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existence of such a map with a specified value and derivative
at a point. In particular, this result leads to a classification
of automorphism groups of ball-like free spectrahedra. The
proofs depend on a novel free Nullstellensatz, established
only after new tools in free analysis are developed and
applied to obtain fine detail, geometric in nature locally and
algebraic in nature globally, about the boundary of ball-like
free spectrahedra.
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1. Introduction

Fix a positive integer g. For positive integers n, let M,,(C)? denote the set of g-tuples
X = (X1,...,X,) of n xn matrices with entries from C. Given a tuple E = (E1, ..., E,)
of d x e matrices, the sequence By = (Bg(n)), defined by
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Bp(n) ={X € M,(C)? : | Y _E; ® X;|| <1}

is a spectraball. The spectraball at level one, Bg(1), is a rotationally invariant closed
convex subset of CY9. Conversely, a rotationally invariant closed convex subset of CY
can be approximated by sets of the form Bg(1). A spectraball Bg is not determined
by Bg(1). For example, letting /4 = (1 0), Fy = (0 1), and E; = F}, we have
Bg(1) = Br(1) = B2, the unit ball in C2, but Bg(2) # Br(2). Indeed, Br (resp. Bg) is
the two variable row ball (resp. column ball) equal the set of pairs (X7, X3) such that
X X{ + XoX5 < I (vesp. X7 X1 + X3Xo < I), where the inequality T' > 0 indicates
the selfadjoint matrix T is positive semidefinite. Another well-known example is the
free polydisc. It is the spectraball By determined by the tuple E = (ejej, ..., ege;) €
M,(C)9, where {eq, ..., ey} is the standard orthonormal basis for C9. Thus Bg(n) is the
set of tuples X € M,,(C)? such that || X;|| <1 for each j.

For A € M4(C)9, let La(z,y) denote the monic pencil

Ly(x,y) = I—l—Zijj —1—214;%7

and let

Li(x) = La(w,2™) =T+ Ajz;+ Y Asa;

denote the corresponding hermitian monic pencil. The set D4(1) consisting of z € CY
such that L'?(x) > 0 is a spectrahedron. Spectrahedra are basic objects in a number of
areas of mathematics; e.g. semidefinite programming, convex optimization and in real
algebraic geometry [10]. They also figure prominently in determinantal representations
[12,22,47,53], in the solution of the Kadison-Singer paving conjecture [44], the solution
of the Lax conjecture [34], and in systems engineering [11,52].

For A € Myx.(C)?, the homogeneous linear pencil As(z) = >, Ajz; evaluates at
X e M,(C)9 as

A(X) =" A; ® X; € Max(C) @ My (C).
In the case A is square (d = e), the hermitian monic pencil L'§ evaluates at X as
LE(X) =T+ Aa(X) +Aa(X) =T+ Y A;0X;+> AT@X;.
Thus L'#(X)* = L%(X). Similarly, if Y € M, (C)9, then Ls(X,Y) = I + Aa(X) +
A4« (Y). In particular, L¥(X) = La(X, X*).
The free spectrahedron determined by A € M, (C)? is the sequence of sets Dy =

(Da(n)), where

Da(n) = {X € M,(C)? : L'S(X) = 0}.
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The spectraball By is a spectrahedron since Bg = Dp for B = (8 1;3 ). Free spectrahedra
arise naturally in applications such as systems engineering [16] and in the theories of
matrix convex sets, operator algebras and operator spaces and completely positive maps
[17,27,48,49]. They also provide tractable useful relaxations for spectrahedral inclusion
problems that arise in semidefinite programming and control theory such as the matrix
cube problem [8,15,28].

The interior of the free spectrahedron Dy is the sequence int(Da) = (int(Da(n))),,,
where

int(D4(n)) = {X € M,(C)?: LT$(X) = 0}

A free mapping ¢ : int(Dp) — int(Dy4) is a sequence of maps ¢, : int(Dg(n)) —
int(D4(n)) such that if X € int(Dg(n)) and Y € int(Dg(m)), then

e (3 1)) = (5 )

and if X € int(Dp(n)) and S is an invertible n x n matrix such that
STIXS = (S71X15,...,571X,8) € int(Dp(n)),
then
0n(STIXS) = S, (X)S.

Often we omit the subscript n and write only ¢(X). The free mapping ¢ is analytic if
each ¢, is analytic.

The central result of this article, Theorem 1.1, explicitly characterizes the free bian-
alytic mappings ¢ between int(Bg) and int(D,4). These maps are birational and highly
structured. Up to affine linear change of variable, they are what we call convexotonic
(see Subsection 1.1 below). In the special case that D4 = B¢ is also a spectraball, given
b € int(Bc) and a g x g matrix M, Corollary 1.3 gives explicit necessary and suffi-
cient algebraic relations between F and C' for the existence of a free bianalytic mapping
¢ @ int(Bg) — int(Be) satisfying ¢(0) = b and ¢'(0) = M. As an illustration of the
result, this corollary classifies, from first principles, the free automorphisms of the ma-
trix balls — the row and column balls are special cases — and of the free polydiscs. See
Remark 1.2(d) and Subsubsections 5.3.1 and 5.3.2.

There are two other results we would like to highlight in this introduction. Theo-
rem 1.6, establishes an equivalence between an algebraic irreducibility condition on the
defining polynomial of a spectraball and a geometric property of its boundary critical
in the study of bianalytic maps between free spectrahedra. Its proof requires detailed
information, both local and global, about the boundary of a spectraball, collected in
Section 4. As a consequence of Theorem 1.6, we obtain a version of the main result from
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[3] characterizing bianalytic maps between free spectrahedra that send the origin to the
origin with elegant irreducibility and minimality hypotheses on the free spectrahedra re-
placing our earlier cumbersome geometric conditions. See Theorem 1.5 in Subsection 1.3.
Another consequence of Theorem 1.6, and an essential ingredient in the proof of Theo-
rem 1.1, is an of independent interest Nullstellensatz. It is stated as Proposition 1.7 in
Subsection 1.5. Roughly, it says that a matrix-valued analytic free polynomial, singular
on the boundary of a spectraball, is 0.

1.1. Convexotonic maps

A g-tuple of g x g matrices (Z1,...,24) € My(C)? satisfying

g
EkE5 = ) (E))ksEs,
s=1
for each 1 < j, k < g, is a convexotonic tuple. The expressions p = ( pt o pId ) and

1

q=(q qY) whose entries are

P =Y we - Az@)te and  qia) = Y wgei(d + As(e) e

that is, in row form,
p(a) =a(I —As(z))™"  and  g=a(I +As(z))"},

are convexotonic maps. Here p evaluates at X € M,,(C)9 as

-1

g
p(X)=(X1 - Xg)[ILmn—) 50X,
j=1

and the output p(X) € My, g, (C) = M, (C)Y is interpreted as a g-tuple of nxn matrices.
It turns out the mappings p and ¢ are free rational maps (as explained in Section 2) and
inverses of one another (see [3, Proposition 6.2]).

Convexotonic tuples arise naturally as the structure constants of a finite dimensional
algebra. If A € M,(C)9 is linearly independent (meaning the set {A1,..., A} € M, (C)
is linearly independent) and spans an algebra, then, e.g. by Lemma 2.7 below, there is a
uniquely determined convexotonic tuple Z = (Z1,...,E,) € My(C)9 such that

g

AAj = (Ej)rsAs. (1.1)

s=1
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1.2. Free bianalytic maps from a spectraball to a free spectrahedron

A tuple E € Myx.(C)? is ball-minimal (for Bg) if there does not exist E’ of size
d x e with d +¢€ < d+ e such that Bg = Bg/. In fact, if E is ball-minimal and
B = Bg, then d < d' and e < €/, by Lemma 3.2(9)° and E is unique in the following
sense. Given another tuple F' € Myx.(C)?, the tuples E and F are ball-equivalent if
there exists unitaries W and V' of sizes d x d and e x e respectively such that F' = WEV.
Evidently if £ and F are ball-equivalent, then Bg = Bp. Conversely, if E and F are
both ball-minimal and Br = Bp, then E and F are ball-equivalent (see Lemma 3.2(9)
and more generally [21]).

Given A € M, (C)9, we say La (or L) is minimal for a free spectrahedron D if
D = Dy and if for any other B € M,.(C)9 satisfying D = Dp it follows that ' > r. A
minimal L4 for D4 exists and is unique up to unitary equivalence [26,57]. We can now
state Theorem 1.1, our principal result on bianalytic mappings from a spectraball onto a
free spectrahedron. Since the hypotheses of Theorem 1.1 are invariant under affine linear
change of variables, the normalizations f(0) = 0 and f/(0) = I are simply a matter
of convenience. Given B € My4(C)9, by a free bianalytic map f : int(Dp) — int(Da),
we mean f is a free analytic map and there exists a free analytic map ¢ : int(Dy) —
int(Dp) such that g,(fn(X)) = X and f,(g.(Y)) =Y for each n, X € int(Dp(n)) and
Y € int(Da(n)).

Theorem 1.1. Suppose E € Mgx.(C)9 and A € M,.(C)9 are linearly independent. If
frint(Bg) — int(Da) is a free bianalytic mapping with f(0) =0 and f'(0) = I, then f
s convezotonic.

If, in addition, A is minimal for Da, then there is convezotonic tuple = € My(C)9
such that equation (1.1) holds, and f is the corresponding convexotonic map, namely

f(@) = a(I — As(x) ™" (1.2)

In particular, {A1,..., Ay} spans an algebra.
If A is minimal for Ds and E is ball-minimal, then max{d,e} <r < d+ e and there
is an v X r unitary matriz U such that, up to unitary equivalence,

A:U(’SJ 8) (1.3)

Conversely, given a linearly independent E € Mgx.(C)9, an integer r > max{d, e}
and an r X r unitary matriz U, let A be given by equation (1.3). If there is a tuple = such
that equation (1.1) holds, then f of equation (1.2) is a free bianalytic map f : int(Bg) —
int(DA).

® See also [23, Section 5 or Lemma 1.2].
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Proof. See Corollary 2.5 and Section 5.2. O

Remark 1.2.

(a)

The normalizations f(0) = 0 and f’(0) = I, can easily be enforced. Given a g X g
matrix A and a tuple C' € Myx.(C)9, let A - C € Myx.(C)9 denote the tuple

(A-C)j = AjiCh. (1.4)
k

In the case f : int(Bg) — int(D4) is bianalytic, but f(0) =b# 0or f/(0) = M # I,
let A : Dy — Dp denote the affine linear map A(z) = x - M + b, where

F=M-(HAH) and §=L5(b)"V2

By Proposition 3.3, h = A= o f : int(Bg) — int(Dr) is bianalytic with h(0) = 0
and 7/(0) = I, and, if A is minimal for Dy, then B is minimal for Dp. In particular,
f is, up to affine linear equivalence, convexotonic.

Further, with a bit of bookkeeping the algebraic conditions of equations (1.3)
and (1.1) can be expressed intrinsically in terms of E and A. In the case Dy is a
spectraball, these conditions are spelled out in Corollary 1.3 below.

In the context of Theorem 1.1 (and Remark 1.2), f~! extends analytically to an
open set containing D4 and if D4 is bounded, then f extends analytically to an open
set containing Bg. The precise result is stated as Theorem 2.1 below. Theorem 2.1
is an elaboration on [3, Theorem 1.1].

Given A as in equation (1.3) and writing U = (U 1)3 -, in the natural block form,
equation (1.1) is equivalent to ExUi1E; =" (Z;)k,s Es.

Corollary 6.2 and Theorem 6.1 extend Theorem 1.1 to cases where the codomain
is matrix convex,® but not, by assumption, the interior of a free spectrahedron
assuming the inverse of the bianalytic map is rational.

Here is an example of a free spectrahedron that is not a spectraball, but is biana-
lytically equivalent to a spectraball. Let

00 1
E:IQ,E1:<(1) 8),U: 10 0
01 0
and set

A=U (g 8) € My(C)2.

6 In the present setting, matrix convex is the same as the convexity at each level.
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With £y = (8 (1)) and Z5 = 0, the tuples A and = satisfy equation (1.1) and the
corresponding convexotonic map is given by f(z1,22) = (z1,22 + 27). It is thus
bianalytic from int(Bg) to int(D4). Moreover, D4 is not a spectraball since D (1)

is not rotationally invariant. O

For a matrix T with ||T'|] < 1, let Dy denote the positive square root of I — T*T.
Thus, if T is k x £, then Dy is £ x £ and Dp~ is k X k.

Corollary 1.3. Suppose E € Mgy.(C)9 and C € Myxe(C)9 are linearly independent
and ball-minimal, b € int(Bc) and M € M,(C). There exists a free bianalytic mapping
¢ @ int(Bg) — int(Be) such that ¢(0) = b and M = ¢'(0) if and only if E and C have
the same size (that is, k = d and £ = e) and there exist d X d and e X e unitary matrices
W and ¥V respectively and a convezotonic g-tuple = € My(C)9 such that

(a) —Ej"//*Ac(b)*WEk = Zs(Ek)J}SES = (Ek . E)j; and
(b) Dacy W EjV*Dacy = 2y MjsCs = (M - C);,

for all 1 < 4.k < g. Moreover, in this case ¢ = 1« M + b, where v is the convezotonic
map associated to Z; i.e., P(x) = (I — A=(z))~L.

The proof of Corollary 1.3 appears in Subsubsection 5.3.3.

Remark 1.4.

(a) If Bg and Be are bounded (equivalently E and C are linearly independent [26,
Proposition 2.6(2)]), then any free bianalytic map ¢ : int(Bg) — int(B¢) is, up to
an affine linear bijection, convexotonic without any further assumptions (e.g., C
and F need not be ball-minimal). Indeed, simply replace E and C by ball-minimal
E’ and C’" with B = Bg and Beo: = Be and apply Corollary 1.3. The ball-minimal
hypothesis allows for an explicit description of ¢.

(b) While M is not assumed invertible, both the condition M = ¢’(0) (for a bianalytic
¢) and the identity of Corollary 1.3(b) (since E is assumed linearly independent)
imply it is.

(¢) Assuming F and C of Corollary 1.3 are ball-minimal, by using the relation between
E and C from Corollary 1.3(b), item (a) can be expressed purely in terms of C as

CiDy A Dy ). Ck € span{Ci, ..., Cy}. (1.5)

In particular, given a ball-minimal tuple C' € Myx.(C)9 and b € int(Bc), if equation
(1.5) holds then, for any choice of M, # and ¥ and solving equation (b) for E, there
is a free bianalytic map ¢ : int(Bg) — int(B¢) such that ¢(0) = b and ¢'(0) = M.
(d) Among the results in [45] is a complete analysis of the free bianalytic maps between
the free versions of matrix balls, antecedents and special cases of which appear
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elsewhere in the literature such as [29] and [50]. The connection between the results
in [45] on free matrix balls and Corollary 1.3 is worked out in Subsubsection 5.3.2.
Subsubsection 5.3.1 gives a complete classification of free automorphisms of free
polydiscs. O

1.8. Main result on maps between free spectrahedra

The article [3] characterizes the triples (p, A, B) such that p : D4 — Dp is bianalytic
under unconventional geometric hypotheses (sketched in Subsection 1.4 below), cf. [3,
§7]. Here we obtain Theorem 1.5 by converting those geometric hypotheses to algebraic
trreducibility hypotheses that we now describe.

