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ABSTRACT: Wearable sensors for human health, performance and state monitoring which have a linear response to the 
binding of biomarkers found in sweat, saliva or urine are of current interest for many applications. A critical part of any 
device is a biological recognition element (BRE) that is able to bind a biomarker at the surface of a sensor with a high affinity 
and selectivity to produce a measurable signal response. In this study, we discover and compare 12-mer peptides that bind 
to neuropeptide Y (NPY), a stress and human health biomarker, using independent and complimentary experimental and 
computational approaches. The affinities of the NPY-binding peptides discovered by both methods are equivalent and be-
low the μM level, which makes them suitable for application in sensors. The in-silico design protocol for peptide-based 
BREs is low cost, highly efficient, and simple, suggesting its utility for discovering peptide binders to a variety of biomarker 
targets. 

INTRODUCTION 
Sensors that measure the concentrations of biomarkers in bi-
ofluids are of great interest for assessing health and cognitive 
state.1-4 Among the fundamental challenges limiting the de-
velopment of these sensors are the discovery of biological 
recognition elements (BREs) that are able to recognize and 
bind to biomarker targets with high affinity and specificity to 
detect low biomarker concentrations. Antibodies are cur-
rently the BRE of choice, but they often function poorly in de-
vices because of their high cost, weak thermostability, short 
shelf life and issues with reproducibility.5 
Human neuropeptide Y (NPY) is a highly conserved 36-mer 
peptide (YPSKPDNPGEDAPAEDMARYY-
SALRHYINLITRQRY) that functions as a neurotransmitter 
that is widely distributed in the human central and peripheral 
nervous systems.6 Recent clinical studies have shown that 
NPY plays an essential role in the regulation of basic physio-
logical effects, including mood disorders, stress responses, 
and memory processing.3,7 The NPY concentration in human 
biological fluids is an important indicator in the diagnosis of 
depression, anxiety, and stress-related disorders, including 
post-traumatic stress disorder (PTSD).8 The detection of NPY 
levels remains a fundamental challenge for incorporation into 
wearable devices. Traditional methods for NPY detection rely 
on complex, time consuming, and expensive assays using an-
tibodies.1,9 Antibodies against NPY can exhibit cross-reactivity 

when used as sensing elements in microarrays, and the pro-
duction process is laborious and cost-ineffective. Moreover, 
antibodies are large proteins with a short shelf-life as a result 
of protein denaturation, which limits their scope in biosensor 
development.5,10 
Short peptides2,4 are appealing as BREs because of their high 
thermostability, strong selectivity, and low cost. In addition, 
their small size places them in close proximity to the active 
electronic or plasmonic material surface in sensors, greatly de-
creasing the limit of detection.11 To date, most peptide-based 
BREs are identified from natural sources12 or from combinato-
rial phage display libraries13 which determine binders experi-
mentally from large pools of sequences. The identification of 
peptides from combinatorial libraries can be a difficult exper-
iment as it is subject to artifacts related to parasitic se-
quences13 and sometimes yields peptides with low binding af-
finities that are difficult to use in biofluid sensors. 
We have been working to develop fast and automated meth-
ods to design peptides with exceptional binding affinities for 
protein or RNA targets.14-19 Our computational algorithm uses 
atomistic force fields rather than knowledge-based infor-
mation to design peptide sequences; this enables us to design 
high-affinity binding peptides to targets that have no known 
binders available in the protein data bank. In recent work, we 
used the computational algorithm to successfully evolve a 12-
mer peptide-based BRE for the detection of cardiac event bi-
omarker protein troponin I (cTnI).17 The results showed that 



 

the in-silico evolved peptide binds to cTnI with a high affinity 
(0.27 nM), which is comparable to that of the natural antibody 
(0.12 nM) for cTnI. Using plasmonic paper detection, we found 
a detection limit of 10 fM (0.23 pg/mL), a significant improve-
ment over the commercial assays that require a clinical lab 
and nearly 24 hours to develop. 
In this work, we use two different approaches, viz. combina-
torial phage display library and computational peptide design 
algorithm, to identify high affinity peptide-based BREs for de-
tection of NPY in sensors. The binding affinities of the phage-
display and in-silico discovered peptides were characterized 
experimentally using bilayer interferometry (BLI),20-21 surface 
plasmon resonance (SPR),22 and circular dichroism (CD).23-24 
Our results show that the in-silico peptide 
RNPQPMMWQMNW (N16) has an affinity equivalent to that 
of the phage displayed peptide FPNWSLRPMNQM (N3) in 
binding with NPY. The binding kinetic properties of peptides 
to NPY were evaluated by experimentally measuring the asso-
ciation and dissociation coefficients, ka and kd. The N16 pep-
tide has more rapid NPY binding kinetics, so the in-silico de-
signed peptide might perform better in sensors. 
 
