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larger time steps, and a fine scale propagator which fully resolves the medium using finer
spatial grid and uses shorter time steps. The fine scale propagator is run in parallel for
short time intervals. The two propagators are coupled in an iterative way that resembles
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Wave equation minimizing the wave energy residual of the fine and coarse propagated solutions. Several
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effectiveness of the proposed method.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we will focus on the initial value problem of the standard second order wave equation:

ug=c*®Au, xe[0,)%, 0<t<T, (1)
u(x,0) =uop(x),
ur(x,0) = po(x).

For boundary conditions, we consider either periodic, absorbing boundary conditions or placing a perfectly matched layer
around [0, 1)9. The wave speed c(x) is given explicitly and independent of the solution. Our objective is to develop a stable
parallel-in-time algorithm for (1).

The wave equation is a physical model for seismic wave and electromagnetic wave in certain simplified setups. It is also
used as a test case for developing algorithms that are further generalized to more complicated elastic and electromagnetic
wave equations.

Time domain decomposition methods for evolution problems has been of increasing interest in the partial differential
equation community due to the increasing number of cores available in modern supercomputers. Despite rapid advance
in parallel computer architecture, parallelizing the time evolution of the second order wave equation efficiently is still a
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challenging problem. One of the time domain decomposition paradigms is parallel-in-time method. The whole time domain
[0, T) is partitioned into subintervals for parallel processing. The most relevant algorithm to this paper is the parareal
method introduced by Lions, Maday and Turinici [24]. The parareal method combines iteratively two propagators, denoted
by Fv the fine propagator and by Cv the coarse propagator. They approximate the solution v(t;41) propagated from v(t,).

The approximate solution at parareal iteration k, denoted as v’,f,. can be described by

’,‘lﬂ_Cvk“—i-}'v — vk, @)
vozvo, n+1 Cv k=1,2,..., n=0,1,...,N.

Note that for each k, }'vn is computed in parallel. For the second order wave equation under consideration, v(x,t) is a
vector corresponding to [u(x,t), us(x, t)].

Typically, the coarse propagator runs on coarse grid and is cheaper to compute, while the fine propagator runs on finer
grid and is assumed to fully resolve the small scales in the problem. The finer propagator is thus more costly to compute.

In [4], it is shown that the parareal method is stable and converges linearly to the serial fine solution if the coarse
propagator is smooth and has sufficient dissipation. When certain conditions are met, the parareal method can achieve
high fidelity solution within few iterations. Some applications of the parareal method are: plasma turbulence in Tokamak
reactor [38,37,36], Navier-Stoke equations [14,40,11], acoustic wave [28], shallow water [20], chemical kinetic [6], molecular
dynamics [9], reaction wave [13], neutron diffusion [5,26], lattice Boltzmann equation for laminar flow [29,23,30].

Speed up of wall-clock time is attained when the coarse propagator can be chosen as a spatial coarsening of the fine
propagator [35,33] which allows larger coarse time step. Indeed, this coarsening technique provides additional speed up
in some applications [25,3,23] because the coarse propagator has less grid points to compute, provided an appropriate
grid restriction and interpolation operator. However as shown in [33], considerable coarse grid resolution and accurate
interpolation are required in order to make the parareal iteration (2) converge.

The parareal method tends to suffer from slow convergence or instability when applied to hyperbolic problems. Using

an oscillatory dynamical system as an example, [1,2,22] pointed out that the phase error between the coarse and fine
propagators is the reason for the slow convergence. Analogously for advection problems, the authors in [34] observed that
numerical dispersion between the solvers makes the parareal method converge from above and hence causes instability.
Intuitively, constructive or destructive interference of two overlapping plane waves depends on their relative phase which is
sensitive to the frequency, yet the parareal iterative coupling (2) is point-wise in space and time.
There have been some attempts to modify the classical parareal method in order to address the slow convergence issue.
In [12], the fact that solutions to the wave equation live on a submanifold of constant energy is exploited. In that work,
the solutions are projected onto the submanifold to stabilize the parareal iterations. More precisely the algorithm can be
presented as

= Plcuk_; + (FukTl — cukDy),

where P denotes the projection onto the constant energy submanifold. However, the projection is obtained by solving
nonlinear equations which can be sensitive to the initial guess.

In the so-called Krylov-subspace enhanced parareal methods [15,35], computed solution data is used to construct projection
operators, which is used to modify the coarse propagator. To get the projection operator P¥, a set of orthogonal vectors is
constructed for the subspace spanned by ({u Jfori=1,2...n,j=1,2...k—1). Let S¥ be the matrix whose columns are
the orthogonal vectors s, then P¥ = $¥(S¥)T. The enhanced parareal algorlthm takes the following form:

= (C(I = PYyul_y + FPAuf o) + FulZy — €U — PYus= + FPAuf ),

where [ is the identity. The enhanced coarse propagator corresponds to

c(I — P¥y + FPk.

The fine propagation, Fs, for s, is the orthogonal vector that defines P, is precomputed and stored. The precomputation
incurs an additional computing cost on top of orthogonalization of the data matrices.

The reduced basis parareal method [10] develops more efficient ways to construct the basis vectors and extends the
approach to solve nonlinear equations.

The convergence and stability of these methods are analyzed and demonstrated by numerical examples of constant wave
speed media in one and two dimension. However, in these work, the fine and coarse solvers are assumed to work on the
same spatial grids and examples of variable wave speed are not presented. In this paper, we will consider the solvers on
different spatial grids and present examples with variable wave speed. We also use the computed data, but its usage is very
different from [15,35,10], see Section 3.2.

On the other hand, it is known that the slow convergence and instability of the parareal method for hyperbolic problems
can be due to some notions of phase errors [2,1] and numerical dispersion [34]. In [1], effective multiscale parareal schemes
relying on elaborate phase correction are proposed for a class of highly oscillatory dynamical systems. In [2], we derived
convergence theory for a modified parareal scheme applying to linear systems of ordinary differential equations (ODEs).
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Additionally, in that work, we investigated a few simple strategies of phase correction systematically and showed that
appropriate phase correction could enable the resulting scheme to have superior performance.

In this paper, we propose a new method, based on the idea of 6-parareal scheme [2]. Instead of decomposing the input
data as in [15,35], we use the computed data to build an operator, formally denoted as 6, that directly brings the coarse
solutions, Cu, closer to the fine solutions, Fu. In this paper, the 6 operators are constructed by minimizing the residual
between the fine and coarse solutions in a semi-norm related to the discrete wave energy.

2. Preliminary background

We briefly review the plain parareal method and its properties. In a context of linear evolutionary problem ii(t) = Au(t)
for t € {0, At,..NAt =T} and A: R+ R linear function, let us denote the fine propagator/solver Fuy, > upy1 and the
coarse propagator/solver Cuy — uy41. Then the plain parareal iteration k 4+ 1 can be written as a recurrence relation

ubt = cul ™ + Fuk - cub. (3)

Starting solution k =1 is the serial coarse solution uﬁzl = C"up. In addition, by rewriting the recurrence relation (3) in a
matrix form and manipulating the inverse of Toeplitz structure, an error estimate e’n‘ = |uf§ — u(ty)| is derived in [2]

n—k—1 ;
et <IF—Clo) . lICler. 4)

The first term on the right hand side is equivalent to the local truncation error of the coarse propagator, assuming the
fine solver is an exact one. The summation term is bounded above by N for stable schemes, e.g. |C|l« < 1. Above error
estimate is equivalent to linear convergence analysis of the parareal method derived in [4,16].

