as a function on the 
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disjoint union of the sets Mn(C)g (parameterized by n). When e > 1 there are non-

constant F ∈ C <x >e×e that are invertible, and the appropriate analog of irreducible 

elements of C <x >e×e reads as follows. An F ∈ C <x >e×e with det f(0) �= 0 is an atom

[13, Chapter 3] if F does not factor; i.e., F cannot be written as F = F1F2 for some 

non-invertible F1, F2 ∈ C <x >e×e. As a consequence of Lemma 3.2(8) below, we will see 

that if QE is an atom, ker(E) = {0} and ker(E∗) = {0}, then E is ball-minimal.

Theorem 1.5. Suppose A ∈ Md(C)g, B ∈ Me(C)g and

(a) DA is bounded;

(b) QA and QB are atoms, ker(B) = {0} and A∗ is ball-minimal;

(c) t > 1 and p : int(tDA) → M(C)g and q : int(tDB) → M(C)g are free bianalytic 

mappings;

(d) p(0) = 0, p′(0) = I, q(0) = 0 and q′(0) = I.

If q(p(X)) = X and p(q(Y )) = Y for X ∈ DA and Y ∈ DB respectively, then p is 

convexotonic, A and B are of the same size d = e, and there exist d ×d unitary matrices 

Z and M and a convexotonic g-tuple Ξ such that

(1) p is the convexotonic map p = x(I − ΛΞ(x))−1, where for each 1 ≤ j, k ≤ g,

Ak(Z − I)Aj =
∑

s

(Ξj)k,sAs; (1.6)

in particular, the tuple R = (Z − I)A spans an algebra with multiplication table Ξ,

RkRj =
∑

s

(Ξj)k,sRs;

(2) Bj = M∗ZAjM for 1 ≤ j ≤ g.

Proof. See Section 4.4. �

1.4. Geometry of the boundary vs irreducibility

At the core of the proofs of our main theorems in this paper is a richness of the 

geometry of the boundary, ∂BE , of a spectraball, BE . We shall show that a (rather 

ungainly) key geometric property of the boundary of BE is equivalent to the defining 

polynomial QE of BE being an atom and ker(E) = {0}.

To describe the geometric structure involved, fix E ∈ Md×e(C)g. The detailed bound-

ary ∂̂BE of BE is the sequence of sets

∂̂BE(n) := {(X, v) ∈ Mn(C)g × [Ce ⊗ C
n] : X ∈ ∂BE , v �= 0, Qre

E (X, X∗)v = 0} .
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For n ∈ N, let ∂̂1BE(n) denote the points (X, v) in ∂̂BE(n) such that dim ker Qre
E (X, X∗)

= 1. For a vector v ∈ C
e ⊗ C

n = C
en, partitioned as

v =

⎛
⎜⎜⎝

v1

v2

...
vn

⎞
⎟⎟⎠

for vk ∈ C
e, define π(v) = v1. The geometric property important to mapping studies is 

that π(∂̂1BE) contain enough vectors to span Ce or better yet to hyperspan Ce. Here a 

set {u1, . . . , ue+1} of vectors in Ce hyperspans C
e provided each e element subset spans; 

i.e., is a basis of Ce.

Theorem 1.6. Let E ∈ Md×e(C)g. Then

(1) E is ball-minimal if and only if π(∂̂1BE) spans Ce.

(2) QE is an atom and ker(E) = {0} if and only if π(∂̂1BE) contains a hyperspanning 

set for Ce.

Proof. Part (1) is established in Proposition 4.2, while (2) is Proposition 4.4. �

1.5. A Nullstellensatz

Theorem 1.1 uses the following Nullstellensatz whose proof depends upon Theo-

rem 1.6.

Proposition 1.7. Suppose E = (E1, . . . , Eg) ∈ Md×e(C)g is ball-minimal and V ∈

C <x >�×e is a (rectangular) matrix polynomial. If V vanishes on ∂̂BE ; that is V (X)γ = 0

whenever (X, γ) ∈ ∂̂BE, then V = 0.

Proof. See Subsection 5.1. �

1.6. An overview of the proof of Theorem 1.1

We are now in a position to convey, in broad strokes, an outline of the proof of 

Theorem 1.1. The conversely direction is an immediate consequence of Proposition 2.2

(see Corollary 2.5) of Section 2. Its proof reflects the fact that convexotonic maps 

are bianalytic between certain special spectrahedral pairs. Proposition (2.2) is also the 

starting point for the proof of the more challenging converse. Given the tuple A, let 

J = (J1, . . . , Jh) denote a basis for the algebra spanned by A with Jj = Aj , for 

1 ≤ j ≤ g. Proposition 2.2 says that DJ and BJ are bianalytic via the convexotonic 

map associated to the convexotonic h-tuple Ξ determined by the tuple J via equation 
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(1.1) (with J in place of A). Starting with the free bianalytic map f : BE → DA, ob-

serve that G = ϕ ◦ ι ◦ f : BE → BJ is a free proper map satisfying G(0) = 0 and 

G′(0) = (Ig 0g×(h−g) ), where ι : DA → DJ is the inclusion, since ϕ(0) = 0 and 

ϕ′(0) = Ih. An argument that uses Proposition 1.7 produces a representation for G that 

can be thought of as an analog of the Schwarz Lemma (see equation (5.8)). In simple 

cases,

G(x) = (x 0) (1.7)

from which it follows that the g-tuple Ξ̂ ∈ Mg(C)g defined by

(Ξ̂j)s,t = (Ξj)s,t, 1 ≤ j, s, t ≤ g

is convexotonic and thus A spans an algebra. Hence h = g, the map ϕ (and hence ϕ−1) 

is convexotonic and f = ϕ−1. In general only a weaker version of equation (1.7) holds, 

an inconvenience that does not conceptually alter the argument, but one that does make 

the proof more technical.

2. Free rational maps and convexotonic maps

In this section we review the notions of a free set and free rational function and provide 

further background on free functions and mappings. In particular, convexotonic maps are 

seen to be free rational mappings. In Subsection 2.3 we show how algebras of matrices 

give rise to convexotonic bianalytic maps between free spectrahedra. See Theorem 2.1.

2.1. Free sets, free analytic functions and mappings

Let M(C)g denote the sequence (Mn(C)g)n. A subset Γ of M(C)g is a sequence (Γn)n

where Γn ⊆ Mn(C)g. (Sometimes we write Γ(n) in place of Γn.) The subset Γ is a free 

set if it is closed under direct sums and simultaneous unitary similarity. Examples of 

such sets include spectraballs and free spectrahedra introduced above. We say the free 

set Γ = (Γn)n is open if each Γn is open. Generally adjectives are applied level-wise to 

free sets unless noted otherwise.

A free function f : Γ → M(C) is a sequence of functions fn : Γn → Mn(C) that

respects intertwining; that is, if X ∈ Γn, Y ∈ Γm, T : C
m → C

n, and

XT = (X1T, . . . , XgT ) = (TY1, . . . , TYg) = TY,

then fn(X)T = Tfm(Y ). In the case Γ is open, f is free analytic if each fn is analytic in 

the ordinary sense. We refer the reader to [1,2,23,25,38,54] for a fuller discussion of free 

sets and functions. For further results, not already cited, on free bianalytic and proper 

free analytic maps see [24,29,40,46,50,51] and the references therein.
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A free mapping p : Γ → M(C)h is a tuple p =
(
p1 p2 · · · ph

)
where each 

pj : Γ → M(C) is a free function. The free mapping p is free analytic if each pj is a free 

analytic function. If h = g and Δ ⊆ M(C)g is a free set, then p : Γ → Δ is bianalytic if 

p is analytic and p has an inverse, that is necessarily free and analytic, q : Δ → Γ.

2.2. Free rational functions and mappings

Based on the results of [37, Theorem 3.1] and [55, Theorem 3.5] a free rational function 

regular at 0 can, for the purposes of this article, be defined with minimal overhead as 

an expression of the form

r(x) = c∗
(
I − ΛS(x)

)−1
b, (2.1)

where, for some positive integer s, we have S ∈ Ms(C)g and b, c ∈ C
s. The expression 

r is known as a realization. Realizations are easy to manipulate and a powerful tool 

as developed in the series of papers [5–7] of Ball-Groenewald-Malakorn; see also [9,13]. 

The realization r is evaluated in the obvious fashion on a tuple X ∈ Mn(C)g as long as 

I − ΛS(X) is invertible. Importantly, free rational functions are free analytic.

Given a tuple T ∈ Mk(C)g, let

IT = {X ∈ M(C)g : det(I − ΛT (X)) �= 0}. (2.2)

A realization r̃(x) = c̃∗(I −ΛS̃)−1b̃ is equivalent to the realization r as in (2.1) if r(X) =

r̃(X) for X ∈ IS ∩ IS̃ . A free rational function is an equivalence class of realizations 

and we identify r with its equivalence class and refer to it as a free rational function. The 

realization (2.1) is minimal if s is the minimum size among all realizations equivalent 

to r. By [37,55], if r is minimal and r̃ is equivalent to r, then IS ⊇ IS̃ . Moreover, the 

results in [55] explain precisely, in terms of evaluations, the sense in which IS deserves 

to be called the domain of the free rational function r, denoted dom(r).

A free polynomial p is a free rational function regular at 0 and, as is well known, 

its domain is M(C)g. If f and g are free rational functions regular at 0, then so are 

f + g and fg. Moreover, dom(f + g) and dom(fg) both contain dom(f) ∩ dom(g) as a 

consequence of [56, Theorem 3.10]. Free rational functions regular at 0 are determined by 

their evaluations near 0; that is if f(X) = g(X) in some neighborhood of 0 in dom(f) ∩

dom(g), then f = g. In what follows, we often omit regular at 0 when it is understood 

from context. We refer the reader to [37,55] for a fuller discussion of the domain of a free 

rational function.

A free rational mapping p is a tuple of rational functions p =
(
p1 · · · pg

)
. The 

domain of p is the intersection of the domains of the pj. By [3, Proposition 1.11], if r is 

a free rational mapping with no singularities on a bounded free spectrahedron DA, then 

there is a t > 1 such that r has no singularities on tDA.
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2.3. Algebras and convexotonic maps

Theorem 2.1 below is an expanded version of [3, Theorem 1.1]. To begin we discuss a 

sufficient condition for a tuple X ∈ Mn(C)g to lie in dom(p), the domain of a convexo-

tonic mapping

p =
(
p1 · · · pg

)
= x(I − ΛΞ(x))−1.

Since

pj =

g∑

k=1

xk

[
e∗

k(I − ΛΞ(x))−1ej

]
,

it follows that IΞ ⊆ ∩ dom(pj) = dom(p). Now suppose R ∈ MN (C)g and 

fk,s,a,b, gk,s,a,b, hk ∈ C <x > and let rk denote the free rational function

rk(x) =
∑

s,a,b

fk,s,a,b(x)[e∗
a (I − ΛR(x))

−1
eb] gk,s,a,b(x) + hk.

If rj = pj in some neighborhood of 0 lying in IΞ ∩ IR, then rj and pj represent the 

same free rational function. In particular, IR ⊆ dom(pj) and therefore IR ⊆ dom(p).

Let ext(DB) denote the sequence (ext(DB(n)))n where ext(DB(n)) is the complement 

of DB(n). Likewise let ∂DB(n) denote the boundary of DB(n) and let ∂DB denote the 

sequence (∂DB(n))n.

Theorem 2.1. Suppose A, B ∈ Mr(C)g are linearly independent, U ∈ Mr(C)g is unitary 

and B = UA. If there exists a tuple Ξ ∈ Mg(C)g such that

A�(U − I)Aj =

g∑

s=1

(Ξj)�,sAs,

then Ξ is convexotonic and the convexotonic maps p and q associated to Ξ are bianalytic 

maps between DA and DB in the following sense.

(a) int(DA) ⊆ dom(p), int(DB) ⊆ dom(q); and p : int(DA) → int(DB) is bianalytic.

(b) If X ∈ ext(DA) ∩ dom(p), then p(X) ∈ ext(DB).

(c) If X ∈ ∂DA ∩ dom(p), then p(X) ∈ ∂DB.

(d) If DB(1) is bounded, then DA ⊆ dom(p).

Before taking up the proof of Theorem 2.1, we prove the following proposition and 

collect a few of its consequences that will be used in the sequel.

Proposition 2.2 ([4, Proposition 1.3]). Suppose J ∈ Md(C)g is linearly independent and 

spans an algebra with convexotonic tuple Ξ (as in equation (1.1) with J in place of A). 
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Let p = x(I − ΛΞ(x))−1 and q = x(I + ΛΞ(x))−1 denote the corresponding convexotonic 

maps.

(i) int(BJ) ⊆ dom(p) and p : int(BJ) → int(DJ).

(ii) DJ ⊆ dom(q) and q : int(DJ) → int(BJ) and q(∂DJ) ⊆ ∂BJ .

(iii) p : int(BJ) → int(DJ) and q : int(DJ) → int(BJ) are birational inverses of one 

another.

(iv) If X ∈ dom(p), but X /∈ int(BJ), then p(X) /∈ int(DJ).

(v) If DJ is bounded, then the domain of p contains BJ and p(∂BJ) ⊆ ∂DJ .

(vi) If Y ∈ dom(q), but Y /∈ DJ , then q(Y ) /∈ BJ .

Lemma 2.3. Suppose F ∈ Md(C)g. If I + ΛF (X) + ΛF (X)∗ � 0, then I + ΛF (X) is 

invertible.

Proof. Arguing the contrapositive, suppose I +ΛF (X) is not invertible. In this case there 

is a unit vector γ such that

ΛF (X)γ = −γ.

Hence,

〈(I + ΛF (X) + ΛF (X)∗)γ, γ〉 = 〈ΛF (X)∗γ, γ〉 = 〈γ, ΛF (X)γ〉 = −1. �

Lemma 2.4. Let T ∈ Md(C). Then

(a) I + T + T ∗ � 0 if and only if I + T is invertible and ‖(I + T )−1T‖ ≤ 1;

(b) I + T + T ∗ 	 0 if and only if I + T is invertible and ‖(I + T )−1T‖ < 1.

(c) If ‖T‖ < 1, then I − T is invertible and I + (I − T )−1T +
(
(I − T )−1T

)∗
	 0.

(d) If ‖T‖ = 1 and I − T is invertible, then I + (I − T )−1T +
(
(I − T )−1T

)∗
is positive 

semidefinite and singular.

Proof. Item (a) follows from the chain of equivalences,

‖(I + T )−1T‖ ≤ 1 ⇐⇒ I −
(
(I + T )−1T

)(
(I + T )−1T

)∗
� 0

⇐⇒ I − (I + T )−1TT ∗(I + T )−∗ � 0

⇐⇒ (I + T )(I + T )∗ − TT ∗ � 0

⇐⇒ I + T + T ∗ � 0.

The proof of item (b) is the same.

The proof of (c) is routine. Indeed, it is immediate that I − T is invertible and

I + (I − T )−1T +
(
(I − T )−1T

)∗
= (I − T )−1 (I − TT ∗) (I − T )−∗ 	 0.
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The proof of item (d) is similar. �

Proof of Proposition 2.2. Compute

ΛJ(q(x)) ΛJ(x) =

g∑

s,k=1

qs(x)xkJsJk =

g∑

j=1

g∑

s=1

qs(x)

[
g∑

k=1

xk(Ξk)s,j

]
Jj

=

g∑

j=1

g∑

s=1

qs(x)(ΛΞ(x))s,jJj

=

g∑

j=1

g∑

t=1

xt

[
g∑

s=1

(I + ΛΞ(x))−1
t,s (ΛΞ(x))s,j

]
Jj

=

g∑

j=1

g∑

t=1

xt[(I + ΛΞ(x))−1ΛΞ(x)]t,jJj .