MATERIALS AND METHODS 
The reagents for buffers were purchased from Sigma-Aldrich 
and used without purification. Peptides with a CGGG linker 
for SPR and biotinylated peptides with a GGG linker were pur-
chased from Peptide 2.0 and HPLC purified to 95%. 
Circular dichroism spectra were collected on a Jasco J-815 cir-
cular dichroism (CD) spectrometer using a 750 μL quartz cu-
vette from 180 to 260 nm with a data pitch of 0.1 nm, band-
width of 1 nm, scan rate of 50 nm/min, and averaged over 3 
scans.  
A BioNavis multiparametric surface plasmon resonance (MP-
SPR) Navi 210A instrument integrated with a degasser and au-
tomated for six samples was used to measure NPY binding ki-
netics. Gold coated SPR sensors purchased from BioNavis 
were cleaned via UV-ozone treatment for 10 min, heated in a 
7.5 :1 :1 solution of water−30% H2O2−NH4OH at 80 °C for 10 
min, thoroughly rinsed with double deionized water, and 
dried with N2. The clean gold coated SPR sensors were 
mounted in a sensor holder and inserted into MP-SPR instru-
ment. For immobilization of NPY-binding peptides on gold 
coated SPR sensors, 500 μL of peptide at a concentration of 50 
μg/mL in deionized and filtered water was injected at a flow 
rate of 30 μL/min using a pre-wait delay time of 2 min, 10 min 
injection period of peptide or target, and 2−40 min post-wait 
time to allow for peptide dissociation.  
NPY binding to peptides was also measured using bilayer in-
terference (BLI) on a Fortebio Octet 96 spectrometer in 96-
well plates under constant agitation. The streptavidin coated 
sensors were equilibrated with biotinylated peptides, rinsed 
and dipped into wells containing different concentrations of 
NPY. All BLI experiments were performed in PBS buffer with 
1% bovine serum albumin and 0.002% Tween 20. 
 
Computational peptide design algorithm. Our peptide-
design algorithm is an iterative procedure that searches for 
high-affinity peptide binders to a target biomolecule.14-15,19 Fig-
ure S1 shows a flow sheet for the computational peptide-de-

sign algorithm. The algorithm is initialized by choosing a ref-
erence peptide binder to the target and then determining the 
initial structure of the peptide-target complex from the PDB, 
crystallography or atomistic molecular dynamics simulation. 
The initial rotamers (side-chain conformations) for amino 
acid repacking along the chain are taken from Lovell’s rotamer 
library.25 Two types of trial moves, sequence change and con-
formation change, are included in the algorithm to generate 
new target-binding peptides. (i) Sequence change move: 
There are two types of trial moves to change the peptide se-
quence. The first is a random substitution of a new residue for 
an old one. The new residue should be of the same residue 
type as the old one to maintain the peptide’s hydration prop-
erties. The second type of trial move is a random exchange of 
two chosen residues, regardless of their residue type. Each 
trial peptide is subjected to Broyden-Fletcher-Goldfarb-
Shanno (BFGS) energy minimization to determine optimal 
side-chain configurations for the amino acids along the chain. 
(ii) Conformation change move: There are three types of trial 
“moves” to change the peptide backbone conformation. The 
first uses the extended concerted rotation method to displace 
a series of consecutive residues in the middle of the peptide 
chain, leaving the other residues fixed. The second rotates a 
peptide fragment on one of the two ends (N- and C- terminus) 
and the third translates the entire peptide backbone confor-
mation. Two parameters, δmax and kTconformation, are used to 
control the magnitude of the conformation change moves. 
The root mean-square deviation (RMSD), δrmsd, of the new 
trial conformer from its original peptide conformation is eval-
uated to make sure that it is not too big (<δmax) and not too 
small (>δmin). The parameter kTconformation controls the likeli-
hood that a new peptide conformer will be accepted, with 
higher values making acceptance easier. All attempts to gen-
erate new peptide backbone conformers are considered as 
long as (1) the torsion angles (ϕ and ψ) satisfy the Ramachan-
dran plot26 and (2) there are no atomic overlaps between the 
peptide’s backbone and the target. Once trial backbone con-
formers are generated, side chains are repacked on the trial 
backbone conformers and BFGS energy minimization is con-
ducted to optimize their configurations. The score Γscore of 
each trial peptide sequence or conformer is evaluated, and the 
Monte Carlo (MC) Metropolis algorithm is used to accept or 
reject the new trial peptide by calculating the acceptance 
probability 
 𝑃𝑃 = min {1,  exp[(Γscore