Wall-clock complexity of the parareal algorithm is estimated by

C K( r, T ) (5)
parareal = At nepudt .
Comparing to the complexity of the serial fine solver Cyi, = T/8t, the parareal algorithm is more effective (from the
perspective of total wall-clock computing time) if (i) a large number of computing cores, ncpy, are used; (ii) the coarse/fine
time stepping ratio is sufficiently large At/8t > 1; and (iii) the number of iterations, needed to for the desired accuracy K,
is small.

The key objective of this paper is to introduce a data-driven strategy to stabilize and improve the efficiency of the
parareal iteration.

3. The proposed method

We propose a scheme that takes the general form:

uitl =0k [Cult] + Fuk — oF , [Cul). (6)
Here, uﬁ denotes the solutions computed on the grid, and it has two component blocks, one corresponds to the wave
solution u and the other the time derivative u. In this paper, for readability we shall also use i to denote the time derivative
of u, i.e. ur = u. The coarse and fine propagators, C and F will operate on different grids, and additional interpolation and
restriction operators are needed for coupling the two propagators. Here we use C and F to denote the appropriately defined
operations to be described in detail in this section.

A family of operators 9,’,‘[~] are constructed such that

OA‘H ~FC1:Cur Fu.

Clearly, direct calculation of C~! is not practical because it undermines time parallelization of the §-parareal method.
Instead, we seek an effective mapping that has similar property as #C~! and is constructed from data computed along the
parareal iterations.

3.1. Discretizations and data preparation

In this paper, we use the uniform Cartesian grids for the spatial domain and uniform stepping in time. Both the coarse
and the fine propagators are defined by the standard second order central difference scheme for the spatial derivatives and
velocity Verlet for time marching. The coarse propagator will operate on the coarse grid: Ax - Z9 x At-Z™, and the fine
propagator will operate on the fine grid: sx-Z% x 8t - Z*, ford=1 or 2.

Let u, € RNsx U, e RNax denote respectively the solutions computed at time t, = nAteom, n=1,2,3,...N on the fine
and coarse grids. Nsx, Nax are the number of grid points for the fine grids and the coarse grids respectively.
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Fig. 1. Discretization diagram. Coarse propagator, C uses spatial grid size Ax and temporal step size At. Fine propagator, F uses spatial grid size §x and
temporal step size §t. These propagators communicate at (jAx, nAteom) for je Z,n=1,2,3,...,N.

These fine grid functions u € RNox and coarse grid functions U € RNax are coupled by an interpolation Z: U + u and a
restriction R : u + U. The accuracy of the interpolation method will influence the stability of parareal iteration, as discussed
in Section 6.4. Coarse propagator uses point-wise value of the wave speed c(jAx) and does not involve averaging of the
wave speed nor homogenization of the wave equation. The fine and coarse propagators communicate at nAtqmy. The fine
propagator uses the step size §t = Atc,m/mx and the coarse propagator uses At = Atcom/mc, with mxz, me € N selected
according to §x and Ax for stability in the respective time stepping. See Fig. 1.

Given [uﬁfl, llfH] at tp_1, the fine and coarse propagators are applied to obtain the solutions to define

DT l - k
[un, up] == ]:[U,;,p u,f,,1]

and

[Un, Unl :=C[Ruk_,, Rk 1.

For readability, we will write in-line vector [v, w] and full vector

]

interchangeably. These solutions are propagated over a coupling time interval [t,_1, t;). These propagators are expected to
approximately preserve the wave energy.

Finally, we will quickly describe the data matrices that will be used to construct the operators 9,’1‘. We are interested
in using the computed solution data, particularly the gradient of the wavefield u and a weighted momentum of . Each
column of data matrices is formed by block(s) of the gradients VU, followed by a block of momentum U, of coarse grid
solution at n-th coupling time. In practice, the gradient operator, V, will be replaced by some numerical approximation Vj.
Then define the data:

Foo VhRuiy VpRuy; --- VyRuy )
'_ Ci]'RL'll CilRﬂz CilRuN ’
| VRUr VpUuz - Uy

G'_|:C7101 C71U2 CilUN ' (8)

Here and for the rest of the paper, c"1U, denotes the component-by-component multiplications of ¢~ (xj) and U (xj). The
same convention is used for cflRilj.
Now, define the discrete wave energy function as

1 Nax
E(WUn. Un):= 5 Z IVhUn(xj)1? A% +
J

Nax

! Zcfw,,(x,-)FAxd. (9)
i

2

We see that it is equivalent, up to a constant, to the Frobenius norm of the G:

N Nax Nax N
1GIE = Y[ Do 190U + 3¢5 210 | = & > E((Un, Un)). (10)
n=1 j j n=1
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Fig. 2. Example of Procrustes problem in (13). Blue cross points are reference solution, red circle points represents solution to be aligned blue points. Yellow
diamond points are corrected solution of red circle points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

3.2. Minimization of coarse-fine solution gaps

For simple plane waves, it is well known that the phase error, not the amplitude difference, between coarse and fine
solutions, causes the parareal iteration to converge slowly or diverge [35,22]. If two plane waves are in phase, parareal style
updates can effectively correct the amplitude error. For general wave solutions, it is inconvenient to work with the phase
notion defined by the plane wave solutions. Instead, we consider the discrete wave energy semi-norm (9) which is induced
by the ¢2 inner-product of the energy component vectors, i.e. the columns of F, G in (7) and (8). Such inner-product gives
us a notion of angle between two wave solutions. The proposed strategy to stabilize the parareal iteration is by minimizing
the inner-product between coarse and fine energy component vectors without changing their ¢2 norm. Similar strategies
of using wave energy to compare wavefields for wave propagation purposes have been used successfully, for example in
seismic imaging [31], wavefield approximation by Gaussian beams [39].

Denote the j-th column of F and G by f; and g; respectively. We consider the following optimization problem:

N
min Y Iifi - Qgjli3. st QQT=Q"Q=1. (11)
Xj=1

QR E+DNAxX@+DNp

Recall that the elements in the columns of F and G consist of the spatial gradients and weighted time derivatives of
the solutions on the respective fine and coarse grid, and that the ¢2 norm corresponds to the discrete wave energy (9).
Therefore, we look for a unitary matrix so that the discrete wave energy of the corrected coarse solutions is the same as
before correction. Intuitively the correction operator aligns the phase (in the above sense) of the coarse solution to fine
solution for each t,. It is similar to the local phase-alignment procedure in [1] as depicted in Fig. 2. Indeed, from each term
in the summation

I1fj — Qgjll3 = 1£jl13 + 1185115 — 2(f}. Qg)). (12)

the minimization can be interpreted as minimizing the sum of the angles between the columns on the data matrices. Thus,
we shall refer to Q as the phase corrector.
The minimization problem (11) is equivalent to the “Procrustes Problem” [17]:

min IF—QG|%, st. QQT=QTQ=], (13)
QgR<d+1)NAXX(d+1)NAX
where || - || denotes the Frobenius norm of a matrix. An in-depth review of the Procrustes problem can be found in [18].