Hence,

ΛJ(q(x)) (I + ΛJ(x)) =

g∑

j=1

g∑

t=1

xt[(I + ΛΞ(x))−1(I + ΛΞ(x))]t,jJj = ΛJ(x).

Thus, as free (matrix-valued) rational functions regular at 0,

ΛJ(q(x)) = (I + ΛJ(x))−1 ΛJ(x) =: F (x). (2.3)

Since J is linearly independent, given 1 ≤ k ≤ g, there is a linear functional λ such 

that λ(Jj) = 0 for j �= k and λ(Jk) = 1. Applying λ to equation (2.3), gives

qk(x) = λ(F (x)). (2.4)

Since λ(F (x)) is a free rational function whose domain contains

D = {X : I + ΛJ(X) is invertible},

the same is true for qk. (As a technical matter, each side of equation (2.4) is a rational 

expression. Since they are defined and agree on a neighborhood of 0, they determine the 

same free rational function. It is the domain of this rational function that contains D . See 

[55], and also [37], for full details.) By Lemma 2.3, D contains DJ , (as X ∈ DJ implies 

I + ΛJ(X) is invertible). Hence the domain of the free rational mapping q contains DJ . 

By Lemma 2.4 and equation (2.3), q maps the interior of DJ into the interior of BJ and 

the boundary of DJ into the boundary of BJ . Thus item (ii) is proved.

Similarly,

(I − ΛJ(x))−1 ΛJ(x) = ΛJ(p(x)). (2.5)
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Arguing as above shows the domain of p contains the set

E = {X : I − ΛJ(X) is invertible},

which in turn contains int(BJ) (since ‖ΛJ(X)‖ < 1 allows for an application of 

Lemma 2.4). By Lemma 2.4 and equation (2.5), p maps the interior of BJ into the 

interior of DJ , proving item (i). Since p and q are formal rational inverses of one an-

other, it follows from items (i) and (ii) that they are inverses of one another as maps 

between DJ and BJ , proving item (iii). Further, if X is in the boundary of BJ , then for 

t ∈ C and |t| < 1, we have p(tX) ∈ int(DJ) and

ΛJ(p(tX)) = (I − ΛJ(tX))−1 ΛJ(tX).

Assuming DJ is bounded, it follows that I −ΛJ(X) is invertible and thus, by Lemma 2.4, 

X is in the domain of p and p(X) is in the boundary of DJ , proving item (v). Finally, 

to prove item (iv), suppose X /∈ int(BJ ), but p(X) ∈ int(DJ). By item (i), there is a 

Y ∈ int(BJ) such that p(Y ) = p(X). By item (ii), p(Y ) = p(X) ∈ dom(q) and therefore, 

Y = q(p(Y )) = q(p(X)) = X, a contradiction. The proof of (vi) is similar. �

The converse portion of Theorem 1.1 is an immediate consequence of Proposition 2.2, 

stated below as Corollary 2.5.

Corollary 2.5. Suppose E ∈ Md×e(C)g is linearly independent, r ≥ max{d, e}, the r × r

matrix U is unitary and

A = U

(
0 E
0 0

)
.

If there exists a tuple Ξ ∈ Mg(C)g such that equation (1.1) holds, then Ξ is convexotonic 

and the associated convexotonic map p is a bianalytic mapping int(BE) = int(BA) →

int(DA). Moreover, DA ⊆ dom(q) and q(∂DA) ⊆ ∂BA, where q = x(I + ΛΞ(x))−1 is the 

inverse of p.

Proof. By the definition of A we have BA = BE . The rest follows by Proposition 2.2. �

In the case J does not span an algebra, we have the following variant of Proposition 2.2. 

It says that each free spectrahedron can be mapped properly to a bounded spectraball 

and is used in the proof of Theorem 1.1. Recall a mapping between topological spaces 

is proper if the inverse image of each compact sets is compact. Thus, for free open sets 

U ⊆ M(C)g and V ⊆ M(C)h, a free mapping f : U → V is proper if each fn : Un → Vn

is proper. For perspective, given subsets Ω ⊆ C
g and Δ ⊆ C

h (that are not necessarily 

closed), and a proper analytic map ψ : Ω → Δ, if Ω � zj → ∂Ω, then ψ(zj) → ∂Δ. [42, 

page 429].
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Corollary 2.6. Let A ∈ Md(C)g and assume A is linearly independent. Let Cg+1, . . . , Ch ∈

Md(C) be any matrices such that the tuple J = (J1, . . . , Jh) = (A1, . . . , Ag, Cg+1, . . . , Ch)

is a basis for the algebra generated by the tuple A. Let Ξ ∈ Mh(C)h denote the con-

vexotonic tuple associated to J , let p : int(BJ) → int(DJ) denote the corresponding 

convexotonic map, let q denote the inverse of p, and let ι : int(DA) → int(DJ) denote 

the inclusion. Then we have the commutative diagram

int(BJ)

int(DA) int(DJ)

p ∼=
f

ι

and the mapping

f(x) = q ◦ ι(x) = (x1 · · · xg 0 · · · 0)
(

I +

g∑

j=1

Ξjxj

)−1

(2.6)

is (injective) proper and extends analytically to a neighborhood of DA.

Proof. By Proposition 2.2, p : int(BJ) → int(DJ) is birational and the domain of its 

inverse q contains DJ and maps ∂DJ into ∂BJ . In particular q is proper.

Given X ∈ M(C)g, letting Y = (X 0),

ΛJ(Y ) =

h∑

j=1

Jj ⊗ Yj =

g∑

j=1

Aj ⊗ Xj .

Hence Lre
J ((X 0)) = Lre

A (X) and it follows that X ∈ int(DA) if and only if Y ∈ int(DJ). 

Hence, we obtain a mapping ι : int(DA) → int(DJ) defined by ι(X) = Y .

Fix m ∈ N and suppose K ⊆ int(DJ(m)) is compact and let K∗ = ι−1(K) ⊆ DA(m). 

If (Xn) is a sequence from K∗, then Y n = (Xn 0) is a sequence from K. Since K is 

compact, (Y n)n has a subsequence (Y nj )j that converges to some Y ∈ K. It follows that 

Y = (X 0) ∈ K ⊆ int(DJ) for some X ∈ K∗. Hence (Xnj )j converges to X and we 

conclude that K∗ is compact. Thus ι is proper. Since q is also proper, f = q ◦ ι is too. 

Letting z = (z1, . . . , zh) denote an h tuple of freely noncommuting indeterminates,

q(z) = z(I + ΛΞ(z))−1

and thus f takes the form of equation (2.6). �
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2.4. Proof of Theorem 2.1

Lemma 2.7. Suppose G ∈ Md×e(C)g is linearly independent, C ∈ Me×d(C) and 

Ψ ∈ Mg(C)g. If

G�CGj =

g∑

s=1

(Ψj)�,sGs,

then the tuple Ψ is convexotonic. Moreover, letting T = CG ∈ Me(C)g,

G�T
α =

g∑

s=1

(Ψα)�,sGs. (2.7)

In particular, if A ∈ Md(C)g is linearly independent and spans an algebra, then the 

tuple Ψ uniquely determined by equation (1.1) is convexotonic.

Note that the hypothesis implies T spans an algebra (but not that T is linearly 

independent).

Proof. Routine calculations give

(G�Tj)Tk =

g∑

t=1

(Ψj)�,tGt Tk =
∑

s,t=1

(Ψj)�,t(Ψk)t,sGs =
∑

s

(Ψj Ψk)�,sGs.

On the other hand

G�(TjTk) = G�C(GjTk) =
∑

t

G�(Ψk)j,tTt =
∑

s,t

(Ψt)�,s(Ψk)j,tGs.

By independence of G,

(ΨjΨk)�,s =
∑

t

(Ψk)j,t(Ψt)�,s

and therefore

ΨjΨk =
∑

t

(Ψk)j,tΨt.

Hence Ψ is convexotonic.

A straightforward induction argument establishes the identity (2.7). �

Proposition 2.8. Suppose A, B ∈ Mt(C)g are linearly independent, U ∈ Mt(C)g is uni-

tary, B = UA and there exists a convexotonic tuple Ξ ∈ Mg(C)g such that
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A�(U − I)Aj =

g∑

s=1

(Ξj)�,sAs.

Letting p denote the associated convexotonic map, R the tuple (U − I)A = B − A and

Q(x) = I − ΛR(x),

(a) we have

(
I + ΛB(p(x))

)
Q(x) = I + ΛA(x);

(b) if Z ∈ dom(p), then

(
I + ΛB(p(Z))

)
Q(Z) = I + ΛA(Z), (2.8)

and

Q(Z)∗Lre
B(p(Z))Q(Z) = Lre

A (Z); (2.9)

(c) if Z ∈ M(C)g and Q(Z) is invertible, then Z ∈ dom(p) and equation (2.9) holds.

Proof. Item (a) is straightforward, so we merely outline a proof. From Lemma 2.7, for 

words α and 1 ≤ j ≤ g,

AjRα =

g∑

s=1

(Ξα)j,sAs.

Hence

BjRα =

g∑

s=1

(Ξα)j,sBs,

from which it follows that, letting {e1, . . . , eg} denote the standard basis for Cg,

ΛB(p(x)) =
∑

s

Bsps(x) =

g∑

s=1

g∑

j=1

xj [e∗
j (I − ΛΞ(x))−1es]

=
∞∑

n=0

g∑

j,s=1

xj [e∗
j ΛΞ(x)nes] =

∞∑

n=0

∑

|α|=n

[

g∑

j,s=1

(Ξα)j,sBs]xjα

=

∞∑

n=0

g∑

j=1

Bjxj

∑

|α|=n

Rαα

=

g∑

j=1

Bjxj

∞∑

n=0

ΛR(x)n = ΛB(x)(I − ΛR(x))−1.
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In particular,

(
I + ΛB(p(x))

)
Q(x) =

(
I + ΛB(p(x))

)
(I − ΛR(x))

= I − ΛR(x) + ΛB(x) = I + ΛA(x),

since R = B − A. This computation also shows if both ‖ΛΞ(Z)‖ < 1 and ‖ΛR(Z)‖ < 1, 

then equation (2.8) holds. Since both sides of equation (2.8) are rational functions, 

equation (2.8) holds whenever Z ∈ dom(p). Finally, using ΛB(p(x))Q(x) = ΛB(x) as 

well as R = B − A and B = UA,

Q(Z)∗Lre
B(p(Z))Q(Z) = Q∗(Z)Q(Z) + Q(Z)∗ΛB(Z) + ΛB(X)∗Q(Z)

= I + ΛA(Z) + ΛA(Z) + ΛB(Z)∗ΛB(Z) − ΛA(Z)∗ΛA(Z)

= Lre
A (Z),

a routine calculation shows that equation (2.8) implies equation (2.9).

Since B ∈ Mt(C)g is linearly independent, for each 1 ≤ k ≤ g there exists a linear 

functional λk : Mt(C) → C such that λk(Bk) = 1 and λk(Bj) = 0 if j �= k. For each k, 

there is a matrix Ψk ∈ Mt(C) such that λk(T ) = trace(TΨk). Writing Ψk =
∑

s vk,su∗
k,s

for vectors uk,s, vk,s ∈ C
t,

λk(T ) =
∑

s

u∗
k,sTvk,s.

Let

rk(x) =
∑

�,s

(u∗
k,s + u∗

k,sA�x�)(I − ΛR(x))−1vk,s − λk(I).

Hence, for X ∈ Mn(C)g sufficiently close to 0, and with W = Q−1 and Φk = λk ⊗ In,

pk(X) = Φk (ΛB(p(X))) = Φk ([It ⊗ In + ΛA(X)] W (X) − It ⊗ In)

=
∑

�,s

[u∗
k,s ⊗ I + (u∗

k,sAj ⊗ In)(It ⊗ Xj)](It ⊗ In − ΛR(X))−1[vk,s ⊗ In]

− λk(I) ⊗ In = rk(X).

Thus, in the notation of equation (2.2), IR ⊆ dom(p); that is, if Q(Z) = I − ΛR(Z) is 

invertible, then Z ∈ dom(p), proving item (c). �

Proof of Theorem 2.1. That Ξ is convexotonic follows from Lemma 2.7. Let p denote 

the resulting convexotonic map. Let R = B − A = (U − I)A and Q(x) = I − ΛR(x). 

From Proposition 2.8,

Q(X)∗Lre
B(p(X))Q(X) = Lre

A (X), (2.10)
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holds whenever Q(X) is invertible.

Let X ∈ int(DA(n)) be given. The function FX(z) = ΛB(p((1 − z)X)) is a Md(C) ⊗

Mn(C)-valued rational function (of the single complex variable z that is regular at z = 1). 

Suppose limz→0 FX(z) exists and let T denote the limit. In that case,

Q(X)∗(I + T + T ∗)Q(X) = lim
z→0

Q((1 − z)X)∗(I + FX(z) + FX(z)∗)Q((1 − z)X)

= Lre
A (X) 	 0

and therefore Q(X) is invertible (and I + T + T ∗ 	 0). Hence, if limz→0 FX(z) exists, 

then Q(X) is invertible.

We now show the limit limz→0 FX(z) must exist, arguing by contradiction. Accord-

ingly, suppose this limit fails to exist. Equivalently, FX(z) has a pole at 0. In this case 

there exists a Md(C) ⊗ Mn(C) matrix-valued function Ψ(z) analytic and never 0 in a 

neighborhood of 0 and a positive integer m such that FX(z) = z−mΨ(z). Since Ψ(0) �= 0, 

there is a vector γ such that 〈Ψ(0)γ, γ〉 �= 0 (since the scalar field is C). Choose a real 

number θ such that κ := e−imθ〈Ψ(0)γ, γ〉 < 0. Hence, for t real and positive,

〈(FX(teiθ) + FX(teiθ)∗)γ, γ〉

= t−m〈[e−imθΨ(teiθ) + eimθΨ(teiθ)∗]γ, γ〉

= t−m
[
2〈e−imθΨ(0)γ, γ〉

+ 〈[e−imθ[Ψ(te−iθ) − Ψ(0)]γ, γ〉 + eimθ〈[Ψ(te−iθ)∗ − Ψ(0)∗]γ, γ〉
]

≤ 2t−m[κ + δt],

where δt tends to 0 as t tends to 0. Hence, for 0 < t sufficiently small,

〈Lre
B(p((1 − te−imθ)X))γ, γ〉 = 〈(I + FX(teiθ) + FX(teiθ)∗)γ, γ〉 < 0,

contradicting the fact that (1 − te−imθ)X ∈ int(DA) ∩ dom(p) for all 0 < t sufficiently 

small. At this point we have shown if X ∈ int(DA), then Q(X) is invertible and therefore, 

by Proposition 2.8, X ∈ dom(p). Further, if X ∈ int(DA), then, by equation (2.10),

Q(X)∗Lre
B(p(X))Q(X) = Lre

A (X) 	 0

and thus Lre
B

(p(X)) 	 0; that is p(X) ∈ int(DB). By symmetry, the same is true for q. 

Consequently, p : int(DA) → int(DB) is bianalytic with inverse q : int(DB) → int(DA), 

proving item (a).

If X ∈ ext(DA) ∩ dom(p), then Lre
B

(p(X)) � 0 by Proposition 2.8(b) and equation 

(2.9), proving item (b).