𝑜𝑜𝑜𝑜𝑜𝑜 − Γscore
𝑛𝑛𝑛𝑛𝑛𝑛) 𝑘𝑘𝑘𝑘⁄ ]}. 

The score function that we use to evaluate the merits of each 
trial peptide in the computational algorithm is given in equa-
tion (1), which takes into account the binding affinity of the 
peptide to the target (first term) and the conformational sta-
bility of the peptide when bound to the target (second term):16 

Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = Δ𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝜆𝜆 ⋅ (𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 +
𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 )   (1) 

The binding energy ∆Ubinding is defined to be the difference be-
tween the energy of the complex and the energies of the pep-
tide and the target prior to binding. The evaluation of energies 
(U) of the complex, the peptide and the target involves the 
calculation of the internal energy (INT), van der Waals energy 
(VDW), electrostatic energy (ELE), the polar solvation energy 
(EGB) and the non-polar solvation energy (GBSUR). More de-
tailed descriptions about the calculation of the energy and 
score function can be seen in Supporting Information and our 



 

previous paper.15 Lower scores (more negative values) mean 
better binders. All the force field parameters are taken from 
the Amber 14SB force field.27  
The input for the computational designs is an initial binding 
structure of the peptide-target complex, and several control-
lable parameter settings, such as the pH value, the value of 
(δmax, kTconformation), the number of residues of each of the six 
residue types (see below), and an initial random seed that gen-
erates random numbers for the sequence and conformation 
change moves. The computational algorithm cannot be used 
to predict the active site of a target molecule. Our peptide de-
sign is limited to cases in which (i) the active site of a target 
molecule is known from the protein data bank or can be pre-
determined using computational approaches, and (ii) an ini-
tial peptide sequence is known. 
 
Hydration properties of in-silico peptides. Since NPY 
shows poor solubility at neutral pH, the peptide-binding ex-
periments are performed at pH=5.0. Below pH=6.0, the polar 
histidine (His) is protonated, becoming a positively-charged 
amino acid (Hip) (Table S1). To be consistent with the experi-
mental data, our peptide designs are conducted at pH=5.0. If 
not specified, the letter “H” stands for the positively-charged 
histidine (Hip). The twenty natural amino acids are classified 
into six residue types according to their hydrophobicity, po-
larity, charge and size (Table S1). The length of the in-silico 
evolved peptides is set to be the same as the phage-display-
discovered peptide FPNWSLRPMNQM which has twelve resi-
dues: five hydrophobic residues (Nhydrophobic=5), no negatively-
charged residue (Nnegative charge=0), one positively-charged resi-
due (Npositive charge=1), four hydrophilic residues (Nhydrophilic=4), 
two other residues (Nother=2), and no glycine (Nglycine=0). 
 
Explicit-solvent atomistic molecular dynamics simula-
tion. Explicit-solvent atomistic MD simulations are carried 
out in the canonical (NVT) ensemble using the AMBER15 
package with the force field ff14SB27 to examine the dynamics 
of the binding process of peptides to NPY. The peptides exam-
ined include one phage-display-discovered peptide N3 and 
four in silico-discovered peptides. The starting conformations 
of NPY complexed with the four evolved peptides for the at-
omistic MD simulations are obtained from our peptide-design 
algorithm. Each peptide-NPY complex is solvated in a periodic 
truncated octahedral box containing an 8 Ångstrom buffer of 
TIP3P water28 (~8000 water molecules) surrounding the com-
plex in each direction. Chloride counterions (Cl-) are added to 
neutralize the system. Three independent simulations are 
conducted for the peptide-NPY complexes in 150 ns to ensure 
that our systems reach an equilibrated state. K-means cluster-
ing analysis29-30 is performed on the last 10 ns of the simulation 
trajectories to obtain representative structures for these com-
plexes in solution. Using the implicit-solvent molecular me-
chanics/generalized born surface area (MM/GBSA)31 approach 
with the variable internal dielectric constant model, we post-
analyze the last 10 ns simulation trajectories of all the peptide-
NPY complexes to calculate their binding free energies. De-
tails of the computational procedures can be found in our pre-
vious work.14-19 
 