Its variants have been instrumental to multidimensional statistical analysis, rigid body motion simulation, satellite tracking
and machine learning [42,32,19].

3.3. Solution to the optimization problem

The optimization problem (11) can be solved in a couple of different ways. One of them is to use the singular value
decomposition (SVD) of the correlation matrix

n
M:=FG" =) VyRu;® VyUj+ ¢ 'Rii;®c'Uj. (14)
j=1
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If matrix M has full rank, the minimizer of (11) is uniquely
Q, =xYT, (15)
where X, Y are the left and right singular vectors of M = X3YT. Correspondingly, the minimum residual is
Toin = IFI% + 1GIIF — 2 trace(Z).

Fig. 2 illustrates the Procrustes problem and its solution in a simple setup in R2.

3.3.1. Low rank approximation of Q..

We now consider a low rank approximation of Q, for computational efficiency. Since the number of time slices is usually
much smaller than the number of (coarse) spatial grid nodes, i.e. N < (d + 1)Nax, we can factorize the data matrices using
the reduced QR factorization. Denote the factorizations by F = QrRfr and G = QgR¢, where

Q. Qc € RE+DNaxxN_ g Rc € RVXN

With the singular value decomposition of the smaller system RpR%- = Xg EYE, the correlation matrix can be factored into

M=QrXrZYLQL.
The last relation shows that
rank(M) = rank(RF Rg) = min(rank(F), rank(G)).
Hence we can use the factorization of the smaller N x N matrix Rg Rg to obtain
Q. = (QrXp)(QcYo) (16)

By setting a tolerance to singular values in X, there are s singular values such that o > tol remained. As the result, we only
need to store s number of columns in Qf, Qg, and the truncated phase corrector becomes

T

Q, = (QF(:,I CSXp(1:s,1 :s))(Qg(:, 1:9)Ye(1:s,1 :s)) .

3.3.2. Enriching the phase corrector Q.
After every parareal iteration, more data becomes available. We can use this data to enrich the phase corrector. Define

M = MK+ PR G

The singular value decomposition of M¥t! = USV” can be updated using that of M¥ = USVT, see [7]. We summarize the
update procedure is Algorithm 1.

Algorithm 1: Update SVD of the current correlation matrix M*t! = 0SVT = usvT + FGT, where USVT = Mk,

[0, 8, V] <« UpdateSVD(U, S, V, F, G, tol) :

if S is empty then

QrRF = truncatedqgr(F)

QgRg = truncatedqgr(G)

X YT = svd(RpRL)

rankM = sum(diag(X)/max(diag(X)) > tol)
U = QX (:, 1: rankM)

V =Q¢Y,(;, 1: rankM)

S =3(,1:rankM)(:, 1 : rankM)

else

Ur = UTF

Ve =VTG

QfrRF = truncatedqr(F — UUf)
QgRg = truncatedqr(G — VVg)
H=[Uf;: RF][Vc; Rc]” +[S 0;0 0]
Xp Y, = svd(H)

rankM = sum(diag(X)/max(diag(X)) > tol)
U=[U QplXn(, 1:rankM)

V =[V QglYs(, 1:rankM)
S=3%(,1:rankM)(:, 1: rankM)
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3.4. Reconstruction of wavefield from the gradient

After correcting the energy components, i.e. the gradients and the weighted time derivatives, of the coarse solutions, it
is necessary to reconstruct the wavefield pair from the corrected energy components. In other words, we denote [q, p] as
the corrected energy components of a wavefield pair [w, w]

[q]EQ*A[W]:Q*[V_’y"Y], (17)
D W c'w

where the mapping A : [w, W] — [Vyw, ¢~ 1w] takes function to wave energy components. Then we want to deduce the
corrected wavefield pair [v, v] such that

)= )

It is straightforward to find the latter component v = cp. For the displacement component v, we use the spectral property
of differentiation ££t{Vv}=i&££ft{v} to recover its the Fourier modes as follow

—i(§- ££t{q))I&|7> for |§| #0,

Z?’A* w(xj) for |§| =0.

fft{v}:[ (18)

We denote this mapping from energy component to wavefield component as AT : [Vv, c=17]+ [v, V]. In particular, when
the gradient is approximated by Fourier method, this reconstruction is an identity.

Proposition 3.1. Suppose the gradient of function v (x) is estimated by spectral method Vv = 1 fft{i& £ft{v}}, then
ATA[H =Af[lfft{l§f.ft{"}}]=[‘.’]. (19)

c v 1%

Proof. Let

-]

Since A maps function to energy components we have

ATal Y | =af] VrY
v c v

By construction of AT, for nonzero wavenumber |£| # 0

FEE{w) = —i& - £EE{V,V}|E| 72

Here the gradient is approximated using spectral method then

FEE{w) = —i& - {iE£Ec{v}}|E| 2 (20)
= fft{v}.

And for zero wavenumber || =0, £ft{w} = Zj v(xj) = ££t{v}. Thus, w = v while the second energy component w =
cc~ 1% = v. This concludes that the mapping ATA is equal to identity. O

If the gradient is approximated by a central finite difference of 2m-order instead of the spectral method, for one dimen-
sional setting equation (20) in the proof above becomes

FEE{w) = —ig[iax~1 ) (VA —e VAN B £EE (V)1
j=1

=2EA0T"T Y sin(jEAX)BEEE(V),
j=1

where g; are appropriate coefficients of the difference stencil. When the spatial grid is small enough £Ax « 1, above
expression is approximately
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- 1
EEE{w)=2A0 ") (jEAx— ;(jsAxf +O(jEAX))B; ££E{v)
j=1 '

X 1
=2) (= 5,/ EM0* + O €A B £EE(v).
j=1 '

Particularly for the second order central difference m =1, we would have 81 =1/2, then

fft{w} =sinc(§ Ax)fft{v},

which says that |£ft{w}| < |££t{v}| because sinc(§ Ax) <1.

In practice, we observe that the algorithm does not require spectral approximation of the gradient, but instead |ATA |, <
1 is necessary for stability of the method. When central finite difference is utilized, it is well known that the modified
wavenumber is less than |£|, hence central difference satisfies the requirement ||ATA |, < 1. Algorithm 2 summarizes above
procedure.

Algorithm 2: Reconstruct function from the gradient.

w <« grad2func(Vyw, )" w):
p=~ffe(Vaw)

4(1&] #0) = —ik - plE|2
4(&1=0) :AZW
w=1£fft(q)

3.5. The proposed algorithm

The proposed algorithm couples the fine and the coarse propagators at times nAtem,n=1,2,..., N over the fine grid
(the spatial grid that the fine solutions are defined). However, it is important to note that the phase corrections are applied
on the coarse grid. If the two grids are not identical, an interpolation is needed. We denote the interpolation operator by
Z. Furthermore, denote the mappings between the wavefield [v, V] and its energy components [Vv,c~1v] by A : [v, V] —~
[Vv,c 9] and AT:[Vv,c 1]~ [v, V]. With these notations, the 6 operator after k iterations can be written as

O[v, V] = ZATQKA[v, V).

Here we use QX to denote the phase corrector derived from the data matrix M¥.
Finally, our new algorithm can be written compactly as in 6-parareal form

k+1 k+1 k k
Upig ok Ruy, Up | _ gk Ruy 21
|: yas; i| ¢ Rigk+1 Tk Clorik |- (21)

n+1 n n

Algorithm 3 describes the new scheme in a pseudo-code form with more details.