Now suppose DB(1) is bounded and Z ∈ ∂DA(n). By [26, Proposition 2.4], DB(n) is 

also bounded. For 0 < t < 1, we have tZ ∈ dom(p) (by item (a)) and hence ϕ, defined 

on (0, 1) by ϕZ(t) := p(tZ), maps into int(DB(n)) and is thus bounded. It follows that 
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GZ(t) = ΛB(ϕZ(t)) is also a bounded function on (0, 1). Arguing by contradiction, 

suppose Q(Z) = I − ΛR(Z) is not invertible. Thus there is a unit vector γ such that 

Q(zZ)γ = (1 − z)γ. For 0 < t < 1, equation (2.10) gives,

(1 − t)2〈Lre
B(ϕZ(t))γ, γ〉 = 1 − t[−〈[ΛA(Z) + ΛA(Z)∗]γ, γ〉].

Since the left hand side converges to 0 as t approaches 1 from below, the right hand 

equals 1 − t. Hence

(1 − t)〈Lre
B(ϕZ(t))γ, γ〉 = 1,

and we have arrived at a contradiction, as the left hand side converges to 0 as t tends to 

1 from below. Hence Q(Z) is invertible. By Proposition 2.8 (c), if DB is bounded, then 

DA ⊆ dom(p), proving item (d).

Suppose X ∈ dom(p) ∩∂DA. Since dom(p) is open, tX ∈ dom(p) for t ∈ R sufficiently 

close to 1. Further p(tX) ∈ int(DA) for t < 1 and p(tX) ∈ ext(DB) for t > 1. By 

continuity, p(X) ∈ ∂DB, proving item (c). �

3. Minimality and indecomposability

A monic pencil LA = LA(x, y) of size e is indecomposable if its coefficients 

{A1, . . . , Ag, A∗
1, . . . , A∗

g} generate Me(C) as a C-algebra.7 A collection of sets {S1, . . . ,

Sk} is irredundant if 
⋂

j �=� Sj � S� for all �. A collection {LA1 , . . . , LAk } of monic pencils 

is irredundant if {DAj : 1 ≤ j ≤ k} is irredundant.

Lemma 3.1. Given B ∈ Mr(C)g, there exists a reducing subspace M for {B1, . . . , Bg}

such that, with A = B|M , the monic pencil LA is minimal for DB = DA.

If LA and LB are both minimal and DA = DB, then A and B are unitarily equivalent. 

In particular A and B have the same size.

Given a monic pencil LA(x, y) = I+
∑

Ajxj +
∑

A∗
j y, there is a k and indecomposable 

monic pencils LAj such that

LA =
k⊕

j=1

LAj = L⊕
k
j=1 Aj ,

where the direct sum is in the sense of an orthogonal direct sum decomposition of the 

space that A acts upon. Moreover, LA is minimal if and only if {LAj : 1 ≤ j ≤ �} is 

irredundant.

Proof. Zalar [57] (see also [26]) establishes this result over the reals, but the proofs work 

(and are easier) over C; it can also be deduced from the results in [41] and [30]. �

7 Previously, in [41] such pencils were called irreducible.
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Note if E is ball-minimal then ker(E) = {0} and ker(E∗) = {0}, an observation that 

will be used repeatedly in the sequel.

Lemma 3.2. Let E be a g-tuple of d ×e matrices and assume ker(E∗) = {0} and ker(E) =

{0}.

(1) We have

(
I 0

ΛE∗ I

)(
I 0
0 QE

)(
I ΛE

0 I

)
= LE . (3.1)

(2) The monic pencil LE is indecomposable if and only if QE is an atom.

(3) E is ball-minimal if and only if Lre
E is minimal.

(4) If A ∈ MN (C)g and AmAj = 0 for all 1 ≤ j, m ≤ g then, dim rg A + dim rg A∗ ≤ N

and for any s ≥ dim rg A and t ≥ dim rg A∗ with s + t = N , there exists a tuple 

F ∈ Ms×t(C)g such that A is unitarily equivalent to

(
0 F
0 0

)
.

(5) If LA is minimal and DA is a spectraball, then there exist ball-minimal tuples 

F 1, . . . , F k such that each LF j is an indecomposable monic pencil, {BF 1 , . . . , BF k }

is irredundant and LA is unitarily equivalent to LF 1 ⊕ · · · ⊕ LF k .

(6) If A is ball-minimal, then LA is minimal.

(7) If E is ball-minimal, then, up to unitary equivalence, QE = QE1 ⊕ · · · ⊕ QEk , where 

the QEj ∈ C <x, y>ej×ej are atoms, ker(Ej) = {0} for all j, and the spectraballs 

BEj are irredundant.

(8) If QE is an atom, then E is ball-minimal.

(9) If E ball-minimal, F ∈ Mk×�(C)g and BE = BF , then there is a tuple R ∈

M(k−d)×(�−e)(C)g and unitaries U, V of sizes k × k and � × � respectively such that 

BE ⊆ BR and

F = U

(
E 0
0 R

)
V. (3.2)

In particular,

(a) d ≤ k and e ≤ �;

(b) if F ∈ Md×e(C)g is ball-minimal too, then E and F are ball-equivalent.

Item (9) can be interpreted in terms of completely contractive maps and as special 

cases of the rectangular operator spaces of [21]. Indeed, letting E and F denote the 

spans of {E1, . . . , Eg} and {F1, . . . , Fg} respectively, the inclusion BE ⊆ BF is equivalent 
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to the mapping Φ : E → F defined by Φ(Ej) = Fj being completely contractive. Hence 

BE = BF if and only if Φ is completely isometric.

Proof. (1) Straightforward.

(2) By (3.1), QE and LE are stably associated, cf. [30, Section 4]. Hence LE does not 

factor in C <x, y>(d+e)×(d+e) if and only if QE does not factor in C <x, y>e×e by [30, 

Section 4]. Next, LE is indecomposable if and only if it does not factor and

ker(

(
0 E
0 0

)
) ∩ ker(

(
0 0

E∗ 0

)
) = {0}

([30, Section 2.1 and Theorem 3.4]). Thus LE is indecomposable if and only if QE does 

not factor.

(3) Let LB be minimal for DB = BE and let N denote the size of B. By [18, Theorem 

1.1(2)] there exists positive integers s, t such that s + t = N and a tuple F ∈ Ms×t(C)g

such that

B =

(
0 F
0 0

)
.

Thus BE = BF . On the other hand, with

A =

(
0 E
0 0

)
,

DA = BE too. By minimality of B, s + t ≤ d + e. If E is ball-minimal, then, since 

BE = BF , we have s + t ≥ d + e and hence Lre
A = L

re
E is minimal. On the other hand, if 

L
re
E is minimal, then Lre

E and LB have the same size, N = s + t = d + e and thus E is 

ball-minimal.

(4) Let R = rg A and R∗ = rg A∗. Since AmAj = 0 it follows that R and R∗ are 

orthogonal and also that AmR = 0 and A∗
mR∗ = 0 for 1 ≤ m ≤ g. In particular, 

dim R + dim R∗ ≤ N . Letting V and V∗ denote the inclusions of R and R∗ into CN

respectively,

A =

(
0 0 V ∗AV∗

0 0 0
0 0 0

)
, (3.3)

with respect to the decomposition CN = (R ⊕ R∗)⊥ ⊕ R ⊕ R∗. Now any choice of s ≥

dim R and t ≥ dim R∗ with s + t = N applied to (3.3) gives the desired decomposition.

(5) Since LA is minimal, by Lemma 3.1, LA is unitarily equivalent to LA1 ⊕ · · · ⊕ LAk

for some indecomposable irredundant monic pencils LA1 , . . . , LAk . Let Nj denote the 

size of Aj . Now suppose DA is a spectraball. Thus, there exists m, � and a ball-minimal 

tuple G ∈ Mm×�(C)g such that DA = BG. By item (3) L
re
G is minimal for DA. Thus
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B :=

(
0 G
0 0

)
∈ Mm+�(C)g

is unitarily equivalent to A1⊕· · ·⊕Ak by Lemma 3.1. Since BmBj = 0 for 1 ≤ j, m ≤ g, it 

follows that A�
mA�

j = 0 for all j, m, �. By item (4), there exists sj, tj such that sj +tj = Nj

and tuples F j ∈ Msj×tj
(C)g such that, up to unitary equivalence,

Aj =

(
0 F j

0 0

)
∈ MNj

(C)g.

Moreover, since LA is minimal and DA = ∩k
j=1BF j , each F j is ball-minimal.

(6) Given a tuple A ∈ Md(C)g, observe that X ∈ BA if and only if S ⊗X ∈ DA, where

S =

(
0 1
0 0

)
.

Thus, if B ∈ Mr(C)d and DB = DA, then BB = BA and by ball-minimality, r ≥ d. 

Hence LA is minimal.

(7) Combine items (3), (5) and (2) in that order.

(8) By item (2), LE is indecomposable. For a pencil L, indecomposability of L implies 

minimality of Lre by Lemma 3.1. Thus Lre
E is minimal and hence E is ball-minimal by 

item (3).

(9) Let

A =

(
0 E
0 0

)
∈ Md+e(C)g.

By item (3), Lre
A = L

re
E is minimal. Since Lre

F defines BE , there is a reducing subspace 

M for

B =

(
0 F
0 0

)
∈ Mk+�(C)g

such that the restriction of B to M is unitarily equivalent to A by Lemma 3.1. Thus, 

there is unitary Z ∈ Mk+�(C) and a tuple C ∈ M(k+�)−(d+e)(C)g such that, with respect 

to the decomposition M ⊕ M ⊥,

B = Z∗

(
A 0
0 C

)
Z.

Since BmBj = 0 for all j, m, we have CmCj = 0 too. Further, using ball-minimality 

of E, � ≥ rk F ∗F = rk E∗E + rk C∗C = e + rk C∗C. Thus dim rg C ≤ � − e. Likewise, 

dim rg C∗ ≤ k − d. By item (4), there exists a tuple R ∈ M(k−d)×(�−e)(C)g such that, up 

to unitary equivalence,
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C =

(
0 R
0 0

)
.

Thus, letting G = ( E 0
0 R

) ∈ Mk×�(C)g,

(
0 F
0 0

)
X = X

(
0 G
0 0

)

for some unitary matrix X. Writing X = (Xj,k)2
j,k=1 with respect to the decomposition 

C
k ⊕ C

�, it follows that

X11G = FX22, X21G = 0, FX21 = 0.

Hence FX22X∗
22 = F and X∗

11X11G = G. Thus X11 is isometric on rg G and therefore 

X11 extends to a unitary mapping U on all of C
k such that UG = X11G. Similarly, 

X∗
22 is isometric on rg F ∗ and hence X∗

22 extends to a unitary V on all of C� such that 

V F ∗ = X∗
21F ∗. Finally, UG = X11G = FX22 = FV ∗. Hence equation (3.2) holds, which 

implies BE = BF = BE ∩ BR. Thus BE ⊆ BR and the remainder of item (9) follows. �

Minimality and indecomposability of monic pencils are preserved under an affine linear 

change of variables.

Proposition 3.3. Consider a hermitian monic pencil Lre
A and an affine linear change of 

variables λ : x �→ xM + b for some invertible g × g matrix M and vector b ∈ C
g. If 

Lre
A (b) 	 0, then λ−1(DA) = DF , where

F = M · (HAH) and H = Lre
A (b)−1/2. (3.4)

Further,

(1) LA is indecomposable if and only if LF indecomposable;

(2) LA is minimal if and only if LF is minimal.

Proof. Equation (3.4) is proved in [3, §8.2].

Turning to item (1), let us first settle the special case M = I. If LA is not indecom-

posable, then there is a common non-trivial reducing subspace M for A. It follows that 

M is reducing for Lre
A(b) and hence for F = HAH.

Now suppose LF is not indecomposable; that is, there is a non-trivial reducing sub-

space N for F = HAH. Since

H(Lre
A (b) − I)H = H(ΛA(b) + ΛA(b)∗)H = ΛF (b) + ΛF (b)∗,

we conclude that
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(
I − Lre

A (b)−1
)
N = H(Lre

A (b) − I)HN ⊆ N .

Hence N is invariant for Lre
A(b)−1. Since N is finite dimensional and Lre

A(b)−1 is invert-

ible, Lre
A (b)−1N = N and consequently HN = N . Because F = HAH it is now evident 

that N is reducing for A.

Now consider the special case b = 0. A subspace M reduces A if and only if it reduces 

M · A. Combining these two special cases proves item (1).

Finally we prove item (2). By Lemma 3.1, LA is unitarily equivalent to 
⊕�

j=1 LAj , 

where the LAj are indecomposable monic pencils. Now LF is unitarily equivalent to ⊕�
j=1 LF j , where F j = M · (HAjH). By item (1), each of these summands LF j is 

indecomposable. Furthermore, since Ψ is bijective it is clear that 
⋂

k �=i DAk ⊆ DAi if 

and only if 
⋂

k �=j DF k ⊆ DF j . Therefore {LAj : 1 ≤ j ≤ �} is irredundant if and only 

if {LF j : 1 ≤ j ≤ �} is irredundant. Hence LA is minimal for DA if and only if LF is 

minimal for DF , again by Lemma 3.1. �

Example 3.4. Even with M = I, the property (1) of Proposition 3.3 fails for a general 

positive definite H and F as in (3.4). For example, let

A =

⎛
⎜⎝

2 4 2 0
1 2 2 2
0 0 2 4
0 0 1 2

⎞
⎟⎠ , H =

⎛
⎜⎝

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

⎞
⎟⎠

−1

.

Then LA is indecomposable, but since

F =

⎛
⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎠ ,

the monic pencil LF is clearly not. �

Remark 3.5. Suppose E ∈ Md×e(C)g and C ∈ Mg(C) is invertible. If E is ball-minimal, 

then C · E (see equation (1.4)) is ball-minimal. �

4. Characterizing bianalytic maps between spectrahedra

In this section we prove Theorem 1.5 and Proposition 1.6, stated as Propositions 4.2

and 4.4 below. A major accomplishment, exposited in Subsection 4.3, is the reduction of 

the eig-generic type hypotheses of [3] to various natural and cleaner algebraic conditions 

on the corresponding pencils defining spectrahedra.

Lemma 4.1. Let LA be a monic pencil. The set {(X, X∗) : X ∈ Zre
LA

(n)} is Zariski dense 

in the set ZLA
(n) for every n. Likewise, {(X, X∗) : X ∈ Zre

QA
(n)} is Zariski dense in 

ZQA
(n) = {(X, Y ) ∈ Mn(C)2g : det QA(X, Y ) = 0}.
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Proof. The first statement holds by [41, Proposition 5.2]. The second follows immediately 

from the first. �

4.1. The detailed boundary

Let ρ be a hermitian d × d free matrix polynomial with ρ(0) = Id. Thus ρ ∈

C <x, y>d×d and ρ(X, X∗)∗ = ρ(X, X∗) for all X ∈ M(C)g. The detailed boundary

of Dρ is the sequence of sets

∂̂Dρ(n) :=
{

(X, v) ∈ Mn(C)g × (Cdn \ {0}) : X ∈ ∂Dρ, ρ(X, X∗)v = 0
}

over n ∈ N. The nomenclature and notation are somewhat misleading in that ∂̂Dρ is 

not determined by the set Dρ but by its defining polynomial ρ. Denote also

∂̂1Dρ(n) :=
{

(X, v) ∈ ∂̂Dρ(n) : dim ker(ρ(X, X∗)) = 1
}

.

For (X, v) ∈ ̂∂1Dρ(n), we call v the hair at X. Letting

π1 : Mn(C)g × C
dn → Mn(C)g and π2 : Mn(C)g × C

dn → C
dn

denote the canonical projections, set

∂1Dρ(n) = π1

(
∂̂1Dρ(n)

)
, hair Dρ(n) = π2

(
∂̂1Dρ(n)

)
.

Observe ∂̂BE(n) := ∂̂DQE
(n), etc.

