

1 **A Primer on Emerging Field-Deployable Synthetic Biology Tools for Global Water Quality**
2 **Monitoring**

4 Walter Thavarajah^{1,2,3,4}, Matthew S. Verosloff^{2,3,4,5}, Jaeyoung K. Jung^{1,2,3,4}, Khalid K. Alam^{1,2,3,4},
5 Joshua D. Miller^{3,6}, Michael C. Jewett^{1,2}, Sera L. Young^{3,6,7*}, and Julius B. Lucks^{1,2,3,4*}

7 1 – Department of Chemical and Biological Engineering, Northwestern University, 2145
8 Sheridan Rd, Evanston, IL, 60208, USA

9 2 – Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL,
10 60208, USA

11 3 – Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL,
12 60208, USA

13 4 – Center for Engineering, Sustainability and Resilience, Northwestern University, 2145
14 Sheridan Rd, Evanston, IL, 60208, USA

15 5 – Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2204
16 Tech Drive, Evanston, IL, 60208, USA

17 6 – Department of Anthropology, Northwestern University, 1810 Hinman Ave., Evanston, IL,
18 60208, USA

19 7 – Institute for Policy Research, Northwestern University, 2040 Sheridan Rd, Evanston, IL
20 60208 USA

21 * - To whom correspondence should be addressed, jblucks@northwestern.edu,
22 sera.young@northwestern.edu

24 **Abstract**

27 Tracking progress towards Target 6.1 of the United Nations Sustainable Development Goals,
28 “achieving universal and equitable access to safe and affordable drinking water for all”,
29 necessitates the development of simple, inexpensive tools to monitor water quality. The rapidly
30 growing field of synthetic biology has the potential to address this need by taking DNA-encoded
31 sensing elements from nature and reassembling them to create field-deployable ‘biosensors’
32 that can detect pathogenic or chemical water contaminants. Here we describe water quality
33 monitoring strategies enabled by synthetic biology and compare them to previous approaches
34 used to detect three priority water contaminants: fecal pathogens, arsenic, and fluoride in order
35 to explain the potential for engineered biosensors to simplify and decentralize water quality
36 monitoring. We also briefly discuss expanding biosensors to detect emerging contaminants
37 including metals and pharmaceuticals. We conclude with an outlook on the future of biosensor
38 development, in which we discuss adaptability to emerging contaminants, outline current
39 limitations, and propose steps to overcome the field’s outstanding challenges to facilitate global
40 water quality monitoring.

41 **Introduction**

44 Reliable access to clean drinking water is essential for human well-being, economic
45 development, and political stability. Impaired water quality, quantity, and accessibility, however,
46 are projected to increase both in frequency and severity due to population increase, climate
47 change, persistent water infrastructure degradation, and poor water governance¹⁻⁵. As such,
48 institutions like the World Economic Forum⁶ and the US Government⁷ have identified the
49 burgeoning water crisis as a top global threat that may undermine progress in protecting human
50 health and serve as a structural driver of poverty and inequity.

52 The turn of the millennium saw the creation of the United Nations (UN) Millennium Development
53 Goals – 8 humanitarian grand challenges to be resolved by 2015⁸. These goals were monitored
54 and refined over the next fifteen years⁹, and after an extensive revision process, 2016 saw the
55 launch of the Sustainable Development Goals (SDGs) for 2030, each of which is accompanied
56 by targets and progress indicators. Sustainable Development Goal (SDG) 6 aspires to “the
57 availability and sustainable management of water and sanitation for all,” with SDG Target 6.1
58 seeking to “achieve universal and equitable access to safe and affordable drinking water for all”.
59 Progress towards SDG 6.1 is tracked by Indicator 6.1.1, “the proportion of population using
60 safely managed drinking water services,” defined as services that are located on premises,
61 available when needed, and free from contamination¹⁰. The Joint Monitoring Programme (JMP),
62 housed within the United Nations Children’s Fund (UNICEF) and the World Health Organization
63 (WHO), is the official UN mechanism that has been tasked with monitoring progress towards
64 this goal¹¹.

65
66 Accurate tracking and surveillance of global drinking water sources will require significant
67 advances in water quality monitoring technology^{12,13}. Although location on premises and
68 availability when needed can be relatively easily quantified, objectively determining drinking
69 water safety (i.e. if a source is “safely managed”) necessitates the use of technologies to detect
70 the presence of specific contaminants. There are countless potential contaminants that could
71 pose health risks; JMP focuses on three that are globally prevalent and universally recognized
72 as deleterious to human health: arsenic and fluoride (naturally abundant chemical
73 contaminants), and *Escherichia coli* (an indicator of fecal contamination)¹⁴.

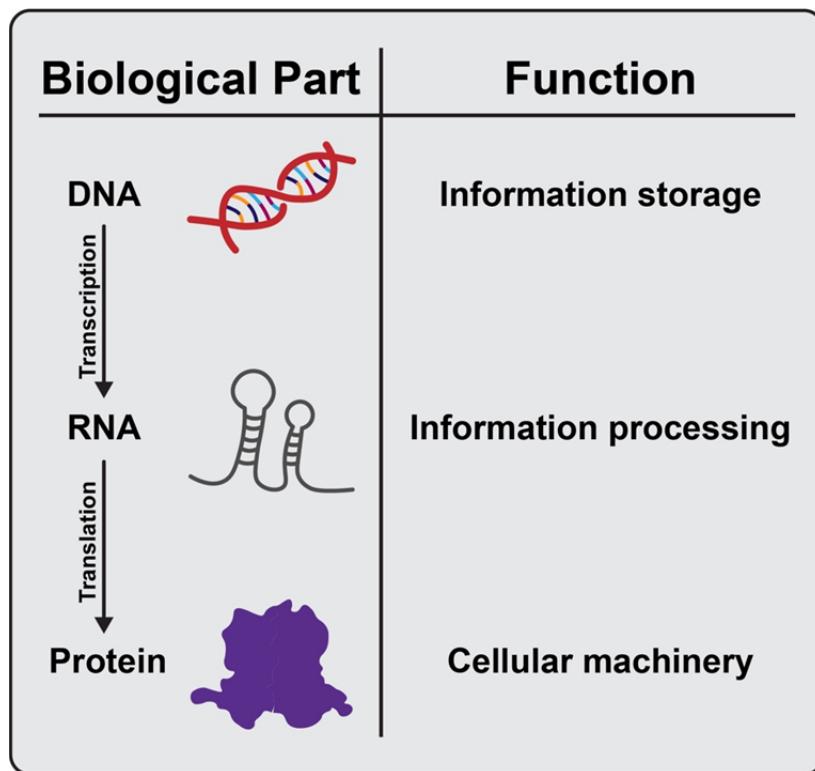
74
75 Due to the ubiquity of these contaminants and resource limitations in most affected areas, ideal
76 technologies for global water quality monitoring should be inexpensive, simple enough for an
77 untrained individual to use, and capable of rapidly (within minutes to hours) providing results
78 onsite. Notably, they would not necessarily need to be quantitative; the ability to determine if a
79 contaminant is above or below a risk threshold can provide sufficient actionable information,
80 though technologies that can provide quantitation would enhance their use and impact.
81 However, current gold-standard methods for assessing water quality do not fulfill these criteria.
82 Most technologies require expensive equipment and reagents, reliable electricity sources,
83 technically skilled operators, and transportation infrastructure¹⁵. For example, the equipment to
84 run qPCR (a DNA amplification technique for pathogen detection) and mass spectrometry (a
85 molecular analysis technique for chemical detection) costs tens of thousands of dollars
86 excluding operational expenses, must be operated by a trained technician, and cannot be
87 brought into the field, thus necessitating sample transport for centralized analysis. As such,
88 these methods come at a significant resource burden, which prohibits widespread deployment¹⁶.

89
90 While there has been progress in developing more user-friendly field kits capable of rapidly
91 detecting even trace contaminant levels in the field, there is still significant work to be done
92 before they can be widely adopted for global monitoring or individual use^{3,12}. Existing field kits
93 frequently require sample processing steps that are beyond the skill level of an untrained user,
94 along with expensive supplemental equipment or consumables that are often hazardous
95 chemicals¹⁷⁻²⁰. Collectively, these limitations preclude the scale and frequency of monitoring
96 that is needed to effectively track progress towards SDG 6.1. There is thus an urgent unmet
97 need for low-cost, field-deployable water quality tests, as evidenced by the UN High Level Panel
98 on Water’s call for higher resolution data on water quality to better address the global water
99 crisis³.

100
101 The growing field of synthetic biology, which centers around the design and construction of
102 biological systems²¹, is poised to address this knowledge gap by engineering and repurposing

103 microbial biosensors. In nature, microbes use biosensors to detect and respond to changes in
104 their environment. For example, a biosensor for detecting toxins may activate the production of
105 proteins that export, neutralize, or metabolize them²². By deconstructing and modifying naturally
106 occurring microbial biosensors, we can create synthetic, genetically encoded biosensors
107 (henceforth referred to as “biosensors”) to detect targets of global concern²³. Biosensors have
108 already been developed to detect a wide range of chemicals^{24–35}, as well as bacterial^{36–41} and
109 viral^{42–48} pathogens. Recently reported biosensors have even been packaged in handheld,
110 easy-to-use formats, facilitating widespread field deployment^{25,28,40}.