Similar to the Krylov subspace method [15,10], our method requires orthogonalization of data matrices, but they are
formed in a different way. In this paper, the data matrices are the multiplication of the wave energy components of the
fine data and the coarse data as in equation (14). Then the phase correctors are constructed from the singular value de-
composition of the data matrices. In [15,10], the data matrices, consisting of computed solutions, are orthogonalized to
form projection operators. In contrast, our phase correctors are not projections, but they effectively induce translation of the
coarse solutions on constant energy submanifolds.

4. Complexity analysis

There are three parts to our implementation: parallel fine propagator computation, construction of Q* and the serial
coarse updates. We assume that (i) no spatial domain decomposition, i.e. whole domain on a single core, (ii) standard QR
complexity, i.e. no multithreading, (iii) communication between nodes and other tasks negligible.

In each iteration, the wall clock complexity for the parallel fine and coarse computations is in the order of

! (TN + N )(d+1)
Ncpy \6t ox At ax

where ncpy is the number of cores, Nsy, Nayx are respectively the total number of fine and coarse grid points. The complex-
ity of serial coarse update in an iteration is

T
—(d 4+ 1)N ax.
At( + 1)Nax
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Algorithm 3: The proposed algorithm.
Initialization: [uk=", k=11 = ZC[Ruk=1, Ruk=1]
I=[1LX=[1LY=I]
while tolerance not meet and k < K do

parfor n=2 — N do

[Vn, ¥al= Fluk_,, ik_;]
[Un, Unl = CIRuk_|, Rik_,1
end

Solve the orthogonal Procrustes problem:
F=[VyRvy, Rc1,]

G =[VyUn,c™"Un]

[X, Z,Y] =UpdatesvD(X, 2, VY, F, G, tol)

forn=2— N do
. k+1 oo k+1
[w, W] = C[Rut], Riftl]
[q. p1=XYT[Vyw, ™ W]
[3. Pl =XYT [V4Up,c™'Uys]
Reconstruct function from gradient:
g1 =grad2func(q, Y. w)
(1 =grad2func(q, y_ Uy)
Update next time step:

(k™1 i51) = (v, V) + Z(Ireal @ —dn).c(p — BD)

end
k=k+1

end

The complexity of standard QR factorization for constructing Q is

(d+ 1)NaxN?.
Therefore, the total complexity is
K+ 1) Nixt —— Ny + - Na+ Naah?). (22)
ncpydt ncpy At At

where K is the number of iterations. In this set up, the speed up over a serial fine computation is
1 1 StN NaxNét -1
[K( T 1) AX Ax ]
ncpu ncpu AtNsx  NsxAtcom

Additionally, we have coarse/fine time step ratio At/§t = m;, which implies Atcon/8t > m;, and their corresponding the
mesh ratio is Ax/8x =m;. Hence the theoretical speed up is

(23)

d
mgmg

1
Emin{@(ncpu), omlmy), O( )} (24)
We note that the third term in above speed up is derived from the classical N> complexity for QR factorization (of
matrices of fixed number of rows). The speed up analysis (24) presents the worst-case asymptotics as N approaches infinity. In
practice, we observe that QR factorization has sub-quadratic scaling when multithreading, ubiquitous in modern computers,
is enabled. However, to our knowledge, speed up analysis of QR in a multithreading environment is not straightforward. To
illustrate the effectiveness of multithreading in computing QR factorization, consider random matrices with fixed 100, 000
number of rows and vary the number of columns in a way relevant to the paper. The computing time is presented in Fig. 3.
The computing time roughly grows as the power of 1.5 of the number of columns, rather than quadratically according to
the classical QR complexity. We also see that having 68 threads speed up the computation by more than a factor of 10.
Finally from numerical experiments, the QR step in our algorithm takes relatively small amount of time compared to other
components, see Section 7.2.4.

5. Stability and convergence

In this section, we will derive some estimates that show the stability and the convergence of Algorithm 3 under cer-
tain assumptions. We measure the difference, in the discrete energy semi-norm on the coarse grid, between the serially
computed fine solution and the iterated solution.

Consider energy components of parareal iterated solution restricted on the coarse grid

Vh Uk+1 k
1. EAR[L,’;QH].
-Un Unt1

Cc
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time of QR factorization

10°
—%—nthread=1
—&—nthread=68
102 ¢ ncols?
ncols'®

1072 :
102 108 10*
number of columns

Fig. 3. Computing time of QR factorization as function of number of columns.

Its parareal iterative coupling is expressed as equation (21)
VUK, Ruk k-1 Ruk-1
1. :AR(@’HC[ .”]+f|:.” ]—9"*%[ n ]) (25)
l k k—1 k—1
EU,;H Rily, us Ry
Recall that 6[v, v]:=ZATQA[v, V], so
ARG = ARZATQEA.

Since the restriction operator takes point wise values, it cancels action of the interpolation RZ = 1. So equation (25)
becomes

VUK, Uk k—1 k1

k u U
Toe  |= AATQEAC [ ok } +ARF [ s ] — AATQEAC [ ko1 } : (26)
c n+1 n n n

Let us denote the square root of wave energy as £([U, U]) := v E([U, U]), where E is defined in (9). Thus,

k 11k th’l:
5([Un,Un]): || lUk
n

C

ll2.

Theorem 5.1. Suppose that

(1) the coarse propagator C satisfies, for some € > 0;
ECIU, UN < €U, UD +€;

(2) the residual of the energy minimization problem is bounded uniformly fork =1,2,...:
IF — QLG |F <

where F¥, G¥ are data matrices in (7), (8) gathered in the first k iterations;
(3) IATAll2 < 1,and |1 — ATAJ2 <A < 1/N.

Then

k rrk g
max £ (U}, Uf) < 17— (£Wo. Uoh + (N + e + Cn), (27)

where C is a norm equivalence constant between €3 1 norm (sum of £ norm of columns) and Frobenius norm.
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Proof. Consider the square root of wave energy of (26)

thk+]
EqUEL UK D=1 1 Uk [P
P+
Uk uk*] Uk71
=||AATQ{;AC[U;g]+ARJE[uz_1 — ANTQEAC oho1 |2
n n n

We apply triangle inequality to obtain

k k—1
S([Un+1,ul<+1])<||AATQAC[U ]||2+||ARf[ ] AATQAC[U ]||2

n Uk uk—] t k 1
< 1AATI2 1912 ||AC[U',1] 2+ ||ARf[a ] AN QAC[ ]uz.
n

n

By construction, |Q|» = 1, and by the hypotheses that |AAT|; <1 and energy bound of the coarse propagator,

IACLUE, UKl = £clUk, UKD < equk, UK + €,

we have

k k—1
U
E(IUX, 1, Uk D <equk, Uk + € + ||AR}'[ } — AANTQkAC [ Uﬁ_1 } Il
T'l

K p k 1 | k—] Uk 1
< &([UF, U‘])+6+|IARJ—"[ } Q‘AC[ ] ATQ"AC[Uk ]nz.
Seeing the third term as part of the energy minimization problem in (10),
EUR . Up iy ) SEAUR URD + € + [ fapr — QLgnaalla + 111 — AAHQEAC [ gij } 2
< EQUE UKD + € + st — gl + 11— AATI2 (EQUET OF1D +€)
< E(UK. UKD + € + 1 — Qgnrallz +4(EQUE OF D +¢)

< &(Uo, UoD + (n+ e + Y I1f; — Qigjllz + Y #(EAUS 051 +e)

j=1 j=0

< (U, Up]) + (n+ 1)e + Cn + An(x}agalzw([u’;—l, 0k + e).
As the above relation also holds for maxj<y S([U’J?, Uz?]). therefore,
%)’(s([uk, UsD) < £([Uo. Uol) + (N + e + Cn + AN(I}?#([U’;*, Uk + e)
— AN %als(g([u’;*l, Uk + (/\Ne +E([Uo, Upl) + (N + e + cn).