For a tuple of rectangular matrices £ = (E1,...,Ey) € Max.(C)? denote

Qele) == A Whe@). Lot = ( 00y *47).
Ey
ker(E) := m ker(E;) =ker(| : |), ran(E)=ran((E1 ...Ey)).

Thus Lg(z,y) = Lr(x,y) where

r- (3 5)

We also let L% denote the hermitian monic pencil,
L% (z) :=Lg(x,2*) = Lp(z,z*) = LE(x)
and likewise
E(z) = Qp(z,2").
Observe Bg = DL := {X : Lg(X, X*) = 0} = Dp. Finally, for a monic pencil L4, let
Zr, = {(X,Y) 1 det(La(X,Y)) = 0}, 2, = {X : det(L{ (X)) = 0}.

We also use the notation Zg, = Z,,,.

Let C <x> denote the free algebra of noncommutative polynomials in the letters
x = {z1,...,24}. Thus elements of C <z> are finite C-linear combinations of words in
the letters {x1,...,24}. For each positive integer n, an element p of C <z> naturally
induces a function, also denoted p, mapping M, (C)Y — M, (C) by replacing the letter
Z1,...,Tg by n x n matrices Xi,..., X . In this way, we view p as a function on the
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disjoint union of the sets M, (C)9 (parameterized by n). When e > 1 there are non-
constant F' € C <ax>¢*¢ that are invertible, and the appropriate analog of irreducible
elements of C <z>¢*¢ reads as follows. An F' € C <z>°*¢ with det f(0) # 0 is an atom
[13, Chapter 3] if F' does not factor; i.e., F' cannot be written as F' = F}Fy for some
non-invertible Fy, Fy € C <x>°*¢. As a consequence of Lemma 3.2(8) below, we will see
that if Qg is an atom, ker(E) = {0} and ker(E*) = {0}, then FE is ball-minimal.

Theorem 1.5. Suppose A € My(C)9, B € M.(C)? and

(a) D4 is bounded;

(b) Qa and Qp are atoms, ker(B) = {0} and A* is ball-minimal;

(¢) t>1and p: int(tDa) — M(C)? and q : int(tDp) — M(C)9 are free bianalytic
mappings;

(d) p(0) =0, p'(0) =1, q(0) = 0 and ¢'(0) = I.

If q(p(X)) = X and p(q(Y)) =Y for X € Dy and Y € Dp respectively, then p is
convexotonic, A and B are of the same size d = e, and there exist d X d unitary matrices
Z and M and a convexotonic g-tuple Z such that

(1) p is the convezotonic map p = x(I — A=(x))~, where for each 1 < j, k < g,

Ae(Z =D A; =) (Ej)rsAs; (1.6)

S

in particular, the tuple R = (Z — I)A spans an algebra with multiplication table E,

ReR; =Y (5))k,sRs;

S

(2) B =M*ZA;M for1<j<g.
Proof. See Section 4.4. 0O
1.4. Geometry of the boundary vs irreducibility

At the core of the proofs of our main theorems in this paper is a richness of the
geometry of the boundary, dBg, of a spectraball, Bg. We shall show that a (rather
ungainly) key geometric property of the boundary of Bg is equivalent to the defining
polynomial Qg of Bg being an atom and ker(E) = {0}.

To describe the geometric structure involved, fix F € Mgy« .(C)9. The detailed bound-
ary 8/8\]; of Bg is the sequence of sets

OBp(n) = {(X,v) € M,(C)? x [C°®C"] : X € 0Bp, v #0, Q(X, X*)v=0}.
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Forn € N, let 8/1@(11) denote the points (X, v) in 8/8\1;(71) such that dim ker Q5 (X, X*)
= 1. For a vector v € C* ® C" = C*", partitioned as

for v, € C¢, define 7(v) = v1. The geometric property important to mapping studies is
that 7r(8/1[3\E) contain enough vectors to span C¢ or better yet to hyperspan C¢. Here a
set {ul, ..., u¢t1} of vectors in C¢ hyperspans C¢ provided each e element subset spans;
i.e., is a basis of C*.

Theorem 1.6. Let E € My« .(C)9. Then

(1) E is ball-minimal if and only if w(@) spans C*©.
(2) Qg is an atom and ker(E) = {0} if and only if m(01Bg) contains a hyperspanning
set for C©.

Proof. Part (1) is established in Proposition 4.2, while (2) is Proposition 4.4. O
1.5. A Nullstellensatz

Theorem 1.1 uses the following Nullstellensatz whose proof depends upon Theo-
rem 1.6.

Proposition 1.7. Suppose E = (En,...,Ey) € Myx.(C)? is ball-minimal and V €
C <x>*%¢ is a (rectangular) matriz polynomial. If V vanishes on OBg; that is V(X)y =0
whenever (X,v) € 0Bg, then V = 0.

Proof. See Subsection 5.1. O
1.6. An overview of the proof of Theorem 1.1

We are now in a position to convey, in broad strokes, an outline of the proof of
Theorem 1.1. The conversely direction is an immediate consequence of Proposition 2.2
(see Corollary 2.5) of Section 2. Its proof reflects the fact that convexotonic maps
are bianalytic between certain special spectrahedral pairs. Proposition (2.2) is also the
starting point for the proof of the more challenging converse. Given the tuple A, let
J = (Ji,...,Jn) denote a basis for the algebra spanned by A with J; = A;, for
1 < 5 < g. Proposition 2.2 says that D; and B; are bianalytic via the convexotonic
map associated to the convexotonic h-tuple = determined by the tuple J via equation
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(1.1) (with J in place of A). Starting with the free bianalytic map f : Bg — Dy, ob-
serve that G = povo f : Bg — By is a free proper map satisfying G(0) = 0 and
G'(0) = (I; Ogx(h—g)), where ¢ : Dy — Dy is the inclusion, since ¢(0) = 0 and
¢’ (0) = Ij,. An argument that uses Proposition 1.7 produces a representation for G that
can be thought of as an analog of the Schwarz Lemma (see equation (5.8)). In simple

cases,
G(z)=(z 0) (1.7)
from which it follows that the g-tuple e My4(C)? defined by
(Ei)st = (E)ses 1<hst<g

is convexotonic and thus A spans an algebra. Hence h = g, the map ¢ (and hence ¢~ 1)
is convexotonic and f = ¢~!. In general only a weaker version of equation (1.7) holds,
an inconvenience that does not conceptually alter the argument, but one that does make
the proof more technical.

2. Free rational maps and convexotonic maps

In this section we review the notions of a free set and free rational function and provide
further background on free functions and mappings. In particular, convexotonic maps are
seen to be free rational mappings. In Subsection 2.3 we show how algebras of matrices
give rise to convexotonic bianalytic maps between free spectrahedra. See Theorem 2.1.

2.1. Free sets, free analytic functions and mappings

Let M(C)9 denote the sequence (M, (C)9),,. A subset T" of M (C)9 is a sequence (T',,),,
where I',, € M,,(C)9. (Sometimes we write I'(n) in place of I',,.) The subset I is a free
set if it is closed under direct sums and simultaneous unitary similarity. Examples of
such sets include spectraballs and free spectrahedra introduced above. We say the free
set I' = ('), is open if each T, is open. Generally adjectives are applied level-wise to
free sets unless noted otherwise.

A free function f : ' — M(C) is a sequence of functions f, : I', — M, (C) that
respects intertwining; that is, if X € I',,, Y € I',,,, T : C™ — C", and

XT = (XiT,...,X,T) = (TY,...,TY,) = TY,

then f,(X)T =T f,,(Y). In the case I is open, f is free analytic if each f,, is analytic in
the ordinary sense. We refer the reader to [1,2,23,25,38,54] for a fuller discussion of free
sets and functions. For further results, not already cited, on free bianalytic and proper
free analytic maps see [24,29,40,46,50,51] and the references therein.
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A free mapping p : I' — M(C)" is a tuple p = (p' p? --- ph) where each

p’ : T — M(C) is a free function. The free mapping p is free analytic if each p’ is a free
analytic function. If h = g and A C M(C)9 is a free set, then p: T' — A is bianalytic if
p is analytic and p has an inverse, that is necessarily free and analytic, ¢ : A — T

2.2. Free rational functions and mappings

Based on the results of [37, Theorem 3.1] and [55, Theorem 3.5] a free rational function
regular at 0 can, for the purposes of this article, be defined with minimal overhead as
an expression of the form

r(z) = c* (I - As(a:))_lb, (2.1)

where, for some positive integer s, we have S € M (C)9 and b,c € C*. The expression
r is known as a realization. Realizations are easy to manipulate and a powerful tool
as developed in the series of papers [5-7] of Ball-Groenewald-Malakorn; see also [9,13].
The realization r is evaluated in the obvious fashion on a tuple X € M, (C)9 as long as
I — Ag(X) is invertible. Importantly, free rational functions are free analytic.

Given a tuple T' € M (C)9, let

Ip = {X € M(C)? : det(I — Ar(X)) # O} (2.2)

A realization 7(x) = ¢*(I — Ag)*li) is equivalent to the realization r as in (2.1) if r(X) =
7(X) for X € 5N F5. A free rational function is an equivalence class of realizations
and we identify r with its equivalence class and refer to it as a free rational function. The
realization (2.1) is minimal if s is the minimum size among all realizations equivalent
to r. By [37,55], if r is minimal and 7 is equivalent to 7, then .#§ O .#5. Moreover, the
results in [55] explain precisely, in terms of evaluations, the sense in which .#¢ deserves
to be called the domain of the free rational function r, denoted dom(r).

A free polynomial p is a free rational function regular at 0 and, as is well known,
its domain is M(C)9. If f and g are free rational functions regular at 0, then so are
f+ g and fg. Moreover, dom(f + g) and dom(fg) both contain dom(f) N dom(g) as a
consequence of [56, Theorem 3.10]. Free rational functions regular at 0 are determined by
their evaluations near 0; that is if f(X) = g(X) in some neighborhood of 0 in dom(f) N
dom(g), then f = g. In what follows, we often omit regular at 0 when it is understood
from context. We refer the reader to [37,55] for a fuller discussion of the domain of a free
rational function.

A free rational mapping p is a tuple of rational functions p = ( pt oo pI ) The
domain of p is the intersection of the domains of the p/. By [3, Proposition 1.11], if r is
a free rational mapping with no singularities on a bounded free spectrahedron D4, then
there is a ¢t > 1 such that r has no singularities on tDy4.
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2.3. Algebras and convexotonic maps

Theorem 2.1 below is an expanded version of [3, Theorem 1.1]. To begin we discuss a
sufficient condition for a tuple X € M,,(C)? to lie in dom(p), the domain of a convexo-
tonic mapping

p=(p' - p?)=a(—-A=z(x))"".
Since
9
p = ZIk [er(I = Az(z)'e],
k=1
it follows that 4= C Ndom(p’) = dom(p). Now suppose R € My(C)J and

fr.s,a,b) Gk,s,a,b, Pk € C <> and let r* denote the free rational function

(@) = frsas(@)es (I = Ar() " €] gros,an(®) + hi.

s,a,b

If 7 = p/ in some neighborhood of 0 lying in .#=z N .#g, then v/ and p’ represent the
same free rational function. In particular, £z C dom(p’) and therefore £ C dom(p).

Let ext(Dp) denote the sequence (ext(Dp(n))), where ext(Dp(n)) is the complement
of Dp(n). Likewise let 0Dp(n) denote the boundary of Dp(n) and let 9Dp denote the
sequence (0Dp(n))n.

Theorem 2.1. Suppose A, B € M,.(C)9 are linearly independent, U € M,.(C)9 is unitary
and B = U. If there exists a tuple E € My(C)9 such that

g

(U = DA =Y (5.2,

s=1

then = is convexotonic and the convexotonic maps p and q associated to = are bianalytic
maps between Dy and D in the following sense.

a) int(Dy) C dom(p), int(Dgy) C dom(q); and p : int(Dg) — int(Dsys) is bianalytic.
b) If X € ext(Dgy) Ndom(p), then p(X) € ext(Dsy).

(¢) If X € 0Dy Ndom(p), then p(X) € 0Dsy .

(d) If Ds(1) is bounded, then Dy C dom(p).

(
(

Before taking up the proof of Theorem 2.1, we prove the following proposition and
collect a few of its consequences that will be used in the sequel.

Proposition 2.2 ([}, Proposition 1.5]). Suppose J € My(C)9 is linearly independent and
spans an algebra with convezotonic tuple Z (as in equation (1.1) with J in place of A).
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Let p=x(I — A=(z))™! and ¢ = (I + A=(z))~! denote the corresponding convexotonic
maps.

(i) int(By) C dom(p) and p : int(By) — int(Dy).
(ii) Dy C dom(q) and q : int(Dy) — int(By) and ¢(0D;) C 0B;.
(iii) p : int(By) — int(Dy) and q : int(Dy) — int(By) are birational inverses of one
another.
(iv) If X € dom(p), but X ¢ int(By), then p(X) ¢ int(Dy).
(v) If Dy is bounded, then the domain of p contains By and p(0B;) C 9D .
(vi) If Y € dom(q), but Y ¢ Dy, then q(Y) ¢ By.

Lemma 2.3. Suppose F' € My(C)9. If I + Ap(X) + Ap(X)* = 0, then I + Ap(X) s
invertible.

Proof. Arguing the contrapositive, suppose I +Ap(X) is not invertible. In this case there
is a unit vector ~ such that

Ap(X)y = —7.

Hence,

(I +Ap(X)+Ap(X))y,7) = (Ar(X)™,7) = (v,Ap(X)y) =—1. O

Lemma 2.4. Let T € My(C). Then

(a) I+T+T* =0 if and only if I + T is invertible and ||(I + T)7'T| < 1;

(b) I+T+T* =0 if and only if I + T is invertible and ||(I +T)~'T| < 1.

(c) If |T|| < 1, then I — T is invertible and I + (I — T)~'T + ((I — T)~'T)" = 0.

(d) If|IT|| =1 and I —T is invertible, then I+ (I —T)*T + ((I — T)_lT)* is positive
semidefinite and singular.

Proof. Item (a) follows from the chain of equivalences,

[I+T)7'T| <1 <= I-(I+D)'T)(I+T)'T)" =0
= I-I+T)'TT*I+T)* =0
= ([+T)I+T) -TT* =0
= I+T+T"=0.

The proof of item (b) is the same.
The proof of (¢) is routine. Indeed, it is immediate that I — T is invertible and

I+ (I—T)_lT—I— ((I—T)—lT)* — (I_T)—l (I—TT*) (I_T)_* “ 0.
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The proof of item (d) is similar. O

Proof of Proposition 2.2. Compute

As(a@) As(a) = ; ¢ (@)zrd T = Z_j X_; ¢ () LZ_Z mk(%)sa] Ji
_ ;iqw)ma(m»s 3,
-y ; . éa . A-($))tsl(AE($))s,j] J
_ igxtw T As(@) MA@

As(g(x)) (I +Ay(x)) = Z D@l + As(@) M+ As(@)]e Ty = As(@).