Phage display discovery of NPY-binding peptide.  The de-
ployment of biochemical sensors for biofluids has been lim-
ited by the discovery of BREs for biomarkers of interest. The 
phage display techniques for the peptide-based BRE discovery 
and the challenges as well as the limitations of this approach 
have been reviewed.32 In this study, we firstly utilized the com-
binatorial phage display library to identify a promising NPY-
binding peptide FPNWSLRPMNQM termed as “N3” for con-
venience. A measurement of the binding affinity of peptide N3 
to NPY was obtained by quartz crystal microbalance (QCM); 
the experimentally-measured disassociation constant was 
Kd(QCM)=23.9 μM.33 
 
Modeling of NPY-peptide structure. As noted in the sec-
tion on the computational peptide design algorithm above, an 
initial structure of NPY complexed with a model peptide is re-
quired input for the in silico discovery of peptide-based BREs. 
Since the initial structure of the NPY-N3 complex is not in the 
Protein Data Bank, we used a molecular modeling approach 
to identify the domains within NPY where peptide N3 binds. 
The NMR solution structure of neuropeptide Y (NPY) was ob-
tained from the Protein Data Bank (PDB code: 1RON).34 The 
conformation of (isolated) peptide N3 was initially generated 
using the Rosetta ab initio fragment assembly package.35 An 
ensemble of 200 folded structures was then generated using 
replica exchange molecular dynamics simulations in 200-ns at 
eight temperatures (277.15K, 284.53K, 292.11K, 299.89K, 
307.88K, 316.09K, 324.51K and 333.15K). The conformation for 
the peptide-NPY complex was generated by docking the 
folded peptide N3 with the NMR structure of NPY in two 
steps. Rigid docking was performed using the ZDOCK36 pack-
age with the default force field parameters, and the generated 
structures were processed in Rosetta with the flexible docking 
package. The refined complexes were scored and ranked ac-
cording to the Rosetta energy function. Table S2 shows the 
scoring energy for the 5 best conformations of NPY with the 
peptide N3. Figure 1(a) shows the low-energy structure for 
NPY bound to the peptide N3 that was used as input for the in 
silico peptide evolution. 
 
RESULTS 
In-silico evolution of NPY binding peptides. We per-
formed four independent evolutions to ensure that the com-
putational algorithm samples peptides in a broad sequence 
and conformation space. The four independent evolutions 
start from random sequences and proceed along different 
searching pathways that are controlled by setting distinct in-
put parameters, such as δmax and kTconformation. The first two 
evolutions include sequence change moves only, while the last 
two evolutions include both sequence and conformation 
change moves. Figure 1(b) shows an example of the score vs. 
number of steps when only sequence changes are attempted. 
It is clear that the score profile fluctuates considerably with 
the number of evolution steps, indicating that this procedure 
examines a significant range in sequence space. By examining 
the score profile over the course of the evolution steps, we can 
identify the lowest scores which correspond to the best pep-
tide sequences for this search. Figure 1(c) shows an example of 
the score vs. number of steps when both sequence and con-
formation changes are attempted at (δmax, kTconformation) = (4.0, 
4.0). It is clear that the peptide conformations experience a 
sizeable variation in the RMSD profile, implying that the 



 

search is accessing a broad conformational space. The score 
profile associated with newly-generated peptide confor-
mations fluctuates considerably, and eventually gets down to 
an even lower value than in the absence of conformation 
changes (Figure 1b). 
 