Applying the discrete Gronwall inequality [21] on index k we get

k—1
maxE([UX, UX]) < AN Tmaxe(Ul, U1)) + (ANG +E([Uo, Up)) + (N + e + Cn) YNy
j<N J J=N J =0

By the assumption AN < 1,

k rrk ’
r]nfal\),(g([u4, Ui = ()»NE + E(Uo, UgD) + (N + e + Cﬂ)l N’

Next, we will show that, under some hypotheses, the proposed method converges to the solutions computed by applying
the fine propagator serially. The hypotheses involve Lipschitz smoothness of the phase corrector, which implies the mini-
mization problem (11) is solved with sufficient accuracy. We shall use the following notation for those reference solutions:

[u(tn), u(ty)] := F'[ug, o], n=1,2,...,N. (28)



12 H. Nguyen, R. Tsai / Journal of Computational Physics 405 (2020) 109156

We measure the overall error on the fine grid as the square root of the difference in the discrete wave energy
k._ k k-
En = 1A [up — u(tn), uy — u(ta)]ll2.

(29)
Hypothesis 5.1. (i) The phase corrected coarse solution is Lipschitz continuous in energy

|AOCR [ v ] — AOCR [ v ] l2 = IAZATQACR [ v ] — AZATQACR [ w ] 2
v w v w

vV—w
< (1 +ezr)(1+€pigpc)llA [ v ] [l2-
Let €y denote the overall perturbation

1% w vV—w
IIAQCR[‘,} —AQCR[W] ||2§(1+69)||A[‘-/_W}II2~

(ii) The energy error between fine and corrected coarse operators is Lipschitz continuous
v -w
||(Af—A9<:R)[‘./]—(Af AQCR)[ ]I|z<x||A[ _w]nz.

Theorem 5.2. Suppose that the fine and corrected coarse operators satisfy Hypothesis (30) and (31). Then

1+e€g N_ _
maxE" <K¥ max &K1,
Jj=N €p Jj=N

(30)

Proof. In the following expansion of the parareal iteration, the superscript k in 6% are dropped for brevity
k k k— k—1
['.‘z“]—ecn[ }+f[“ ]—9072['.‘;;,1]
Upq u,1 uy
k uk-1 uk1
zecn(ecn[ ]-I-J-" o] | —ocr| Ml )
un 1 u —1 un 1
k 1 uk71
+J~"[ R 1}—9072[ .;}7]]
Uy u

n

_ n+1 | Uo Uo | Ug
= (ICR) [uo}ﬂecn)( [Uo] QCR[.J)
1
1

k-1 k
+ (OCR)"! (]-' [ Z’Ll ] 0CR [ Z}(
1 1
k k
n
k
n

-1 I—l k—1 kl
+(90R)(f[z—}}—9672[ e ;})+(r[§xl} GCR[ k= 1})
-1 Up 1 n

It can be verified that the serial fine solution [u(t;41), 1(th+1)] also satisfies above expression when superscript k,k — 1 are
dropped in solution vector [u¥, i1¥]. Then we have an expression for the difference of the solutions

k k—
Upt1— u(tn+1) ] -0 n—1 0 |: ”1 —u(t1) ]
[uL Ci(tgyy) | RIS 6CR) itr)
k—

1
(OCR)(F — OCR) [Z;} p Ul } +
1

n—

(33)

k—1
u, —u(tn)
(}'—OCR)[."_ . }
ur=t —a(ty)
Recall the square root of energy error is defined as

— u(tn41)
=[A [ s ll2-
€ k1 — U(tng1)

Using triangle inequality on 5 1 With equation (33) we obtain
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k—
&k 1 < IIA@CR)N I (F — 6CR) [“1 U(fl)} I

u(ty)

u(th—1)

k—1 _
+ | A(F — 6CR) [Z;g_l - Zgz; } 2.

Apply equation (30) in Hypothesis 5.1 (i) to bound each term

u’{ ! U(t1)] |
—u(t1)

k 1
+||A(HCR)(I—QCR)[ pp Ul 1>}”2
-1

& <A +e)" AF - 6CR) [

kl
— u(th—
(4 e |ACF - ecm[ po1 Ul 1)}“2
—1

— u(th—1)
k
u(ty)
+ |A(F — ocn)[ u(tn)} ll2.
Finally we use equation (31) in Hypothesis 5.1 (ii) to obtain
k 1
—u(t
€ < (1 + e ‘an[ “)]n
u(ty)
k—1
u —u(t
+(A+ekfa | tamp TG0y
uy—; —u(ta—1)
k—1
Uy u(ty)
A .
+xll [u" 1 u(tn)]llz

=(1+e)" W (1t €] ik
< K((l +e)" o+ (1+€)+ 1) maxé?j.‘_1
j<n

14+e)"—1
:ici( ) max 5k 1
€9 j=n
Thus
1+e)N -1
max 5" < K% max K1,
j<N €p j<N

By assumption kN <1 and €N < 1, the error goes to zero as k approaches infinity. O

We see that the convergence depends on the Lipschitz constant « in Hypothesis 5.1 (ii), which reflects the gap between
the corrected coarse propagator to the fine propagator. This gap between propagators is quantified by the energy residual

of the minimization (13).

6. Numerical study of the new algorithm

In this section, we study the influence of different components of the proposed algorithm to the overall stability and
accuracy. From Section 6.1 to Section 6.4, we consider the influence of (i) varying the low-rank approximation of the optimal
phase correctors Q,, (ii) effect of the phase corrector and the parareal update, (iii) different orders of approximation for
the gradient Vj and interpolation operator Z. Regarding to the last item, we will use the following interpolation methods,

written as MATLAB functions, in this section:

interpft: Fourier interpolation
akima: cubic Hermite interpolation
pchip: cubic interpolation
linear: linear interpolation

From Section 6.1 to Section 6.4, we shall consider the simplest one dimensional setting with ¢ =1 for both coarse and

fine propagator, and the initial data:

13
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Fig. 4. Dependence of error convergence on rank tolerance which is in Algorithm 1. Left: relative energy error as a function of iterations. Right: the stagnated
error value as a function of tolerance.

u(x,0) = cos(10mr x) exp(—lOOxz), xe€[—0.5,0.5]
us(x,0)=0.

For Section 6.5, we consider random subsampling of the data matrices to exploit their observed low rank property. In
this study, we consider a two dimensional problem with variable wave speed.
We will assume that the coarse grid nodes overlap with the fine grid nodes, and that the restriction operator R is just a
point-wise evaluation on the coarse grid nodes.