Thus, as free (matrix-valued) rational functions regular at 0,
As(a(z)) = (I + Ay(2) 7 Ag(z) = F(). (2.3)

Since J is linearly independent, given 1 < k < g, there is a linear functional A such
that A(J;) =0 for j # k and A(Jy) = 1. Applying A to equation (2.3), gives

¢* () = \(F(x)). (2.4)
Since A(F'(z)) is a free rational function whose domain contains
2 ={X : I+ A;(X) is invertible},

the same is true for ¢*. (As a technical matter, each side of equation (2.4) is a rational
expression. Since they are defined and agree on a neighborhood of 0, they determine the
same free rational function. It is the domain of this rational function that contains 2. See
[55], and also [37], for full details.) By Lemma 2.3, Z contains D, (as X € D, implies
I+ A;(X) is invertible). Hence the domain of the free rational mapping ¢ contains D ;.
By Lemma 2.4 and equation (2.3), ¢ maps the interior of D into the interior of B; and
the boundary of D into the boundary of B;. Thus item (ii) is proved.
Similarly,

(I —Ay(z) " Ay(z) = Ay(p(a)). (2.5)
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Arguing as above shows the domain of p contains the set
& ={X:1—-A;(X) is invertible},

which in turn contains int(B;) (since |[A;(X)|] < 1 allows for an application of
Lemma 2.4). By Lemma 2.4 and equation (2.5), p maps the interior of B; into the
interior of Dy, proving item (i). Since p and ¢ are formal rational inverses of one an-
other, it follows from items (i) and (ii) that they are inverses of one another as maps
between D; and B, proving item (iii). Further, if X is in the boundary of B, then for
t € C and |t| < 1, we have p(tX) € int(D,) and

As(p(tX)) = (I — Ay (EX)) ™" Ay (X).

Assuming D is bounded, it follows that I — A ;(X) is invertible and thus, by Lemma 2.4,
X is in the domain of p and p(X) is in the boundary of D, proving item (v). Finally,
to prove item (iv), suppose X ¢ int(B;), but p(X) € int(D;). By item (i), there is a
Y € int(B;) such that p(Y) = p(X). By item (ii), p(Y) = p(X) € dom(q) and therefore,
Y =q(pY)) = q(p(X)) = X, a contradiction. The proof of (vi) is similar. O

The converse portion of Theorem 1.1 is an immediate consequence of Proposition 2.2,
stated below as Corollary 2.5.

Corollary 2.5. Suppose E € Myx.(C)9 is linearly independent, r > max{d, e}, the r x r
matriz U is unitary and
. 0 F
Ao (5.

If there exists a tuple = € My(C)9 such that equation (1.1) holds, then Z is convezotonic
and the associated convexotonic map p is a bianalytic mapping int(Bg) = int(Ba) —
int(D4). Moreover, Da C dom(q) and q(0Da) C OBa, where ¢ = x(I + A=(z)) ™" is the
inverse of p.

Proof. By the definition of A we have B4 = Bg. The rest follows by Proposition 2.2. 0O

In the case J does not span an algebra, we have the following variant of Proposition 2.2.
It says that each free spectrahedron can be mapped properly to a bounded spectraball
and is used in the proof of Theorem 1.1. Recall a mapping between topological spaces
is proper if the inverse image of each compact sets is compact. Thus, for free open sets
UC M(C) and YV C M(C)", a free mapping f : U — V is proper if each f, : U, — Vy
is proper. For perspective, given subsets Q C CY9 and A C C" (that are not necessarily
closed), and a proper analytic map ¢ : Q — A, if Q 3 2/ — 99Q, then ¥(z7) — JA. [42,
page 429].
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Corollary 2.6. Let A € My(C)? and assume A is linearly independent. Let Cyiq,...,Ch €
My(C) be any matrices such that the tuple J = (Ji,...,Jn) = (A1,...,A44,Cg41,...,Ch)
is a basis for the algebra generated by the tuple A. Let = € My (C)" denote the con-
vezotonic tuple associated to J, let p : int(B;) — int(Dy) denote the corresponding
convezotonic map, let q denote the inverse of p, and let v : int(Dy) — int(Dy) denote
the inclusion. Then we have the commutative diagram

int(By)

int(DA) —F int(DJ)

and the mapping

f@) =goua)= (a1 - x4 0 - 0) (I+iajxj)l (2.6)

is (injective) proper and extends analytically to a neighborhood of D 4.

Proof. By Proposition 2.2, p : int(By) — int(D;) is birational and the domain of its
inverse ¢ contains Dy and maps 0D into 05 ;. In particular ¢ is proper.
Given X € M(C)9, letting Y = (X 0),

h g
AY)=DJ0Y =Y 40X,

j=1 j=1

Hence L'7 (X 0)) = L'f(X) and it follows that X € int(Dy4) if and only if Y € int(Dy).
Hence, we obtain a mapping ¢ : int(D4) — int(D;) defined by «(X) =Y.

Fix m € N and suppose K C int(Dj(m)) is compact and let K, = t=}(K) C Da(m).
If (X™) is a sequence from K, then Y™ = (X" 0) is a sequence from K. Since K is
compact, (Y™), has a subsequence (Y™/); that converges to some Y € K. It follows that
Y =(X 0)e K Cint(Dy) for some X € K,. Hence (X™); converges to X and we
conclude that K, is compact. Thus ¢ is proper. Since ¢ is also proper, f = g o is too.
Letting z = (21, ..., 25) denote an h tuple of freely noncommuting indeterminates,

q(z) = 2(I + A=(2) ™

and thus f takes the form of equation (2.6). O
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2.4. Proof of Theorem 2.1

Lemma 2.7. Suppose G € Myx.(C)?9 is linearly independent, C € M.xq4(C) and
U e M, (C)9. If
g
GiCGj = (U;)0sGh,
s=1
then the tuple W is convexotonic. Moreover, letting T = CG € M.(C)9,
g
G/ T* = Z(w)g,sGs. (2.7)

s=1

In particular, if A € My(C)9 is linearly independent and spans an algebra, then the
tuple U uniquely determined by equation (1.1) is convexotonic.

Note that the hypothesis implies T spans an algebra (but not that T is linearly
independent).

Proof. Routine calculations give
g
(GeT)Te =D (901G Ti = > (9))00(Wr)1,sGs = Y (U Up)g s G

t=1 s,t=1

On the other hand

Go(T;Ty) = GC(G,Ty) = Z Go(Vy); Ty = Z(‘I’t)&s(‘l’k)Lth-

By independence of G,

and therefore

W0 =) (V)0 0s.
t

Hence ¥ is convexotonic.
A straightforward induction argument establishes the identity (2.7). O

Proposition 2.8. Suppose A, B € M;(C)? are linearly independent, U € M (C)9 is uni-
tary, B =UA and there exists a convexotonic tuple 2 € M,(C)?9 such that
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g
AU =D A; =) (5))e.As.

s=1

Letting p denote the associated convexotonic map, R the tuple (U —I)A =B — A and
Q(I) =1I- AR(x)7
(a) we have

(I 4+ Ap(p(x))Q(x) = I+ Aa(x);

(b) if Z € dom(p), then

(T+A5(p(2))Q(Z) = I+ Aa(Z), (2.8)

and

Q(2) L (p(2))Q(Z) = Li(Z); (2.9)

(c) if Z € M(C)9 and Q(Z) is invertible, then Z € dom(p) and equation (2.9) holds.

Proof. Item (a) is straightforward, so we merely outline a proof. From Lemma 2.7, for
words cand 1 < j < g,

Hence

from which it follows that, letting {ei,..., ey} denote the standard basis for C9,

S s=1j=1
e’} g o0 g
= Z Z zjlejAz(z)"es] = Z Z [Z (EY)j,sBslzja
n=0 j,s=1 n=0 |a|=n j,s=1
o g
= ZZle‘J Z R«
n=0j=1 la|=n
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In particular,

(I +Ap(p(@)))Q(z) = (I + Ap(p(@)))(I — Ar())
=1- AR(ZL’) + AB(.Z’) =1+ AA(I‘),
since R = B — A. This computation also shows if both [|A=(Z)|| < 1 and ||Ar(Z)]| < 1,
then equation (2.8) holds. Since both sides of equation (2.8) are rational functions,

equation (2.8) holds whenever Z € dom(p). Finally, using Ag(p(x))Q(z) = Ap(z) as
wellas R=B — Aand B=UA,

QZ)" L (p(2))Q(2) = Q™ (2)Q(2) + Q(Z)"Ap(Z) + Ap(X)"Q(2)
=1+ AA(Z)+AA(Z2) + Ap(Z2)"AB(Z) — Aa(Z)*Aa(2)
=L} (2),
a routine calculation shows that equation (2.8) implies equation (2.9).
Since B € M;(C)Y is linearly independent, for each 1 < k < g there exists a linear
functional Ay : M;(C) — C such that \i(Bjy) = 1 and A\x(B;) = 0 if j # k. For each F,

there is a matrix Wy € M;(C) such that Ay (T') = trace(T'Vy). Writing W), = 3 vk suj
for vectors ug s, vi,s € C?,

Me(T) = Z uy, T s
S
Let

i (@) = (uf o+ uf yAgwe) (I — Ar(x)) " vr.s — e (D).
l,s

Hence, for X € M, (C)¢ sufficiently close to 0, and with W = Q! and @}, = \; ® I,,,

PHX) = @ (Ap(p(X) = i ([t ® In + Aa(X)]W(X) — [ @ 1))

=D [uh ® T+ (uf A5 @ 1) (I @ X;)[ (I ® I = Ar(X)) ™ og,s ® 1]
l,s

— (D) @1, = r*(X).

Thus, in the notation of equation (2.2), #r C dom(p); that is, if Q(Z) = I — Ar(Z) is
invertible, then Z € dom(p), proving item (c). O

Proof of Theorem 2.1. That = is convexotonic follows from Lemma 2.7. Let p denote
the resulting convexotonic map. Let R = B — A = (U — I)A and Q(z) = I — Agr(x).
From Proposition 2.8,

QX)L (p(X)Q(X) = Ly (X), (2.10)
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holds whenever Q(X) is invertible.

Let X € int(Dy(n)) be given. The function Fx(z) = Ag(p((1 —2)X)) is a My(C) ®
M, (C)-valued rational function (of the single complex variable z that is regular at z = 1).
Suppose lim,_,o F'x(z) exists and let 7" denote the limit. In that case,

QUX)"(I+T+T)Q(X) = lim Q((1 — 2)X)"(I + Fx (2) + Fx(2)")Q((1 — 2)X)

z—0

=Ly(X) >0

and therefore Q(X) is invertible (and I + T + T™* > 0). Hence, if lim,_,¢ Fix(2) exists,
then Q(X) is invertible.

We now show the limit lim,_,o F'x (z) must exist, arguing by contradiction. Accord-
ingly, suppose this limit fails to exist. Equivalently, Fx(z) has a pole at 0. In this case
there exists a My(C) ® M, (C) matrix-valued function ¥(z) analytic and never 0 in a
neighborhood of 0 and a positive integer m such that Fx (z) = z~™¥(z). Since ¥(0) # 0,
there is a vector  such that (¥(0)~,~) # 0 (since the scalar field is C). Choose a real
number 6 such that & := e~""%(¥(0)v,~) < 0. Hence, for ¢ real and positive,

(Fx (te") + Fx (te)*)y,7)
=t ([e7™0W(te™) + ™0 (te?) ]y, )
=t [2(e7 "W (0)y,7)
+ (e O (e ) — W(O)}y, ) + €W (te ) — (0)], )]
< 27K + 04,

where d; tends to 0 as ¢ tends to 0. Hence, for 0 < t sufficiently small,
(LS (p((1 = te ™) X))y, 7) = ((I + Fx () + Fx (te’)*)v,7) <0,

contradicting the fact that (1 —te="?)X € int(Dy) N dom(p) for all 0 < ¢ sufficiently
small. At this point we have shown if X € int(Dy), then Q(X) is invertible and therefore,
by Proposition 2.8, X € dom(p). Further, if X € int(Dy), then, by equation (2.10),

QX)L (p(X))Q(X) = Ly (X) = 0

and thus L (p(X)) > 0; that is p(X) € int(Dsy). By symmetry, the same is true for g.
Consequently, p : int(Dy) — int(Dyg) is bianalytic with inverse ¢ : int(Dg) — int(Dy),
proving item (a).

If X € ext(Dy) N dom(p), then L (p(X)) # 0 by Proposition 2.8(b) and equation
(2.9), proving item (b).

Now suppose Dy (1) is bounded and Z € 0Dy (n). By [26, Proposition 2.4], Dy (n) is
also bounded. For 0 < ¢t < 1, we have tZ € dom(p) (by item (a)) and hence ¢, defined
on (0,1) by wz(t) := p(tZ), maps into int(Dgy(n)) and is thus bounded. It follows that
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Gz(t) = Axw(pz(t)) is also a bounded function on (0,1). Arguing by contradiction,
suppose Q(Z) = I — Ar(Z) is not invertible. Thus there is a unit vector ~ such that
Q(zZ)y = (1 —z)y. For 0 < t < 1, equation (2.10) gives,

(1 =)L (pz ()7, 7) = 1 — t{~{[Aa(Z) + Aa(Z) ]y, 7)]-

Since the left hand side converges to 0 as t approaches 1 from below, the right hand
equals 1 — ¢t. Hence

(1= t)( L (ez(t)v,7) =1,

and we have arrived at a contradiction, as the left hand side converges to 0 as ¢ tends to
1 from below. Hence Q(Z) is invertible. By Proposition 2.8 (¢), if Dy is bounded, then
Dy C dom(p), proving item (d).

Suppose X € dom(p) NIDy. Since dom(p) is open, tX € dom(p) for t € R sufficiently
close to 1. Further p(tX) € int(D4) for t < 1 and p(tX) € ext(Dgy) for ¢ > 1. By
continuity, p(X) € 0Dss, proving item (¢). O

3. Minimality and indecomposability

A monic pencil Ly = La(z,y) of size e is indecomposable if its coefficients
{A1, ..., Ag, AT, A} } generate M, (C) as a C-algebra.” A collection of sets {Si,. ..,
Sk} is irredundant if (), S; € S¢ for all £. A collection {L .1, ..., L s} of monic pencils
is irredundant if {D,; : 1 < j < k} is irredundant.

Lemma 3.1. Given B € M,(C)9, there exists a reducing subspace A for {Bi,..., By}
such that, with A = B| 4, the monic pencil L is minimal for Dg = D4.

If Ly and Lg are both minimal and D4 = Dpg, then A and B are unitarily equivalent.
In particular A and B have the same size.

Given a monic pencil La(z,y) = I+ Ajx;+) Ajy, there is a k and indecomposable
monic pencils L 45 such that

k
LA = @LAj - L®?=1Aj’
=1

where the direct sum is in the sense of an orthogonal direct sum decomposition of the
space that A acts upon. Moreover, L4 is minimal if and only if {La; : 1 < j < £} is
irredundant.

Proof. Zalar [57] (see also [26]) establishes this result over the reals, but the proofs work
(and are easier) over C; it can also be deduced from the results in [41] and [30]. O

7 Previously, in [41] such pencils were called irreducible.
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Note if F is ball-minimal then ker(E) = {0} and ker(E*) = {0}, an observation that
will be used repeatedly in the sequel.