4.1.1. Boundary hair spans

In this subsection we connect the notion of boundary hair to ball-minimality. Given 

a tuple E ∈ Md×e(C)g, a subset S ⊆ ∂̂1BE is closed under unitary similarity if for each 

n, each (X, v) ∈ ∂̂1BE(n) and each n ×n unitary U , we have (UXU∗, (Ie ⊗U)v) ∈ S (n). 

Assuming S ⊆ ∂̂1BE is closed under unitary similarity, let

π(hair S ) =
{

u ∈ C
e : ∃n ∈ N, ∃v ∈ S (n) ∩ hair BE(n) : v = u ⊗ e1 +

n∑

j=2

uj ⊗ ej

}
,

where {e1, . . . , en} is the standard basis for Cn. Because S is invariant under unitary 

similarity, the definition of π(hair S ) does not actually depend on the choice of orthonor-

mal basis for Cn. Thus, for instance, π(hair ∂1BE) is the set of those vectors u ∈ C
e such 

that there exists an n, a pair (X, v) ∈ Mn(C)g ⊕ [Ce ⊗C
n] and a unit vector h ∈ C

n such 

that Qre
E (X) � 0, dim ker(Qre

E (X)) = 1, Qre
E (X)v = 0 and u = (Ie ⊗ h∗)v. For notational 

convenience we write π(hair BE) as shorthand for π(hair ∂̂1BE).
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Proposition 4.2. A tuple E ∈ Md×e(C)g is ball-minimal if and only if π(hair BE) spans 

C
e and ker(E∗) = {0}. Moreover, if π(hair BE) spans C

e, then there exists a positive 

integer r8 and pairs (αa, γa) ∈ ̂∂1BE(r) for 1 ≤ a ≤ e such that, writing γa =
∑r

t=1 δa
t ⊗

et ∈ C
e ⊗ C

r the set {δa
1 : 1 ≤ a ≤ e} spans Ce.

Proof. Suppose E is ball-minimal and let e′ ≤ e denote the dimension of the span of 

π(hair BE). Let

TE = {(X, X∗) : X ∈ ∂1DQE
= ∂1BE}.

Let W denote the inclusion of span π(hair BE) into Ce. Observe that

W ∗QE(x, y)W = W ∗W − W ∗ΛE∗(y)ΛE(x)W = QEW (x, y).

Thus BE ⊆ BEW and moreover (X, v) ∈ ̂∂1DQE
= ∂1BE implies

Qre
EW (X)(W ∗ ⊗ I)v = (W ∗ ⊗ I)Qre

E (X)v = 0,

so TE ⊆ ZLEW
. Since ∂1DLE

= ∂1DQE
= ∂1BE by equation (3.1), Lre

E (equivalently LE) 

is minimal by Lemma 3.2(3), and TE is Zariski dense in ZLE
by [30, Corollary 8.5], it 

follows that ZLE
⊆ ZLEW

. Since are convex sets containing 0 in their interiors, and their 

boundaries are contained in ZLE
and ZLEW

respectively, the inclusion ZLE
⊆ ZLEW

implies BEW ⊆ BE . Indeed, if X ∈ BEW but X /∈ BE , then there is a 0 < t < 1 such 

that tX ∈ ∂BE ∩ BEW . Thus (tX, tX∗) ∈ ZLE
⊆ ZLEW

. Consequently Qre
EW (tX) has 

a kernel and finally Qre
E (X) � 0, contradicting X ∈ BEW . Hence E and EW define 

the same spectraball. Since EW is a d × e′-tuple and E is ball-minimal and d × e, 

Lemma 3.2(9) implies e′ ≥ e. Thus e′ = e and π(hair BE) spans Ce. If ker(E∗) �= {0}

then E is not ball-minimal. Hence we have shown, if E is ball-minimal, then π(hair BE)

spans and ker(E∗) = {0}.

To prove the converse, suppose F ∈ Mk×�(C)g is not ball-minimal, but ker(F ∗) =

{0}. Let HF ⊆ C
� denote the span of π(hair BF ). It suffices to show HF �= C

�. Let 

E ∈ Md×e(C)g be ball-minimal with BF = BE . By Lemma 3.2(9), d ≤ k and e ≤ � and, 

letting d′ = k − d and e′ = � − e, there is a tuple R ∈ Md′×e′(C)g and k × k and � × �

unitary matrices U and V respectively so that equation (3.2) holds and BE ⊆ BR. Note 

that e′ �= 0 since ker(F ∗) = {0} and further

QF = V ∗

(
QE 0
0 QR

)
V = V ∗(QE ⊕ QR)V.

Without loss of generality, we may assume V = I.

8 While it is not needed here, r can be chosen at most e.
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Suppose X ∈ ∂1BF (n) and 0 �= v ∈ C
� ⊗ C

n is in the kernel of Qre
F (X). With respect 

to the decomposition of C
� ⊗ C

n = [Ce ⊗ C
n] ⊕ [Ce′

⊗ C
n], decompose v = u ⊕ u′. 

It follows that 0 = Qre
F (X)v = Qre

E (X)u ⊕ Qre
R(X)u′ and hence both Qre

E (X)u = 0

and Qre
R(X)u′ = 0. Therefore, 

(
0
u′

)
is in the kernel of Qre

F (X). On the other hand, 

X ∈ ∂BE(n). Hence there is a 0 �= w ∈ C
e ⊗ C

n such that Qre(X)w = 0. Thus 0 �=
(w

0

)

is in the kernel of Qre
F (X). Since the dimension of the kernel of Qre

F (X) is one, u′ = 0

and therefore HF ⊆ C
e ⊕ {0} � C

e ⊕ C
e′

= C
�.

To prove the moreover portion of the proposition, note that the assumption that the 

π(hair BE) spans implies the existence of n1, . . . , ne ∈ N and pairs (αa, γa) ∈ Mna
(C)g ×

[Ce ⊗ C
na ] such that, writing γa =

∑na

t=1 δa
t ⊗ et, the set {δa

1 : 1 ≤ a ≤ e} spans Ce. By 

choosing r = max{na : 1 ≤ a ≤ e} and padding δa and γa by zeros as needed, it can be 

assumed that na = r for all a. �

4.2. From basis to hyperbasis

Call an e + 1-element subset U = {u1, . . . , ue+1} of Ce a hyperbasis if each e-element 

subset of U is a basis. This notion critically enters the genericity conditions considered 

in [3].

Lemma 4.3. Given E ∈ Md×e(C)g and n ∈ N, if ZQE
(n) is an irreducible hypersurface 

in Mn(C)2g,

{(X, X∗) : X ∈ ∂1BE(n)}

is Zariski dense in ZQE
(n), and π(hair BE) spans Ce, then π(hair BE) contains a hyper-

basis for Ce.

Proof. By Proposition 4.2 there exist a positive integer r, tuples X1, . . . , Xe ∈ ∂1BE(r)

and vectors γj =
∑r

t=1 δj
t ⊗ et ∈ ker(Qre

E (Xj)) ⊆ C
e ⊗ C

r, such that {δj
1 : 1 ≤ j ≤ e}

spans Ce. Note too that δj
1 = (I ⊗ �∗

1)δj , where {�1, . . . �r} is the standard orthonormal 

basis for Cr.

If X ∈ ∂1BE(n), then the adjugate matrix, adj(Qre
E (X)), is of rank one and its range is 

ker(Qre
E (X)). Let M(i) denote the i-th column of a matrix M and suppose γ =

∑r
t=1 δt⊗et

spans ker(Qre
E (X)). It follows that (I ⊗ �∗

1) adj(Qre
E (Xk))(i) = μδ1 for some μ ∈ C. 

Moreover, for every k = 1, . . . , e there exists 1 ≤ ik ≤ er such that ker(Qre
E (Xk)) =

span(adj Qre
E (Xk))(ik), and hence (I ⊗e∗

1) adj(Qre
E (Xk))(ik) = μkδk

1 for some μk �= 0. Now 

consider

v(t, X, Y ) :=
e∑

k=1

tk (I ⊗ �∗
1) adj(QE(X, Y ))(ik) ∈ C

e (4.1)

as a vector of polynomials in indeterminates t = (t1, . . . , te) and entries of (X, Y ) (i.e., 

coordinates of Mr(C)2g). Let {ε1, . . . , εe} denote the standard basis for Ce. For every k



32 J.W. Helton et al. / Journal of Functional Analysis 278 (2020) 108472

we have v(εk, Xk, Xk∗) = (I ⊗ �∗
1) adj(Qre(Xk))(ik) = μkδk

1 �= 0. Since the complements 

of zero sets are Zariski open and dense in the affine space, for each k the set Uk = {t ∈

C
g : v(t, XkXk∗) �= 0} ⊆ C

g is open and dense and thus so is 
⋂e

k=1 Uk. Hence there 

exists λ ∈ C
e such that v(λ, Xk, Xk∗) �= 0 for every k. Now define the map

u : ZQE
(n) → C

e, u(X, Y ) := v(λ, X, Y ).

Note that u is a polynomial map by (4.1) and, for X ∈ ∂1BE(r) and 0 �= δ =
∑r

t=1 δt ⊗

�t ∈ ker(Qre
E (X)),

u(X, X∗) =
e∑

s=1

λs(I ⊗ �∗
1) adj(Qre

E (X))(is) =
e∑

s=1

λsνsδ1 = νδ1,

for some ν ∈ C. In particular, if U(X, X∗) �= 0, then u(X, X∗) ∈ π(hair BE).

0 �= u(Xk, Xk∗) = νkδ1
k,

for each k and hence u(X1, X1∗), . . . , u(Xe, Xe∗) form a basis of Ce. Therefore,

u(X, Y ) =

e∑

k=1

rk(X, Y )u(Xk, Xk∗)

for (X, Y ) ∈ ZQE
(n), where rk are polynomial functions on Mr(C)2g. In particular, 

rk(Xj , Xj∗) = δj,k, where δ is the Kronecker delta function.

Suppose that the product r1 · · · re ≡ 0 on

{(X, X∗) : X ∈ ∂1BE(n)} ⊆ ZQE
.

Then r1 · · · re ≡ 0 on ZQE
(n) by the Zariski denseness hypothesis. Therefore rk ≡ 0

on ZQE
(n) for some k by the irreducibility hypothesis, contradicting rk(Xk, Xk∗) = 1. 

Consequently there exists X0 ∈ ∂1BE(n) such that r1(X0, X0∗) · · · re(X0, X0∗) �= 0. By 

the construction it follows that {u(X0, X0∗), u(X1, X1∗), . . . , u(Xe, Xe∗)} ⊆ π(hair BE)

forms a hyperbasis of Ce. �

Proposition 4.4. Let E ∈ Md×e(C)g. Then QE is an atom and ker(E) = {0} if and only 

if π(hair BE) contains a hyperbasis of Ce.

Proof. Let ι denote the inclusion of rg(E) into Cd and let Ê = ι∗E. Note that BE =

BÊ and thus π(hair BE) = π(hair BÊ). Further QE = QÊ and ker(Ê) = ker(E) and 

ker(Ê∗) = {0}. It follows that QE is an atom if and only if QÊ is an atom; ker(E) = {0}

if and only if ker(Ê) = {0}; and π(hair BE) contains a hyperbasis of Ce if and only if 

π(hair BÊ) does. Thus, by replacing E with Ê we may assume that ker(E∗) = {0}.
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(⇒) Suppose QE is an atom and ker(E) = {0} and ker(E∗) = {0}. By Lemma 3.2(2), 

LE (equivalently L
re
E ) is indecomposable. By [41, Proposition 3.12],9 ZLE

is an irre-

ducible free locus. By [30, Corollary 3.6], ZLE
(n) is an irreducible hypersurface for large 

enough n. Thus, by [30, Corollary 8.5], ∂1BE(n) = ∂1Qre
E (n) is Zariski dense in Zre

Lre
E

(n)

for large enough n. Thus {(X, X∗) : X ∈ ∂1BE(n)} is Zariski dense in {(X, X∗) :

X ∈ Mn(C)g, det L
re
E (X) = 0} for large enough n. By Lemma 4.1 it now follows that 

{(X, X∗) : X ∈ ∂1BE} is Zariski dense in ZLE
= ZQE

= {(X, Y ) : det QE(X, Y ) = 0}. 

Thus the assumptions of Lemma 4.3 are satisfied for some n ∈ N, so π(hair BE) contains 

a hyperbasis for Ce.

(⇐) Suppose QE is not an atom. If E is not ball-minimal, then π(hair BE) does 

not span Ce by Proposition 4.2, since ker(E∗) = {0}. If E is ball-minimal, then Lre
E is 

minimal but not indecomposable by Lemma 3.2 items (2) and (3). Thus Lre
E decomposes 

non-trivially as L
re
E1 ⊕ L

re
E2 by Lemma 3.2(5). Hence QE decomposes as QE1 ⊕ QE2 . 

Letting ei ≥ 1 denote the size of QEi ,

π(hair BE) ⊆ (Ce1 ⊕ {0}e2) ∪ ({0}e1 ⊕ C
e2) .

Thus π(hair BE) cannot contain a hyperbasis for Ce = C
e1 ⊕ C

e2 . �

Remark 4.5.

(1) Note that QE is an atom, ker(E) = {0} and ker(E∗) = {0} (or equivalently, LE is 

indecomposable) if and only if the centralizer of

(
0 E1

0 0

)
, . . .

(
0 Eg

0 0

)
,

(
0 0

E∗
1 0

)
, . . .

(
0 0

E∗
g 0

)
,

is trivial. Verification of this fact amounts to checking whether a system of linear 

equations has a solution.

(2) If LE is indecomposable, then so is LE . Indeed, if LE = LE1 ⊕ LE2 , then LE equals 

LE1 ⊕ LE2 up to a canonical shuffle.

However, the converse is not true. For example, with Λ(x) =

(
0 x2

x1 0

)
,

I + Λ(x) + Λ∗(y) =

(
1 x2 + y1

x1 + y2 1

)

is an indecomposable monic pencil, but

I − ΛΛ∗ =

(
1 − x1y1 0

0 1 − x2y2

)

factors. �

9 Irreducible in [41] is indecomposable here.
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4.3. The eig-generic conditions

In this subsection we connect the various genericity assumptions on tuples in Md(C)g

used in [3] to clean, purely algebraic conditions of the corresponding hermitian monic 

pencils, see Proposition 4.8. We begin by recalling these assumptions precisely.

Definition 4.6 ([3, §7.1.2]). A tuple A ∈ Md(C)g is weakly eig-generic if there exists an 

� ≤ d + 1 and, for 1 ≤ j ≤ �, positive integers nj and tuples αj ∈ Mnj
(C)g such that

(a) for each 1 ≤ j ≤ �, the eigenspace corresponding to the largest eigenvalue 

of ΛA(αj)∗ΛA(αj) has dimension one and hence is spanned by a vector uj =∑nj

a=1 uj
a ⊗ ea; and

(b) the set U = {uj
a : 1 ≤ j ≤ �, 1 ≤ a ≤ nj} contains a hyperbasis for ker(A)⊥ =

rg(A∗).

The tuple is eig-generic if it is weakly eig-generic and ker(A) = {0} (equivalently, 

rg(A∗) = C
d).

Finally, a tuple A is ∗-generic (resp. weakly ∗-generic) if there exists an � ≤ d and 

tuples βj ∈ Mnj
(C)g such that the kernels of I − ΛA(βj)ΛA(βj)∗ have dimension one 

and are spanned by vectors μj =
∑

μj
a ⊗ea for which the set {μj

a : 1 ≤ j ≤ �, 1 ≤ a ≤ nj}

spans Cd (resp. rg(A) = ker(A∗)⊥).