 
Figure 1. Computational peptide-design algorithm is used to 
discover high-affinity NPY-binding peptides. (a) Docking pose 
of the phage-display-discovered peptide N3 on the 36-mer 
NPY is obtained using the ZDOCK package. This docking pose 
is used as a starting conformation in the algorithm to evolve 
other peptide binders. (b) Sequence evolution proceeds with 
only sequence change attempts, resulting in the best-scoring 
peptide N16. The fluctuation in the score vs. number of evolu-
tion step indicates the extent of variation of the peptide se-
quence. (c) Sequence evolution proceeds with both sequence 
and conformation change attempts at (δmax, kTconformation) = 
(4.0, 4.0), resulting in the best-scoring peptide N20. Profile of 
RMSD vs. evolution step (red trace) indicates the extent of 
variation of the peptide conformation. (d) The structures of 
the complexes N16-NPY and N20-NPY are obtained via the 
computational peptide-design algorithm. 
 
The sequences of the four best-scoring peptides, viz. N16, N17, 
N20 and N21, identified by in-silico evolution are given in Ta-
ble 1. The peptides N16 and N17 result from sequence-change-
move-only searches at two distinct sets of random number 
seeds, while the peptides N20 and N21 result from cases where 
both sequence and conformation change moves were at-
tempted for (δmax, kTconformation) = (4.0, 4.0) and (5.0, 4.0), re-
spectively. Figure 1(d) shows the structures of the in-silico 
peptides N16 and N20 bound to NPY that are obtained via the 
computational algorithm. By comparing Figures 1(a) and 1(d), 
we can see that peptide N16 retains the same backbone con-
formation as the original N3, but with a different residue se-
quence draped on its backbone motif. The conformation and 
sequence of Peptide N20 are both different from that of the 
original N3. 
Explicit-solvent atomistic MD simulations are carried out in 
150 ns simulations to examine the dynamic properties of NPY 
when bound to the phage-display-discovered peptide N3 and 
to the four in-silico-discovered peptides N16, N17, N20, and 
N21. The motivation for these MD simulations is that the tar-
get NPY is not allowed to move in response to the changes of 
peptide sequence, so we cannot guarantee that the in-silico 

peptides with the lowest scores have higher affinity for NPY 
than the original peptide N3. The last 10-ns simulation trajec-
tories of all the peptide-NPY complexes are analyzed to calcu-
late their respective binding free energies (∆Gcal) using the im-
plicit-solvent MM/GBSA approach with the variable internal 
dielectric constant model, as listed in Table 1. Our simulation 
results reveal that the original peptide N3 exhibits a good af-
finity to NPY with a low computed binding free energy -14.43 
kcal/mol. (Note that the lower the value of ∆Gcal, the higher 
the binding affinity.) By comparison, , three out of the four in-
silico peptides, viz. N16, N17 and N21, are found to have even 
lower binding free energies: -18.86 kcal/mol, -16.83 kcal/mol, 
and -18.90 kcal/mol, respectively, suggesting that the three in-
silico peptides may bind to the target NPY with higher affinity 
than the original N3. 
 
Table 1. Sequences of the original peptide N3 and the four 
evolved peptides as well as their corresponding scores and 
binding free energies obtained from the computational algo-
rithm and the atomistic MD simulations, respectively. 

Peptide Sequence Γscore 
(kcal/mol) 

∆Gcal 
(kcal/mol) 

N3a FPNWSLRPMNQM -21.86 -14.43 
N16b RNPQPMMWQMNW -32.58 -18.86 
N17 RNPQPWTWWLTW -32.86 -16.83 
N20c WQYMPMQWQRAQ -37.34 -3.34 
N21 YNPQPMTMRYNW -36.12 -18.90 

(a) The peptide N3 is discovered using phage display tech-
nique; (b) the peptides N16 and N17 result from the in-silico 
evolution with only sequence change attempts; (c) the pep-
tides N20 and N21 result from the in-silico evolution with both 
sequence and conformation change attempts. 
 

 
Figure 2. The last 10-ns MD simulation trajectories of NPY 
only, NPY+N3 and NPY+N16 complexes are analyzed to ob-
serve the secondary structures of the 36-mer NPY in solution. 
The random coils are colored in orange, the turns are in blue, 
and the α-helices are in pink. The secondary structure content 
along with the sequence is shown to facilitate comparison of 
the structural changes of NPY when bound to the three pep-
tides. 
 