111
112 Because of their potential to significantly advance the field of water quality monitoring, we seek
113 to provide a primer on emerging biosensors. We specifically focus on the development of field-
114 deployable biosensors⁴² – inexpensive, portable tools that can be used on-site by individuals
115 without technical expertise. While we focus solely on purely genetically encoded biosensors in
116 this review, we note there exist other developing biosensors that are not purely genetically
117 encoded that are covered in other excellent reviews^{49,50}. We begin with a conceptual overview
118 of how the gene expression process can be leveraged for biosensing and discuss the design
119 process for a biosensor. We then discuss their potential applications for detecting *Escherichia*
120 *coli*, arsenic, and fluoride, as well as other emerging targets including metals and
121 pharmaceuticals. We conclude with an outlook on the future of synthetic biology for water
122 quality monitoring, identifying needs in the field and necessary steps for widespread
123 implementation.


124
125 **Biosensor Design and Construction**

126
127 At the core of synthetic biology is the idea that biological systems can be deconstructed into
128 sets of biological parts, which are individual biomolecules with discrete functions (**Box 1**)²³.
129 Each part is written into DNA, which serves as a genetic blueprint. Once they are written into
130 DNA, the individual parts can be manufactured and assembled into a larger functional system
131 (**Figure 1**). Synthetic biology works to construct new DNA blueprints that repurpose and
132 reengineer existing biological parts to produce technologies for high-value applications, such as
133 manufacturing food⁵¹ and fuels⁵², creating medicines⁵², and developing diagnostics⁵³.

134
135 **Box 1. Gene expression and the central dogma of molecular biology.**

136
137 Gene expression is the process by which the information encoded in DNA is transcribed into
138 RNA, which is then translated into proteins⁵⁴. This flow of information gives rise to the rich
139 diversity of biological function and is known as the central dogma of molecular biology.
140

142

143

144 *DNA*

145

146 Deoxyribonucleic acid (DNA) serves as the blueprint for guiding how life develops and functions.
 147 It is made of individual components called nucleotides, which are linked together to form longer
 148 strands called nucleic acids. The specific order of these nucleotides in a DNA strand is called its
 149 sequence and determines what information is stored within the DNA. The totality of the
 150 information in an organism's DNA is called its genome. In bacteria, the genome consists of one
 151 long, circular piece of DNA with a sequence unique to each particular bacterial strain.

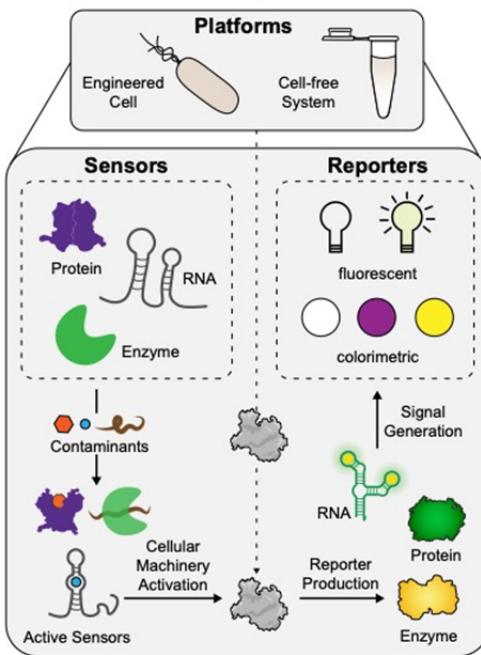
152

153 *RNA*

154

155 Ribonucleic acid (RNA) is produced from DNA in a process called transcription. While both are
 156 nucleic acids that can fold into complicated structures, they differ in in their function; DNA is
 157 used for information storage, while RNA is used for information processing. Broadly speaking,
 158 RNA can be divided into two categories – messenger RNA (mRNA) and noncoding RNA
 159 (ncRNA). mRNA carries information from DNA that guides protein production, while ncRNA
 160 regulates the steps of gene expression and many other cellular processes. RNA-based sensors
 161 are examples of ncRNA; while they do not code for proteins, they fold into analyte-binding
 162 structures to either control protein production or generate a signal in response to ligand binding.

163


164 *Protein*

165

166 Proteins are produced from mRNA in a process called translation. They are composed of chains
 167 of individual components called amino acids that fold into complicated structures, and that have
 168 a staggering diversity of functions, ranging from carrying information to structurally supporting
 169 the cell. In this review, we focus primarily on sensor and reporter proteins.

170

Components of a Synthetic Biosensor

174 **Figure 1. The three components of a biosensor.** A sensor is a biomolecule that recognizes a specific
 175 target chemical or fragment of a pathogen's genome. This recognition event activates cellular machinery,
 176 which uses gene expression to generate an output signal in the form of a reporter RNA or protein to
 177 indicate the presence of the contaminant. When engineering a biosensor, the sensor and reporter are
 178 combined in a platform that supports the biological reactions necessary to generate a signal.

180 Biosensors are molecular systems that detect and respond to specific targets. All biosensors
 181 are constructed from two modular parts – a sensor and a reporter⁵⁵. First, the sensor recognizes
 182 a target of interest. Once recognized, the sensor changes its shape to initiate production of the
 183 reporter. The reporter then creates a detectable output, typically in the form of fluorescence or
 184 color change.

186 Natural biosensors govern a microbe's interaction with its environment and exist for every
 187 molecule that microbes can naturally sense and respond to. They also serve as a starting point
 188 for building biosensors, which can be designed, evolved, and engineered to detect targets of
 189 interest. To create a biosensor, the DNA encoding the sensor and the reporter is placed in a
 190 platform supporting biological function - typically a live cell or cell-free solution containing the
 191 cellular machinery needed for transcription and translation.

193 This review focuses on biosensors for their potential as low-cost, rapid, and field-deployable
 194 water quality monitoring devices. Here, we discuss each component of a biosensor and the
 195 overall design process for building them.

197 *Sensor Parts*

199 Sensor parts are molecules that detect a target compound⁵⁵. These molecules can be either
 200 natural or engineered and are most commonly nucleic acids or proteins that fold into intricate
 201 shapes to match the physical and chemical properties of their targets. One challenge with

202 harvesting parts from nature, however, is that their sensitivity (i.e., ability to detect a particular
203 concentration) or specificity (i.e., ability to distinguish a target from other surrounding molecules)
204 may not meet the requirements for a given application. For example, some natural metal
205 sensors interact with multiple metal ions rather than a single specific target⁵⁶. Fortunately, these
206 properties can be adjusted through biomolecular engineering approaches that change the
207 underlying molecular shape and chemistry of the sensor to match the desired sensitivity or
208 specificity^{57,58}.

209
210 *Reporter Parts*

211
212 Reporter parts are molecules that produce detectable signals. Like sensor parts, they can be
213 nucleic acids or proteins, but they are more varied in their modes of operation because of their
214 range of potential outputs. Fluorescent reporters, the most commonly used reporter type, are
215 molecules that produce a fluorescent signal when illuminated by specific wavelengths of light⁵⁹.
216 They come in a range of colors and generally require external illumination to visualize their
217 fluorescence. In contrast, colorimetric reporters are enzymes that react with a supplied
218 substrate to produce a visible color. While colorimetric reporters do not require additional
219 equipment to interpret their results, their outputs are more difficult to quantify than fluorescent
220 outputs. Although other reporters that produce luminescent⁶⁰ or electrical⁴⁹ outputs exist, we
221 focus on fluorescent and colorimetric reporters given their widespread use in the majority of
222 reported biosensors, as well as their relative field-friendliness.

223
224 *Biosensor Platforms*

225
226 Biosensors must be housed in a platform that supports the biological processes needed for
227 them to operate. For many sensors, this requires an environment that can support transcription
228 and translation. There are two main biosensing platforms enabling this: “whole-cell” biosensors,
229 which are live cells genetically modified to express the sensor and reporter, and “cell-free”
230 biosensors, which consist of either cellular extract or purified cellular machinery that can
231 perform the processes of gene expression. While both of these platforms are amenable to field
232 deployment because they can be freeze-dried for transport and long-term storage^{25,28,40,43,44},
233 they each have individual strengths and weaknesses that must be considered during biosensor
234 design.

235
236 Whole-cell biosensors have several important advantages. As living sensors, they can be simply
237 and inexpensively mass-produced by allowing the engineered microbe to multiply. They also
238 better replicate the cellular environment that the sensors evolved to function in.