Remark 4.7. One can replace nj with 
∑�

j=1 nj in Definition 4.6, so we can without loss 

of generality assume n1 = · · · = ng. �

Mixtures of these generic conditions were critical assumptions in the main theorems 

of [3]. The next proposition gives elegant and much more familiar replacements for them.

Proposition 4.8. Let A ∈ Md(C)g.

(1) A is eig-generic if and only if QA is an atom and ker(A) = {0}.

(2) A is ∗-generic and ker(A) = {0} if and only if A∗ is ball-minimal.

(3) Let ι denote the inclusion of rg(A∗) into C
d. Then A is weakly eig-generic if and 

only if QAι is an atom and ker(Aι) = {0}.

(4) Let ι denote the inclusion of rg(A) into Cd. Then A is weakly ∗-generic and ker(A) =

{0} if and only if A∗ι is ball-minimal.

Proof. It is immediate from the definitions that if π(hair BA) contains a hyperbasis, 

then A is eig-generic. On the other hand, if (α, u) ∈ ∂̂1BE , then u is an eigenvector of 

ΛA(α)∗ΛA(α) corresponding to its largest eigenvalue 1. Writing u =
∑n

a=1 ua ⊗ ea �= 0, 

each ua ∈ π(hair BE) because if U is a unitary matrix, then (UαU∗, Uu) ∈ ∂̂1BE . Hence 
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π(hair BA) contains a hyperbasis if and only if A is eig-generic and therefore item (1)

Follows from Proposition 4.4 and Remark 4.7.

A similar argument to that above shows π(hair BA∗) spans if and only if A is ∗-generic. 

Thus item (2) follows from the Proposition 4.2 and Remark 4.7.

Item (3) follows from (1) since Aι is eig-generic and ker(Aι) = {0}.

Item (4) follows from (2) since ι∗A is weakly ∗-generic and ker(ι∗A) = ker(A). �

4.4. Proof of Theorem 1.5

We use Proposition 4.8. In the terminology of [3], assumptions (a) and (b) imply that A

is eig-generic and ∗-generic, and B is eig-generic, since the ball-minimal hypothesis on A∗

implies ker(A) = {0}. Theorem 1.5 thus follows from [3, Corollary 7.11] once it is verified 

that the assumptions imply DB is bounded, p(∂DA) ⊆ ∂DB and q(∂DB) ⊆ ∂DA. For 

instance, if X ∈ ∂DA, but p(X) ∈ int(DB), then there is a Z /∈ DA such that p(Z) ∈ DB. 

But then, Z = q(p(Z)) ∈ DA, a contradiction. �

5. Bianalytic maps between spectraballs and free spectrahedra

In this section we prove the rest of our main results, Proposition 1.7, and then Theo-

rem 1.1 and its Corollary 1.3.

5.1. The proof of Proposition 1.7

Throughout this subsection, we fix a tuple E ∈ Md×e(C)g, a positive integer M and 

an F ∈ C <x >1×e of degree at most M . Write F =
(
F 1 · · · F e

)
and

F s =
∑

|w|≤M

F s
ww,

where |w| denotes the length of the word w and F s
w ∈ C.

Let S denote the tuple of shifts on the truncated Fock space FM with orthonormal 

basis the words of length at most M in the freely noncommuting variables {x1, . . . , xg}. 

When viewing a word w as an element of the finite dimensional Hilbert space FM we 

will write w. Thus S�w = x�w if |w| < M and S�w = 0 if |w| = M . Let P denote 

the projection of FM onto the subspace FM−1 and note that S∗
kS� = P if k = � and 

S∗
kS� = 0 if k �= �.

Given a matrix β = (βj,k)g
j,k=1 ∈ Mg(Mr(C)) and words u, w of the same length N ,

u = xj1
xj2

· · · xjN
, w = xk1

xk2
· · · xkN

,

let

β̂u,w = βk1,j1
βk2,j2

· · · βkN ,jN
.
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In particular, βj,k = β̂xk,xj

β̂u,wβ̂xj ,xk
= βk1,j1

βk2,j2
· · · βkN ,jN

βk,j = β̂uxj ,wxk
. (5.1)

Let

(β · S)j =

g∑

k=1

βj,k ⊗ Sk

and β · S = ((β · S)1, . . . , (β · S)g).

Lemma 5.1. Given 1 ≤ N ≤ M and a word w of length N ,

(β · S)w =
∑

|u|=N

β̂u,w ⊗ Su.

Proof. We induct on N . For N = 1 and w = xt,

(β · S)w =

g∑

k=1

βt,k ⊗ Sk =
∑

k

β̂xk,xt
Sk =

∑

|u|=1

β̂u,xt
Su

Now suppose the result holds for N . Let v be a word of length N and consider the word 

w = vxt of length N + 1. Using the induction hypothesis and equation (5.1),

(β · S)w = (β · S)v(β · S)xt = [
∑

|u|=N

β̂u,v ⊗ Su] [
∑

k

βt,k ⊗ Sk]

=
∑

|u|=N

g∑

k=1

β̂u,vβt,k ⊗ SuSk =
∑

|u|=N

g∑

k=1

β̂uxk,vxt
⊗ Suxk

=
∑

|z|=N+1

β̂z,w ⊗ Sz. �

Given N , let GN denote the subspace of FM spanned by words of length N . Thus the 

words of length N form an orthonormal basis for GN . Given words u, w ∈ GN , let u w∗

denote the linear mapping on GN determined by u w∗v = 〈v, w〉u, for words v ∈ GN . Let

B(β, N) =
∑

|u|=N=|w|

β̂u,w ⊗ u w∗ =
(
β̂u,w

)
|u|=N=|w|

∈ Mr(C) ⊗ MgN (C),

where the second equality is understood in the sense of unitary equivalence. In particular, 

B(β, 1) = (βk,j )
g

j,k=1.

Lemma 5.2. For each positive integer N the set of β ∈ Mg(Mr(C)) such that B(β, N) is 

invertible is open and dense.
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Proof. For the second statement, observe that B(I, N) is the identity matrix since, with 

βj,k = δj,kIr, we have β̂u,w = δu,wIr. Hence the mapping ψ : Mg(Mr(C)) → C defined 

by ψ(β) = det B(β, N) is a polynomial in the entries of β that is not identically zero. 

Thus ψ is nonzero on an open dense set and the result follows. �

For notational purposes, let 1 denote the emptyword ∅ ∈ FM . Let {ε1, ε2, . . . , εe}

denote the standard orthonormal basis for Ce.

Lemma 5.3. Suppose β ∈ Mg(Mr(C)) and γ =
∑e

s=1 εs ⊗ γs ∈ C
e ⊗ C

r. If

e∑

s=1

F s(β · S)[γs ⊗ 1] = 0,

then, for 1 ≤ N ≤ M and each word u of length N ,

∑

|w|=N

β̂u,w[
e∑

s=1

F s
wγs] = 0.

Moreover, if B(β, N) is invertible, then

e∑

s=1

F s
wγs = 0

for each word |w| = N .

Proof. Since F s
w ∈ C, by Lemma 5.1,

M∑

N=0

∑

|w|=N

F s
w(β · S)w =

M∑

N=0

∑

|u|=N

⎡
⎣ ∑

|w|=N

F s
wβ̂u,w

⎤
⎦⊗ Su.

Thus,

0 =
e∑

s=1

F s(β · S)[γs ⊗ 1] =
M∑

N=0

∑

|u|=N

⎛
⎝ ∑

|w|=N

β̂u,w[
e∑

s=1

F s
wγs]

⎞
⎠⊗ u

and the first part of the result follows.

To prove the second part, let

y =
∑

|v|=N

yv ⊗ v ∈ C
r ⊗ GN ,

where yv =
∑e

s=1 F s
v γs ∈ C

r. Thus
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B(β, N)y =
∑

|u|=N=|w|

β̂u,w ⊗ u w∗
∑

|v|=N

yv ⊗ v

=
∑

|u|=N=|w|

β̂u,wyw ⊗ u =
∑

|u|=N

[
∑

|w|=N

β̂u,wyw] ⊗ u = 0.

Hence if B(β, N) is invertible, then y = 0 and therefore 
∑e

s=1 F s
wγs = 0 for each |w| =

N . �

We continue to let {ε1, ε2, . . . , εe} denote the standard basis for Ce. Let {�1, . . . , �r}

denote the standard orthonormal basis for Cr.

Proposition 5.4. Fix 1 ≤ N ≤ M . If there exist a positive integer r and (βa, γa) ∈

Mg(Mr(C)) × [Ce ⊗ C
r] for 1 ≤ a ≤ e such that,

(a) writing

γa =
r∑

t=1

δa
t ⊗ �t

the vectors {δa
1 : 1 ≤ a ≤ e} span Ce;

(b) B(βa, N) is invertible for each 1 ≤ a ≤ e;

(c) F (βa
· S)[γa ⊗ 1] = 0 for each 1 ≤ a ≤ e,

then F s
w = 0 for each 1 ≤ s ≤ e and |w| = N .

Proof. Note that

0 = F (βa
· S)[γa ⊗ 1] =

e∑

s=1

F s(βa
· S)[γa

s ⊗ 1].

Thus items (b) and (c) validate the hypotheses of Lemma 5.3, and hence 
∑

s F s
wγa

s = 0

for each |w| = N and 1 ≤ a ≤ e. Writing γa =
∑e

s=1 εs ⊗ γa
s , it follows that

e∑

s=1

[�∗
1γa

s ]εs = (I ⊗ �∗
1)

e∑

s=1

εs ⊗ γa
s = δa

1 =

e∑

s=1

[ε∗
sδa

1 ]εs.

Therefore �∗
1γa

s = ε∗
sδa

1 and consequently, for |w| = N ,

0 =

e∑

s=1

F s
w[�∗

1γa
s ] =

e∑

s=1

F s
w[ε∗

sδa
1 ] = Fwδa

1 ,

where Fw =
(
F 1

w . . . F e
w

)
∈ C

1×e. Since, by hypothesis, {δa
1 : 1 ≤ a ≤ e} spans Ce it 

follows that Fw = 0 whenever |w| = N . Thus F s
w = 0 for 1 ≤ s ≤ e and |w| = N . �
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Given β = (βj,k) ∈ Mg(Mr(C)), let

(E · β)k =

g∑

j=1

Ej ⊗ βj,k

Lemma 5.5. For β ∈ Mg(Mr(C)),

ΛE(β · S) =
∑

k

(E · β)k ⊗ Sk

Qre
E (β · S) = [I −

∑

k

(E · β)∗
k(E · β)k] ⊗ P + I ⊗ (I − P ),

where P is the projection of FM onto FM−1.

Proof. Compute,

ΛE(β · S) =

g∑

j=1

Ej ⊗ (

g∑

k=1

βj,k ⊗ Sk) =

g∑

k=1

[

g∑

j=1

Ej ⊗ βj,k] ⊗ Sk =

g∑

k=1

(E · β)k ⊗ Sk,

and thus

ΛE(β · S)∗ΛE(β · S) = [

g∑

k=1

(E · β)∗
k(E · β)k] ⊗ P

and the result follows. �

5.1.1. The hair spanning condition

A subset {(αa, γa) : 1 ≤ a ≤ e} ⊆ Mr(C)g × [Ce ⊗ C
r] is a boundary spanning set

for BE if each (αa, γa) ∈ ∂̂BE and, writing γa =
∑r

t=1 δa
t ⊗ �t, the set {δa

1 : 1 ≤ a ≤ e}

spans Ce. This set is a boundary hair spanning set for BE if moreover (αa, γa) ∈ ∂̂1BE

for each a. By Proposition 4.2, if E is ball-minimal, then there exists a boundary hair 

spanning set for BE .

Proposition 5.6. Fix 1 ≤ N ≤ M . If E ∈ Md×e(C)g is ball-minimal, then there exists a 

positive integer r and a subset {(βa, γa) : 1 ≤ a ≤ e} of Mg(Mr(C)) ⊗ [Ce ⊗ C
r] such 

that B(βa, N) is invertible for each 1 ≤ a ≤ e and {(βa
· S, γa ⊗ 1) : 1 ≤ a ≤ e} is a 

boundary spanning set for BE.

The proof of Proposition 5.6 uses the following special case of a standard result from 

the theory of perturbation of matrices [39, Chapter 2, Section 4].

Lemma 5.7. Suppose R ∈ Md(C), I − R � 0 and ker(I − R) is one-dimensional and 

spanned v ∈ C
d. For each ε > 0, there is a μ > 0 such that if Q ∈ Md(C) is self-
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adjoint and ‖Q‖ < μ, then there is a c > 0 and w ∈ C
d such that I − c(R + Q) � 0, 

ker(I − c(R + Q)) is spanned by w and ‖v − w‖ < ε.

Proof of Proposition 5.6. Since E is ball-minimal, there is an r and a boundary hair 

spanning set {(αa, ζa) : 1 ≤ a ≤ e} ⊆ Mr(C)g × [Ce ⊗ C
r] for BE by Proposition 4.2. In 

particular, writing ζa =
∑r

t=1 χa
t ⊗ �t, the set {χa

1 : 1 ≤ a ≤ e} spans Ce. There is an 

ε > 0 such that, if τa =
∑g

t=1 τa
t ⊗ ρt and ‖ζa − τa‖ < ε for each 1 ≤ a ≤ e, then the set 

{τa
1 : 1 ≤ a ≤ e} spans Ce.

Fix 1 ≤ a ≤ e and let, for 1 ≤ j, k ≤ g,

β̃a
j,k =

{
αa

j if k = 1

0 if k > 1.

Thus

I − [

g∑

j=1

Ej ⊗ β̃a
j,1]∗ [

g∑

j=1

Ej ⊗ β̃a
j,1] = Qre

E (αa)

is positive semidefinite with kernel spanned by ζa. By Lemmas 5.2 and 5.7, there exists 

a βa ∈ Mg(Mr(C)) such that B(βa, N) is invertible and

R(βa) := I −

g∑

k=1

⎛
⎝[

g∑

j=1

Ej ⊗ βj,k]∗ [

g∑

j=1

Ej ⊗ βj,k]

⎞
⎠ = I −

g∑

k=1

(E · β)∗
k (E · β)k (5.2)

is positive semidefinite and has kernel spanned by a vector γa such that ‖ζa − γa‖ < ε. 

In particular, writing γa =
∑r

t=1 δa
t ⊗ �t, from the first paragraph of the proof, the set 

{δa
1 : 1 ≤ a ≤ e} spans Ce.

To complete the proof, observe, using R(βa) defined in equation (5.2) and Lemma 5.5, 

that

Qre
E (βa

· S) = R(βa) ⊗ P + I ⊗ (I − P ).

It follows that {(βa
· S, γa ⊗ 1) : 1 ≤ a ≤ e} is a boundary spanning set for BE. �

5.1.2. Proof of Proposition 1.7

Suppose E is ball-minimal10 and F ∈ C <x >1×e vanishes on ∂̂BE and has degree at 

most M .

Fix 1 ≤ N ≤ M . By Proposition 5.6, there exists an r > 0 and (βa, γa) ∈

Mg(Mr(C)) × [Ce ⊗ C
r] such that {(βa

· S, γa ⊗ 1) : 1 ≤ a ≤ e} is a boundary spanning 

set for BE and B(βa, N) is invertible for each 1 ≤ a ≤ e. Since (βa
· S, γa) ∈ ∂̂BE , it 

10 It is enough to assume that P E is ball-minimal, where P is the projection of Cd onto rg(E).
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follows that 0 = F (β · S)γa. An application of Proposition 5.4 implies F s
w = 0 for all 

1 ≤ s ≤ e and |w| = N . Hence F s
w = 0 for all 1 ≤ s ≤ e and |w| ≤ M and therefore 

F = 0. To complete the proof, given V ∈ C <x >�×e that vanishes on ∂̂BE , apply what 

has already been proved to each row of V to conclude V = 0. �

5.2. Theorem 1.1

In this subsection we prove the first part Theorem 1.1. (The conversely portion was 

already proved as Corollary 2.5.)