The effect of binding on the secondary structures of NPY was 
examined using the VMD program suite.37 In order to com-
pare the structures of the bound peptides, we analyzed all the 
residues on NPY in the last 10-ns MD simulation trajectories 
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to obtain a probability distribution for the secondary structure 
content along the 36 chain sites (Figure S2). K-means cluster-
ing analysis29 is performed to obtain representative structures 
of NPY alone in TIP3P water and when bound by the peptides 
N3 and N16 in TIP3P water. Three primary secondary struc-
tures: coil, turn, and α-helix, were observed for NPY in both 
the free and bound states. In comparison with free NPY (Fig-
ure 2), we found that when bound to NPY, the peptides N3 
and N16 do not cause a significant change in the folded struc-
ture of NPY; instead NPY (more-or-less) maintains the same 
α-helix in the middle (A14-I31).  
 
Experimental Validation of In-silico Binding Peptides. 
The binding affinities for the phage-display and in silico dis-
covered peptides were measured using bilayer interferometry 
(BLI)21 and surface plasmon resonance (SPR).22 The BLI exper-
iments were performed using biotin-labeled peptides with 
GGG linkers on the amino terminus. The signals were meas-
ured following exposure to concentrations of NPY between 
0.074 and 2.38 μM. The SPR experiments used thiolated pep-
tides with a CGGG linker on a gold surface. 
Both BLI and SPR are sensitive to the changes in refractive in-
dex when the target molecules bind to the BRE attached to the 
surface. In BLI the reflected light from a probe dipped in target 
solutions of varying concentrations will change as the target 
binds to the surface. Under optimal conditions the reflected 
intensity will rise as the target binds and the time-dependent 
signal change can be directly related to the association con-
stant ka. The signal then saturates as the system reaches equi-
librium. Finally, the dissociation coefficient kd can be calcu-
lated from the time-dependent change in intensity as the sur-
face is washed with buffer.  

 

Figure 3. The BLI data (signal intensity R) for the peptides (a) 
N3 and (b) N16 with increasing concentrations ([NPY]) of 
NPY. Changes in signal intensity are due to changes in refrac-
tive index as NPY binds the surface-attached peptide. The 
change in signal is proportional to the amount bound and 
changes to nonspecific binding have been subtracted. After 
surface coating with the peptides, NPY was added at 480 s and 
buffer washed starting at 780 s. 
 
Figure 3 shows the baseline-subtracted BLI data for the pep-
tides N3 and N16. In both cases, a rapid rise in signal was ob-
served upon exposure to NPY followed by a plateau as the sys-
tem comes to equilibrium. A return to the baseline signal is 
observed after washing with buffer at 780 s due to dissociation 
of the NPY. No rise in the BLI signal was observed for the in-
silico peptides N17 and N21 peptides under these conditions. 
It is possible that the N17 and N21 are weaker peptide binders 
and that signals could have been observed at higher NPY con-
centrations, but we did not pursue these experiments. 
The binding affinities can be determined in principle from ei-
ther the rate of change in signal intensity upon exposure to 
NPY or the plateau signal intensity in either the BLI or SPR 
experiments. The initial change in signal intensity can be fit 
to a rising exponential given by 

𝑅𝑅(𝑡𝑡) = 𝑅𝑅𝑒𝑒𝑒𝑒(1 − 𝑒𝑒
− 𝑡𝑡
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜), 

where R(t) is the observed signal, Req is the plateau value of 
the observed intensity, and the observed association coeffi-
cient kobs is related to the association and dissociation coeffi-
cients by 
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑘𝑘𝑎𝑎[𝑁𝑁𝑁𝑁𝑁𝑁] + 𝑘𝑘𝑑𝑑        (2)  
The slope of a plot of kobs vs. [NPY] (not shown) gives ka, the 
intercept gives kd, and the binding affinity Kd is given by the 
ratio of kd/ka. The kd value can independently be determined 
from a fit of the decrease in signal intensity when the sample 
equilibrated with NPY is washed with buffer. The buffer wash 
occurs at 780 s in the data shown in Figure 3.  The binding 
affinity can also be determined from the equilibrium plateau 
value of the signal intensity Req in the BLI or SPR experiments 
as a function of NPY concentration. In this case the plateau 
value Req is related to the maximum change in R (Rmax) and 
the Kd as a function of NPY concentration by 

𝑅𝑅𝑒𝑒𝑒𝑒 = [𝑁𝑁𝑁𝑁𝑁𝑁]𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
(𝐾𝐾𝑑𝑑+[𝑁𝑁𝑁𝑁𝑁𝑁])