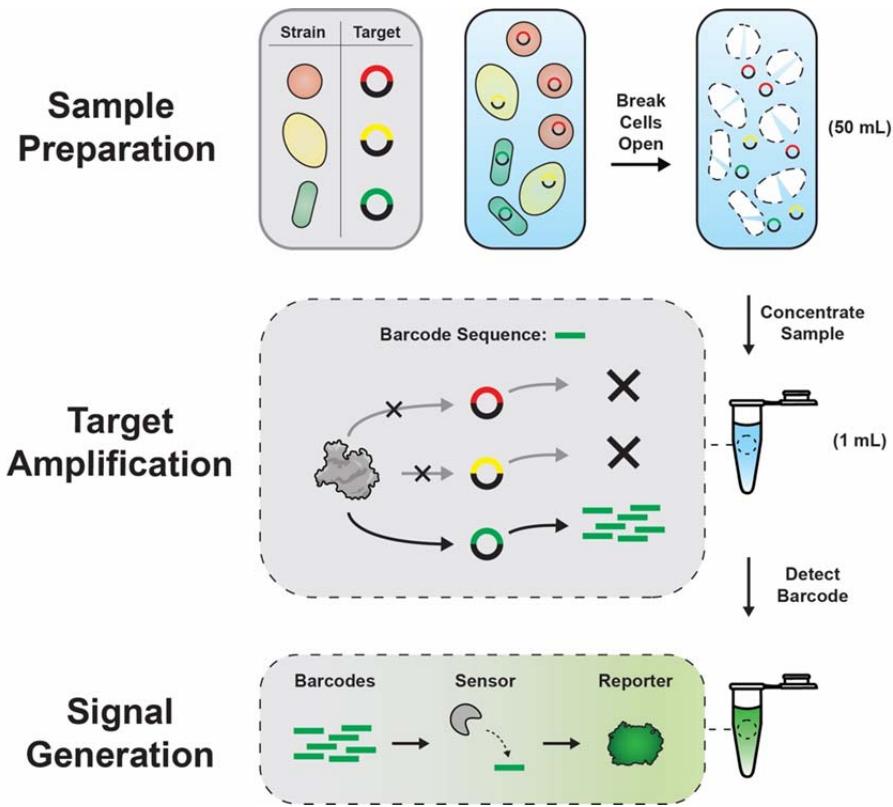
239
240 Use of live hosts, however, also presents several challenges⁶¹. For instance, whole-cell
241 biosensors must be kept alive during use, requiring bacterial growth media and potentially a
242 field-deployable incubator, which increases the amount of supplemental equipment that must be
243 brought into the field. Furthermore, whole-cell biosensors can only detect targets that do not kill
244 the cell. The synthetic DNA engineered into the cell may also mutate or be lost as cells grow
245 and divide, preventing or distorting sensor and reporter production. Furthermore, the use of live
246 cells inherently confers biocontainment concerns, though methods to encapsulate⁶² or disable⁶³
247 whole-cell sensors are being explored to mitigate this risk.

248
249 Cell-free biosensors aim to emulate the cellular environment in a non-living system. Placing
250 biosensor DNA in a cell-free gene expression reaction allows the system to act in much the
251 same way as a whole-cell biosensor, but without the complications of needing to maintain and
252 contain living cells. Cell-free biosensors can also be easily tuned and optimized by changing the

253 concentration of the biosensor DNA or other reaction components, which is more difficult to do
254 in a living cell⁶⁴. Additionally, because some of the physical and biological constraints of live
255 cells are removed, such as the cell's outer membrane that restricts the import of some targets,
256 they can detect a broader range of contaminants.

257
258 These advantages are counterbalanced by the fact that it is difficult to use a part's performance
259 in a live cell to predict its function in a cell-free platform. Indeed, many sensors require
260 assistance from pieces of peripheral cellular machinery to function properly and the exact
261 differences between the composition of a cell-free reaction and a live cell are still unclear.
262 Despite this, significant progress has been made towards optimizing cell-free systems to accept
263 sensor parts⁶⁴.

264
265 *Interaction Between Sensors and Reporters*


266
267 When placed in a biosensing platform, a sensor controls the activation of a reporter by
268 suppressing its signal until the sensor recognizes its target. Because the reporter is only
269 produced when this recognition occurs, the reporter's signal indicates that the sensor's target is
270 present. This interaction between a paired sensor and reporter is guided by the way that they
271 are written into the biosensor's DNA blueprint. For example, protein-based sensors can bind to
272 specific regions of DNA to physically block production of the reporters they regulate, attaching
273 or releasing based on the presence of their target²⁵. In contrast, RNA-based sensors can fold
274 into different shapes based on whether or not a target is present, with different configurations
275 allowing or preventing reporter production²⁸. This diversity of sensor and reporter functions,
276 combined with the staggering number of possible sensor-reporter pairs, offers a vast design
277 space to detect nearly any water contaminant of interest.

278
279 **Pathogen Detection**

280
281 Waterborne pathogens, including bacteria, protozoa, and viruses, are leading causes of poor
282 water quality globally⁶⁵ that pose both immediate and long-term risks to human health⁶⁶. As
283 such, they are currently amongst the highest priority contaminants of global concern¹⁶.
284 Fortunately, every pathogenic organism has a unique genetic sequence, which serves as a
285 DNA "barcode" that can be used to identify a specific species and strain in a biosensing
286 reaction. The first step of pathogen detection is sample preparation, where pathogens are
287 broken open to expose their DNA barcodes. These unique DNA sequences are then processed
288 in two steps: amplification of a targeted DNA sequence and production of a signal in response
289 to its detection. This is quite different from existing field-deployable methods that detect
290 secondary indicators of pathogen presence such as H₂S production from bacterial
291 metabolism^{67,68}, presence of indicator protein activity^{19,69-71}, or biomolecule fluorescence^{18,72}.
292 While these currently used methods are powerful tools for pathogen detection that are currently
293 in use, target DNA sequence detection enables specific pathogen identification, which can
294 provide additional information on water quality and guide treatment more accurately.

295
296 There are three basic steps for detecting waterborne pathogens with a biosensor (**Figure 2**).
297 While these steps are discussed in the context of detecting fecal coliforms and compared to
298 existing field-deployable coliform detection methods (**Table 1**), they can be reconfigured to
299 detect virtually any pathogen.

300

301
302
303
304
305
306
307

Figure 2. Detection of a waterborne pathogen by amplification and identification of a targeted genome sequence. Pathogen detection occurs in three steps: (1) preparation and concentration of a collected water sample, (2) amplification of the target pathogen's genome, and (3) generation of a signal upon target detection.

308 *Target Amplification*

309
310 Pathogenic DNA in contaminated water is typically only present in trace amounts. To maximize
311 sensitivity, pathogen detection techniques require some form of amplification to increase the
312 amount of target DNA in a sample. Most synthetic biology approaches use isothermal
313 amplification strategies⁷³, where DNA is amplified while being held at a single temperature.
314 These methods use some of the natural biological machinery used for DNA and RNA
315 replication; by targeting this machinery towards specific sequences in the genome, it is possible
316 to selectively amplify them for detection. These techniques can therefore be made to be highly
317 specific by targeting the unique barcode regions of specific pathogens.
318

319 Each isothermal amplification method differs in temperature and time, although most can bring
320 their targets to detectable levels within two hours⁷³. These methods also require minimal training
321 and infrastructure for their use: a freeze-dried reaction containing the biological parts needed for
322 isothermal amplification can be taken to the sample site then deployed by rehydrating with a
323 minimally processed (e.g. syringe filtered) water sample and incubating, in some cases with
324 body heat or at room temperature. This simplicity eliminates the need for extensive equipment
325 and training, easing deployment in remote and resource limited areas. Collectively, these
326 methods enable detection of even the most dilute pathogens, with methods reporting up to
327 attomolar sensitivity – less than 10 molecules of DNA in a 10 µL test sample⁴¹.
328

329 *Signal Production*

330
331 The simplest method for pathogenic DNA detection uses modified DNA molecules that produce
332 a fluorescent output in the presence of the target sequence. Because DNA is double-stranded,
333 two interacting strands can be attached to a single modified DNA molecule; a fluorescent
334 molecule called a fluorophore is attached to the first strand, while a quencher that inhibits its
335 fluorescent signal is attached to the second. As isothermal amplification creates more target
336 DNA, the amplified DNA displaces the quenching strand to generate a fluorescent output⁷⁴
337 (**Figure 2**). This method has recently been used to detect as few as 10 contaminating *E. coli*
338 cells in a 50 mL water sample, with a total assay time of 80 minutes⁴⁰. Recent approaches have
339 further built on this strategy to design RNA-based biosensors that undergo similar structural
340 changes, but activate the expression of a reporter gene in the presence of specific bacterial or
341 viral DNA barcodes^{37,43}.
342