Lemma 3.2. Let E be a g-tuple of dx e matrices and assume ker(E*) = {0} and ker(E) =

{0}

(1) We have

(A{E* ?> (é QOE> <(l) AIE> =Lg. (3.1)

(2) The monic pencil Lg is indecomposable if and only if Qg is an atom.

(3) E is ball-minimal if and only if LS is minimal.

(4) If Ae My(C)9 and A, Aj =0 for all1 < j,m < g then, dimrg A+ dimrg A* <N
and for any s > dimrg A and t > dimrg A* with s+t = N, there exists a tuple
F € Ms«+(C)9 such that A is unitarily equivalent to

(55)

(5) If La is minimal and Dy is a spectraball, then there exist ball-minimal tuples
FY. ... F* such that each Lp; is an indecomposable monic pencil, {Bp1,...,Bpr}
is irredundant and L a is unitarily equivalent to Lp1 & --- B Lpk.

(6) If A is ball-minimal, then L4 is minimal.

(7) If E is ball-minimal, then, up to unitary equivalence, Qg = Qg1 ® -+ D Qgr, where
the Qp; € C<x,y>%*% are atoms, ker(E7) = {0} for all j, and the spectraballs
Bgi are irredundant.

(8) If Qg is an atom, then E is ball-minimal.

(9) If E ball-minimal, F € Mgxe¢(C)9 and By = Bp, then there is a tuple R €
Mi—ayx(t—e)(C)? and unitaries U,V of sizes k x k and £ x £ respectively such that
BE Q BR and

E 0
F=U (0 R) V. (3.2)
In particular,

(a) d<kande</;
(b) if F € Myx.(C)9 is ball-minimal too, then E and F are ball-equivalent.

Item (9) can be interpreted in terms of completely contractive maps and as special
cases of the rectangular operator spaces of [21]. Indeed, letting & and .# denote the
spans of {E1, ..., Ey} and {F1, ..., F,} respectively, the inclusion Bg C Bp is equivalent
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to the mapping ® : & — .F defined by ®(E;) = F; being completely contractive. Hence
Bg = B if and only if ® is completely isometric.

Proof. (1) Straightforward.

(2) By (3.1), Qg and L g are stably associated, cf. [30, Section 4]. Hence L g does not
factor in C <z, y>(@+te)x(d+e) if and only if Qr does not factor in C <z, y>*¢ by [30,
Section 4]. Next, L g is indecomposable if and only if it does not factor and

ker((g f)) mker(<£* 8)) — {0}

([30, Section 2.1 and Theorem 3.4]). Thus Lg is indecomposable if and only if Qg does
not factor.

(3) Let Lp be minimal for Dp = Bg and let N denote the size of B. By [18, Theorem
1.1(2)] there exists positive integers s,¢ such that s +¢ = N and a tuple F € M,(C)9

such that
(0 F
5-(3 F)

Thus Bg = Br. On the other hand, with

0 E
=0 %)

Dy = Bg too. By minimality of B, s +t < d + e. If E is ball-minimal, then, since
Br = Bp, we have s +t > d + e and hence L'y = L' is minimal. On the other hand, if
L% is minimal, then Ly and Lp have the same size, N = s +¢ = d + ¢ and thus F is
ball-minimal.

(4) Let # = rg A and %, = rg A*. Since A, A; = 0 it follows that # and %, are
orthogonal and also that A,,#Z = 0 and A} %, = 0 for 1 < m < g. In particular,
dimZ + dim %, < N. Letting V and V, denote the inclusions of #Z and %, into C~
respectively,

0 0 V*AV,
A= <0 0 0 ) , (3.3)
0 0 0
with respect to the decomposition CV = (Z ® Z.)* ® # & %.. Now any choice of s >
dim #Z and t > dim %, with s+t = N applied to (3.3) gives the desired decomposition.

(5) Since L4 is minimal, by Lemma 3.1, L 4 is unitarily equivalent to L 1 @--- & L 4»
for some indecomposable irredundant monic pencils Ly1,...,Lax. Let N; denote the
size of A7. Now suppose Dy is a spectraball. Thus, there exists m, £ and a ball-minimal
tuple G € M,,x¢(C)? such that D4 = Bg. By item (3) LS is minimal for D 4. Thus
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0 G
B := (0 0) S Mm+g((j)g

is unitarily equivalent to A'@- - -® A* by Lemma 3.1. Since B,,B; = 0for 1 < j,m < g, it
follows that Aang = 0 for all j,m, ¢. By item (4), there exists s;, t; such that s;+t; = N;
and tuples 7 € M, ¢, (C)9 such that, up to unitary equivalence,

A = (8 %’) € My, (C)°.

Moreover, since L 4 is minimal and D4 = O?ZIBFJ, each F7 is ball-minimal.
(6) Given a tuple A € My(C)9, observe that X € B4 if and only if S® X € D4, where

0 1
5= (0 0) |
Thus, if B € M,(C)? and Dg = D4, then Bg = B4 and by ball-minimality, » > d.
Hence L 4 is minimal.

(7) Combine items (3), (5) and (2) in that order.

(8) By item (2), L g is indecomposable. For a pencil L, indecomposability of L implies
minimality of L™ by Lemma 3.1. Thus L’ is minimal and hence E is ball-minimal by
item (3).

(9) Let

0 F
4= (3 B) rmaicy

By item (3), L'Y = L% is minimal. Since LS defines Bg, there is a reducing subspace

M for

B= (O lg) € My+(C)?

such that the restriction of B to .# is unitarily equivalent to A by Lemma 3.1. Thus,
there is unitary Z € My(C) and a tuple C' € M(j4¢)—(a+e)(C)? such that, with respect
to the decomposition .4 & A,

(A 0
B=7 (O C)Z'

Since B,,B; = 0 for all j,m, we have C,,C; = 0 too. Further, using ball-minimality
of B, £ >k F*F =1k E*E + 1k C*C = e+ rk C*C. Thus dimrgC < ¢ — e. Likewise,
dimrg C* < k —d. By item (4), there exists a tuple R € Mj,_q)x (1—e)(C)? such that, up
to unitary equivalence,
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o~ (3 1)

Thus, letting G = (13 g) € Myxe(C)9,

(8 )x=x( 9

for some unitary matrix X. Writing X = (X Jk)? x—1 With respect to the decomposition
Ck @ C*, it follows that

X1G=FXo, Xo1G=0, FXo =0.

Hence F' X2 X5, = F and X{;X11G = G. Thus X;; is isometric on rg G and therefore
X1 extends to a unitary mapping U on all of C* such that UG = X;;G. Similarly,
X3, is isometric on rg F* and hence X3, extends to a unitary V on all of C* such that
VF* = X5, F*. Finally, UG = X11G = F X33 = F'V*. Hence equation (3.2) holds, which
implies Bg = Bp = Bg N Br. Thus By C Br and the remainder of item (9) follows. O

Minimality and indecomposability of monic pencils are preserved under an affine linear
change of variables.

Proposition 3.3. Consider a hermitian monic pencil L'y and an affine linear change of
variables X : ©x — xM + b for some invertible g x g matric M and vector b € C9. If
L% (b) = 0, then \™Y(Da) = Dp, where

F=M-(9AH) and $H=L5b)"Y2 (3.4)
Further,

(1) La is indecomposable if and only if Lp indecomposable;
(2) La is minimal if and only if Ly is minimal.

Proof. Equation (3.4) is proved in [3, §8.2].

Turning to item (1), let us first settle the special case M = I. If L4 is not indecom-
posable, then there is a common non-trivial reducing subspace .# for A. It follows that
A is reducing for L'{(b) and hence for F' = HAS.

Now suppose L is not indecomposable; that is, there is a non-trivial reducing sub-
space 4 for F' = $AS$). Since

HLE®) = 1)$H = H(Aa) + Aa (b)) = Ar(b) + Ar(b)",

we conclude that
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(I =L)"Y =H(LE(b) — DHAN C N,

Hence .4 is invariant for L'¢(b)~!. Since .4 is finite dimensional and L% (b)~! is invert-
ible, L'¢(b) ™! = 4 and consequently $.4 = 4. Because F' = $A§ it is now evident
that .4 is reducing for A.

Now consider the special case b = 0. A subspace .# reduces A if and only if it reduces
M - A. Combining these two special cases proves item (1).

Finally we prove item (2). By Lemma 3.1, L4 is unitarily equivalent to @ﬁ:l Ly,
where the L ,4; are indecomposable monic pencils. Now Lp is unitarily equivalent to
@221 Lri, where F/ = M - ($A7§). By item (1), each of these summands Ly; is
indecomposable. Furthermore, since ¥ is bijective it is clear that [, £i Dyr C Dy if
and only if (,_; Dpx C Drs. Therefore {L4; : 1 < j < £} is irredundant if and only
if {Lp; : 1< j < ¥} isirredundant. Hence L4 is minimal for D4 if and only if Lp is
minimal for Dp, again by Lemma 3.1. O

Example 3.4. Even with M = I, the property (1) of Proposition 3.3 fails for a general
positive definite $ and F as in (3.4). For example, let

-1

2 4 2 0 2 10 0
12 2 2 121 0
A=1o 0 2 4| H=l0o 1 2 1
00 1 2 00 1 2

Then L 4 is indecomposable, but since

SO OO
SO O
SO OO
O~ OO

the monic pencil Lg is clearly not. O

Remark 3.5. Suppose £ € Myyx.(C)9 and C € M,(C) is invertible. If E is ball-minimal,
then C' - E (see equation (1.4)) is ball-minimal. 0O

4. Characterizing bianalytic maps between spectrahedra

In this section we prove Theorem 1.5 and Proposition 1.6, stated as Propositions 4.2
and 4.4 below. A major accomplishment, exposited in Subsection 4.3, is the reduction of
the eig-generic type hypotheses of [3] to various natural and cleaner algebraic conditions
on the corresponding pencils defining spectrahedra.

Lemma 4.1. Let L4 be a monic pencil. The set {(X, X*) : X € Z° (n)} is Zariski dense
in the set Zp,(n) for every n. Likewise, {(X,X*) : X € 2§, (n)} is Zariski dense in
Zo,(n)={(X,Y) € M,(C)?» :det Qa(X,Y) = 0}.
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Proof. The first statement holds by [41, Proposition 5.2]. The second follows immediately
from the first. 0O

4.1. The detailed boundary

Let p be a hermitian d x d free matrix polynomial with p(0) = I;. Thus p €
C <z,y>%4 and p(X,X*)* = p(X,X*) for all X € M(C)9. The detailed boundary
of D, is the sequence of sets

dD,(n) == {(X,v) € M,(C)? x (C¥"\ {0}): X € D,, p(X,X*)v =0}

over n € N. The nomenclature and notation are somewhat misleading in that 8/D\p is
not determined by the set D, but by its defining polynomial p. Denote also

ﬁ(n) = {(X, v) € 8/’D\p(n) s dim ker(p(X, X)) = 1}.

—

For (X,v) € 0'D,(n), we call v the hair at X. Letting
712 M, (C)9 x C¥ — M,(C)Y and 7 : M,(C)J x CI" — Cn
denote the canonical projections, set
9'D,(n) = m (a/l\pp(n)) ., hairD,(n) = (a/l\pp(n)) .
Observe 8/8\]3(71) = @(n), etc.

4.1.1. Boundary hair spans

In this subsection we connect the notion of boundary hair to ball-minimality. Given
a tuple F € Myx.(C)9, a subset . C 9B is closed under unitary similarity if for each
n, each (X, v) GE/B\\E(n) and each n x n unitary U, we have (UXU*,(I.®@U)v) € .Z(n).

Assuming . C 1B is closed under unitary similarity, let

m(hair ) = {u €C:3neN, e S (n)NhairBeg(n): v=u®e; —&—ZW ®ej},

=2

where {e1,...,e,} is the standard basis for C™. Because . is invariant under unitary
similarity, the definition of 7(hair.#) does not actually depend on the choice of orthonor-
mal basis for C™. Thus, for instance, 7 (hair 9*Bg) is the set of those vectors u € C¢ such
that there exists an n, a pair (X,v) € M, (C)Y@®[C*®C™"] and a unit vector h € C™ such
that Q%% (X) = 0, dimker(Q% (X)) =1, Q% (X)v =0 and v = (I. ® h*)v. For notational

convenience we write m(hair Bg) as shorthand for 7(hair 918g).
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Proposition 4.2. A tuple E € My .(C)9 is ball-minimal if and only if w(hair Bg) spans
Ce and ker(E*) = {0}. Moreover, if w(hair Bg) spans C¢, then there exists a positive
integer r® and pairs (a®,y*) € a@) for 1 < a < e such that, writing v* = >,_; 6¢ @
er € C°®C™ the set {07 :1 < a<e} spans Ce.

Proof. Suppose F is ball-minimal and let ¢/ < e denote the dimension of the span of
m(hair Bg). Let

Te = {(X,X*): X € 9'Dg,, = 0'Bg}.
Let W denote the inclusion of span 7 (hair Bg) into C¢. Observe that
W Qe (x, Y)W = W*W — W*Ap-(y)Ap(2)W = Quw (z,y)-
Thus Br C Bgw and moreover (X,v) € 61DQ;—:\818E implies
Ew (X)W @ Do = (W* @ DQE(X)v =0,

so Te C 2L, - Since 'Dy,,, = 9'Dg,, = 0'Bg by equation (3.1), L (equivalently L)
is minimal by Lemma 3.2(3), and Tg is Zariski dense in Zp ., by [30, Corollary 8.5], it
follows that Zr,, C 2Zp,,,, . Since are convex sets containing 0 in their interiors, and their
boundaries are contained in Zy,, and Zt,,, respectively, the inclusion Z,, C Zr.,,
implies Bpw C Bg. Indeed, if X € Bgw but X ¢ Bg, then there is a 0 < ¢ < 1 such
that tX € 0Bg N Bepw. Thus (tX,tX*) € 21, C 2, . Consequently Q% (tX) has
a kernel and finally Q%(X) % 0, contradicting X € Bgw. Hence E and EW define
the same spectraball. Since EW is a d x €/-tuple and FE is ball-minimal and d X e,
Lemma 3.2(9) implies ¢’ > e. Thus ¢’ = e and w(hair Bg) spans Ce¢. If ker(E*) # {0}
then E is not ball-minimal. Hence we have shown, if E is ball-minimal, then 7 (hair Bg)
spans and ker(E*) = {0}.

To prove the converse, suppose F' € My ,(C)9 is not ball-minimal, but ker(F*) =
{0}. Let % C C* denote the span of m(hair Br). It suffices to show .#% # C*. Let
E € Mgx.(C)9 be ball-minimal with Bp = Bg. By Lemma 3.2(9), d < k and e < £ and,
letting d = k — d and ¢/ = £ — e, there is a tuple R € My« (C)9 and k x k and ¢ x £
unitary matrices U and V respectively so that equation (3.2) holds and Bg C Bg. Note
that e’ # 0 since ker(F*) = {0} and further

Qr=V (0 On V =V*(Qr®Qr)V.
Without loss of generality, we may assume V = 1.