The errors at final time Ty =T are defined as square root of energy of difference on the fine grid

/Em%—uammx—MWn>
E([u(tny, ultn)D '

And similarly the error can also be defined in ¢2 of difference in displacement component

luf —uten) 2
lluctn) 2
The reference solution [u(ty), t(ty)] are serially computed using the fine propagators.

6.1. Rank tolerance of the phase corrector

In this example, we study the sensitivity of the algorithm to rank-truncation of the optimal phase corrector Q.. We use
the same spatial grid for both the coarse and the fine propagators in order to avoid error coming from interpolation/restric-
tion. The fine propagator has an CFL number that is 20 times smaller than the coarse, and the coupling take place every 10
coarse steps. We sample several values for tolerance in Algorithm 1 at 10~1°,10712,107°,107%,1073. The parameters are
tabulated below:

T Ateom AX At/Ax  Ax/8x  At/st T Vh tol
5 005 001 05 1 20 interpft 2 order 10(-15-12-9.-6.-3)

Fig. 4 shows the relative energy error along with the iterations as the tolerance in the truncation of Q, is varied. The
errors decrease in the first few. The rate of decrease seem independent of the chosen tolerance values. As more iterations
progress, the errors convergence eventually stagnate at certain values that strongly correlate to the chosen tolerance values.
Particularly, the stagnated error values scale as the square root of the tolerance as shown on the right plot of Fig. 4. This
scaling can be explained by the fact that the tolerance corresponds to the truncation of Q,, which modifies the wave
energy components, and we measure the square root of wave energy difference. Hence in general, the convergence rate
of our method is expected to slow down after the error has passed 108 because the tolerance can only be as small as
machine epsilon 10716, Fig. 5 shows the number of retained singular values for different values of tolerance.

6.2. The effect of phase correction (Q=1)

Assuming again that the coarse and fine propagators are on the same grid. Without the phase correction, i.e. Q =1, the
proposed iteration takes the form
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Fig. 5. Number of singular values for different value of tolerance.

k k k—1 k—1
u u u u
[.Z]:ATAC[.Z‘]]—F}' -1 —Afac| Tp-l |
Un Un—1 Up_1 Un_q
The above expression becomes the plain parareal method if the term ATA = 1. But when the first wave component Vju

is approximated by some finite difference, the term ATA =1 in general. In particular when V}, is approximated by the
standard second order central difference, i.e. Vj = D%X, ATA corresponds to multiplication of

sin& Ax

ET = sinc(& Ax)

to the Fourier mode of the solutions. Since |sinc(§ Ax)| <1, ATA damps high frequency modes, and thus stabilizes parareal-
like iterations.

Nevertheless, for long time simulations, such high frequency damping may be insufficient to stabilize the parareal-like it-
erations. To illustrate this, we take the same discretization as above but now consider four terminal times T = 2.5, 5, 10, 50:

T Atcom Ax At/Ax  Ax/éx  At/st T Vi tol
* 005 001 05 1 20 interpft 2order FD 1074

*:{2.5,5, 10, 50}. Fig. 6 presents a comparison of the errors computed with Q =1 and with Q = Q{,ﬁ, for different terminal
times. For shorter time intervals, such as T = 2.5, the two choices of Q yield similar convergence rates until after some
iterations when the errors computed with Q, plateau around a much larger value. For larger terminal times, T =5, 10, 50,
the instability that comes with using Q =1 becomes more and more apparent, while the computations with Q = Q’,ﬁ remain
stable.

6.3. The effect of parareal-like corrections

If the parareal-style additive correction is omitted, solution is propagated with just the phase corrected coarse propaga-

tor:
k k
u k=1, | Rup_
(] e[ 240
Up un—1

The simulation parameters are given as follow

T Atcom AX At/Ax  Ax/éx  At/ét T Vi tol
10 0.05 0.01 05 1 20 interpft 4 order 10714

We first point out that if C preserves the discrete wave energy, then the above scheme will also preserve it by construc-
tion of 6%, Fig. 7 shows the errors comparing to the serial fine solution. At iteration k = 1, the solution is serially computed
with the coarse propagator C. At iteration k = 1, a phase corrector 62 is constructed based on the data computed in k = 1.
The solution at k =2 is serially computed with 6C. On the right subplot of Fig. 7, we see that the coarse solution now has
the same phase as the fine solution, but has a slightly different amplitude. For iteration after k = 3, however, the error does
not decrease further since the parareal-style additive correction has been omitted. Comparing to the examples with similar
simulation parameters presented in the previous subsection, we see that the parareal-style correction



16 H. Nguyen, R. Tsai / Journal of Computational Physics 405 (2020) 109156

10° ‘ ‘ 100
K
2 -9--0=1 2 \
(0] (0]
> > N
o Sy
6.9
Pt o 0609060000
= =
s k& ——qk
e » e
6 0] [ -9 Q=1
10710t ‘ eo*o/xv,meeeoo*— 10 ‘ ‘ ‘
0 10 20 30 10 20 30
iterations iterations
10° 102 4
= oe® 5 q',' ——al
&
g %QG GQX*G = ; O
(0] 990 9(}' o
- > 1004
o oy
= 5]
e 10 Q
o) (0]
q) —
2 2102
S ——Qf s
e e
10710t [~ 0=t
. . 10-4 . .
0 10 20 30 0 20 40 60
iterations iterations

Fig. 6. Comparison of error convergence at different terminal time. Top row, left: T = 2.5, right: T = 5. Bottom row, left: T =10, right: T = 50. Applying
optimized Q, to solution is shown in cross solid curve. No optimization Q =1, but fine and coarse solutions are coupled in wave energy components, is
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Fig. 7. The solution computed serially by the phase-corrected coarse propagator. Left: relative energy error of the phase-corrected coarse solution. Right:
comparison with the serial fine and serial coarse solutions at T = 10.

Flug=q. 11 = 047 CIRu "} Rig ]
is important, as it adds the missing amplitudes back to improve accuracy (when the solutions are properly aligned).

6.4. Influence of interpolation and gradient approximation

So far in this section, we have only considered examples in which the coarse and fine propagators operate on the same
spatial grid. When these propagators are on two different grids, interpolation is needed to couple the solutions. In this
subsection, we study the effect of interpolation. To illustrate this point, take coarse/fine grid ratio to be 2 and keep the
discretization as before

T Atcom AX At/Ax  Ax/éx At/St LTV tol
10 0.05 0.01 0.5 10 200 x 4order 10714
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Fig. 8. Error convergence of the proposed method using different interpolation schemes.

*:{interpfft, akima,pchip, linear}. Input wave speed for coarse propagator is c =1 as well. Fig. 8 shows the er-
ror convergence with different methods for grid interpolation. We observe particularly for this example that the spectral
interpolation interpft performs better than the lower order methods because it resolves the initial wave form much
better.