                                                       (3) 

and the values for Kd and Rmax are obtained from a least 
squares fit of Req vs [NPY]. 
The BLI signal intensity for probes with the surface-attached 
N3 and N16 peptides in Figure 3 shows large changes in the 
BLI response with changing NPY concentrations, demonstrat-
ing that both peptides bind to NPY.  The initial rise in inten-
sity is too rapid to be accurately fit by the kinetic equation, 
but the data give an accurate measure of the equilibrium bind-
ing plateau and the disassociation coefficient kd.  Figure 4 
shows that the BLI plateau values gives a good fit to the equi-
librium model, allowing us to determine the value for Kd. Alt-
hough the association kinetics are too fast to accurately meas-
ure by BLI at these concentrations, we can directly measure 
the dissociation constant kd. Given that Kd and kd can be accu-
rately measured, the value for the association coefficient ka 
can be inferred from the ratio of kd/Kd. 



 

 

 
Figure 4. The equilibrium analysis of the BLI data (signal in-
tensity R) for the peptides N3 (red) and N16 (black). The value 
of Req was determined from the plateau binding intensity as a 
function of NPY concentration as shown in Figure 3. 
 
Table 2. The NPY kinetics and binding affinities for surface 
attached biotinylated N3 and N16. 

 ka (M-1·s-1) kd (s-1) Kd (μM) ∆Gexp(kcal/mol) 
bN3 3.2×103 1.9×10-3 0.59±0.1 -8.49 

bN16 7.1×103 4.6×10-3 0.64±0.1 -8.44 

 

 
Figure 5. The CD spectra of NPY (blue) in solution and in the 
presence of the 3-fold excess of the peptides N3 (red) and N16 
(green).  The spectra of the free peptide have been subtracted 
for the N3 and N16. 
 
Table 2 shows the results of the kinetic and equilibrium bind-
ing analysis for biotinylated N3 and N16 binding to NPY. The 
binding affinities for both peptides are below the µM limit 
(N3: 0.59±0.1 μM and N16: 0.64±0.1 μM,) and are very similar 
to each other. According to the equation ∆𝐺𝐺 = −𝑅𝑅𝑅𝑅ln(𝐾𝐾𝑑𝑑), we 
calculated the experimental binding free energies, -8.49 and -
8.44 kcal/mol, of the peptides N3 and N6, respectively. By 
comparing the calculated and experimentally-measured bind-
ing free energies in Tables 1 and 2, we found that the values of 
∆𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐 (-14.43 and -18.86 kcal/mol) are lower than the values of 
∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒 (-8.49 and -8.44 kcal/mol). The reason for this incon-
sistency is that we neglect the enthalpic and entropic contri-
butions from water. This is a consequence of our use of the 

implicit-solvent MM/GBSA approach with the variable inter-
nal dielectric constant model to calculate the binding free en-
ergy of peptide and NPY. While the affinities are similar, the 
results show that the N16 peptide has both faster association 
and dissociation with NPY. 
The secondary structure of the peptide-NPY complexes was 
also evaluated by Circular Dichroism (CD) spectroscopy23 for 
comparison with our atomistic MD simulation. Previous stud-
ies have shown NPY to be partially folded in an α-helix, with 
the helical content depending on the solvent, pH, tempera-
ture and the presence of lipid micelles.34,38 Figure 5 shows the 
CD spectra of NPY in the absence and presence of the N3 and 
N16 peptides. For direct comparison with the NPY confor-
mation, the spectra from the free peptides have been sub-
tracted from the NPY-peptide mixture. The results for NPY 
show the typical features expected from an α-helical peptide, 
with negative peaks at 208 and 222 nm. No significant changes 
are observed in the CD spectra of NPY in the presence of the 
N16, suggesting that the α-helix is maintained during the 
binding event. The CD intensity increases in the presence of 
N3, but there is no significant change in the intensity ratio of 
208 to 222 peaks that are a signature of α-helix formation. 
Taken together these data suggest that the binding of N3 or 
N16 does not lead to loss in α-helical content, which is con-
sistent with our molecular dynamics simulations and the 
structures shown above (Figure 2). 
 