343 Beyond its widely known uses for gene editing, Clustered Regularly Interspaced Short
344 Palindromic Repeats, or CRISPR, provides a powerful new method for pathogen detection.
345 CRISPR systems are hybrid protein-RNA biosensors. In CRISPR, portions of a special ‘guide’
346 RNA target DNA barcode sequences of interest, which are then destroyed by an associated
347 CRISPR protein. In a biosensor, CRISPR systems can be used alongside DNA or RNA
348 sequences labeled by a fluorophore-quencher pair to produce a detectable signal upon target
349 recognition (**Figure 2**)^{46,75}. Using this strategy, recently developed CRISPR-based sensors have
350 reached the maximum possible specificity by discriminating between pathogenic DNA
351 sequences that differ by only a single base pair⁷⁶.
352

353 *Outstanding Challenges for Pathogen Detection*

354
355 Biosensors target barcode sequences in genomic DNA, which is protected by the cell’s outer
356 wall and therefore inaccessible in an unprepared sample. Because of this, they require some
357 means to break open cells and access their DNA. This can be difficult to do in the field, although
358 some technologies are beginning to address this limitation⁴⁶. Another limitation is that these

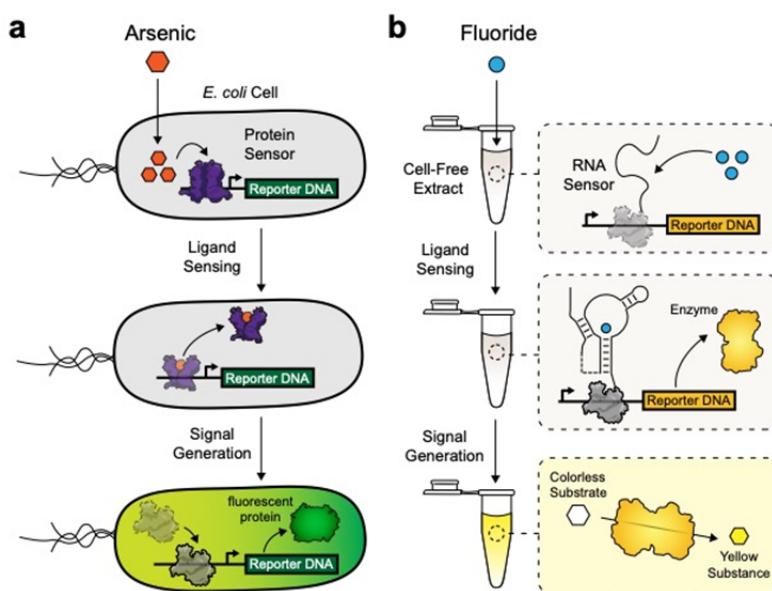
359 technologies cannot distinguish between live and dead pathogens; DNA remains detectable in
360 water for days before it degrades⁷⁷, which means that a positive result is not a perfect indicator
361 of water quality. Lastly, while the use of isothermal amplification allows for detection of trace
362 amounts of pathogen DNA, the process of amplification obscures the pathogen's original
363 concentration and hampers precise quantification. Several existing strategies use mathematical
364 models to infer pathogen concentration from final fluorescent signal strength^{37,76}, but precise
365 quantification will likely require sophisticated peripheral equipment or an array of tests with built-
366 in thresholds.

367 368 **Chemical Contaminant Detection**

369
370 Some of the most significant threats to our water supply are chemical contaminants – molecules
371 that are deleterious to human health when consumed at dangerous levels. Many of those
372 compounds occur naturally in soil, while others enter the water supply from industrial pollution,
373 agricultural runoff, or deficient utility infrastructure. Sensors for chemical contaminants do not
374 require an amplification step and therefore work more similarly to natural biosensors than
375 pathogen biosensors do. There are two steps to detecting a chemical contaminant: the
376 biosensor first recognizes its target chemical, then this recognition event initiates production of a
377 reporter that generates a detectable signal. Currently, significant progress has been made in
378 developing biosensors to detect arsenic³³ and fluoride²⁸, two of the WHO's highest-priority
379 chemical water contaminants¹⁶. Here, we discuss recent progress towards using biosensors for
380 chemical sensing with a focus on arsenic and fluoride, comparing these tools to existing field-
381 deployable methods (**Table 1**).

382 383 **Arsenic**

384
385 Arsenic contamination of groundwater is typically caused by the leaching of naturally occurring
386 arsenous compounds from the surrounding soil⁷⁸. Consumption of arsenic-contaminated water
387 is associated with lesions, cardiovascular and pulmonary disease, and cancer in humans⁷⁹.
388 Current field-deployable methods for arsenic detection utilize a colorimetric chemical test strip to
389 semi-quantitatively detect as low as 5 ppb arsenic within a few minutes²⁰. However, these tests
390 require significant technical skill from the user and produce toxic byproducts, such as arsine
391 gas.


392
393 Published biosensors for arsenic are generally whole-cell sensors that are controlled by an
394 arsenic-responsive protein⁸⁰ (**Figure 3a**). In the absence of arsenic, the protein binds to the
395 biosensor DNA, stopping the reporter from being produced. Arsenic binds to the protein and
396 causes it to change shape, releasing the biosensor DNA and allowing production of the reporter.
397 Previous arsenic biosensors have used fluorescent, colorimetric, and luminescent outputs, with
398 reported detection as low as single-digit parts per billion⁸⁰. This offers presence/absence results
399 for arsenic concentrations below the 10 ppb WHO guideline for arsenic in drinking water¹⁶,
400 though these sensors have yet to be extensively validated in real-world conditions⁸⁰.

401 402 **Fluoride**

403
404 Fluoride leaches into groundwater from naturally occurring soil minerals and can also be
405 introduced by agricultural runoff or the precipitation of fluoride-containing industrial ash in
406 rainwater⁸¹. Chronic consumption of fluoride-contaminated water causes dental and skeletal
407 fluorosis, which manifests as discolored teeth, weakened bones, seizures, and stunted growth⁸¹.
408 Current field-deployable methods for fluoride detection utilize either photometric analytical
409 equipment to semi-quantitatively measure a colorimetric reaction¹⁷ or a quantitative fluoride-

410 sensing electrode⁸². While both of these methods can safely detect down to 0.1 ppm fluoride,
411 they require expensive supplementary equipment for their use, precluding widespread
412 deployment.

413
414 A recently developed biosensor for fluoride uses a naturally occurring RNA regulator, called a
415 riboswitch, in a cell-free system²⁸ (**Figure 3b**). In the absence of fluoride, the riboswitch folds
416 into a structure that stops the reporter from being produced. When present, fluoride ions bind to
417 the riboswitch, causing it to fold into an alternate structure that permits production of the
418 reporter. This fluoride biosensor can be paired to both fluorescent and colorimetric outputs, with
419 reported detection as low as one part per million²⁸. During preliminary field testing²⁸, this sensor
420 provided presence/absence results in environmental samples even below the 1.5 ppm WHO
421 guideline for fluoride in drinking water¹⁶.
422

423
424
425 **Figure 3. Biosensors for waterborne chemical contaminants.** a. Detection of arsenic using a protein
426 sensor in a whole-cell biosensor. Once the protein sensor recognizes arsenic, it releases reporter DNA
427 and allows a reporter molecule such as a fluorescent protein to be produced. b. Detection of fluoride
428 using an RNA sensor in a cell-free biosensor. The RNA sensor recognizes fluoride and changes its shape
429 to allow the production of a reporter molecule. The specific reporter molecule shown is an enzyme that
430 can convert a colorless substrate into a yellow substance.

431 432 *Emerging Contaminants*

433
434 Biosensors also have the potential to detect emerging contaminants beyond arsenic and
435 fluoride, including metals, agricultural products, and pharmaceutical and personal care products
436 (PPCPs), such as antibiotics and cosmetics. Both whole-cell and cell-free biosensors have
437 previously been used to detect metals by utilizing natural or engineered proteins; sensors have
438 been reported for cadmium, lead, mercury, arsenic, copper, zinc, nickel, and cobalt, with
439 sensitivities ranging from low parts per million to parts per billion^{25,31,83,84}. Sensors for atrazine, a
440 toxic herbicide, have also been developed by encoding a natural metabolic pathway for
441 atrazine's conversion to cyanuric acid, which can be detected with a known protein sensor^{85,86}.
442 Furthermore, new cell-free approaches can detect a range of PPCPs, including multiple families
443 of antibiotics and benzalkonium chloride^{25,83,87}. The ability to detect such a wide range of targets

underscores the potential of biosensors as modular chemical sensing platforms, paving the way for rapid sensor development and deployment to detect new and emerging contaminants of concern.

447

448 *Outstanding Challenges for Chemical Contaminant Detection*

449

450 While many whole-cell sensors report WHO-relevant limits of detection, they are limited by the
451 deployment and operational concerns that are characteristic of live cells. Additionally, many of
452 these sensors are susceptible to false positives due to interference by other chemical
453 contaminants and unintended reporter production. To overcome these challenges, substantial
454 progress must be made in developing robust biocontainment strategies and methods to tune
455 biosensor sensitivity and specificity. While cell-free biosensors partially resolve some of these
456 problems by virtue of being non-living, easily tunable systems, it is still difficult to completely
457 predict how tuning certain parameters influences a sensor's function. Further development of
458 cell-free sensors must therefore focus on identifying the factors that contribute to maximal
459 sensor and reporter function in cell-free systems and optimizing them for biosensing.