We also study the influence of the accuracy in approximating the gradient of the wavefield in forming the data matrices.
We observe from the following examples that higher order approximations of gradient estimation accelerates convergence
rate of the proposed method. The parameters used in the simulations are tabulated below:

T Ateom Ax At/Ax  Ax/éx  At/st T Vi tol
10 0.05 001 0.5 1 20 interpft s+ order 1014

*:{2,4,6,8, spectral}. To isolate other factors that can also influence the convergence rate, the table below shows the

relative residual in Sec 3.3 averaged over all iterations, denoted as ( ||F — Q’;G||p/||F||p> . We see that the residual does

k
not change while we increase the order of finite difference. In the last column, the errors in reconstruction of U from the

its approximated gradient is provided. To be specific, we denote operation in equation (18) as Y : Vyv > v.

ik

F-Qka Yv,Uk — Uk
approx. order of V, <u> ax; IYVaU; — Uill2
k

IFIl ¢ UK )12
2 3.8634-103 2.9435.102
4 3.8101-1073 1.4023-1073
6 3.8079-103 8.2100- 107>
8 3.8077-103 5.8569 - 106
spectral 3.8077-1073 1.7706 - 10~ 12

Fig. 9 shows the convergence of errors for different central differencing and Fourier approximations for V. The ones with
second order approximation has the slowest convergence rate, while those using sixth order or higher converge faster.

6.5. Random subsample of the data matrices

We point out here that the cost of the stabilization can be further reduced by certain randomized algorithms [41,
27]. These randomized algorithms exploit the observed low-rank nature of our data matrices. Another approach is directly
subsampling the data matrices. To illustrate the low-rank property, consider a plane wave in a 2D wave guide

c(x,y)=1—-0.3cos(2rx), —05<x<05,-05<y<0.5,

with the following discretization

T Ateom At St Nax Nsx
4 0.02 8.-107% 8-107° 100x 100 200 x 200
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Fig. 9. Relative energy errors at T = 10, computed with different order of approximations to V,U.
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Fig. 10. Low rank property of the data matrices in Section 6.5. Left: normalized singular values of the correlation matrix M. Right: relative energy errors at
final time using random subsample of the data matrices.

After each parallel computation of coarse and fine data G, F, we plot the normalized strength of singular values of the
correlation matrix M = FGT for a few iterations in Fig. 10.

The normalized strength of the singular values drops exponentially in this particular example. A quick and simple strat-
egy to exploit this low-rank property is to randomly sample time slices in matrices F and G. By reducing the sample size,
the data matrices becomes thinner so that QR factorization is faster. We compared the convergence of different sample sizes
in Fig. 10.

7. Numerical examples

In this section, we shall consider one and two dimension examples, including an example that involve a large scale wave
speed model commonly used in the seismic migration community. When the spatial grid of coarse and fine are different,
wave speed on the coarse grid is point wise evaluation of the given wave speed.

7.1. One dimensional examples

Consider a medium with the wave speed
c(x) =14 0.25cos(4x),
and the initial wavefield in [—0.5, 0.5]
u(x, 0) = cos(107r x) exp(—100x?),
us(x,0) =0.

We present a numerical simulation using the parameters listed below:

T Atcom  Ax At/Ax  Ax/éx  At/st T Vi tol
10 0.05 0.01 05 10 100 interpft 4order 10714
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Fig. 11. Relative error of the solutions computed in numerical example Sec. 7.1. Left: the energy error, right: the ¢2 error. Our method, shown in cross solid
line, generalizes beyond constant wave speed while the plain parareal method, shown in circle dash, diverges right away.
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Fig. 12. Relative error of parareal iterated solutions for the waveguide example in Sec 7.2.1. Left: the energy error, right: the ¢2 error.

The fine propagator operate on a spatial grid which is 10 times finer than the coarse grid, and uses a CFL which is 10
times smaller. Fig. 11 shows convergence of the proposed method comparing to the plain parareal. Because fine and coarse
solution in a variable medium may differ a lot, the plain parareal method becomes even more unstable.

7.2. Two dimensional cases

We apply the proposed method to three types of media: one with a smoothly varying wave speed (wave guide), one
containing a piece-wise constant wave speed (inclusion), and a more complicated wave speed profile which is often used in
exploration seismology as a standard case study (Marmousi).

7.2.1. Waveguide
We consider a wave guide in xy-plane [—1, 1] x [—0.5,0.5] with the wave speed

c(x,y)=1—-0.3cos2mry).
The initial data is a plane wave traveling left to right along the x-axis:
u(x, y; 0) = exp(—50(x + 0.5)?),
ur(x, y; 0) =100 exp(—50(x + 0.5)2).

The parameters used in the simulation are set as follow

T Atcom Ax At/AX  Ax/8x An/rs T Vh tol
5 0.05 0.005 1/4 {1,5,10} 5 interpft 4 order 10713

Fig. 12 shows error of the solution with different coarse fine grid ratio.
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Fig. 13. Relative error over time for the inclusion example described in Sec 7.2.2. The initial plane wave “hits” the small inclusion at around T =nAtcom.
Left: the energy error for Ax/8x =1, right: the energy error for Ax/8x =5.

7.2.2. Inclusion
In this example, we consider the two dimensional domain in the xy-plane [—1, 1] x [—0.5,0.5] where a plane wave
encounters an inclusion of radius +/0.002 centered at [0.5, 0.1], modeled by the wave speed

(X, ¥) =1—=0.9 X((x=05)2+(y+0.1)2)<0.002-
We used the initial data traveling from left to right

u(x,y; 0) =cos(4m (x + 0.5)) exp(—50(x + 0.5)2),
Up(x, y: 0) = ( — 477 sin(47 (x + 0.5)) + 100(x + 0.5) cos(47 (x + 0.5))) exp(—50(x + 0.5)2),

and discretization parameters

T Ateom AXx At/Ax  Ax/8x Ia/rs T Vi tol
4 0.02 0.005 1/2 (1,5} 5 interpft 4order 10713

When the coarse grid is the same as fine grid, the iterations converge to the serial fine solution for the whole time
interval (shown in left subplot of Fig. 13). On the other hand, when coarse/fine grid ratio is 5, the right subplot of Fig. 13
shows that the error escalates quickly at n =50 (or t = 1), when the initial plane wave hits the inclusion for the first time,
and again at n =150 (or t = 2), as some parts of the initial plane wave wraps around the domain the interact with the
inclusion again. The error does not decreasing for later iterations.

Fig. 14 shows the relative density error in the Fourier modes of the computed solution at different times. For the short
time range n = 15 (before the wave energy is scattered by the inclusion), most of the error concentrates at low frequencies
which the coarse grid is able to resolve. Once the wave touches the inclusion at n =40 and thereafter n = 140, n = 200, the
errors in the higher frequencies becomes significant. These scattered higher frequency wave is not resolved by the coarse
grid and cannot be corrected by the proposed method.

7.2.3. Marmousi experiment

We test our method with the Marmousi wave speed model [8], as shown in Fig. 15. The fine scale domain has 2422 x
7367 grid points while the coarse scale has 49 x 147 grid points or 50 times smaller in each dimension. The initial data is
a pulse waveform centered at xo = (400 m, 3880 m), where m denotes the length unit in meter,

u(x,y; 0) =cos(0.01(x —xp)) exp(—1.6 - 10_5((x — x0)2)),
us(x,y;0)=0.

The discretization parameters are in the following table where coarse and fine computation communicate every 500 coarse
time steps

T Atcom AX At/ Ax Ax/Sx  At/st T Vi tol
2(s) 005(s) 6245(m) 1.6-107% 50 500 imresize 4order 10710
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Fig. 14. Relative density error of solution of inclusion example for Ax/x =5 in Fourier modes

. The rectangular box indicates

4500
4000
3500
3000
2500

2000

0 2000 4000 6000 8000
x(m)

Fig. 15. Marmousi wave speed model. Domain size is 3022 (m) x 9192 (m) (m denotes ‘meter’) and unit of wave speed is in meter per second.