8 While it is not needed here, r can be chosen at most e.
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Suppose X € 9'Br(n) and 0 # v € C* ® C™ is in the kernel of Q%¢(X). With respect
to the decomposition of C! @ C" = [C¢ ® C"] & [C¢ ® C"], decompose v = u @ u/.
It follows that 0 = QF(X)v = Q% (X)u ® Q¥(X)u' and hence both Q% (X)u = 0
and QF(X)u' = 0. Therefore, (5,) is in the kernel of @%(X). On the other hand,
X € 0Bg(n). Hence there is a 0 # w € C*® C™ such that Q"(X)w = 0. Thus 0 # ()
is in the kernel of Q%S(X). Since the dimension of the kernel of Q}(X) is one, v’ = 0
and therefore #% C C¢ @ {0} C C¢® C* = C".

To prove the moreover portion of the proposition, note that the assumption that the
m(hair Bg) spans implies the existence of nq,...,n. € N and pairs (a®,~v*) € M, (C)9 x
[C® @ C™=] such that, writing v* = Y_}'*, 07 @ e;, the set {6§ : 1 < a < e} spans C¢. By
choosing r = max{n, : 1 < a < e} and padding 6% and v* by zeros as needed, it can be
assumed that n, = r for all a. O

4.2. From basis to hyperbasis

Call an e + 1-element subset U = {u',...,u¢T'} of C¢ a hyperbasis if each e-element
subset of U is a basis. This notion critically enters the genericity conditions considered
in [3].

Lemma 4.3. Given E € Myx.(C)? and n € N, if Zg,(n) is an irreducible hypersurface
in M, (C)%9,

{(X,X*): X € 0'Br(n)}

is Zariski dense in Zg,(n), and 7(hair Bg) spans C¢, then w(hair Bg) contains a hyper-
basis for C¢.

Proof. By Proposition 4.2 there exist a positive integer r, tuples X!,..., X¢ € 9'Bg(r)
and vectors v/ = Y1, 6/ @ e, € ker(QS(X7)) C C¢® C", such that {6] : 1 < j < e}
spans C¢. Note too that (5{ = (I ® 0})d7, where {o1,...0,} is the standard orthonormal
basis for C".

If X € 0'Bg(n), then the adjugate matrix, adj(Q%(X)), is of rank one and its range is
ker(Q% (X)). Let M(;y denote the i-th column of a matrix M and supposey = Y, 6;®e;
spans ker(Q%(X)). It follows that (I ® o})adj(Q%(X*))s) = péy for some p € C.
Moreover, for every k = 1,...,e there exists 1 < i, < er such that ker(Q%(X*)) =
span(adj Q% (X*)) (i), and hence (I ®e}) adj(Q5(X*)) () = urdf for some py # 0. Now
consider

e
v(t, X,Y) =Yt (I ®0})adj(Qr(X,Y))q,) € C° (4.1)
k=1
as a vector of polynomials in indeterminates ¢t = (¢1,...,%.) and entries of (X,Y) (i.e.,

coordinates of M, (C)%9). Let {e1,...,e.} denote the standard basis for C¢. For every k
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we have v(eg, X*, X**) = (I ® of) adj(Q™*(X*))(i,) = urdF # 0. Since the complements
of zero sets are Zariski open and dense in the affine space, for each k the set Uy, = {t €
C9 : v(t, Xk X**) # 0} C CY is open and dense and thus so is (;_; Uy. Hence there
exists A € C¢ such that v(\, X*, X**) # 0 for every k. Now define the map

u: Zgup(n) = C° uw(X,Y) =0\, X, Y).

Note that u is a polynomial map by (4.1) and, for X € 'Bg(r) and 0 £0 =3, 6 ®
0t € ker(QrEC(X))v

€

w(X, X*) =Y AT ®0})adj(QE(X)) i) = > Asvsd' = véy,

s=1 s=1

for some v € C. In particular, if U(X, X*) # 0, then u(X, X*) € w(hair Bg).
0 # u(X*, X™) = 1,04,

for each k and hence u(X?!, X1*), ... u(X¢ X°*) form a basis of C¢. Therefore,
w(X,Y) =Y (X, YV)u(Xk, XF)
k=1

for (X,Y) € Zg,(n), where 7 are polynomial functions on M, (C)29. In particular,
re(X7, X7*) = 3§, 1, where 3 is the Kronecker delta function.
Suppose that the product r1---7r. =0 on

{(X,X*): X €93'Bg(n)} C Zq,.

Then 71 ---7, = 0 on Zg,(n) by the Zariski denseness hypothesis. Therefore 1, = 0
on Zg,(n) for some k by the irreducibility hypothesis, contradicting 7 (X%, X**) = 1.
Consequently there exists X° € 9'Bg(n) such that r1 (X% X%) ... 7. (X% X°%) # 0. By
the construction it follows that {u(X%, X%*), (X1, X1*) ... u(X¢ X¢*)} C 7w(hair Bg)
forms a hyperbasis of C¢. O

Proposition 4.4. Let E € My .(C)9. Then Qg is an atom and ker(E) = {0} if and only
if w(hair Bg) contains a hyperbasis of C€.

Proof. Let ¢ denote the inclusion of rg(E) into C¢ and let E = *E. Note that Bp =
Bz and thus 7(hair Bg) = w(hair Bg). Further Qg = Q5 and ker(E) = ker(E) and
ker(E*) = {0}. It follows that Q is an atom if and only if Qp is an atom; ker(E) = {0}
if and only if ker(E) = {0}; and = (hair BE)Acontains a hyperbasis of C¢ if and only if

7(hair Bg) does. Thus, by replacing £ with E we may assume that ker(E*) = {0}.
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(=) Suppose Q is an atom and ker(E) = {0} and ker(E*) = {0}. By Lemma 3.2(2),
Lg (equivalently L%) is indecomposable. By [41, Proposition 3.12],” Zp,, is an irre-
ducible free locus. By [30, Corollary 3.6], 21, (n) is an irreducible hypersurface for large
enough n. Thus, by [30, Corollary 8.5], 1B (n) = 0'Q%(n) is Zariski dense in Ze (n)
for large enough n. Thus {(X,X*) : X € 9'Bg(n)} is Zariski dense in {(X,X*) :
X € M,(C)9, det L%(X) = 0} for large enough n. By Lemma 4.1 it now follows that
{(X,X*): X € 8'Bg} is Zariski dense in Z,, = Zg, = {(X,Y) : det Qp(X,Y) = 0}.
Thus the assumptions of Lemma 4.3 are satisfied for some n € N, so 7(hair Bg) contains
a hyperbasis for C¢.

(<) Suppose Qp is not an atom. If F is not ball-minimal, then (hair Bg) does
not span C¢ by Proposition 4.2, since ker(E*) = {0}. If E is ball-minimal, then LS is
minimal but not indecomposable by Lemma 3.2 items (2) and (3). Thus LS decomposes
non-trivially as LS, @ L. by Lemma 3.2(5). Hence Qg decomposes as Qg1 @ Qp-.
Letting e; > 1 denote the size of Qg:,

m(hair Bg) C (C* @ {0}**) U ({0} @ C*).
Thus m(hair Bg) cannot contain a hyperbasis for C¢ = C® @ C*2. O

Remark 4.5.

(1) Note that Qg is an atom, ker(E) = {0} and ker(E*) = {0} (or equivalently, L is
indecomposable) if and only if the centralizer of

0 E 0 E, 0 0 0 0
o o) \o o) \Ef o) \E 0)

is trivial. Verification of this fact amounts to checking whether a system of linear
equations has a solution.

(2) If Ly is indecomposable, then so is Lg. Indeed, if Ly = Lg:1 @ Lg2, then L equals
Lg: @ Lg2 up to a canonical shuffle.

However, the converse is not true. For example, with A(z) = (3?1 %2),
W\ 1 To+
I+A(a:)+A(y)—<xl+y2 1 >

is an indecomposable monic pencil, but

IAA*(I_(':)Elyl 0 >

1— 22y

factors. O

9 Irreducible in [41] is indecomposable here.
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4.3. The eig-generic conditions

In this subsection we connect the various genericity assumptions on tuples in My(C)9
used in [3] to clean, purely algebraic conditions of the corresponding hermitian monic
pencils, see Proposition 4.8. We begin by recalling these assumptions precisely.

Definition 4.6 ([3, §7.1.2/). A tuple A € M4(C)9¢ is weakly eig-generic if there exists an
¢ <d+1and, for 1 <j </, positive integers n; and tuples o/ € M,,;(C)9 such that

(a) for each 1 < j < /¢, the eigenspace corresponding to the largest eigenvalue
of As(a?)*Aa(a?) has dimension one and hence is spanned by a vector u/ =
S0 ul ®eq; and

(b) the set % = {u} : 1 < j < {1 < a < n;} contains a hyperbasis for ker(A)+ =
rg(A*).

The tuple is eig-generic if it is weakly eig-generic and ker(4) = {0} (equivalently,
rg(A*) = C9).

Finally, a tuple A is x-generic (resp. weakly -generic) if there exists an ¢ < d and
tuples 37 € M, (C)9 such that the kernels of I — A4(87)Aa(B7)* have dimension one
and are spanned by vectors p/ = > i ®e, for which the set {p? : 1 <j </¢,1<a <n;}
spans C? (resp. rg(A) = ker(A*)1).

Remark 4.7. One can replace n; with Z§:1 n; in Definition 4.6, so we can without loss
of generality assume ny =--- =n,. O

Mixtures of these generic conditions were critical assumptions in the main theorems
of [3]. The next proposition gives elegant and much more familiar replacements for them.

Proposition 4.8. Let A € My(C)9.

(1) A is eig-generic if and only if Q4 is an atom and ker(A) = {0}.

(2) A is x-generic and ker(A) = {0} if and only if A* is ball-minimal.

(3) Let v denote the inclusion of rg(A*) into C?. Then A is weakly eig-generic if and
only if Qa, is an atom and ker(Ac) = {0}.

(4) Let 1 denote the inclusion of rg(A) into C%. Then A is weakly *-generic and ker(A) =
{0} if and only if A*v is ball-minimal.

Proof. Tt is immediate from the definitions that if m(hairB4) contains a hyperbasis,
then A is eig-generic. On the other hand, if (a,u) € 8/18\1;, then w is an eigenvector of
Aa(a)*Aa(a) corresponding to its largest eigenvalue 1. Writing u = >, uq ® eq # 0,
each u, € mw(hair Bg) because if U is a unitary matrix, then (UaU*,Uu) € 8/1@ Hence
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m(hair B4) contains a hyperbasis if and only if A is eig-generic and therefore item (1)
Follows from Proposition 4.4 and Remark 4.7.

A similar argument to that above shows m(hair B4-) spans if and only if A is *-generic.
Thus item (2) follows from the Proposition 4.2 and Remark 4.7.

Item (3) follows from (1) since A is eig-generic and ker(A:) = {0}.

Item (4) follows from (2) since (* A is weakly *-generic and ker(¢*A) = ker(A). O

4.4. Proof of Theorem 1.5

We use Proposition 4.8. In the terminology of [3], assumptions (a) and (b) imply that A
is eig-generic and x-generic, and B is eig-generic, since the ball-minimal hypothesis on A*
implies ker(A) = {0}. Theorem 1.5 thus follows from [3, Corollary 7.11] once it is verified
that the assumptions imply Dg is bounded, p(0D4) C 0D and ¢q(0Dg) C 9D 4. For
instance, if X € 0D 4, but p(X) € int(Dp), then there is a Z ¢ D4 such that p(Z) € Dp.
But then, Z = ¢(p(Z)) € Da, a contradiction. O

5. Bianalytic maps between spectraballs and free spectrahedra

In this section we prove the rest of our main results, Proposition 1.7, and then Theo-
rem 1.1 and its Corollary 1.3.

5.1. The proof of Proposition 1.7

Throughout this subsection, we fix a tuple E € Myx.(C)9, a positive integer M and

an F € C <z>'%¢ of degree at most M. Write F = (F1 Fe) and
F*= )" Fiw,
|lw|<M

where |w| denotes the length of the word w and F € C.

Let S denote the tuple of shifts on the truncated Fock space %, with orthonormal
basis the words of length at most M in the freely noncommuting variables {z1,...,z4}.
When viewing a word w as an element of the finite dimensional Hilbert space #; we
will write w. Thus Syw = zew if [w| < M and Syw = 0 if |{w| = M. Let P denote
the projection of #y; onto the subspace #p_1 and note that S;S, = P if k = £ and
SiSe=0if k # ¢

Given a matrix 8 = (8;,1)] ,=1 € My(M,(C)) and words u, w of the same length N,

U=TjTjy  Tjy, W= ThyThy " Thys

let

~

6%711 = ﬂkl:jlﬁk%j? T BkNJN'
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In particular, 8 x = Bey z;

Bu,wBajor = Byt Braia =+ Brw in Brj = Bua way - (5.1)

Let

(B-5);=>_Bix® Sk
k=1

and B8-S = ((8+:5)1,...,(B+9)).

Lemma 5.1. Given 1 < N < M and a word w of length N,

B-8)" = > Buw®S"

|lu|=N
Proof. We induct on N. For N =1 and w = x4,
g -~ ~
(6 * S)w = Zﬂt,k ® Sk = Zﬁa:k,a:tsk = Z ﬁu,msu
k=1 k ‘u|:1

Now suppose the result holds for N. Let v be a word of length N and consider the word
w = v, of length N + 1. Using the induction hypothesis and equation (5.1),

(B-8) = (B-S)"(B-8)™ =Y Buw @S> Brr @ Skl

|lu|=N k
g g
= > D BunBr®S Sk = D> D> Buryww, ® S
|u|=N k=1 |u|=N k=1
= Z B\z,w ®S%. O

|z|=N+1

Given N, let ¥y denote the subspace of %), spanned by words of length N. Thus the
words of length N form an orthonormal basis for ¥y. Given words u,w € 9y, let v w*
denote the linear mapping on ¥y determined by v w*v = (v, w)u, for words v € ¥y . Let

BBN) = Y Buw @ut” = (Buw) uoyopu € Mr(C) @ Mn (),
ful=N=ul

where the second equality is understood in the sense of unitary equivalence. In particular,

B(8,1) = (Br.; )?,k:l'

Lemma 5.2. For each positive integer N the set of 5 € My(M,(C)) such that B(8,N) is
invertible is open and dense.
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Proof. For the second statement, observe that B(I, N) is the identity matrix since, with
Bjk = 8 xly, we have Bu,w = 0y, wlr. Hence the mapping ¢ : My(M,(C)) — C defined
by ¥(8) = det B(f, N) is a polynomial in the entries of 8 that is not identically zero.
Thus % is nonzero on an open dense set and the result follows. 0O

For notational purposes, let 1 denote the emptyword @) € . Let {e1,e9,...,e.}
denote the standard orthonormal basis for C*©.