DISCUSSION 
Our experimental and in-silico results show that it is feasible 
to identify peptide binders with high affinity to NPY using 
both computational peptide design algorithms and phage-dis-
play combinatorial libraries. As noted in the literature, phage 
display discovery can be experimentally challenging and time 
consuming.32 Thus, it is reasonable to believe that our compu-
tational protocols represent a significant advance in the state-
of-the-art since they are applicable to a wide variety of exper-
imental systems. The in-silico discovery of target-binding pep-
tides will also be advanced further by improving our compu-
tational resources in the future. 
The initial binding affinity measurements using QCM sug-
gested that the phage display binding peptide N3 had a low 
binding affinity (Kd(QCM)=23.9 μM) for NPY and therefore 
would not have been useful in sensors measuring biologically 
relevant NPY concentrations.33 However, using the high sen-
sitivity BLI device, we measured a much stronger affinity for 
the N3 peptide (0.59±0.1 μM). Our hypothesis is that this dis-
crepancy is a consequence of the lower sensitivity of QCM39 
compared to BLI. The resonant frequency of the quartz crystal 
changes with adsorbed mass as NPY binds to a surface-at-
tached peptide and the concentration ranges for the BLI ex-
periments ([NPY] > 0.07 μM) are well below those that can be 
measured by QCM. We believe that the more sensitive BLI al-
lows us to measure a binding mode that is not accessible to 
QCM.  To confirm this hypothesis, we measured a binding af-
finity of N16 for NPY using an independent method. The re-
sults from an SPR analysis (Figure S3) also shows a sub-µM 
affinity for NPY (Kd=0.25 μM). 
While equivalent binding affinities were observed for the N3 
and N16, we note that a significant difference is observed in 
the association and dissociation kinetics. These differences 
could have an important impact on sensor response since the 



 

association rate determines the time required for signal meas-
urements and the dissociation rate is critical for sensor regen-
eration.  
Although the values of Kd for the peptides N3 and N16 are be-
low the μM range, they are significantly higher than the con-
centration of NPY in human plasma (nM) and sweat (pM).40 
Recent studies have shown that such peptide-based BREs can 
be useful for sensors. It has been reported that peptide BREs 
with µM affinities can be used to create sensors based on gra-
phene transistors with a lower limit of detection of 10 pM.33 
We would therefore expect that the in-silico peptide N16 could 
be used as a drop-in replacement for the N3. The more rapid 
association and dissociation kinetics would be useful for gen-
eration of the signal responses in continuous monitoring sen-
sors. 
As with the phage-display peptide, the in-silico peptides dis-
covered by the computational algorithm must be validated in 
experimental binding studies. Of the three in-silico peptides 
considered here, N16, N17 and N21, only the peptide N16 shows 
a good binding affinity to NPY. The in-silico peptides N17 and 
N21 are false positives in our computational designs because 
they exhibit better affinities than the phage-display peptide 
N3 in the atomistic MD simulations but poorer affinities in the 
experimental measurements. The peptide N17 is similar to N16 
but contains two extra hydrophobic residues tryptophan (W), 
giving N17 a low solubility in solution and therefore making it 
difficult to test experimentally. The peptide N21 does not have 
the solubility issue, but it also fails to show a proper response 
in the BLI NPY-binding experiments over the μM concentra-
tion range. Thus, we consider N21 to be either a weak binder 
or a non-binder. One of the challenges in our current algo-
rithm for peptide-based BRE discovery is that the in-silico 
peptides with the best scores may not represent the best ex-
perimental binders. Based on the feedback from experiments, 
we will further improve the score function in future work by 
introducing a peptide hydration term to address the solubility 
issues, thus enhancing the performance of the computational 
algorithm in designing good binding peptides. An expression 
that describes a peptide’s hydration properties given in 
Pawar’s work41, will be introduced and modified in our work 
to avoid the designed peptides being over-hydrophobic. 
 
CONCLUSION 
The discovery of peptide-based BREs for targets of interest for 
monitoring human health remains a significant challenge. In 
this study, we have combined the combinatorial phage display 
technique with an in-silico peptide design method to identify 
high affinity peptide binders for neuropeptide Y (NPY), a bi-
omarker for stress and cognitive performance.3,7 The experi-
mental results show that the in-silico evolved peptide exhibits 
an affinity equivalent to the phage display discovered peptide 
in binding with NPY but with more rapid kinetics. We have 

shown previously with cardiac troponin I that the high-affin-
ity peptide-based BREs can be incorporated into optically de-
tected devices, including plasmonic paper, to enable very low 
limits of detection.11,17 The results presented here show a com-
putational strategy to optimize peptide-based BREs for a wide 
variety of biomarkers that could be incorporated into the next 
generation of wearable sensors. 
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