A free analytic mapping f into M(C)h defined in a neighborhood of 0 of M(C)g has 

a power series expansion ([25,38,54]),

f(x) =
∞∑

j=0

Gj(x) =
∞∑

j=0

∑

|α|=j

fαxα, (5.3)

where fα ∈ C
1×h. The term Gj is the homogeneous of degree j part of f . It is a 

polynomial mapping M(C)g → M(C)h.

Lemma 5.8. Let E ∈ Md×e(C)g and B ∈ Mr(C)h. Suppose f : int(BE) → int(DB) is 

proper. For each positive integer N there exists a free polynomial mapping p = pN of 

degree at most N such that if X ∈ BE is nilpotent of order N , then fX(z) := f(zX) =

p(zX) for z ∈ C with |z| < 1. Further, if X ∈ ∂BE (equivalently ‖ΛE(X)‖ = 1), then 

p(X) ∈ ∂DB.

Proof. Fix a positive integer N . The series expansion of equation (5.3) converges as 

written on Nε = {X ∈ M(C)g :
∑

XjX∗
j ≺ ε2} for any ε > 0 such that Nε ⊆ int(BE)

[25, Proposition 2.24]. In particular, if X ∈ BE is nilpotent of order N and |z| is small, 

then

fX(z) := f(zX) =
N∑

j=1

Gj(zX) =
N∑

j=1

⎡
⎣∑

|α|=j

fα ⊗ Xα

⎤
⎦ zj =: p(zX).

It now follows that fX(z) = p(zX) for |z| < 1 (since zX ∈ int(BE) for such z and both 

sides are analytic in z and agree on a neighborhood of 0).

Now suppose X ∈ ∂BE(n) (still nilpotent of order N). Since f : int(BE) → int(DB), it 

follows that Lre
B(p(tX)) 	 0 for 0 < t < 1. Thus Lre

B(p(X)) � 0. Arguing by contradiction, 

suppose Lre
B(p(X)) 	 0; that is p(X) ∈ int(DB(n)). Hence there is an η such that

Bη(p(X)) := {Y ∈ Mn(C)g : ‖Y − p(X)‖ ≤ η} ⊆ int(DB(n)).

Since K = Bη(p(X)) is compact, L = f−1
n (K) ⊆ int(BE) is also compact by the proper 

hypothesis on f (and hence on each fn : int(BE(n)) → int(DB(n))). On the other hand, 
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for t < 1 sufficiently large, tX ∈ L, but X /∈ int(BE(n)), and we have arrived at the 

contradiction that L cannot be compact. �

Remark 5.9. In view of Lemma 5.8, for X ∈ ∂BE nilpotent we let f(X) denote fX(1). 

Observe also, if g = h, f(0) = 0, f ′(0) = Ig and X ∈ BE is nilpotent of order two, then 

f(X) = X. �

Lemma 5.10. Suppose B ∈ Mr(C)g and V ∈ Mr×u(C) and let B denote the algebra 

generated by B. Let h denote the dimension of B as a vector space. If {B1V, . . . , BgV}

is linearly independent, then there exists a g ≤ t ≤ h and a basis {J1, . . . , Jh} of B such 

that

(1) Jj = Bj for 1 ≤ j ≤ g;

(2) {J1V, . . . , JtV} is linearly independent; and

(3) JjV = 0 for t < j ≤ h.

Letting Ξ ∈ Mh(C)h denote the convexotonic tuple associated to J ,

(Ξj)�,k = 0 for j > t, k ≤ t and 1 ≤ � ≤ h.

Proof. The set N = {T ∈ B : TV = 0} ⊆ B is a subspace (in fact a left ideal). Since 

{B1V, . . . , BgV} is linearly independent, the subspace M of B spanned by {B1, . . . , Bg}

has dimension g and satisfies M ∩ N = {0}. Thus there is a g ≤ t ≤ h such that 

h − t is the dimension of N . Choose a basis {Jt+1, . . . , Jh} for N . Thus the set 

{B1, . . . , Bg, Jt+1, . . . , Jh} is linearly independent and g ≤ t ≤ h. Extend it to a basis 

{J1, . . . , Jh}. To see that item (2) holds, we argue by contradiction. If {J1V, . . . , JtV}

is linearly dependent, then some linear combination of {J1, . . . , Jt} lies in N .

The last statement is a consequence of the fact that N is a left ideal. Indeed, since 

the tuple Ξ satisfies,

J�Jj =
h∑

k=1

(Ξj)�,kJk

for 1 ≤ j, � ≤ h we have, for j > t and 1 ≤ � ≤ h,

0 = J�JjV =

h∑

k=1

(Ξj)�,kJkV =

t∑

k=1

(Ξj)�,kJkV.

By independence of {JkV : 1 ≤ k ≤ t}, it follows that (Ξj)�,k = 0 for k ≤ t. �

Lemma 5.11. Let E ∈ Md×e(C)g and A ∈ Mr(C)g. If there is a proper free analytic 

mapping f : int(BE) → int(DA) such that f(0) = 0 and f ′(0) = I, then BE = BA.
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Proof. We perform the off diagonal trick. Given a tuple X, let

SX =

(
0 X
0 0

)
.

Suppose X ∈ Mn(C)g and ‖ΛE(X)‖ = 1. It follows that ‖ΛE(SX)‖ = 1. Thus SX ∈ ∂BE . 

Since f : int(BE) → int(DA) is proper with f(0) = 0 and f ′(0) = I (and SX is nilpotent), 

f(SX) = SX (see Remark 5.9), and SX ∈ ∂DA. Thus I + ΛA(SX) + ΛA(SX)∗ is positive 

semidefinite and has a (non-trivial) kernel. Equivalently,

1 = ‖ΛA(SX)‖ = ‖ΛA(X)‖.

Hence, by homogeneity, ‖ΛE(X)‖ = ‖ΛA(X)‖ for all n and X ∈ Mn(C)g. Thus BE =

BA. �

5.2.1. Proof of Theorem 1.1

We assume, without loss of generality, that E is ball-minimal. We will now show f is 

convexotonic.

Lemma 5.11 applied to the proper free analytic mapping f : int(BE) → int(DA) gives 

BE = BA. Applying Lemma 3.2(9) there exist r × r unitary matrices W and V such 

that A = W( E 0
0 R

)V∗, where R ∈ M(r−d)×(e−d)(C)g and BE ⊆ BR. Replacing A with the 

unitarily equivalent tuple V∗AV, we assume

A = U

e r−e(
E 0
0 R

)
d
r−d

(5.4)

where

U = V
∗

W =

d r−d(
U11 U12

U21 U22

)
e
r−e

. (5.5)

With respect to the orthogonal decomposition in equation (5.4), let

V =

(
Ie

0r−e,e

)
∈ Mr×e(C).

We will use later the fact that if Qre
E (X) � 0 and Qre

E (X)γ = 0, then Qre
A (X)Vγ = 0. For 

now observe

AjV = U

(
Ej

0

)
. (5.6)

Thus, since {E1, . . . , Eg} is linearly independent, the set {A1V, . . . , AgV} is linearly 

independent.
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We now apply Lemma 5.10 to A in place of B and obtain a basis {J1, . . . , Jh} for 

A , the algebra generated by {A1, . . . , Ag}, and a g ≤ t ≤ h such that Jj = Aj for 

1 ≤ j ≤ g, the set {JjV : 1 ≤ j ≤ t} is linearly independent and JjV = 0 for t < j ≤ h. 

Let ξ ∈ Mh(C)h denote the convexotonic tuple associated to J and let Ξ = −ξ. Thus 

(Ξj)�,k = 0 for j > t, k ≤ t, and all � and

J�Jj = −
h∑

s=1

(Ξj)�,sJs.

Let ϕ : int(DJ) → int(BJ) denote the convexotonic map

ϕ(x) = x(I − ΛΞ(x))−1

from Proposition 2.2. Let ι : DA → DJ denote the inclusion. By Corollary 2.6 the 

composition ϕ ◦ ι is proper from int(DA) to int(BJ). Hence, F = ϕ ◦ ι ◦ f is proper from 

int(BE) to int(BJ). Further F (0) = 0 and F ′(0) = (Ig 0) because essentially the same 

is true for each of the components f, ι, ϕ. Thus F (x) = (x 0) + ρ(x), where ρ(0) = 0

and ρ′(0) = 0.

Write

F =
(
F 1 . . . F h

)
.

Expand F as a power series,

F =
∑

Hj =

∞∑

j=1

∑

|α|=j

Fα α,

where Hj is the homogeneous of degree j part of F . Thus,

Hj =
(
H1

j . . . Hh
j

)

and H1(x) = (x 0). Likewise,

Fxj
(x) = (0 . . . 0 xj 0 . . . 0)

for 1 ≤ j ≤ g and Fxj
= 0 for j > g.

The next objective is to show Hs
m = 0 for m ≥ 2 and s ≤ t. Given a positive integer m, 

let S denote the (m + 1) × (m + 1) matrix, indexed by j, k = 0, 1, . . . , m, with Sa,a+1 = 1

and Sa,b = 0 otherwise. Thus S has ones on the first super diagonal and 0 everywhere 

else and Sm+1 = 0. Let Y ∈ BE be given. Since S ⊗ Y is nilpotent with (S ⊗ Y )α = 0 if 

α is a word with |α| > m, Lemma 5.8 (and Remark 5.9) imply F (S ⊗ Y ) ∈ BJ ; that is 

if ‖ΛE(Y )‖ ≤ 1, then ‖ΛJ(F (S ⊗ Y ))‖ ≤ 1. Let Z j = F j(S ⊗ Y ) =
∑m

μ=1 Sμ ⊗ Hj
μ(Y ). 

With respect to the natural block matrix decomposition, Z j
0,m = Hj

m(Y ) and Z j
m−1,m =
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Hj
1(Y ). Thus Z j

m−1,m = Yj for 1 ≤ j ≤ g and Z j
m−1,m = Hj

1(Y ) = 0 for j > g. Now 

‖ΛJ(Z )‖ ≤ 1 is equivalent to I − ΛJ(Z )∗ΛJ(Z ) � 0. Thus,

I − ΛA(Y )∗ΛA(Y ) − ΛJ(Hm(Y ))∗ΛJ(Hm(Y )) � 0.

Multiplying on the right by V ⊗ I and on the left by V∗ ⊗ I,

I − ΛAV(Y )∗ΛAV(Y ) − ΛJV(Hm(Y ))∗ΛJV(Hm(Y )) � 0.

By equation (5.6) ΛAV(Y )∗ΛAV(Y ) = ΛE(Y )∗ΛE(Y ), and hence,

Qre
E (Y )−ΛJV(Hm(Y ))∗ΛJV(Hm(Y ))

= I − ΛE(Y )∗ΛE(Y ) − ΛJV(Hm(Y ))∗ΛJV(Hm(Y )) � 0.
(5.7)

Let V (y) = ΛJV(Hm(y)). If (Y, γ) ∈ ∂̂BE , then Qre
E (Y )γ = 0 and hence, by equation 

(5.7), V (Y )γ = 0. Thus V vanishes on ∂̂BE and hence V = 0 by Proposition 1.7; that is

0 = V (y) = ΛJV(Hm(y)) =
h∑

j=1

JjVHj
m(y) =

t∑

j=1

JjVHj
m(y).

Since {J1V, . . . , JtV} is linearly independent, it follows that Hj
m(y) = 0 for all 1 ≤ j ≤ t

and all m ≥ 2. Hence,

F (x) = (x 0 Ψ(x))

where the 0 has length t −g and Ψ has length h −t and moreover, Ψ(0) = 0 and Ψ′(0) = 0.

Let ψ denote the inverse of ϕ,

ψ(x) = x(I + ΛΞ(x))−1.

Thus, ψ ◦ F = ι ◦ f = (f(x) 0 0) and consequently,

(f(x) 0 0) = (x 0 Ψ(x)) ((I + ΛΞ((x 0 Ψ(x)))))
−1

. (5.8)

Rearranging gives,

(x 0 Ψ(x)) = (f(x) 0 0) (I + ΛΞ((x 0 Ψ(x)))). (5.9)

We now examine the k-th entry on the right hand side of equation (5.9). First,

(
I + ΛΞ((x 0 Ψ(x)))

)
�,k

=
(
I +

g∑

j=1

Ξjxj +
h∑

j=t+1

ΞjΨj−t

)
�,k

= I�,k +

g∑

j=1

(Ξj)�,kxj +
h∑

j=t+1

(Ξj)�,kΨj−t.



46 J.W. Helton et al. / Journal of Functional Analysis 278 (2020) 108472

Since (Ξj)�,k = 0 for j > t and k ≤ t (see Lemma 5.10), if k ≤ t, then

(
I + ΛΞ((x 0 Ψ(x)))

)
�,k

= I�,k +

g∑

j=1

(Ξj)�,kxj

for all �. Hence, the right hand side of equation (5.9), for g < k ≤ t (so that I�,k = 0 for 

� ≤ g) is,

g∑

�=1

f �(x)
(
I + ΛΞ((x 0 Ψ(x)))

)
�,k

=

g∑

j,�=1

(Ξj)�,kf �(x) xj (5.10)

and similarly, for 1 ≤ k ≤ g,

g∑

�=1

f �(x) (I +

g∑

j=1

Ξjxj +
h∑

j=t+1

ΞjΨj−t)�,k = fk(x) +

g∑

j,�=1

(Ξ)�,kf �(x) xj . (5.11)

Combining equations (5.10) and (5.9), for g < k ≤ t,

g∑

j=1

[
g∑

�=1

(Ξj)�,kf �(x)

]
xj = 0.

Hence, for each 1 ≤ j ≤ g and g < k ≤ t,

g∑

�=1

(Ξj)�,kf �(x) = 0.

Since {f1, . . . , fg} is linearly independent, it follows that

(Ξj)�,k = 0, 1 ≤ j, � ≤ g, g < k ≤ t. (5.12)

We next show Ξ̂ ∈ Mg(C)g defined by

(Ξ̂j)�,k = (Ξj)�,k, 1 ≤ j, �, k ≤ g

is convexotonic. Using equation (5.12), for 1 ≤ j, � ≤ g,

A�AjV = J�JjV = −
h∑

s=1

(Ξj)�,sJsV = −
t∑

s=1

(Ξj)�,sJsV

= −

g∑

s=1

(Ξj)�,sJsV = −

g∑

s=1

(Ξj)�,sAsV.

(5.13)

Multiplying equation (5.13) on the left by U∗ and using equation (5.6) gives
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(
E� 0
0 R�

)
(−U)

(
Ej

0

)
=

(∑g
s=1(Ξj)�,sEs

0

)
.

Using equation (5.5), it follows that

E�(−U11)Ej =

g∑

s=1

(Ξj)�,sEs =

g∑

s=1

(Ξ̂j)�,sEs. (5.14)

By Lemma 2.7, the tuple Ξ̂ is convexotonic.

Combining equation (5.9) and equation (5.11), if 1 ≤ k ≤ g, then

xk =

g∑

�=1

f �(x) (I + ΛΞ((x 0 Ψ(x))))�,k

= fk(x) +

g∑

j,�=1

(Ξj)�,kf �(x) xj = fk(x) +

g∑

j,�=1

(Ξ̂j)�,kf �(x) xj .

Thus,

x = f(x)(I + ΛΞ̂(x))

and consequently

f(x) = x(I + ΛΞ̂(x))−1 (5.15)

is convexotonic.