460

461 **Discussion**

462

463 Infrequent monitoring of a narrow range of contaminants has created significant gaps in our
464 current understanding of water quality¹² and therefore water insecurity^{88–90}. Synthetic biology
465 has the potential to fill these gaps in knowledge by offering simple, field-deployable tools to
466 report on individual water supplies or serve as pre-screening tools to be used with existing gold-
467 standard methods to provide the large-scale, high resolution data needed to track progress
468 towards development goals. While there are existing field deployable tools, they are limited by
469 the technical expertise, supplemental equipment, or dangerous chemical reagents required for
470 their use (**Table 1**). The potential for biosensors to decrease cost and improve ease-of-use for
471 such diagnostics relative to current methods enables more frequent measurements across
472 wider and more diverse regions, producing water quality data that are more comprehensive and
473 specific than currently available. There is significant promise for this to become a reality –
474 current biosensor formats are accessible to an untrained user, and recent cost estimates
475 suggest that their production can be scaled for global use. Freeze-dried cell-free reactions can
476 currently be manufactured for a few cents per sensor, with even lower costs possible for whole-
477 cell biosensors⁹¹. Moving forward, these costs could decrease by as much as one order of
478 magnitude⁹¹, further facilitating mass deployment.

479

480 This potential is counterbalanced by several existing barriers to rapid biosensor design and
481 deployment. For example, we are currently limited to harvesting sensor parts from nature, rather
482 than designing them from scratch. With the rise of unnatural contaminants such as synthetic
483 antibiotics and pesticides and other harmful industrial compounds, we may lack the tools to
484 detect some emerging targets. While we are currently on the cusp of engineering entirely
485 synthetic proteins⁹² and RNAs⁹³ to address this need, the technologies to do so are still in their
486 infancy, and it will be some time before they can be applied to targeted contaminant detection.

487

488 There is also significant work to be done in developing validated field deployment strategies.
489 Although many biosensors can be freeze-dried for transport and long-term storage^{25,28,40,43,44},
490 this has not yet been explored in the context of tools to enable their use in real-world settings.
491 Of particular concern is the potential for other compounds present in environmental samples to
492 interfere with biosensor components, or for organic matter to chelate contaminants and mask
493 their presence. Thus, a major next step for biosensor development is to characterize these
494 potential inhibitory effects and devise strategies to make biosensors robust against them⁸⁴.

495
496 Fortunately, there have already been several successes using these biosensors in complex
497 samples. For example, cell-free biosensors have been used in the laboratory to detect fecal
498 contamination of unprocessed water samples, including a test for robustness with raw
499 sewage⁴⁰. Additionally, a cell-free fluoride biosensor was capable of detecting environmental
500 fluoride in unprocessed water samples onsite²⁸. While these preliminary findings suggest that
501 cell-free biosensors can be robust to a wide range of potential contaminants in complex water
502 samples, we must still perform more exhaustive testing that considers the effect that common
503 contaminants and other compounds found at target sites can have on biosensor activity. We
504 must also develop comprehensive packaging and usage guidelines that accommodate both the
505 needs and abilities of diverse users.
506

507 From a logistical perspective, the lengthy validation and regulatory approval processes for
508 certifying biosensors may delay their potential impact. Furthermore, meeting the manufacturing
509 demands for global deployment will require funding and production capabilities beyond the
510 reach of academic labs. Enabling individuals to more easily monitor their own water quality
511 could also reveal unwelcome information, and may raise some potential societal, ethical, data
512 protection and regulatory concerns. These considerations will require the careful consideration
513 and cooperation of diverse stakeholders to ensure that these technologies are used for the
514 maximal public good. Because of this, widespread implementation of these technologies will
515 require interdisciplinary collaboration across synthetic biology and water, sanitation and hygiene
516 (WASH) communities, fostering the use of biological design to advance large-scale
517 humanitarian goals.
518

519 As our ability to build biological systems improves, we can begin constructing more
520 sophisticated systems from a wider array of biological parts. Recent work has demonstrated that
521 biosensors can do more than merely produce a single reporter output in response to a target.
522 Indeed, networks of interacting genes can be coupled to form "molecular computers" that take
523 input signals from a biosensor and calculate an appropriate response⁹⁴. For example, a genetic
524 system could be engineered to simultaneously detect multiple targets and produce an output
525 that reports the identity and concentration of each target. Furthermore, new sample calibration
526 strategies⁸⁴ are being developed to circumvent biosensors' intrinsic limitations and enable field-
527 deployable sample quantification. As we continue harvesting parts from nature and clarifying
528 biological design principles, we expect to see an increase in the sensitivity and specificity of
529 biosensors for an expanding list of detectable targets.
530

531 Using biosensors to generate spatiotemporal water quality data will enable more efficient
532 resource allocation by showing exactly when and where interventions are necessary. Not only
533 will such diagnostics provide important population-level information, but they have the potential
534 to usher in the ability to simply and inexpensively assess water quality so that even untrained
535 individuals can personally ensure the safety of their water. As such, advances in synthetic
536 biology could facilitate global water quality monitoring by producing actionable contaminant
537 data, guide the development of efficacious policies and programs, and inform choices about the
538 water we consume.
539

540 **References**

541
542 (1) Gosling, S. N.; Arnell, N. W. A Global Assessment of the Impact of Climate Change on
543 Water Scarcity. *Clim. Change* **2016**, *134* (3), 371–385.
544 (2) Kummu, M.; Guillaume, J. H. A.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert,
545 S.; Veldkamp, T. I. E.; Ward, P. J. The World's Road to Water Scarcity: Shortage and

546 Stress in the 20th Century and Pathways towards Sustainability. *Sci. Rep.* **2016**, *6*,
547 38495.

548 (3) United Nations High-Level Panel on Water. *Making Every Drop Count: An Agenda for*
549 *Water Action*; 2018.

550 (4) Programme, U. N. D. *Beyond Scarcity: Power, Poverty and the Global Water Crisis*;
551 Palgrave Macmillan, 2006.

552 (5) Honkonen, T. Water Security and Climate Change: The Need for Adaptive Governance.
553 *Potchefstroom Electron. Law Journal/Potchefstroomse Elektron. Regsbl.* **2017**, *20* (1).

554 (6) World Economic Forum. *The Global Risks Report 2019, 14th Edition*.

555 (7) USAID. U.S. Government Global Water Strategy. 2017.

556 (8) Wagstaff, A. *The Millennium Development Goals for Health: Rising to the Challenges*;
557 World Bank Publications, 2004.

558 (9) Sachs, J. D. From Millennium Development Goals to Sustainable Development Goals.
559 *Lancet* **2012**, *379* (9832), 2206–2211.

560 (10) World Health Organization; UNICEF. *Water for Life: Making It Happen*; World health
561 organization, 2005.

562 (11) Bartram, J.; Brocklehurst, C.; Fisher, M. B.; Luyendijk, R.; Hossain, R.; Wardlaw, T.;
563 Gordon, B. Global Monitoring of Water Supply and Sanitation: History, Methods and
564 Future Challenges. *Int. J. Environ. Res. Public Health* **2014**, *11* (8), 8137–8165.

565 (12) Damania, R.; Desbureaux, S.; Rodella, A.-S.; Russ, J.; Zaveri, E. Quality Unknown: The
566 Invisible Water Crisis. The World Bank 2019.

567 (13) Stauber, C. The Sustainable Development Goals for Water: The Need to Consider
568 Perception, Preference, and Safety. *Am. J. Trop. Med. Hyg.* **2017**, *97* (4), 985.

569 (14) UNICEF. *SDG Global Indicators Related to Children*; 2018.

570 (15) Ellis, K.; Gowdy, C.; Jakomis, N.; Ryan, B.; Thom, C.; Biggs, C. A.; Speight, V.
571 Understanding the Costs of Investigating Coliform and E. Coli Detections during Routine
572 Drinking Water Quality Monitoring. *Urban Water J.* **2018**, *15* (2), 101–108.

573 (16) World Health Organization. Guidelines for Drinking-Water Quality, 4th Edition,
574 Incorporating the 1st Addendum. *WHO* **2018**.

575 (17) Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E.; Magara, Y. *Fluoride in Drinking-Water*; IWA
576 publishing, 2006.

577 (18) Chelsea Technologies. UviLux. <https://chelsea.co.uk/products/uvilux/>.

578 (19) IDEXX. Coliform/E.coli water tests.
579 https://www.idexx.com/en/water/products/?cy=y_category_252&cx=x_category_259&ts=all.

580 (20) Hach USA. Arsenic Low Range Test Kit. <https://www.hach.com/arsenic-low-range-test-kit/product?id=7640217303>.