The computation is executed on one node consisting of 20 cores on the Stampede2 system at Texas Advanced Computing
Center (TACC).! With our non-optimized MATLAB code, it took 26 hours to run 6 parareal iterations and 12 hours to
compute the serial fine solution. Hence each iteration takes about 4 hours, almost 3 times faster on the wall clock than the
serial fine computation. For more detailed experiment, see Section 7.2.4.

Fig. 16 shows the solutions computed by the proposed method. One observes that some finer details are added back to
the computed solution along the iterations. However, Fig. 17 reveals that the errors decreases rather slowly after the first
few iterations. Indeed, the setup in this experiment is a challenging example of strong scattering due to discontinuities in
the wave speed (compared to the previous Example).

It is natural to wonder if the proposed method computes solutions that would converge to the serially computed fine
solutions, when the coarse and fine propagators run on the same spatial grid. For this purpose, it suffices to consider a smaller
version of the Marmousi velocity model, which is defined on 485 x 1474 grid points. A different set of discretization
parameters are described in the following table

T Atcom AXx At/AX Ax/8x  At/St T Vi tol
2(s) 0.05(s) 6245(m) 3.2026-106 1 10 imresize 4order 10710

T www.tacc.utexas.edu.
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Fig. 16. Solution at T =2 (s) of Marmousi example in Sec 7.2.3. Top row, left: serial fine solution, right: serial coarse solution. Bottom row, left: k =2
iterated solution, right: k =4 iterated solution.
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Fig. 17. Relative errors by the proposed method applied to simulate wave propagation in the Marmousi model. Left: the energy error, right: the £2 error.

Fig. 18 shows the absolute error |uf§ —u(ty)| and energy error fields at iterations k =1 and k = 7. On the left column, we see
that the solution at k =1 has larger point-wise absolute error and energy error in regions of high wave speed contrast (e.g.
the lower left region in the image domain) than the regions of low wave speed contrast (e.g. upper left region in the image
domain). On the right column, however, the solution at k = 7 has large patches of point-wise absolute error at regions of
low wave speed contrast. These errors contribute to the increase of overall ¢2 error in the initial few iterations shown in
the right subplot in Fig. 19.

We observe a discrepancy between the two errors curves. The energy error decreases while the ¢2 error increases,
particularly in the regions of low wave speed contrast. This discrepancy in regions of low wave speed contrast is likely due
to the construction of the phase corrector. At regions of high contrast, when locally scattered wave emerged, the phase
corrector is constructed to decrease the error there but because it is a global operator, it also perturbs solution everywhere
else that in effect increases the overall error.
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Fig. 18. Absolute and energy of absolute error field at T =2 (s) when fine and coarse propagators run on the same grid for Marmousi example in Sec 7.2.3.
Top row, left: absolute error of wavefield for k =1 solution, right: absolute error of wavefield for k =7 solution. Bottom row, left: energy error for k =1
solution, right: energy error for k =7 solution.
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Fig. 19. Relative errors when coarse and fine propagators run on the same grid for the Marmousi model. Left: the energy error, right: the ¢2 error.

7.2.4. Timing

To see how wall clock computing time changes as the number of cores changes, we use the Marmousi model again and
the discretization parameters are as follow

T Atcom At St Nax Nsx
1,5,10 0.05 8.107% 4.107% 485x 1474 2422 x 7367

We used an Intel Skylake node and varied the number of cores to perform the computation. In Table 1, computing time in
seconds is recorded for different parts in the algorithm: parallel computation, creation of the phase corrector (requiring QR),
serial coarse update. We see the computing time of the stabilization process is small, relative to other parts of the algorithm.
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Table 1

Computing time (in seconds) of each part in our algorithm. Number of parareal iteration is 4. Projected speed up is calcu-
lated as if the number of CPUs is equal to the number of time slices. In the projected speed up calculation, we assume the
time to create phase corrector does not change when the number of CPUs increases.

Cores N =T/Atcom Parallel Creating Serial Serial fine Projected
computation corrector update computation speed up
4 20 186.81 0.26 1.99 334.49 8.44
180.84 0.11 1.52 4.32
180.31 0.13 1.49 2.91
180.35 0.15 1.52 2.18
100 908.74 0.48 8.64 1724.30 37.92
922.19 0.49 8.46 18.88
911.85 0.64 8.72 12.57
921.26 0.74 8.71 9.40
200 1807.23 0.81 17.13 3479.63 64.34
1837.55 1.06 17.90 31.69
1819.07 3.14 17.82 20.82
1854.84 1.77 18.98 15.47
8 20 119.61 0.95 1.78 333.78 7.83
119.06 0.1 1.41 3.98
129.25 0.11 1.43 2.60
119.51 0.14 1.47 1.96
100 525.09 0.46 8.27 1725.16 35.12
547.06 0.49 7.78 17.34
543.50 0.57 8.31 11.49
527.34 0.73 8.33 8.63
200 1023.37 0.99 16.26 3491.95 60.02
1050.60 1.08 16.53 29.64
1032.15 1.39 17.80 19.58
1029.58 1.94 20.47 14.43
20 20 73.40 0.26 2.41 332.83 4.37
65.93 0.11 1.51 2.32
63.73 0.11 1.53 1.59
66.45 0.13 1.58 1.46
100 337.38 0.46 8.00 1734.02 22.84
331.03 0.46 8.18 11.50
335.75 0.58 8.34 7.64
345.86 0.72 8.76 5.67
200 656.80 1.06 16.66 3492.86 41.88
644.41 1.03 17.73 20.96
655.77 1.35 17.39 13.92
653.80 1.73 19.35 10.35

As a benchmark, we also timed the serial fine computation. The projected speed up is calculated as if the number of cores
is equal to the number of time slices ncpy = N =T/ Atcom.

8. Summary and conclusion

We present here a new stable parareal-like method for the second order wave equation. The method uses the solutions
computed along the iterations to construct linear operators which bridge the energy difference between the coarse and fine
propagators. Such operators are referred to as the phase correctors in this paper. We presented an extensive set of numerical
studies which aim at revealing the properties of the proposed method. From the experiments, we see that the proposed
method works well for constant and smooth wave speeds.

For piece-wise smooth wave speeds, the algorithm is stable, but does not seem to produce numerical solutions that
converge to the solutions computed by the fine propagators (as the number of iterations increase), when the fine and
coarse propagators run on different spatial resolution. This is expected because the higher Fourier modes of the solutions
computed by the fine propagator on a finer spatial grid cannot be resolved by coarser grids. This is true even when the initial
wavefield is resolved by the coarse grid. As our simulations reveal, the stagnation of the errors may be caused additionally
by a couple of different approximations used in the algorithm. This paper outline these factors for future improvement. In
the last two examples involving piece-wise smooth wave speeds with high contrast, we observe that the relative errors are
in general much larger than the previous cases. Most likely, this is due to strong local scattering of waves cause by the
discontinuities in the wave speeds. Such scatterings cannot be corrected efficiently by the proposed Procrustean approach.

Finally, if domain decomposition in space is applied, due to the finite speed of propagation nature of wave, we expect
that different phase correctors in the subdomains can be constructed in the same way and the resulting algorithm would
be stable. This important topic should be investigated more carefully in a separate paper.
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