We now complete the proof by showing, if A is minimal for DA (we continue to assume 

E is ball-minimal), then A is unitarily equivalent to

B = U

(
E 0
0 0

)
=

(
U11E 0
U21E 0

)
∈ Mr(C)g (5.16)

and B spans an algebra. To this end, using equations (5.16) and (5.14), observe

B�Bj =

(
U11E�U11Ej 0
U21E�U11Ej 0

)
=

g∑

s=1

(−Ξ̂j)�,s

(
U11Es 0
U21Es 0

)
=

g∑

s=1

(−Ξ̂j)�,sBs.

Thus B spans an algebra and, by Proposition 2.2, the convexotonic map f of equation 

(5.15) is a bianalytic map f : int(BB) → int(DB). On the other hand, BB = BE = BA. 

Thus, as f : int(BE) → int(DA) is bianalytic, DB = DA. Since A is minimal defining for 

DA and A and B have the same size, B is minimal for DA. Hence A and B are unitarily 

equivalent by Lemma 3.1. From the form of B, it is evident that r ≥ max{d, e}. On the 

other hand, if r > d +e, then B must have 0 as a direct summand and so is not minimal. 

Thus r ≤ d + e. �
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5.3. Corollary 1.3

This subsection begins by illustrating Corollary 1.3 in the case of free automorphism 

of free matrix balls and free polydiscs before turning to the proof of the corollary.

5.3.1. Automorphisms of free polydiscs

Let {e1, . . . , eg} denote the usual orthonormal basis for Cg and let Ej = eje∗
j . The 

spectraball BE is then the free polydisc with

int(BE(n)) = {X ∈ Mn(C)g : ‖Xj‖ < 1}.

Let b ∈ int(BE(1)) = D
g be given.

In the setting of Corollary 1.3, we choose C = E. If V , W are g × g unitary matrices 

such that equation Corollary 1.3(b) holds, then there exists a g × g permutation matrix 

Π and unitary diagonal matrices ρ and μ such that W = Πρ and V = μΠ. We can in 

fact assume μ = Ig. It is now evident that item (a) of Corollary 1.3 holds and determines 

Ξ. Conversely, given a triple (b, Π, ρ), where b ∈ D
g, Π is a g × g permutation matrix 

and ρ is a diagonal unitary matrix, the equations (b) and (a) of Corollary 1.3 hold with 

W = Πρ and V = Π. Hence the automorphisms of BE are determined by triples (b, Π, ρ).

By pre (or post) composing with a permutation, we may assume Π = Ig. In this 

case M is the g × g diagonal matrix with diagonal entries Mjj = ρj(1 − |bj |2) and 

Ξk = −ρjb∗
j Ek. The corresponding convexotonic map ψ(x) = x(I −ΛΞ(x))−1 has entries

ψj(x) = xj(1 + c∗
j xj)−1,

where cj = ρjb∗
j . Thus the mapping ϕ(x) = ψ(x) · M + b has entries,

ϕj(x) = ρjxj(1 + c∗
j xj)−1(1 − |bj |2) + bj = ρj(xj + cj)(1 + c∗

j xj)−1,

where cj = ρjb∗
j . Hence, the automorphisms of the free polydisc are given by

ϕ(x) =
(

ρπ(1)(xπ(1) + cπ(1))(1 + c∗
π(1)xπ(1))

−1, . . . ,

ρπ(g)(xπ(g) + cπ(g))(1 + c∗
π(g)xπ(g))

−1,
)

for c = (c1, . . . , cg) ∈ D
g, unimodular ρj and a permutation π of {1, . . . , g}.

5.3.2. Automorphisms of free matrix balls

Let (Eij)d,e
i,j=1 denote the matrix units in Md×e(C) and view E ∈ Md×e(C)de. We 

consider automorphisms of BE , the free d × e matrix ball.

Before proceeding further, note, since {Eij : 1 ≤ i ≤ d, 1 ≤ j ≤ e} spans all of 

Md×e(C), by the reverse implication in Corollary 1.3, any choice of b in the unit ball 
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of Md×e(C) and d × d and e × e unitary matrices W and V determines uniquely a 

g × g invertible matrix M satisfying the identity of item (b) of Corollary 1.3. Likewise 

a convexotonic tuple is uniquely determined by the identity of item (a). The resulting 

bianalytic automorphism ϕ of BE satisfying ϕ(0) = b and ϕ′(0) = M is then given by 

the formula in Corollary 1.3. Our objective in the remainder of this example is to show 

this formula for ϕ agrees with that of [45, Theorem 13]. Doing so requires passing back 

and forth between row vectors of length de and matrices of size d × e.

First note that

ΛE(b) = b.

From item (b) of Corollary 1.3 (which defines M in terms of b, V and W ),

∑

u,v

M(i,j),(u,v)Eu,v = (M · E)i,j

= DΛE(b)∗W Ei,jV
∗DΛE(b)

=
∑

u,v

[e∗
uDΛE(b)∗W ei] [e∗

jV
∗DΛE(b)ev] eue∗

v.

Hence,

M(i,j),(u,v) = [e∗
uDΛE(b)∗W ei] [e∗

jV
∗DΛE(b)ev].

Next observe that,

−EijV
∗ΛE(b)∗

W Est = −eie
∗
jV

∗b∗
W ese∗

t = −(e∗
jV

∗b∗
W es)Eit.

Hence, letting βjs = −(e∗
jV

∗b∗W es) for 1 ≤ j ≤ e and 1 ≤ s ≤ d, the tuple Ξ ∈ Mde(C)de

defined by (for 1 ≤ i, u ≤ d and 1 ≤ v ≤ e)

(Ξst)(i,j),(u,v) =

{
βjs v = t, u = i

0 otherwise,

satisfies the identity of equation item (a) of Corollary 1.3. Hence the free bianalytic 

automorphism of BE determined by b, W and V is

ϕ(x) = ψ(x) · M + b (5.17)

where ψ = x(I − ΛΞ(x))−1 is the convexotonic map determined by Ξ.

We next express formula for ϕ in equation (5.17) in terms of the canonical matrix 

structure on BE . Given a matrix y = (yij)d,e
i,j=1, let

row(y) = (y11 y12 . . . y1e y21 . . . yde ) .
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Similarly, given z = (zj)de
j=1, let

matd×e(z) =

⎛
⎜⎜⎜⎜⎝

z1 z2 . . . ze

ze+1 ze+2 . . . z2e

...
... · · ·

...
z(d−1)e z(d−1)e+1 . . . zde

⎞
⎟⎟⎟⎟⎠

.

Since d and e are fixed in this example, it is safe to abbreviate matd×e to simply mat. 

For a tuple y = (ys,t)
d,e
s,t=1 of indeterminates,

(y · M)u,v =
∑

i,j

M(i,j),(u,v)yi,j

=
∑

i,j

[e∗
uDΛE(b)∗W ] yi,jeie

∗
j [V ∗DΛE(b)ev]

= e∗
u [DΛE(b)∗W ] mat(y) [V ∗DΛE(b)] ev.

Thus,

mat(y · M) = DΛE(b)∗W mat(y) V
∗DΛE(b). (5.18)

Let

Γ(i,j),(u,v)(x) :=
( d,e∑

s,t=1

Ξstxst

)
(i,j),(u,v)

=

{∑d
s=1 βjsxsv u = i

0 otherwise.

Thus, Γ is a de × de linear matrix polynomial of the form,

Γ = Id ⊗ β mat(x)

and (I − Γ)−1 = Id ⊗ (I − β mat(x))−1. In the formula for the convexotonic map ψ

determined by Ξ, the indeterminates x = (xst)s,t are arranged in a row and we find,

row(ψ(x)) = row(x)(I − ΛΞ(x))−1

= (x11 x12 . . . x1e x21 . . . xde )
(

I ⊗ (I − β mat(x))−1
)

=
(
x̂1(I − β mat(x))−1 . . . x̂d(I − β mat(x))−1

)
,

where x̂j = (xj1 . . . xje ). Thus,

row(x)(I − ΛΞ(x))−1

=
(

(mat(x)[I − β mat(x)]−1)11 (mat(x)[I − β mat(x)]−1)12 . . .

(mat(x)[I − β mat(x)]−1)de

)
.



J.W. Helton et al. / Journal of Functional Analysis 278 (2020) 108472 51

Hence, in matrix form,

mat(ψ(x)) = mat(x)(I − β mat(x))−1 = mat(x)(I + (V ∗b∗
W ) mat(x))−1.

Let c = W ∗bV and note

I − ΛE(b)ΛE(b)∗ = I − bb∗ = I − W cc∗
W

∗ = W (I − cc∗)W ∗ = W (I − ΛE(c)ΛE(c)∗)W ∗.

Thus,

DΛE(b)∗W = W DΛE(c)∗ (5.19)

and similarly V ∗DΛE(b) = DΛE(c)V
∗. Consequently, using, in order, equations (5.17), 

(5.18), and (5.19) together with the definition of c in the first three equalities followed 

by some algebra,

mat(ϕ(x)) = mat(ψ(x) · M) + b

= DΛE(b)∗W mat(ψ)V ∗DΛE(b) + b

= W [D∗
ΛE(c) mat(ψ)DΛE(c) + c]V ∗

= W DΛE(c)∗ [mat(ψ) + D−2
ΛE(c)∗

c]DΛE(c)V
∗

= W DΛE(c)∗ [mat(x)(I + c∗ mat(x))−1 + D−2
ΛE(c)∗

c]DΛE(c)V
∗

= W D−1
ΛE(c)∗

[D2
ΛE(c)∗

mat(x) + c(I + c∗ mat(x))] [I + c∗ mat(x)]−1DΛE(c)V
∗

= W (I − cc∗)− 1
2 [(1 − cc∗) mat(x) + c

+ cc∗ mat(x)][I + c∗ mat(x)]−1DΛE(c)V
∗

= W (I − cc∗)− 1
2 [mat(x) + c][I + c∗ mat(x)]−1(I − c∗c)

1
2 V

∗,

giving the standard formula for the automorphisms of BE that send 0 to b. (See, for 

example, [45].)

5.3.3. Proof of Corollary 1.3

Suppose E = (E1, . . . , Eg) ∈ Md×e(C)g and C = (C1, . . . , Cg) ∈ Mk×�(C)g are 

linearly independent and ball-minimal and ϕ : int(BE) → int(BC) is bianalytic.

Let Ĉ denote the tuple

Ĉj =

(
0k,k Cj

0�,k 0�,�

)
∈ Mr(C),

where r = k + �. Thus BC = DĈ and, since C is ball-minimal, Ĉ is minimal for DĈ by 

Lemma 3.2(3).
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Let b = ϕ(0) and for notational convenience, let Λ = ΛC(b) ∈ Mk×�(C). Set

G =

(
Ik Λ
0 DΛ

)−1

=

(
Ik −ΛD−1

Λ

0 D−1
Λ

)
∈ Mr(C), (5.20)

and observe that G ∗
LC(b)G = I and therefore LC(b)−1 = G G ∗. Hence there is a 

unitary matrix T such that G = LE(b)− 1
2 T . It follows from Proposition 3.3, letting 

A ∈ Mr×r(C)g denote the g-tuple with entries

Aj = G
∗

(
0 (M · C)j

0 0

)
G ∈ Mr(C)g, (5.21)

and M = ϕ′(0), that the inverse of the mapping λ(x) = x · M + b is an affine linear 

bijection from BC = DĈ to DA and A is minimal for DA.

The mapping

f := λ−1 ◦ ϕ : int(BE) → int(DA)

is a free bianalytic mapping with f(0) = 0 and f ′(0) = I, where E is ball-minimal 

and A is minimal for DA. An application of Theorem 1.1 now implies that there is a 

convexotonic tuple Ξ such that equation (1.1) holds, f is the corresponding convexotonic 

map and there are unitaries V and W of size r such that

A = W

(
0d,r−e E

0r−d,r−e 0r−d,e

)
V ∗. (5.22)

In particular, ϕ(x) = f(x) · M + b.

From equation (5.22),

∑
A∗

j Aj = V

(
0 0
0

∑
j E∗

j Ej

)
V ∗

and consequently rk
∑

A∗
j Aj = rk

∑
E∗

j Ej . Since E is ball-minimal, ker(E) = {0}. 

Equivalently, rk
∑

E∗
j Ej = e. On the other hand, from equation (5.21),

∑
A∗

j Aj = G
∗

(
0 0
0 (M · C)∗

j Γ(M · C)j

)
G ,

where Γ is the (1, 1) block entry of G G ∗. Observe that Γ is positive definite and, since 

C is ball-minimal, ker(M · C) = {0}. Hence rk
∑

A∗
j Aj = �. Thus e = �. Computing ∑

AjA∗
j using equation (5.22) shows rk

∑
AjA∗

j = d. On the other hand, using equation 

(5.21),

g∑

j=1

AjA∗
j = G

(∑g
j=1(M · C)jD−2

Λ (M · C)∗
j 0

0 0

)
G

∗.
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Since C is k × � and ball-minimal, ker((M · C)∗) = {0} and D−2
Λ is positive definite, 

rk
∑g

j=1(M · C)jD−2
Λ (M · C)∗

j = k. Hence d = rk
∑g

j=1 AjA∗
j = k. Thus E and C have 

the same size d × e.

Since E and C are both d × e and r = d + e, the matrices V and W decompose as

V =

(
V11 V12

V21 V22

)
, W =

(
W11 W12

W21 W22

)

with respect to the decomposition C
r = C

d ⊕ C
e. In particular, Vjj and Wjj are all 

square. Comparing equation (5.22) and equation (5.21) gives

(
W11EjV ∗

12 W11EjV ∗
22

W21EjV ∗
12 W21EjV ∗

22

)
=

(
0 (M · C)jD−1

Λ

0 −D−1
Λ Λ∗(M · C)jD−1

Λ

)
. (5.23)

Multiplying both sides of equation (5.23) by (W ∗
11 W ∗

21 ) and using the fact that W is 

unitary shows,

EjV ∗
12 = 0.

Since E is ball-minimal and 
∑

E∗
j EjV ∗

12 = 0 we conclude that V12 = 0. Since V is 

unitary, V22 is isometric and since V22 is square (e × e) it is unitary (and thus V21 = 0). 

Further,

W11EjV ∗
22 = (M · C)jD−1

Λ

W21EjV ∗
22 = −D−1

Λ Λ∗(M · C)jD−1
Λ .

(5.24)

Thus, W21EjV ∗
22 = −D−1

Λ Λ∗W11EjV ∗
22 and hence W21Ej = −D−1

Λ Λ∗W11Ej . It follows 

that

W21

∑
EjE∗

j = −D−1
Λ Λ∗W11

∑
EjE∗

j .

Thus, again using that E is ball-minimal (so that ker(E∗) = {0}),

W21 = −D−1
Λ Λ∗W11.

Hence,

I = W ∗
11W11 + W ∗

21W21 = W ∗
11[I + ΛD−2

Λ Λ∗]W11 = W ∗
11D−2

Λ∗ W11

and, since W11 is d × d, we conclude that it is invertible and

W11W ∗
11 = D2

Λ∗ .

Consequently there is a d × d unitary W such that
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W11 = DΛ∗W

W21 = −D−1
Λ Λ∗DΛ∗W = −Λ∗

W .
(5.25)

Combining the first bits of each of equations (5.24) and (5.25) and setting V = V22 gives 

Corollary 1.3(b). Namely,

(M · C)j = DΛ∗W EjV
∗DΛ.

Observe (using E and C have the same size) that,

A = W

(
E 0
0 0

) (
0e×d Ie

Id 0d×e

)
V ∗.