581 (21) Khalil, A. S.; Collins, J. J. Synthetic Biology: Applications Come of Age. *Nat. Rev. Genet.*
582 **2010**, *11* (5), 367.

583 (22) Liu, X.; Hu, Q.; Yang, J.; Huang, S.; Wei, T.; Chen, W.; He, Y.; Wang, D.; Liu, Z.; Wang,
584 K. Selective Cadmium Regulation Mediated by a Cooperative Binding Mechanism in
585 CadR. *Proc. Natl. Acad. Sci.* **2019**, *116* (41), 20398–20403.

586 (23) Lucks, J. B.; Qi, L.; Whitaker, W. R.; Arkin, A. P. Toward Scalable Parts Families for
587 Predictable Design of Biological Circuits. *Curr. Opin. Microbiol.* **2008**, *11* (6), 567–573.

588 (24) Salehi, A. S. M.; Shakalli Tang, M. J.; Smith, M. T.; Hunt, J. M.; Law, R. A.; Wood, D. W.;
589 Bundy, B. C. Cell-Free Protein Synthesis Approach to Biosensing HTR β -Specific
590 Endocrine Disruptors. *Anal. Chem.* **2017**, *89* (6), 3395–3401.

591 (25) Alam, K. K.; Jung, J. K.; Verosloff, M. S.; Clauer, P. R.; Lee, J. W.; Capdevila, D. A.;
592 Pastén, P. A.; Giedroc, D. P.; Collins, J. J.; Lucks, J. B. Rapid, Low-Cost Detection of
593 Water Contaminants Using Regulated In Vitro Transcription. *bioRxiv* **2019**.
594 <https://doi.org/10.1101/619296>.

597 (26) Willardson, B. M.; Wilkins, J. F.; Rand, T. A.; Schupp, J. M.; Hill, K. K.; Keim, P.; Jackson,
598 P. J. Development and Testing of a Bacterial Biosensor for Toluene-Based
599 Environmental Contaminants. *Appl. Environ. Microbiol.* **1998**, *64* (3), 1006–1012.

600 (27) Tauriainen, S.; Karp, M.; Chang, W.; Virta, M. Luminescent Bacterial Sensor for
601 Cadmium and Lead. *Biosens. Bioelectron.* **1998**, *13* (9), 931–938.

602 (28) Thavarajah, W.; Silverman, A. D.; Verosloff, M. S.; Kelley-Loughnane, N.; Jewett, M. C.;
603 Lucks, J. B. Point-of-Use Detection of Environmental Fluoride via a Cell-Free Riboswitch-
604 Based Biosensor. *ACS Synth. Biol.* **2019**,
605 <https://doi.org/https://doi.org/10.1021/acssynbio.9b00347>.

606 (29) Selifonova, O.; Burlage, R.; Barkay, T. Bioluminescent Sensors for Detection of
607 Bioavailable Hg (II) in the Environment. *Appl. Environ. Microbiol.* **1993**, *59* (9), 3083–
608 3090.

609 (30) Gräwe, A.; Dreyer, A.; Vornholt, T.; Barteczko, U.; Buchholz, L.; Drews, G.; Ho, U. L.;
610 Jackowski, M. E.; Kracht, M.; Lüders, J. A Paper-Based, Cell-Free Biosensor System for
611 the Detection of Heavy Metals and Date Rape Drugs. *PLoS One* **2019**, *14* (3), e0210940.

612 (31) Pellinen, T.; Huovinen, T.; Karp, M. A Cell-Free Biosensor for the Detection of
613 Transcriptional Inducers Using Firefly Luciferase as a Reporter. *Anal. Biochem.* **2004**,
614 *330* (1), 52–57.

615 (32) Rawson, D. M.; Willmer, A. J.; Turner, A. P. P. Whole-Cell Biosensors for Environmental
616 Monitoring. *Biosensors* **1989**, *4* (5), 299–311.

617 (33) Stocker, J.; Balluch, D.; Gsell, M.; Harms, H.; Feliciano, J.; Daunert, S.; Malik, K. A.; Van
618 der Meer, J. R. Development of a Set of Simple Bacterial Biosensors for Quantitative and
619 Rapid Measurements of Arsenite and Arsenate in Potable Water. *Environ. Sci. Technol.*
620 **2003**, *37* (20), 4743–4750.

621 (34) Prest, A. G.; Winson, M. K.; Hammond, J. R. M.; Stewart, G. The Construction and
622 Application of a Lux-based Nitrate Biosensor. *Lett. Appl. Microbiol.* **1997**, *24* (5), 355–
623 360.

624 (35) Virta, M.; Lampinen, J.; Karp, M. A Luminescence-Based Mercury Biosensor. *Anal.*
625 *Chem.* **1995**, *67* (3), 667–669.

626 (36) Wen, K. Y.; Cameron, L.; Chappell, J.; Jensen, K.; Bell, D. J.; Kelwick, R.; Kopniczky, M.;
627 Davies, J. C.; Filloux, A.; Freemont, P. S. A Cell-Free Biosensor for Detecting Quorum
628 Sensing Molecules in *P. aeruginosa*-Infected Respiratory Samples. *ACS Synth. Biol.*
629 **2017**, *6* (12), 2293–2301.

630 (37) Takahashi, M. K.; Tan, X.; Dy, A. J.; Braff, D.; Akana, R. T.; Furuta, Y.; Donghia, N.;
631 Ananthakrishnan, A.; Collins, J. J. A Low-Cost Paper-Based Synthetic Biology Platform
632 for Analyzing Gut Microbiota and Host Biomarkers. *Nat. Commun.* **2018**, *9* (1), 3347.
633 <https://doi.org/10.1038/s41467-018-05864-4>.

634 (38) Phillips, E. A.; Moehling, T. J.; Bhadra, S.; Ellington, A. D.; Linnes, J. C. Strand
635 Displacement Probes Combined with Isothermal Nucleic Acid Amplification for
636 Instrument-Free Detection from Complex Samples. *Anal. Chem.* **2018**, *90* (11), 6580–
637 6586.

638 (39) Kawaguchi, T.; Chen, Y. P.; Norman, R. S.; Decho, A. W. Rapid Screening of Quorum-
639 Sensing Signal N-Acyl Homoserine Lactones by an in Vitro Cell-Free Assay. *Appl.*
640 *Environ. Microbiol.* **2008**, *74* (12), 3667–3671.

641 (40) Jiang, Y. S.; Riedel, T. E.; Popoola, J. A.; Morrow, B. R.; Cai, S.; Ellington, A. D.; Bhadra,
642 S. Portable Platform for Rapid In-Field Identification of Human Fecal Pollution in Water.
643 *Water Res.* **2018**, *131*, 186–195.

644 (41) Gootenberg, J. S.; Abudayyeh, O. O.; Lee, J. W.; Essletzbichler, P.; Dy, A. J.; Joung, J.;
645 Verdine, V.; Donghia, N.; Daringer, N. M.; Freije, C. A. Nucleic Acid Detection with
646 CRISPR-Cas13a/C2c2. *Science (80-)* **2017**, *356* (6336), 438–442.

647 (42) Pardee, K.; Green, A. A.; Ferrante, T.; Cameron, D. E.; DaleyKeyser, A.; Yin, P.; Collins,

648 J. J. Paper-Based Synthetic Gene Networks. *Cell* **2014**, *159* (4), 940–954.

649 (43) Pardee, K.; Green, A. A.; Takahashi, M. K.; Braff, D.; Lambert, G.; Lee, J. W.; Ferrante,
650 T.; Ma, D.; Donghia, N.; Fan, M. Rapid, Low-Cost Detection of Zika Virus Using
651 Programmable Biomolecular Components. *Cell* **2016**, *165* (5), 1255–1266.

652 (44) Verosloff, M.; Chappell, J.; Perry, K. L.; Thompson, J. R.; Lucks, J. B. PLANT-Dx: A
653 Molecular Diagnostic for Point-of-Use Detection of Plant Pathogens. *ACS Synth. Biol.*
654 **2019**, *8* (4), 902–905.

655 (45) Ma, D.; Shen, L.; Wu, K.; Diehnelt, C. W.; Green, A. A. Low-Cost Detection of Norovirus
656 Using Paper-Based Cell-Free Systems and Synbody-Based Viral Enrichment. *Synth.*
657 *Biol.* **2018**, *3* (1), ysy018.

658 (46) Myhrvold, C.; Freije, C. A.; Gootenberg, J. S.; Abudayyeh, O. O.; Metsky, H. C.; Durbin,
659 A. F.; Kellner, M. J.; Tan, A. L.; Paul, L. M.; Parham, L. A. Field-Deployable Viral
660 Diagnostics Using CRISPR-Cas13. *Science (80-).* **2018**, *360* (6387), 444–448.

661 (47) Spoelstra, W. K.; Jacques, J. M.; Nóbrega, F. L.; Haagsma, A. C.; Dogterom, M.; Idema,
662 T.; Brouns, S. J. J.; Reese, L. CRISPR-Based DNA and RNA Detection with Liquid Phase
663 Separation. *bioRxiv* **2018**, 471482.