Lemma 5.3. Suppose 3 € My(M,(C)) andy =35 _es@7, € C°@C". If
N (B8 ©1] =0,
s=1

then, for 1 < N < M and each word u of length N,

> ﬂuwz

lw|=N

Moreover, if B(B,N) is invertible, then

ZE:F{Z’VS =0
s=1

for each word |w| =

Proof. Since F;; € C, by Lemma 5.1,

M
S X RS- Y | Y R e
N=0|w|=N N=0|u|=N | |w|=N

Thus,

M
O—ZFSBS%@M:Z Zﬁuwz
s=1

and the first part of the result follows.
To prove the second part, let

y= ) . ®veC a9y,
[v|=N

where y, = > _, Fivs € C". Thus
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BB, Ny= Y. Buw®uw' Y pov

[u|=N=|w| [v|=N
= Z Bu,wyw Ku = Z [ Z Bu,wyw] ®@u=0.
lu|=N=|w]| lu|=N |w|=N

Hence if B(3, N) is invertible, then y = 0 and therefore Y ._, Fi3~v5 = 0 for each |w| =
N. O

We continue to let {e1,¢2,...,e.} denote the standard basis for C¢. Let {o1,..., 0}
denote the standard orthonormal basis for C”.

Proposition 5.4. Fiz 1 < N < M. If there exist a positive integer r and (8%, v*) €
My(M,(C)) x [C*®CT"] for 1 <a < e such that,

(a) writing
,

V=D @
t=1

the vectors {69 : 1 < a < e} span C¢;
(b) B(B*,N) is invertible for each 1 < a < e;
(c) F(B*-S)n*®@1] =0 for each 1 <a<e,

then F2 =0 for each 1 < s <e and |w| = N.

Proof. Note that
0=F(B*- Sy @1] =Y F(8*-S)hs 1],
s=1

Thus items (b) and (c) validate the hypotheses of Lemma 5.3, and hence ) F5v? =0
for each |w| = N and 1 < a < e. Writing v* = >_._, £, ® v, it follows that
D leivdles = (I ®0})> ea@qt =0 = [e167]es

s=1 s=1 s=1

Therefore pjy® = £%6¢ and consequently, for |w| = N,
€ e
0= Filoire) = > File10%] = Fudi,
s=1 s=1

where F,, = (Fy, ... Fg) e C' ¢ Since, by hypothesis, {6{ : 1 < a < e} spans C€ it
follows that F,, = 0 whenever |w| = N. Thus F¥ =0for 1 <s<eand |w|=N. O
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Given 8 = (Bj,x) € My(M,(C)), let

g
(BB = ZEj ® Bk

j=1
Lemma 5.5. For 8 € My(M,(C)),

Ap(B-8) =) (E-B)r® S

k

$(B-8) = [~ S (E-BUE-B)] @ P + o (I-P),

k

where P is the projection of Fyr onto Far_1.

Proof. Compute,

g g g g
$)=Y"E;0 () Bix®S) = ZZE ® Bkl @Sk =Y (E-B)r @ Sk,
j=1 k=1 k=1 j=1 k=1
and thus
g
Ap(B-S) Ap(B-S)=[> (E ‘Bl ® P
k=1

and the result follows. O

5.1.1. The hair spanning condition

A subset {(a®,v*) : 1 <a<e} C M. (C)4 x [C°®C"] is a boundary spanning set
for B if each (a®,v*) € OBy and, writing 7% = i1 08 ® o4, the set {6 : 1 < a < e}
spans C¢. This set is a boundary hair spanning set for By if moreover (a®,vy*) € 8/1@
for each a. By Proposition 4.2, if E is ball-minimal, then there exists a boundary hair
spanning set for Bg.

Proposition 5.6. Fizx 1 < N < M. If E € Mgx.(C)9 is ball-minimal, then there exists a
positive integer v and a subset {(8*,7*) : 1 < a < e} of My(M,(C))® [C*® C"] such
that B(5%, N) is invertible for each 1 < a < e and {(8*-5,7*®1): 1 <a<e} isa
boundary spanning set for Bg.

The proof of Proposition 5.6 uses the following special case of a standard result from
the theory of perturbation of matrices [39, Chapter 2, Section 4].

Lemma 5.7. Suppose R € M4(C), I — R = 0 and ker(I — R) is one-dimensional and
spanned v € C%. For each ¢ > 0, there is a p > 0 such that if Q € My(C) is self-
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adjoint and ||Q|| < p, then there is a ¢ > 0 and w € C¢ such that I — ¢(R+ Q) = 0,
ker(I — ¢(R + Q)) is spanned by w and ||v — w| < e.

Proof of Proposition 5.6. Since E is ball-minimal, there is an r and a boundary hair
spanning set {(a®,(%) : 1 <a <e} C M, (C)? x [C*® C"] for Bg by Proposition 4.2. In
particular, writing ¢* = Y ;_; x¥ ® o, the set {x§ : 1 < a < e} spans C*. There is an
€ > 0 such that, if 7* = Y7 | 7 ® p; and [|¢* — 7°|| < € for each 1 < a < e, then the set
{m{:1<a<e}spans C°.

Fix1<a<eandlet, for1 <jk<g,

~ fer ifk=1
T lo itk > 1.

Thus
g _ g _
I-D BB ) E;®pl] = Q")
j=1 j=1

is positive semidefinite with kernel spanned by (*. By Lemmas 5.2 and 5.7, there exists
a % € My(M,(C)) such that B(5*, N) is invertible and

g

R(B*) :=T=Y | D_Ei@Bixl"D_Ei@Bixl | =1-Y (E-P)i(E-B (52)
k=1 \ j=1 j=1

g
=1

k

is positive semidefinite and has kernel spanned by a vector v* such that [|(* — 7| < e.
In particular, writing v* = >"}_, 0¢ ® o, from the first paragraph of the proof, the set
{6¢ :1 < a < e} spans C°.

To complete the proof, observe, using R(3*) defined in equation (5.2) and Lemma 5.5,
that

BB 8)=R(B)©P + I (I -P).
It follows that {(6%-S,7*® 1) :1 < a < e} is a boundary spanning set for Bg. O

5.1.2. Proof of Proposition 1.7

Suppose E is ball-minimal'® and F € C <z>1%¢ vanishes on 9Bz and has degree at
most M.

Fix 1 < N < M. By Proposition 5.6, there exists an r > 0 and (8%,~v*) €
M,(M,(C)) x [C°® C"] such that {(8%-5,7*®1):1<a <e}isaboundary spanning
set for Bg and B(8%, N) is invertible for each 1 < a < e. Since (8% - S,7%) € 8/8\]5, it

10 1t is enough to assume that PE is ball-minimal, where P is the projection of C? onto rg(E).
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follows that 0 = F'(8 - S)v®. An application of Proposition 5.4 implies F;> = 0 for all
1<s<eand|w| =N.Hence F, =0 for all 1 < s < e and |w| < M and therefore
F = 0. To complete the proof, given V € C <x>**¢ that vanishes on @7 apply what
has already been proved to each row of V' to conclude V. =0. O

5.2. Theorem 1.1

In this subsection we prove the first part Theorem 1.1. (The conversely portion was
already proved as Corollary 2.5.)

A free analytic mapping f into M(C)" defined in a neighborhood of 0 of M(C)¢ has
a power series expansion ([25,38,54]),

F@)=> Gi(x) =" far®, (5.3)

j=0 J=0|al=j
where f, € C'". The term G; is the homogeneous of degree j part of f. It is a
polynomial mapping M (C)9 — M(C)h.

Lemma 5.8. Let E € Mgy« .(C)9 and B € M,(C)". Suppose f : int(Bg) — int(Dp) is
proper. For each positive integer N there exists a free polynomial mapping p = py of
degree at most N such that if X € Bg is nilpotent of order N, then fx(z) := f(zX) =
p(2X) for z € C with |z| < 1. Further, if X € 0Bg (equivalently |Agp(X)| = 1), then
p(X) € 0Dp.

Proof. Fix a positive integer N. The series expansion of equation (5.3) converges as
written on NV = {X € M(C)Y : 37 X; X5 < €*} for any € > 0 such that N, C int(Bg)
[25, Proposition 2.24]. In particular, if X € Bg is nilpotent of order N and |z| is small,
then

N

fx(z) = f(zX) = ZGj(zX) = Z Z fo @ X*| 27 = p(2X).

j=1 i=1 | |al=j

It now follows that fx(z) = p(zX) for |z| < 1 (since zX € int(Bg) for such z and both
sides are analytic in z and agree on a neighborhood of 0).

Now suppose X € dBg(n) (still nilpotent of order N). Since f : int(Bg) — int(Dp), it
follows that L'S(p(tX)) = 0for 0 < t < 1. Thus L'S(p(X)) = 0. Arguing by contradiction,
suppose LS (p(X)) = 0; that is p(X) € int(Dg(n)). Hence there is an 7 such that

By(p(X)) =AY € Mo (C)? : |[Y = p(X)| <0} € int(Dp(n)).

Since K = B, (p(X)) is compact, L = f;1(K) C int(Bg) is also compact by the proper
hypothesis on f (and hence on each f, : int(Bg(n)) — int(Dp(n))). On the other hand,
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for ¢ < 1 sufficiently large, tX € L, but X ¢ int(Bg(n)), and we have arrived at the
contradiction that L cannot be compact. O

Remark 5.9. In view of Lemma 5.8, for X € 0Bg nilpotent we let f(X) denote fx(1).
Observe also, if g = h, f(0) =0, f'(0) = I, and X € Bg is nilpotent of order two, then
fX)y=X. o

Lemma 5.10. Suppose B € M, (C)9 and UV € M,«,(C) and let B denote the algebra
generated by B. Let h denote the dimension of % as a vector space. If {15, ..., B,0}
is linearly independent, then there exists a g <t < h and a basis {J1,...,Jn} of B such
that

(1) 5= B; for 1<) <g;
(2) {N1D,..., B} is linearly independent; and
(3) J;B=0 fort<j<h.

Letting = € My, (C)" denote the convexotonic tuple associated to J,
(Zj)ee =0 forj>t, k<t and1 <{l<h.

Proof. The set 4 ={T € #:TU =0} C £ is a subspace (in fact a left ideal). Since
{B19,. .., B,U} is linearly independent, the subspace .# of # spanned by {Bi, ..., By}
has dimension g and satisfies .# N 4" = {0}. Thus there is a ¢ < ¢t < h such that
h — t is the dimension of .#". Choose a basis {Jit1,...,Jp} for 4. Thus the set
{B1,...,Bg, Jit1,...,Jn} is linearly independent and g < ¢t < h. Extend it to a basis
{J1,...,Jn}. To see that item (2) holds, we argue by contradiction. If {J;%J, ..., J;0}
is linearly dependent, then some linear combination of {Jy,..., J;} lies in 4.

The last statement is a consequence of the fact that N is a left ideal. Indeed, since
the tuple Z satisfies,

h

Jodj =Y (Ei)enTr
k=1

for 1 < j,¢ < h we have, for j >t and 1 </ <h,
h t
0="J;B=> E)exdsD =Y (5;)essD.
k=1 k=1

By independence of {Jp U : 1 < k < t}, it follows that (=), =0for k <t. O

Lemma 5.11. Let E € Mgy .(C)Y and A € M,.(C)9. If there is a proper free analytic
mapping f : int(Bg) — int(Da) such that f(0) =0 and f'(0) = I, then Bg = Ba.
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Proof. We perform the off diagonal trick. Given a tuple X, let

SX=<8 g).

Suppose X € M,,(C)9 and |Ag(X)|| = 1. It follows that | Ag(Sx)| = 1. Thus Sx € 0Bg.
Since f : int(Bg) — int(D4) is proper with f(0) = 0 and f/(0) = I (and Sx is nilpotent),
f(Sx) = Sx (see Remark 5.9), and Sx € 0D 4. Thus I+ As(Sx) +Aa(Sx)* is positive
semidefinite and has a (non-trivial) kernel. Equivalently,

L= [[Aa(Sx)] = [[Aa(X)].

Hence, by homogeneity, [|[Ag(X)| = ||Aa(X)|| for all n and X € M,,(C)9. Thus Bg =
Ba. O

5.2.1. Proof of Theorem 1.1

We assume, without loss of generality, that E is ball-minimal. We will now show f is
convexotonic.

Lemma 5.11 applied to the proper free analytic mapping f : int(Bg) — int(D4) gives
Br = Ba. Applying Lemma 3.2(9) there exist 7 x r unitary matrices W and V such
that A = W(]g IO{)V*, where R € M(;_gyx(e—a)(C)? and Bg C Bg. Replacing A with the
unitarily equivalent tuple V* AV, we assume

e r—e
A=U(FE 0\d (5.4)
0 R /Jr-d
where
d r-d
U=V'W= (U1 Uiz\ e . (5.5)
U21 Ugg r—e

With respect to the orthogonal decomposition in equation (5.4), let

y = (O fe ) € Mye(C).

r—e,e

We will use later the fact that if Q%5(X) = 0 and Q% (X)y = 0, then Q% (X )Yy = 0. For
now observe

&%:U(%). (5.6)

Thus, since {E1,...,Ey} is linearly independent, the set {A4:%,..., A4} is linearly
independent.
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We now apply Lemma 5.10 to A in place of B and obtain a basis {Jy,...,J,} for
</, the algebra generated by {Ai,..., A4}, and a ¢ < t < h such that J; = A, for
1 <j<g,theset {J;U:1<j <t} is linearly independent and J;0 =0 for t < j < h.
Let £ € M, (C)" denote the convexotonic tuple associated to J and let = = —&. Thus
(Ej)ee =0for j>t, k<t and all £ and

h

J[Jj = - Z(Ej)&st]s-

s=1

Let ¢ : int(Dy) — int(By) denote the convexotonic map
p(z) = (I - Az())™!

from Proposition 2.2. Let ¢+ : D4 — Dy denote the inclusion. By Corollary 2.6 the
composition ¢ o ¢ is proper from int(Dy4) to int(By). Hence, # = poro f is proper from
int(Bg) to int(By). Further .#(0) = 0 and .%#/(0) = (I; 0) because essentially the same
is true for each of the components f,¢, . Thus Z#(z) = (x 0) + p(z), where p(0) =0
and p’(0) = 0.

Write

Expand .# as a power series,
o]
F-YH=Y Y Fuo
7=1|al=j

where H; is the homogeneous of degree j part of #. Thus,

and Hy(z) = (z 0). Likewise,
Foy()=(0 ... 0 x; 0 ... 0)

for1 <j<gand 7, =0forj>g.

The next objective is to show H = 0 for m > 2 and s < ¢. Given a positive integer m,
let S denote the (m+1) x (m+1) matrix, indexed by 5,k =0,1,...,m, with S q41 =1
and S, = 0 otherwise. Thus S has ones on the first super diagonal and 0 everywhere
else and S™*! = 0. Let Y € Bg be given. Since S ® Y is nilpotent with (S ® Y)® = 0 if
« is a word with |a| > m, Lemma 5.8 (and Remark 5.9) imply #(S®Y) € By; that is
if [Ag(Y)|| <1, then [[A;(F(S®@Y))|| < 1. Let 27 = FI(S®Y) = 2211 S“@Hﬁ(Y).
With respect to the natural block matrix decomposition, .,@‘OOJ = HI (Y)and &/ =

m—1,m
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HI(Y). Thus 27 _ 1 = Yjfor 1 <j<gand Qpﬂifl’m = HJ(Y) =0 for j > g. Now

IA7(Z)| <1 is equivalent to I — A;(2)*A;(Z) = 0. Thus,
T—As(Y)*As(Y) = Ay(Hp (Y))* Ay (Hp(Y)) = 0.
Multiplying on the right by U ® I and on the left by U* @ I,
I = A (V) Aan (V) — Ay (Hm(Y)) Ay (Hpm(Y)) = 0.
By equation (5.6) Aax(Y)* Aaxn(Y) = Ap(Y)"Ag(Y), and hence,

EZ'Q(Y)_AI‘B(Hm(y))*AI‘D(Hm(Y))

(5.7)
=T—Ag(Y)*Ag(Y) = Ayg(Hp(Y))*Ayg(Hp (V) = 0.