The tuple A is, up to unitary equivalence, of the form of equation (1.3) where

U =

(
0 V ∗

22
V ∗

11 0

) (
W11 W12

W21 W22

)
=

(
V ∗W21 ∗

∗ ∗

)
.

Thus, U11 = V ∗W21 = −V ∗Λ∗W . Since the pair (A, Ξ) satisfies equation (1.1),

(
Ek 0
0 0

)
U

(
Ej 0
0 0

)
=
∑

s

(Ξj)k,s

(
Es 0
0 0

)
,

item (a) holds.

To prove the converse, suppose E, C ∈ Md×e(C)g and b ∈ BC(1) are given and there 

exists an invertible M ∈ Mg(C), a convexotonic tuple Ξ ∈ Mg(C)g and unitaries W and 

V such that items (a) and (b) of Corollary 1.3 hold. Let Λ = ΛC(b) and define G and 

A as in equations (5.20) and (5.21) respectively. The map λ(x) = x · M + b is again an 

affine linear bijection from DA to BC .

Define W11 and W21 by equation (5.25). It follows that W11W ∗
11+W21W ∗

21 = I. Choose 

W12 and W22 such that W = (Wij)2
i,j=1 is a (block) unitary matrix. Let V22 = V and 

take any unitary V11 (of the appropriate size) and set

V =

(
V11 0
0 V22

)
.

Next, using item (b), the definitions of W11 and W12 and D−1
Λ Λ∗DΛ∗ = Λ∗,

Ak = G
∗

(
0 (M · C)k

0 0

)
G =

(
0 (M · C)kD−1

Λ

0 −D−1
Λ Λ∗(M · C)kD−1

Λ

)

=

(
0 DΛ∗W EkV ∗

0 −Λ∗W EkV ∗

)
=

(
0 W11EkV ∗

0 W21EkV ∗

)
.

Thus, using item (a),
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AjAk =

(
0 W11EjV

∗W21EkV ∗

0 W21EjV
∗W21EkV ∗

)
=
∑

s

(Ξk)j,s

(
0 W11EsV

∗

0 W21EsV
∗

)
=
∑

s

(Ξk)j,sAs.

Thus A spans an algebra with multiplication table given by Ξ. Consequently f(x) =

x(I − ΛΞ(x))−1 is convexotonic from int(BA) to int(DA) by Proposition 2.2. On the 

other hand, BA = BE , since

A∗
j Ak =

(
0 0
0 V E∗

j EkV ∗

)

(because W ∗
11W11 + W ∗

21W21 = I). Thus f is convexotonic from int(BE) to int(DA). 

Finally, ϕ = λ ◦f is convexotonic from int(BE) to int(BC) with ϕ(0) = b and ϕ′(0) = M .

The uniqueness is well known. Indeed, if ϕ and ζ are both bianalytic from BE →

BC , send 0 to b and have the same derivative at 0, then f = ϕ ◦ ζ−1 is an analytic 

automorphism of BC sending 0 to 0 and having derivative the identity at 0. Since BC is 

circular, the free version of Cartan’s Theorem [24] says f(x) = x and hence ζ = ϕ. �

6. Convex sets defined by rational functions

In this section we employ a variant of the main result of [32] to extend Theorem 1.1

to cover birational maps from a matrix convex set to a spectraball. A free set is matrix 

convex if it is closed with respect to isometric conjugation. We refer the reader to [17,

21,27,43,48] for the theory of matrix convex sets. For expository convenience, by free 

rational mapping p : M(C)g → M(C)g we mean p =
(
p1 p2 . . . pg

)
where each 

pj = pj(x) is a free rational function (in the g-variables x = (x1, . . . , xg)) regular at 0. 

Theorem 6.1 immediately below is the main result of this section. It is followed up by 

two corollaries.

Theorem 6.1. Suppose q : M(C)g → M(C)g is a free rational mapping, C ⊆ M(C)g

is a bounded open matrix convex set containing the origin and E ∈ Md×e(C)g. If E is 

linearly independent, C ⊆ dom(q) and q : C → int(BE) is bianalytic, then there exists 

an r ≤ d +e and a tuple A ∈ Mr(C)g such that C = int(DA) and q is, up to affine linear 

equivalence, convexotonic.

Corollary 6.2. Suppose p : M(C)g → M(C)g is a free rational mapping, E ∈ Md×e(C)g

is linearly independent and let

C := {X : X ∈ dom(p), ‖ΛE(p(X))‖ < 1}.

Assume C is bounded, convex and contains 0. If Xk ∈ C (n) and the sequence (Xk)k

converges to X ∈ ∂C implies limk→∞ ‖ΛE(p(Xk))‖ = 1, then there exists an r ≤ d + e

and a tuple A ∈ Mr(C)g such that C = int(DA) and p : int(DA) → int(BE) is bianalytic 

and, up to affine linear equivalence, convexotonic.
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Proof. By assumption p : C → int(BE) is a proper map. By [24, Theorem 3.1], p is 

bianalytic. Hence Corollary 6.2 follows from Theorem 6.1. �

Corollary 6.3. Suppose p : M(C)g → M(C)g is a free polynomial mapping, E ∈

Md×e(C)g is linearly independent and let

C := {X : ‖ΛE(p(X))‖ < 1}.

If C is bounded, convex and contains 0, then there exists an r ≤ d + e and a tuple 

A ∈ Mr(C)g such that C = int(DA) and p : int(DA) → int(BE) is bianalytic and, up to 

affine linear equivalence, convexotonic.

Proof. By hypothesis p : C → int(BE). Let X ∈ ∂C be given. By convexity and conti-

nuity p(tX) ∈ int(BE) for 0 ≤ t < 1 and p(X) ∈ BE . If p(X) ∈ int(BE), then there exists 

t∗ > 1 such p(t∗X) ∈ int(BE). But then 0, t∗X ∈ C and X /∈ C , violating convexity of 

C . Hence p(X) ∈ ∂BE and consequently p is a proper map. Thus Corollary 6.3 follows 

from Corollary 6.2. �

The proof of Theorem 6.1 given here depends on two preliminary results. Let C (<x, y )>

denote the skew field of free rational functions in the freely noncommuting variables 

(x, y) = (x1, . . . , xg, y1, . . . , yg). There is an involution qon C (<x, y )> determined by qxj =

yj . A p ∈ C (<x, y )> is symmetric if qp = p. An important feature of the involution is the 

fact that, if p ∈ C (<x, y )> and (X, X∗) ∈ dom(p), then qp(X, X∗) = p(X, X∗)∗ and p is 

symmetric if and only if qp(X, X∗) = p(X, X∗) for all (X, X∗) ∈ dom(p) ∩ dom(qp). These 

notions naturally extend to matrices over C (<x, y )>.

Proposition 6.4 below is a variant of the main result of [32]. Taking advantage of 

recent advances in our understanding of the singularities of free rational functions (e.g., 

[55]), the proof given here is rather short, compared to that of the similar result in [32].

Proposition 6.4. Suppose s(x, y) is a μ ×μ symmetric matrix-valued free rational function 

in the 2g-variables (x1, . . . , xg, y1, . . . , yg) that is regular at 0. Let

S = {X ∈ M(C)g : (X, X∗) ∈ dom(s), s(X, X∗) 	 0},

let S0 denote the (level-wise) connected component of 0 of S, and assume S0(1) �= ∅. If 

each S0(n) is convex, then there is a positive integer N and a tuple A ∈ MN (C)g such 

that S0 = int(DA).

Proof. From [37,55] the free rational function s has an observable and controllable real-

ization. By [33], since s is symmetric, this realization can be symmetrized. Hence, there 

exists a positive integer t, a tuple T ∈ Mt(C)g, a signature matrix J ∈ Mt(C) (thus 

J = J∗ and J2 = I) and matrices D and C of sizes μ × μ and t × μ respectively such 

that
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s(x, y) = D + C∗LJ,T (x, y)−1C

and dom(s) = {(X, Y ) : det(LJ,T (X, Y )) �= 0}, where

LJ,T (x, y) = J − ΛT (x) − ΛT ∗(y) = J −
∑

Tjxj −
∑

T ∗
j yj .

Let s̃(x, y) = s(x, y)−1. Thus s̃(x, y) is also a μ ×μ symmetric matrix-valued free rational 

function. It has a representation,

s̃(x, y) = D̃ + C̃∗LJ̃,T̃ (x, y)−1C̃,

with dom(s̃) = {(X, Y ) : det(LJ̃,T̃ (X, Y )) �= 0}. Let

Q(x) =
(J

2
− ΛT (x)

)
⊕
( J̃

2
− ΛT̃ (x)

)
,

let P (x, x∗) = Q(x) + Q(x)∗, let I = {X : det(P (X)) �= 0} and let I 0 denote its 

connected component of 0. Observe that {(X, X∗) : X ∈ I } = {X : (X, X∗) ∈ dom(s) ∩

dom(s̃)}. In particular, if X ∈ I 0, then (X, X∗) ∈ dom(s) ∩ dom(s̃). On the other 

hand, if (X, X∗) ∈ dom(s) and s(X, X∗) 	 0, then s(X, X∗) is invertible and hence 

(X, X∗) ∈ dom(s̃). Hence, if X ∈ S0, then (X, X∗) ∈ dom(s) ∩ dom(s̃) too.

Suppose X ∈ S0. Thus tX ∈ S0 for 0 ≤ t ≤ 1 by convexity. It follows that t(X, X∗) ∈

dom(s) ∩ dom(s̃). Hence tX ∈ I for 0 ≤ t ≤ 1. Thus X ∈ I 0 and S0 ⊆ I 0.

Arguing by contradiction, suppose there exists X ∈ I 0 \ S0. It follows that there is 

a (continuous) path F in I 0 such that F (0) = 0 and F (1) = X. There is a smallest 

0 < α ≤ 1 with the property Y = F (α) is in the boundary of S0. Since Y ∈ I 0, 

(Y, Y ∗) ∈ dom(s). Since Y /∈ S0, s(Y, Y ∗) � 0 is not invertible. It follows that Y ∈ I 0, 

but (Y, Y ∗) /∈ dom(s̃), a contradiction. Hence I 0 = S0 is the component of the origin 

of the set of X ∈ M(C)g such that P (X) is invertible. By a variant of the main result 

in [31], S0 is the interior of a free spectrahedron. �

Lemma 6.5. If q : M(C)g → M(C)g is a free rational mapping and E ∈ Md×e(C)g is 

linearly independent, then

(1) the domains of q and Q(x) := ΛE(q(x)) coincide;

(2) dom(qq) = dom(q)∗ := {X : X∗ ∈ dom(q)}; and

(3) the domain of

r(x, y) :=

(
Id×d Q(x)
qQ(y) Ie×e

)
(6.1)

is dom(q) × dom(q)∗ = {(X, Y ) : X, Y ∗ ∈ dom(q)}.
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Proof. The inclusion dom(q) ⊆ dom(Q) is evident. To prove the converse, let 1 ≤ k ≤ g

be given. Using the linear independence of {E1, . . . , Eg}, choose a linear functional λk on 

the span of {E1, . . . , Eg} such that λk(Ej) = 1 if j = k and 0 otherwise. It follows that 

the domain of λk(Q(x)) = qk(x) contains dom(Q). Hence dom(Q) ⊆ dom(q), proving 

item (1).

Item (2) is evident as is the inclusion dom(r) ⊇ dom(q) ×dom(q)∗ of (3). For 1 ≤ j ≤ g, 

let

Fj =

(
0 Ej

0 0

)

and let Fj = F ∗
j−g for g < j ≤ 2g. Observe that r(x, y) = ΛF (q(x), qq(y)). It follows from 

item (1) applied to (q(x), qq(y)) and F that

dom(r) = [dom(q) × M(C)g] ∩ [M(C)g × dom(qq)] = dom(q) × dom(q)∗,

proving item (3) and the lemma. �

Proof of Theorem 6.1. It is immediate that

C ⊆ S := {X : X ∈ dom(q), ‖ΛE(q(X))‖ < 1}.

Let S0 denote the connected component of S containing 0. Since C is open, connected 

and contains the origin, C ⊆ S0.

Let Q = ΛE ◦ p and let r denote the ((d + e) × (d + e) symmetric matrix-valued) free 

rational function defined in equation (6.1). By Lemma 6.5, {X : (X, X∗) ∈ dom(r)} =

dom(q) and moreover, for X ∈ dom(q), we have q(X) ∈ int(BE) if and only if r(X, X∗) 	

0. Thus,

S = {X : (X, X∗) ∈ dom(r), r(X) 	 0}.

Arguing by contradiction, suppose Y ∈ S0, but Y /∈ C . By connectedness, there is 

a continuous path F in S0 such that F (0) = 0 and F (1) = Y . Let 0 < α ≤ 1 be the 

smallest number such that X = F (α) ∈ ∂C . Since q : C → int(BE) is bianalytic, it 

is proper. Hence, if X ∈ dom(q), then q(X) ∈ ∂BE and consequently X /∈ S. On the 

other hand, if X /∈ dom(q), then X /∈ S. In either case we obtain a contradiction. Hence 

S0 ⊆ C .

Since C = S0 is convex (and so connected), Proposition 6.4 implies there is a positive 

integer N and tuple A ∈ MN (C)g such that C = int(DA). Since int(DA) is bounded, 

the tuple A is linearly independent. Without loss of generality, we may assume that A is 

minimal for DA. Since p−1 : int(DA) → int(BE) is bianalytic and A and E are linearly 

independent, Theorem 1.1 and Remark 1.2(a) together imply p−1, and hence p, is, up 

to affine linear equivalence, convexotonic and r ≤ d + e by Theorem 1.1. �
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Appendix A. Context and motivation

The main development over the past two decades in convex programming has been 

the advent of linear matrix inequalities (LMIs); with the subject generally going under 

the heading of semidefinite programming (SDP). SDP is a generalization of linear pro-

gramming and many branches of science have a collection of paradigm problems that 

reduce to SDPs, but not to linear programs. There is highly developed software for 

solving optimization problems presented as LMIs. In Rg sets defined by LMIs are very 

special cases of convex sets known as spectrahedra. However, as to be discussed, in the 

noncommutative case convexity is closely tied to free spectrahedra.

The study of free spectrahedra and their bianalytic equivalence derives motivation 

from systems engineering and connections to other areas of mathematics. Indeed the 

paradigm problems in linear systems engineering textbooks are dimension free in that 

what is given is a signal flow diagram and the algorithms and resulting software toolboxes 

handle any system having this signal flow diagram. Such a problem leads to a matrix 

inequality whose solution (feasible) sets D is free semialgebraic [16]. Hence D is closed 

under direct sums and simultaneous unitary conjugation, i.e., it is a free sets. In this 

dimension free setting, if D is convex, then it is a free spectrahedron [31,43]. For opti-

mization and design purposes, it is hoped that D is convex (and hence a spectrahedron), 

and algorithm designers put great effort into converting (say by change of variables) the 

problem they face to one that is convex.

If the domain D is not convex one might attempt to map it bianalytically to a free 

spectrahedron. The classical problems of linear control that reduce to convex problems 

all require a change of variables, see [52]. One bianalytic map composed with the inverse 

of another leads to a bianalytic map between free spectrahedra; thus maps between free 

spectrahedra characterize the non-uniqueness of bianalytic mappings from the solution 

set D of a system of matrix inequalities to a free spectrahedron.

Studying bianalytic maps between free spectrahedra is a free analog of rigidity prob-

lems in several complex variables [14,19,20,35,36,42]. Indeed, there is a large literature 

on bianalytic maps on convex sets. For example, Forstnerič [20] showed that any proper 

map between balls with sufficient regularity at the boundary must be rational. The 

conclusions we see here in Theorems 1.1, 1.3 and 2.1 are vastly more rigid than mere 

birationality.
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