664 (48) Romero, J. L. R.; Carver, G. D.; Johnson, P. A.; Perry, K. L.; Thompson, J. R. A Rapid,
665 Sensitive and Inexpensive Method for Detection of Grapevine Red Blotch Virus without
666 Tissue Extraction Using Loop-Mediated Isothermal Amplification. *Arch. Virol.* **2019**, *164*
667 (5), 1453–1457.

668 (49) Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors-
669 Sensor Principles and Architectures. *Sensors* **2008**, *8* (3), 1400–1458.

670 (50) Wang, J.; Rivas, G.; Cai, X.; Palecek, E.; Nielsen, P.; Shiraishi, H.; Dontha, N.; Luo, D.;
671 Parrado, C.; Chicharro, M. DNA Electrochemical Biosensors for Environmental
672 Monitoring. A Review. *Anal. Chim. Acta* **1997**, *347* (1–2), 1–8.

673 (51) Tyagi, A.; Kumar, A.; Aparna, S. V.; Mallappa, R. H.; Grover, S.; Batish, V. K. Synthetic
674 Biology: Applications in the Food Sector. *Crit. Rev. Food Sci. Nutr.* **2016**, *56* (11), 1777–
675 1789.

676 (52) Mortimer, J. C. Plant Synthetic Biology Could Drive a Revolution in Biofuels and
677 Medicine. *Exp. Biol. Med.* **2019**, *244* (4), 323–331.

678 (53) Slomovic, S.; Pardee, K.; Collins, J. J. Synthetic Biology Devices for in Vitro and in Vivo
679 Diagnostics. *Proc. Natl. Acad. Sci.* **2015**, *112* (47), 14429–14435.

680 (54) Alberts, B.; Johnson, A.; Lewis, J.; Morgan, D.; Raff, M.; Robers, K.; Walter, P.; Wilson,
681 J.; Hunt, T. *Molecular Biology of the Cell*, 6th ed.; 2015.

682 (55) Rogers, J. K.; Guzman, C. D.; Taylor, N. D.; Raman, S.; Anderson, K.; Church, G. M.
683 Synthetic Biosensors for Precise Gene Control and Real-Time Monitoring of Metabolites.
684 *Nucleic Acids Res.* **2015**, *43* (15), 7648–7660. <https://doi.org/10.1093/nar/gkv616>.

685 (56) Porto, T. V.; Wilson, M. T.; Worrall, J. A. R. Copper and Nickel Bind via Two Distinct
686 Kinetic Mechanisms to a CsoR Metalloregulator. *Dalt. Trans.* **2015**, *44* (46), 20176–
687 20185.

688 (57) Yuan, L.; Kurek, I.; English, J.; Keenan, R. Laboratory-Directed Protein Evolution.
689 *Microbiol. Mol. Biol. Rev.* **2005**, *69* (3), 373–392.

690 (58) Porter, E. B.; Polaski, J. T.; Morck, M. M.; Batey, R. T. Recurrent RNA Motifs as Scaffolds
691 for Genetically Encodable Small-Molecule Biosensors. *Nat. Chem. Biol.* **2017**, *13*, 295.

692 (59) Naylor, L. H. Reporter Gene Technology: The Future Looks Bright. *Biochem. Pharmacol.*
693 **1999**, *58* (5), 749–757.

694 (60) Thorne, N.; Inglese, J.; Auld, D. S. Illuminating Insights into Firefly Luciferase and Other
695 Bioluminescent Reporters Used in Chemical Biology. *Chem. Biol.* **2010**, *17* (6), 646–657.

696 (61) Wan, X.; Ho, T. Y. H.; Wang, B. Engineering Prokaryote Synthetic Biology Biosensors.
697 *Handb. Cell Biosens.* **2019**, 1–37.

698 (62) Belkin, S.; Yagur-Kroll, S.; Kabessa, Y.; Korouma, V.; Septon, T.; Anati, Y.; Zohar-Perez,

699 C.; Rabinovitz, Z.; Nussinovitch, A.; Agranat, A. J. Remote Detection of Buried
700 Landmines Using a Bacterial Sensor. *Nat. Biotechnol.* **2017**, *35* (4), 308.

701 (63) Stirling, F.; Bitzan, L.; O'Keefe, S.; Redfield, E.; Oliver, J. W. K.; Way, J.; Silver, P. A.
702 Rational Design of Evolutionarily Stable Microbial Kill Switches. *Mol. Cell* **2017**, *68* (4),
703 686–697.

704 (64) Silverman, A.; Kelley-Loughnane, N.; Lucks, J. B.; Jewett, M. C. Deconstructing Cell-Free
705 Extract Preparation for in Vitro Activation of Transcriptional Genetic Circuitry. *ACS Synth.
706 Biol.* **2018**, *8* (2), 403–414.

707 (65) Pandey, P. K.; Kass, P. H.; Soupir, M. L.; Biswas, S.; Singh, V. P. Contamination of
708 Water Resources by Pathogenic Bacteria. *AMB Express* **2014**, *4* (1), 51.
709 <https://doi.org/10.1186/s13568-014-0051-x>.

710 (66) Jamison, D. T.; Gelband, H.; Horton, S.; Jha, P.; Laxminarayan, R.; Mock, C. N.; Nugent,
711 R. *Disease Control Priorities, (Volume 9): Improving Health and Reducing Poverty*; The
712 World Bank, 2017.

713 (67) Pillai, J.; Mathew, K.; Gibbs, R.; Ho, G. E. H2S Paper Strip Method—A Bacteriological
714 Test for Faecal Coliforms in Drinking Water at Various Temperatures. *Water Sci.
715 Technol.* **1999**, *40* (2), 85–90.

716 (68) Aquagenx. The Compartment Bag Test (CBT) Quantitative H2S Water Quality Test Kits.
717 <https://www.aquagenx.com/h2s-test-kits/>.

718 (69) Cowburn, J. K.; Goodall, T.; Fricker, E. J.; Walter, K. S.; Fricker, C. R. A Preliminary
719 Study of the Use of Colilert for Water Quality Monitoring. *Lett. Appl. Microbiol.* **1994**, *19*
720 (1), 50–52.

721 (70) mWater. mWater Test Kits. <https://www.mwater.co/kits.html>.

722 (71) Pall Corporation. Membrane Filter Technique.
723 <https://www.laboratory.pall.com/content/dam/pall/laboratory/literature-library/non-gated/id-7290.pdf>.

725 (72) Sorensen, J. P. R.; Lapworth, D. J.; Marchant, B. P.; Nkuwa, D. C. W.; Pedley, S.;
726 Stuart, M. E.; Bell, R. A.; Chirwa, M.; Kabika, J.; Liemisa, M. In-Situ Tryptophan-like
727 Fluorescence: A Real-Time Indicator of Faecal Contamination in Drinking Water
728 Supplies. *Water Res.* **2015**, *81*, 38–46.

729 (73) Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids.
730 *Chem. Rev.* **2015**, *115* (22), 12491–12545.

731 (74) Kim, Y.; Sohn, D.; Tan, W. Molecular Beacons in Biomedical Detection and Clinical
732 Diagnosis. *Int. J. Clin. Exp. Pathol.* **2008**, *1* (2), 105.

733 (75) Chen, J. S.; Ma, E.; Harrington, L. B.; Da Costa, M.; Tian, X.; Palefsky, J. M.; Doudna, J.
734 A. CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase
735 Activity. *Science (80-)*. **2018**, *360* (6387), 436–439.

736 (76) Gootenberg, J. S.; Abudayyeh, O. O.; Kellner, M. J.; Joung, J.; Collins, J. J.; Zhang, F.
737 Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a, and
738 Csm6. *Science (80-)*. **2018**, *360* (6387), 439–444.

739 (77) Eichmiller, J. J.; Best, S. E.; Sorensen, P. W. Effects of Temperature and Trophic State
740 on Degradation of Environmental DNA in Lake Water. *Environ. Sci. Technol.* **2016**, *50*
741 (4), 1859–1867.

742 (78) Nickson, R.; McArthur, J.; Burgess, W.; Ahmed, K. M.; Ravenscroft, P.; Rahmanñ, M.
743 Arsenic Poisoning of Bangladesh Groundwater. *Nature* **1998**, *395* (6700), 338.

744 (79) Hughes, M. F.; Beck, B. D.; Chen, Y.; Lewis, A. S.; Thomas, D. J. Arsenic Exposure and
745 Toxicology: A Historical Perspective. *Toxicol. Sci.* **2011**, *123* (2), 305–332.

746 (80) Kaur, H.; Kumar, R.; Babu, J. N.; Mittal, S. Advances in Arsenic Biosensor Development—
747 a Comprehensive Review. *Biosens. Bioelectron.* **2015**, *63*, 533–545.