Let V(y) = Ajs(Hm(y)). If (Y,v) € 8/B\E, then Q% (Y )y = 0 and hence, by equation
(5.7), V(Y)y = 0. Thus V vanishes on 0Bg and hence V' = 0 by Proposition 1.7; that is

0=V(y) = Am(H ZJ 0 HI, ( ZJQ?H
Since {J19, ..., J;0} is linearly independent, it follows that HJ (y) =0 forall 1 <j <t
and all m > 2. Hence,
F@)=(x 0 V)

where the 0 has length t—g and U has length h—t and moreover, ¥(0) = 0 and ¥'(0) = 0.
Let 1 denote the inverse of ¢,

¥(w) = 2(I + Az ()~
Thus, Y o.F =10 f = (f(z) 0 0)and consequently,
(fz) 0 0)=(z 0 ¥(2))((I+As((x 0 ¥(2)))) . (5.8)
Rearranging gives,
(z 0 V@) =(flx) 0 0)(I+As((x 0 ¥(x)))). (5.9)

We now examine the k-th entry on the right hand side of equation (5.9). First,

(I+Az((z 0 ¥(z) 1+ZHJ%+ Z =0,4)

Jj=t+1
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Since (Z;)¢,x =0 for j >t and k <t (see Lemma 5.10), if & < ¢, then
g
(I+A=((z 0 (@), =Tex+ D (E)erw
j=1

for all £. Hence, the right hand side of equation (5.9), for ¢ < k <t (so that I, = 0 for
L <yg)is,

S @) (I +Az((z 0 U(x = Eerf (@), (5.10)
=1 g 0=1

and similarly, for 1 < k < g,

g

9 9 h
> ZE%JF 5T ek =Fa)+ D Eert @z (5.11)
(=1 j=1

Jj=t+1 7,4=1

Combining equations (5.10) and (5.9), for g < k < t,

Since {f*,..., f9} is linearly independent, it follows that
(Ej)er =0, 1<j,l<g g<k<t (5.12)
We next show Z € My4(C)9 defined by

(

(1

ek = (Ej)er, 1<40k<g

is convexotonic. Using equation (5.12), for 1 < j, ¢ < g,

h t
A A B = Jo;B = =3 (E))0sdsB == > (5))0,sJsT
s=1 s=1
, , (5.13)
:_Z( )@stm:_Z(H )5514m
s=1 s=1

Multiplying equation (5.13) on the left by U* and using equation (5.6) gives



J.W. Helton et al. / Journal of Functional Analysis 278 (2020) 108472 47

(Pf)z }%) (—U) (%) _ ( 5—1(%3‘)4,315’3).

Using equation (5.5), it follows that

g g

Ey(~Un)E; =Y (Ej)esEs = Y (5)e.sEs. (5.14)

s=1 s=1

)

By Lemma 2.7, the tuple Z is convexotonic.
Combining equation (5.9) and equation (5.11), if 1 < k < g, then

zr=_ fl@) I +Az((x 0 ¥(@))))er
=1
= @)+ Y Eerf @)z = Fa)+ D (Eent () 2

Thus,
z = f(x)(I + Az(z))
and consequently
flo) = a(I + As(2)! (5.15)

is convexotonic.
We now complete the proof by showing, if A is minimal for D4 (we continue to assume
E is ball-minimal), then A is unitarily equivalent to

_(E 0\ _(ULE 0
BU(O 0><U21E O)GMT((C)Q (5.16)

and B spans an algebra. To this end, using equations (5.16) and (5.14), observe

g g
By = (g §) - > E s (T §) - > (E B

Thus B spans an algebra and, by Proposition 2.2, the convexotonic map f of equation
(5.15) is a bianalytic map f : int(Bg) — int(Dp). On the other hand, B = Br = Ba.
Thus, as f : int(Bg) — int(D4) is bianalytic, Dp = Dy4. Since A is minimal defining for
D,y and A and B have the same size, B is minimal for D 4. Hence A and B are unitarily
equivalent by Lemma 3.1. From the form of B, it is evident that r > max{d, e}. On the
other hand, if » > d+ e, then B must have 0 as a direct summand and so is not minimal.
Thusr <d+e O
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5.8. Corollary 1.3

This subsection begins by illustrating Corollary 1.3 in the case of free automorphism
of free matrix balls and free polydiscs before turning to the proof of the corollary.

5.8.1. Automorphisms of free polydiscs
Let {e1,...,eq} denote the usual orthonormal basis for CY and let E; = eje;. The
spectraball Bg is then the free polydisc with

int(Bg(n)) = {X € M,(C) : || X;]| < 1}.

Let b € int(Bg(1)) = DY be given.

In the setting of Corollary 1.3, we choose C' = E. If ¥, # are g X g unitary matrices
such that equation Corollary 1.3(b) holds, then there exists a g x g permutation matrix
IT and unitary diagonal matrices p and p such that # = IIp and ¥ = ull. We can in
fact assume p = I,;. It is now evident that item (a) of Corollary 1.3 holds and determines
=. Conversely, given a triple (b,1I1, p), where b € D9, II is a g X g permutation matrix
and p is a diagonal unitary matrix, the equations (b) and (a) of Corollary 1.3 hold with
# =1Ipand ¥ = II. Hence the automorphisms of Bg are determined by triples (b, I1, p).

By pre (or post) composing with a permutation, we may assume II = I,. In this
case M is the g x g diagonal matrix with diagonal entries M;; = p;(1 — |b;|?) and
Ekr = —p;b} Ey. The corresponding convexotonic map ¢ (x) = (I — Az(x))~" has entries

P (x) = a;(1+ cjay) ",
where ¢; = p;b5. Thus the mapping o(z) = ¢ (x) - M + b has entries,
o’ (@) = pjwj(1+ o) T (1= [b;*) + bj = pj(a; + ¢) (L + cay) ™,

where ¢; = p;b7. Hence, the automorphisms of the free polydisc are given by

p(z) = (pw(l)(%(l) + )L+ Gy Trn) T
Pr(e)(Tnte) + (o)) (1 + €y Tri) )
for ¢ = (c1,...,¢q) € DY, unimodular p; and a permutation 7 of {1,...,g}.

5.8.2. Automorphisms of free matriz balls

Let (Eij)i’je:l denote the matrix units in Myx.(C) and view E € Mgy.(C)%*. We
consider automorphisms of Bg, the free d x e matrix ball.

Before proceeding further, note, since {E;; : 1 < i < d,1 < j < e} spans all of

Myxe(C), by the reverse implication in Corollary 1.3, any choice of b in the unit ball
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of Myxc(C) and d x d and e x e unitary matrices # and ¥ determines uniquely a
g X g invertible matrix M satisfying the identity of item (b) of Corollary 1.3. Likewise
a convexotonic tuple is uniquely determined by the identity of item (a). The resulting
bianalytic automorphism ¢ of Bg satisfying ©(0) = b and ¢’(0) = M is then given by
the formula in Corollary 1.3. Our objective in the remainder of this example is to show
this formula for ¢ agrees with that of [45, Theorem 13]. Doing so requires passing back
and forth between row vectors of length de and matrices of size d x e.
First note that

Agp(b) =b.

From item (b) of Corollary 1.3 (which defines M in terms of b, ¥ and #),

ZM(i,j),(u,v)Eu,'u = (M : E)i,j

u,v

= DAE(b)* WEivj/V*DAE(b)

= Z[GZ‘DAE(b)*W@i] [e;”I/*DAE(b)eU] euez.

u,v

Hence,
M), (uv) = [eaDapy- Vil [V Dapvyeo]-
Next observe that,
—EyV* Ap(b) W Eq = —eie} V0" Wese; = — (e V0" Wes)Ey.

Hence, letting ;s = —(e;fV*b*V/es) for1 <j<eand1 < s <d,thetuple = € My (C)%
defined by (for 1 <i,u <dand 1 <v <e)

(1) Bis v=t,u=1

Est) (i =

St (w) 0 otherwise,

satisfies the identity of equation item (a) of Corollary 1.3. Hence the free bianalytic
automorphism of By determined by b, # and ¥ is

p(z) =¢(x) - M +0 (5.17)

where 1) = 2(I — Az(z)) ! is the convexotonic map determined by Z.
We next express formula for ¢ in equation (5.17) in terms of the canonical matrix

)Ee et

structure on Bp. Given a matrix y = (yi;); i1,

row(y) = (y11 Y12 - Yle Y21 .-+ Yde)-
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Similarly, given z = (zj)‘}il, let

Z1 z2 e Ze
Re+1 Re+2 cee o R2e

matgxe(z) =
Z(d—1)e *(d—1)e+1 -+ Zde

Since d and e are fixed in this example, it is safe to abbreviate matyx,. to simply mat.
d,e . .
For a tuple y = (ys,¢)s;—1 of indeterminates,

(y : M)u,'u = Z M(i,j),(u,v)yi,j
,J
=Y s Dapwy W yijeics [V Dagwen)
4,J

= €y [Dag(v)#] mat(y) [V Day ) €v.
Thus,
mat(y - M) :DAE(b)*W mat(y) AI/*DAE(b)- (5.18)

Let

d,e d )
’ — Zs:l Bjsmsv u=1
L)) (2) = ( > :S””“>(U> (o) {

sim1 0 otherwise.

Thus, I' is a de X de linear matrix polynomial of the form,
I'=1I; ® fmat(x)

and (I —T)"! = I; ® (I — Bmat(r))~!. In the formula for the convexotonic map 1
determined by =, the indeterminates x = (xs)s ¢ are arranged in a row and we find,

row(1)(x)) = row(w)(I - Az())
— (211 T12 ... T1e T ...Tde) (1 ® (I — Bmat(m))_l)
= (21(I - Bmat(z))™" ... &4(I - Bmat(z))"1),
where 2; = (21 ...xj.). Thus,
row(x)(I — A=(x))™!
— ((mat(@)[1 ~ Bmat(@)] ) (mat(@)[ — Bmat(e)] )1

(mat(z)[I — 3 mat(x)]*l)de).
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Hence, in matrix form,
mat(¢(z)) = mat(z)(I — Bmat(z)) " = mat(x)(I + (¥*b*# ) mat(x)) " .
Let ¢ = #*b¥ and note
IT—ApWAp®)* =I-b"=1—WecW* =W T —cc)W* =W (I —Ag(c)Ag(c) )W'.
Thus,
Dppy-? =W Dpp(ey (5.19)

and similarly #*Dy, ) = Dane)?™. Consequently, using, in order, equations (5.17),
(5.18), and (5.19) together with the definition of ¢ in the first three equalities followed
by some algebra,

mat(p(z)) = mat(¢(z) - M) +b
= DAE(b)*Wmat(d))”f/*DAE(b) + b
= W[DT\E(C) mat(w)DAE(c) + Crf/*

= # Di (e mat($) + D32 Doy

=W D ey mat(z)(I + ¢* mat(z)) ™" + Dxi(c)* A Dppey V"

= WDX;(C)* [DiE(C)* mat(z) + c¢(I + ¢* mat(z))] [I + ¢* mat(x)]leAE(c)”//*

=W - cc*)*% [(1—cc*)mat(x) + ¢
+ cc* mat(z)][I + ¢* mat(z)] " Dp (o) ¥ *

[
= #(I —cc") "= mat(e) + ][I + ¢ mat(a)] (I — ") 27,

giving the standard formula for the automorphisms of Bp that send 0 to b. (See, for
example, [45].)

5.8.3. Proof of Corollary 1.3

Suppose E = (Ei,...,E;) € Mgx.(C)? and C = (C1,...,Cy) € Myx(C)9 are
linearly independent and ball-minimal and ¢ : int(Bg) — int(B¢) is bianalytic.

Let C denote the tuple

A _ (Oer Cj
CJ_<0“C Oy € M,.(C),

where r = k + £. Thus Bc = Dg and, since C' is ball-minimal, C is minimal for Dg by
Lemma 3.2(3).
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Let b = ¢(0) and for notational convenience, let A = Ac(b) € Mix¢(C). Set

-1 -1
_ I A B I 7ADA
@ — (0 DA> _ (o Pt ) €M) (5.20)

and observe that ¥*Lc(b)9 = I and therefore Lo(b)™! = ¢9*. Hence there is a
unitary matrix T such that 4 = Lg(b)~2T. It follows from Proposition 3.3, letting
A € M, «.(C)9 denote the g-tuple with entries

Aj =9 (8 (Mbc)j) & e M,.(C)9, (5.21)

and M = ¢/(0), that the inverse of the mapping A(z) = z - M + b is an affine linear
bijection from Be = Dg to Da and A is minimal for Dy.
The mapping

f=X1top:int(Bg) — int(Da)

is a free bianalytic mapping with f(0) = 0 and f/(0) = I, where E is ball-minimal
and A is minimal for D4. An application of Theorem 1.1 now implies that there is a
convexotonic tuple = such that equation (1.1) holds, f is the corresponding convexotonic
map and there are unitaries V and W of size r such that

_ Od,'r‘fe E *
A=W (Ord,re Ord,e> V. (5.22)

In particular, p(z) = f(x)+ M +b.
From equation (5.22),

* 0 0 .
D A=V (0 Y, E;Ej> v

and consequently rk ) A¥A; = rk) EYE;. Since E is ball-minimal, ker(E) = {0}.
Equivalently, rk > EYE; = e. On the other hand, from equation (5.21),

D AjA =9 (8 (M~C)§1Q(M-C)j> 9,

where I is the (1,1) block entry of ¥4*. Observe that I' is positive definite and, since
C is ball-minimal, ker(M - C) = {0}. Hence rk ) A%A; = {. Thus e = £. Computing
> Aj A% using equation (5.22) shows rk )7 A; A% = d. On the other hand, using equation
(5.21),

g9 - *
ZA,A% —@ <Z§_1(M- C)jDAz(M' C); 0> %8
= 7 0 0
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Since C' is k x £ and ball-minimal, ker((M - C)*) = {0} and D,? is positive definite,
rk>39_ (M - C); D% (M - C); = k. Hence d =tk ) 39_) A;A% = k. Thus E and C have
the same size d x e.

Since E and C are both d X e and r = d + e, the matrices V and W decompose as

_ (Vi1 Va2 _ (Wi Wi
V= <V21 V22>’ W= <W21 sz)
with respect to the decomposition C™ = C? @ C*. In particular, V;; and W;; are all
square. Comparing equation (5.22) and equation (5.21) gives

WinE;Vi, WinkE;Vy\ _ (0 (M -C);Di* (5.23)
War EjVi, WarE;Vi 0 —Dy*A*(M-C);Dy' )" '

Multiplying both sides of equation (5.23) by (W7 W3;) and using the fact that W is
unitary shows,

E; V5 =0.