748 (81) Brindha, K.; Elango, L. Fluoride in Groundwater: Causes, Implications and Mitigation
749 Measures. *Fluoride Prop. Appl. Environ. Manag.* **2011**, *1*, 111–136.

750 (82) Hanna Instruments. Fluoride Portable Meter. <https://www.hannainst.com/fluoride-portable-meter-hi98402.html>.

751 (83) Didovyk, A.; Tonooka, T.; Tsimring, L.; Hasty, J. Rapid and Scalable Preparation of

752 Bacterial Lysates for Cell-Free Gene Expression. *ACS Synth. Biol.* **2017**, 6 (12), 2198–

753 2208.

754 (84) McNerney, M. P.; Zhang, Y.; Steppe, P.; Silverman, A. D.; Jewett, M. C.; Styczynski, M.

755 P. Point-of-Care Biomarker Quantification Enabled by Sample-Specific Calibration. *Sci.*

756 *Adv.* **2019**, 5 (9), eaax4473.

757 (85) Hua, A.; Gueuné, H.; Cregut, M.; Thouand, G.; Durand, M.-J. Development of a Bacterial

758 Bioassay for Atrazine and Cyanuric Acid Detection. *Front. Microbiol.* **2015**, 6, 211.

759 (86) Silverman, A. D.; Akova, U.; Alam, K. K.; Jewett, M. C.; Lucks, J. B. Design and

760 Optimization of a Cell-Free Atrazine Biosensor. *bioRxiv* **2019**, 779827.

761 <https://doi.org/10.1101/779827>.

762 (87) Karig, D. K.; Iyer, S.; Simpson, M. L.; Doktycz, M. J. Expression Optimization and

763 Synthetic Gene Networks in Cell-Free Systems. *Nucleic Acids Res.* **2011**, 40 (8), 3763–

764 3774.

765 (88) Jepson, W. E.; Wutich, A.; Collins, S. M.; Boateng, G. O.; Young, S. L. Progress in

766 Household Water Insecurity Metrics: A Cross-disciplinary Approach. *Wiley Interdiscip.*

767 *Rev. Water* **2017**, 4 (3), e1214.

768 (89) Young, S. L.; Boateng, G. O.; Jamaluddine, Z.; Miller, J. D.; Frongillo, E. A.; Neilands, T.

769 B.; Collins, S. M.; Wutich, A.; Jepson, W. E.; Stoler, J. The Household Water InSecurity

770 Experiences (HWISE) Scale: Development and Validation of a Household Water

771 Insecurity Measure for Low-Income and Middle-Income Countries. *BMJ Glob. Heal.* **2019**,

772 4 (5), e001750.

773 (90) Wutich, A.; Budds, J.; Eichelberger, L.; Geere, J.; Harris, L. M.; Horney, J. A.; Jepson,

774 W.; Norman, E.; O'Reilly, K.; Pearson, A. L. Advancing Methods for Research on

775 Household Water Insecurity: Studying Entitlements and Capabilities, Socio-Cultural

776 Dynamics, and Political Processes, Institutions and Governance. *Water Secur.* **2017**, 2,

777 1–10.

778 (91) Silverman, A. D.; Karim, A. S.; Jewett, M. C. Cell-Free Gene Expression: An Expanded

779 Repertoire of Applications. <https://doi.org/10.1038/s41576-019-0186-3>.

780 (92) Huang, P.-S.; Boyken, S. E.; Baker, D. The Coming of Age of de Novo Protein Design.

781 *Nature* **2016**, 537 (7620), 320.

782 (93) Lee, Y. J.; Moon, T. S. Design Rules of Synthetic Non-Coding RNAs in Bacteria. *Methods*

783 **2018**, 143, 58–69.

784 (94) Nandagopal, N.; Elowitz, M. B. Synthetic Biology: Integrated Gene Circuits. *Science* (80-).

785 **2011**, 333 (6047), 1244–1248.

786

787 Acknowledgements

788 We would like to acknowledge Adam Silverman (Northwestern University) and Professor

789 Samuel Dorevitch (University of Illinois, Chicago) for helpful comments and discussions in

790 preparing the manuscript. W.T. and M.S.V. were supported in part by the National Institutes of

791 Health Training Grant (T32GM008449) through Northwestern University's Biotechnology

792 Training Program. This work was also supported by the National Science Foundation (1929912

793 to J.B.L.), an NSF CAREER award (1452441 to J.B.L.), Searle Funds at the Chicago

794 Community Trust (to J.B.L.), the Andrew Carnegie Foundation (to S.L.Y.), the Air Force

795 Research Laboratory Center of Excellence for Advanced Biop�ammable Nanomaterials (C-

796 ABN) Grant FA8650-15-2-5518 (to M.C.J. and J.B.L.), the David and Lucile Packard Foundation

797 (to M.C.J.), the Camille Dreyfus Teacher-Scholar Program (to M.C.J. and J.B.L.), and the

798 generous support of the American people provided to the Feed the Future Sustainable

799

800

801 Intensification Innovation Lab (SIIIL) through the United State Agency for International
802 Development Cooperative Agreement AID-OAA-L-14-00006 (to S.L.Y.). The views and
803 conclusions contained herein are those of the authors and should not be interpreted as
804 necessarily representing the official policies or endorsements, either expressed or implied, of
805 the Air Force Research Laboratory, Air Force Office of Scientific Research, USAID, or the
806 United States Government.

807

808 **Author Contributions**

809

810 Conceptualization: W.T., K.K.A., S.L.Y., & J.B.L. Project Administration: W.T. & J.B.L. Funding
811 Acquisition: S.L.Y. and J.B.L. Writing – Original Draft: W.T., M.S.V., J.K.J., J.D.M., S.L.Y., &
812 J.B.L. Writing – Review and Editing: W.T., M.S.V., J.K.J., K.K.A., J.D.M., M.C.J., S.L.Y., & J.B.L.

813

814 **Competing Interests Statement**

815

816 K.K.A. and J.B.L. are founders and have a financial interest in Stemloop, Inc. These latter
817 interests were reviewed and managed by Northwestern University in accordance with their
818 conflict of interest policies. All other authors declare no conflicts of interest.

Target	Method	Result Type	Time to Results	Test Cost*	Equipment Cost*	Skills Required	Number of Steps	Limit of Detection	Output Type
Coliforms	Coliform Growth Test (Minimal) ⁷⁰	Semi-Quantitative	Hours	\$\$	N/A	Filtration	4	1 cfu/100 mL	Colorimetric
Coliforms	Coliform Growth Test (Complex) ¹⁹	Quantitative	Days	\$\$	\$\$\$	Filtration	6	1 cfu/100 mL	Colorimetric
Coliforms	Tryptophan-Like Fluorescence ¹⁸	Presence/Absence	Minutes	\$	\$\$\$	Filtration	3	10 cfu/100 mL	Fluorescent
Coliforms	Growth Assay ⁷¹	Presence/Absence	Hours	\$	N/A	Filtration	3	1 cfu/100 mL	Cell Growth
Coliforms	Hydrogen Sulfide ⁶⁸	Presence/Absence	Days	\$	N/A	Filtration	3	1 cfu/100 mL	Colorimetric
Arsenic**	Chemical Test Strip ²⁰	Semi-Quantitative	Minutes	\$\$	N/A	Dilution	10	5 - 200 ppb	Colorimetric
Fluoride	Fluoride-Sensing Electrode ⁸²	Quantitative	Minutes	\$	\$\$\$	Dilution	5	0.1 ppm	Numerical
Fluoride	Complexone Method ¹⁷	Semi-Quantitative	Minutes	\$	\$\$\$	Dilution	3	0.1 ppm	Colorimetric
Coliforms	Loop-LAMP ⁴⁰	Semi-Quantitative	Hours	\$\$	\$\$	Filtration	4	20 cfu/100 mL	Fluorescent
Coliforms	SHERLOCK ⁴⁶	Semi-Quantitative	Hours	\$\$	N/A	Filtration	4	Attomolar***	Colorimetric
Coliforms	DETECTR ⁷⁵	Semi-Quantitative	Hours	\$\$	\$\$	Filtration	4	Attomolar***	Fluorescent
Coliforms	RNA-Based Sensor ³⁷	Semi-Quantitative	Hours	\$	N/A	Filtration	4	Nanomolar***	Colorimetric
Arsenic	Whole-Cell Protein Biosensor ⁸⁰	Presence/Absence	Hours	\$	N/A	N/A	2	1 ppb	Colorimetric, Fluorescent
Fluoride	Cell-Free RNA Biosensor ²⁸	Presence/Absence	Hours	\$	N/A	N/A	2	1 ppm	Colorimetric, Fluorescent

819 *\$ - <1 USD, \$\$ - <10 USD, \$\$\$ - >10 USD

820 **Generates toxic arsine gas during operation

821 ***Because these methods detect DNA in the sample, their limits of detection are measured in DNA concentration rather than cfu

822 **Table 1.** Comparison between commonly used methods for contaminant detection (top) and biosensors (bottom).