Since E is ball-minimal and ) EE;V5 = 0 we conclude that V12 = 0. Since V' is
unitary, Vay is isometric and since Vas is square (e X e) it is unitary (and thus Va1 = 0).
Further,

Wi E;Vyy = (M-C);Dy!

- Y B (5.24)
Wa1EjVay = =D A" (M - C); Dy

Thus, Wa1 E; Vs = —Dy'A*W11 E; V5 and hence Woy E; = —D ' A*Wiy E;. Tt follows
that

W Y E,E; = —Dy'A*Wyy > E;E;.
Thus, again using that E is ball-minimal (so that ker(E*) = {0}),
Woi = =D ' A" Wiy
Hence,
I =WiWiy + W35 Way = Wi [ + ADPAY Wy = Wi D2 Wy
and, since W7y is d x d, we conclude that it is invertible and
Wi Wy, = D3..

Consequently there is a d x d unitary #  such that
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Wi1 = Dp-W

(5.25)
Wai = —D'A*Dpa- W = —N*W.

Combining the first bits of each of equations (5.24) and (5.25) and setting ¥ = Vo gives
Corollary 1.3(b). Namely,

(M . C)J = DA*WE]‘“V*DA.

Observe (using E and C have the same size) that,

a=w (§0) (% g )
The tuple A is, up to unitary equivalence, of the form of equation (1.3) where
(B )
v 0 ) \Wa W o
Thus, Uy = #*Wa = —¥*A*# . Since the pair (A, E) satisfies equation (1.1),

E E; _ E,
( 0 8) v ( 0 8) =2 Eins ( 0 8)
item (a) holds.

To prove the converse, suppose E,C € Mgy .(C)? and b € Bo(1) are given and there
exists an invertible M € My(C), a convexotonic tuple & € M,(C)? and unitaries # and
¥ such that items (a) and (b) of Corollary 1.3 hold. Let A = A¢(b) and define ¢4 and
A as in equations (5.20) and (5.21) respectively. The map A(z) =« - M + b is again an
affine linear bijection from D4 to Be¢.

Define W71 and Wa; by equation (5.25). It follows that Wy Wi +Wa1 W5, = I. Choose
Wis and Way such that W = (Wij)?’jzl is a (block) unitary matrix. Let Voo = ¥ and
take any unitary Vi (of the appropriate size) and set

_ (Vi1 O
- (5 L)
Next, using item (b), the definitions of Wi; and Wi, and DXlA*DA* = A*,

o [0 (M-O) {0 (M -C).Dy!
Ap =9 (0 0 )g_(o _D;'AY(M - O), D5
(0 DAWEYF\ (0 WiEYV*
=\o —AwEy ) =\0 WaE )

Thus, using item (a),
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(0 WHE VT WaES Y ey (0 WhEST) o

AJAk o (0 ngquf/*ngEk/V* o Z(Hk)J’S 0 WQlESV* - Z(H ')j’sAs'
Thus A spans an algebra with multiplication table given by =. Consequently f(x) =
(I — A=(z))~! is convexotonic from int(B4) to int(D4) by Proposition 2.2. On the
other hand, B4 = Bg, since

. 0 0
Aj A = (o %E;Eﬂ/*)

(because Wi W1y + W3, Way = I). Thus f is convexotonic from int(Bg) to int(Dy).
Finally, ¢ = Ao f is convexotonic from int(Bg) to int(B¢) with ¢(0) = b and ¢'(0) = M.
The uniqueness is well known. Indeed, if ¢ and ¢ are both bianalytic from By —
Bc, send 0 to b and have the same derivative at 0, then f = ¢ o (7! is an analytic
automorphism of B¢ sending 0 to 0 and having derivative the identity at 0. Since B¢ is
circular, the free version of Cartan’s Theorem [24] says f(xz) = 2 and hence ( = . O

6. Convex sets defined by rational functions

In this section we employ a variant of the main result of [32] to extend Theorem 1.1
to cover birational maps from a matrix convex set to a spectraball. A free set is matrix
convex if it is closed with respect to isometric conjugation. We refer the reader to [17,
21,27,43 48] for the theory of matrix convex sets. For expository convenience, by free
rational mapping p : M(C)? — M(C)? we mean p = (p* p*> ...pY%) where each
p’ = pi(z) is a free rational function (in the g-variables z = (z1,...,z,)) regular at 0.
Theorem 6.1 immediately below is the main result of this section. It is followed up by
two corollaries.

Theorem 6.1. Suppose q : M(C)? — M(C)9 is a free rational mapping, € < M(C)9
is a bounded open matriz convex set containing the origin and E € Mgy .(C)9. If E is
linearly independent, € C dom(q) and q : € — int(Bg) is bianalytic, then there exists
anr < d+e and a tuple A € M,.(C)9 such that € = int(Da) and q is, up to affine linear
equivalence, convexotonic.

Corollary 6.2. Suppose p: M(C)? — M(C)? is a free rational mapping, E € Mgy .(C)?9
1s linearly independent and let

¢ :={X: X € dom(p), [Ap(p(X))| <1}

Assume € is bounded, convex and contains 0. If X), € €(n) and the sequence (Xi)k
converges to X € 0F implies limg o0 ||Ap(p(Xk))|| = 1, then there exists anr < d+e
and a tuple A € M,.(C)? such that € = int(D4) and p : int(D4) — int(Bg) is bianalytic
and, up to affine linear equivalence, convexotonic.
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Proof. By assumption p : € — int(Bg) is a proper map. By [24, Theorem 3.1], p is
bianalytic. Hence Corollary 6.2 follows from Theorem 6.1. 0O

Corollary 6.3. Suppose p : M(C)9 — M(C)9 is a free polynomial mapping, E €
Myxe(C)9 is linearly independent and let

¢ = {X: [[Ap(p(X))]] <1}.

If € is bounded, convexr and contains 0, then there exists an r < d + e and a tuple
A € M, (C)9 such that € = int(Da) and p : int(Da) — int(Bg) is bianalytic and, up to
affine linear equivalence, convexotonic.

Proof. By hypothesis p : € — int(Bg). Let X € 9% be given. By convexity and conti-
nuity p(tX) € int(Bg) for 0 <t < 1 and p(X) € Bg. If p(X) € int(Bg), then there exists
t. > 1 such p(t.X) € int(Bg). But then 0, t,X € ¥ and X ¢ ¥, violating convexity of
€. Hence p(X) € 0Bg and consequently p is a proper map. Thus Corollary 6.3 follows
from Corollary 6.2. O

The proof of Theorem 6.1 given here depends on two preliminary results. Let C€x, y>
denote the skew field of free rational functions in the freely noncommuting variables
(z,y) = (x1,...,%4,Y1,---,Yg). There is an involution "on CLx,y} determined by z; =
y;- A p € CLx,y> is symmetric if p = p. An important feature of the involution is the
fact that, if p € C€x,y¥ and (X, X*) € dom(p), then p(X, X*) = p(X, X*)* and p is
symmetric if and only if p(X, X*) = p(X, X*) for all (X, X*) € dom(p) Ndom(p). These
notions naturally extend to matrices over C{x, y>.

Proposition 6.4 below is a variant of the main result of [32]. Taking advantage of
recent advances in our understanding of the singularities of free rational functions (e.g.,
[55]), the proof given here is rather short, compared to that of the similar result in [32].

Proposition 6.4. Suppose s(x,y) is a px u symmetric matriz-valued free rational function
in the 2g-variables (x1,...,2q,Y1,...,Yq) that is regular at 0. Let

S={XeM(C): (X, X*) edom(s), s(X,X*) = 0},

let S° denote the (level-wise) connected component of 0 of S, and assume S°(1) # 0. If
each S°(n) is convex, then there is a positive integer N and a tuple A € My (C)9 such
that S° = int(D4).

Proof. From [37,55] the free rational function s has an observable and controllable real-
ization. By [33], since s is symmetric, this realization can be symmetrized. Hence, there
exists a positive integer t, a tuple T € M;(C)9, a signature matrix J € M;(C) (thus
J = J* and J? = I) and matrices D and C of sizes u x p and t X p respectively such
that
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s(z,y) =D+ C*Lyr(z,y)~'C

and dom(s) = {(X,Y) : det(L;r(X,Y)) # 0}, where

Lyr(z,y) =J = Ap(z) = Ar-(y) =T =Y Tjz; — > T}y,

Let 3(z,y) = s(x,y) L. Thus 3(x,y) is also a p X g symmetric matrix-valued free rational
function. It has a representation,

§($,y) =D+ C*Lj,T(‘T7y)7lcv
with dom(3) = {(X,Y) : det(L; #(X,Y)) # 0}. Let

Q) = (2 - Ar@) & (3~ Ar(@),

let P(x,z%) = Q(z) + Q(z)*, let & = {X : det(P(X)) # 0} and let #° denote its
connected component of 0. Observe that {(X, X*): X € #} ={X : (X, X*) € dom(s)N
dom(8)}. In particular, if X € #9 then (X,X*) € dom(s) N dom(3). On the other
hand, if (X, X*) € dom(s) and s(X,X*) > 0, then s(X, X*) is invertible and hence
(X, X*) € dom(3). Hence, if X € S°, then (X, X*) € dom(s) N dom(3) too.

Suppose X € SY. Thus tX € SY for 0 < t < 1 by convexity. It follows that ¢(X, X*) €
dom(s) Ndom(3). Hence tX € . for 0 <t < 1. Thus X € .#% and S° C .#°.

Arguing by contradiction, suppose there exists X € .#°\ S°. It follows that there is
a (continuous) path F in #9 such that F(0) = 0 and F(1) = X. There is a smallest
0 < a < 1 with the property Y = F(a) is in the boundary of S°. Since Y € .#9,
(Y,Y*) € dom(s). Since Y ¢ SO, s(Y,Y*) = 0 is not invertible. It follows that Y € #°,
but (Y,Y*) ¢ dom(3), a contradiction. Hence .#° = S° is the component of the origin
of the set of X € M(C)? such that P(X) is invertible. By a variant of the main result
in [31], SY is the interior of a free spectrahedron. O

Lemma 6.5. If ¢ : M(C)9 — M(C)9 is a free rational mapping and E € Mix.(C)9 is
linearly independent, then

(1) the domains of ¢ and Q(x) := Ag(q(x)) coincide;

(2) dom(q) = dom(q)* :={X : X* € dom(q)}; and
(3) the domain of

- {dxd Q(I)
r@y) = <Q<y> I) (6.1)

is dom(q) x dom(q)* = {(X,Y) : X, Y™* € dom(q)}.
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Proof. The inclusion dom(g) C dom(Q) is evident. To prove the converse, let 1 < k < g
be given. Using the linear independence of {E1,. .., E,}, choose a linear functional A, on
the span of {E1, ..., Ey} such that Ay (E;) =1 if j = k and 0 otherwise. It follows that
the domain of \x(Q(z)) = ¢*(x) contains dom(Q). Hence dom(Q) C dom(q), proving
item (1).

Item (2) is evident as is the inclusion dom(r) 2 dom(g) xdom(q)* of (3). For 1 < j < g,

let
0 E;
By = (0 oj)

and let F; = 7 for g < j < 2g. Observe that r(z,y) = Ar(q(z),q(y)). It follows from
item (1) applied to (¢(z),¢(y)) and F that

dom(r) = [dom(q) x M(C)?] N [M(C)Y x dom(q)] = dom(q) x dom(q)*,
proving item (3) and the lemma. O
Proof of Theorem 6.1. It is immediate that
¢ CS:={X:Xedom(q), [[Ap(¢(X)) <1}

Let S° denote the connected component of S containing 0. Since % is open, connected
and contains the origin, ¥ C S°.

Let Q@ = Ag op and let r denote the ((d+ ¢e) x (d + e) symmetric matrix-valued) free
rational function defined in equation (6.1). By Lemma 6.5, {X : (X, X*) € dom(r)} =
dom(q) and moreover, for X € dom(q), we have ¢(X) € int(Bg) if and only if r(X, X*) >
0. Thus,

S={X:(X,X")edom(r), r(X) > 0}.

Arguing by contradiction, suppose Y € SY, but Y ¢ ¥. By connectedness, there is
a continuous path F in S° such that F(0) = 0 and F(1) = Y. Let 0 < o < 1 be the
smallest number such that X = F(«) € 0%. Since ¢ : € — int(Bg) is bianalytic, it
is proper. Hence, if X € dom(q), then ¢(X) € 0Bg and consequently X ¢ S. On the
other hand, if X ¢ dom(q), then X ¢ S. In either case we obtain a contradiction. Hence
S0 ce.

Since ¢ = S° is convex (and so connected), Proposition 6.4 implies there is a positive
integer N and tuple A € My(C)? such that € = int(Dy). Since int(D4) is bounded,
the tuple A is linearly independent. Without loss of generality, we may assume that A is

L int(D4) — int(Bg) is bianalytic and A and E are linearly
1

minimal for D 4. Since p~
independent, Theorem 1.1 and Remark 1.2(a) together imply p~*, and hence p, is, up

to affine linear equivalence, convexotonic and r < d + e by Theorem 1.1. O
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Appendix A. Context and motivation

The main development over the past two decades in convex programming has been
the advent of linear matrix inequalities (LMIs); with the subject generally going under
the heading of semidefinite programming (SDP). SDP is a generalization of linear pro-
gramming and many branches of science have a collection of paradigm problems that
reduce to SDPs, but not to linear programs. There is highly developed software for
solving optimization problems presented as LMIs. In RY sets defined by LMIs are very
special cases of convex sets known as spectrahedra. However, as to be discussed, in the
noncommutative case convexity is closely tied to free spectrahedra.

The study of free spectrahedra and their bianalytic equivalence derives motivation
from systems engineering and connections to other areas of mathematics. Indeed the
paradigm problems in linear systems engineering textbooks are dimension free in that
what is given is a signal flow diagram and the algorithms and resulting software toolboxes
handle any system having this signal flow diagram. Such a problem leads to a matrix
inequality whose solution (feasible) sets D is free semialgebraic [16]. Hence D is closed
under direct sums and simultaneous unitary conjugation, i.e., it is a free sets. In this
dimension free setting, if D is convex, then it is a free spectrahedron [31,43]. For opti-
mization and design purposes, it is hoped that D is convex (and hence a spectrahedron),
and algorithm designers put great effort into converting (say by change of variables) the
problem they face to one that is convex.

If the domain D is not convex one might attempt to map it bianalytically to a free
spectrahedron. The classical problems of linear control that reduce to convex problems
all require a change of variables, see [52]. One bianalytic map composed with the inverse
of another leads to a bianalytic map between free spectrahedra; thus maps between free
spectrahedra characterize the non-uniqueness of bianalytic mappings from the solution
set D of a system of matrix inequalities to a free spectrahedron.

Studying bianalytic maps between free spectrahedra is a free analog of rigidity prob-
lems in several complex variables [14,19,20,35,36,42]. Indeed, there is a large literature
on bianalytic maps on convex sets. For example, Forstneri¢ [20] showed that any proper
map between balls with sufficient regularity at the boundary must be rational. The
conclusions we see here in Theorems 1.1, 1.3 and 2.1 are vastly more rigid than mere
birationality.
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