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ABSTRACT: Wearable sensors for human health, performance and state monitoring which have a linear response to the
binding of biomarkers found in sweat, saliva or urine are of current interest for many applications. A critical part of any
device is a biological recognition element (BRE) that is able to bind a biomarker at the surface of a sensor with a high affinity
and selectivity to produce a measurable signal response. In this study, we discover and compare 12-mer peptides that bind
to neuropeptide Y (NPY), a stress and human health biomarker, using independent and complimentary experimental and
computational approaches. The affinities of the NPY-binding peptides discovered by both methods are equivalent and be-
low the pM level, which makes them suitable for application in sensors. The in-silico design protocol for peptide-based
BREs is low cost, highly efficient, and simple, suggesting its utility for discovering peptide binders to a variety of biomarker

targets.

INTRODUCTION

Sensors that measure the concentrations of biomarkers in bi-
ofluids are of great interest for assessing health and cognitive
state."4+ Among the fundamental challenges limiting the de-
velopment of these sensors are the discovery of biological
recognition elements (BREs) that are able to recognize and
bind to biomarker targets with high affinity and specificity to
detect low biomarker concentrations. Antibodies are cur-
rently the BRE of choice, but they often function poorly in de-
vices because of their high cost, weak thermostability, short
shelf life and issues with reproducibility.s

Human neuropeptide Y (NPY) is a highly conserved 36-mer
peptide (YPSKPDNPGEDAPAEDMARYY-
SALRHYINLITRQRY) that functions as a neurotransmitter
that is widely distributed in the human central and peripheral
nervous systems.® Recent clinical studies have shown that
NPY plays an essential role in the regulation of basic physio-
logical effects, including mood disorders, stress responses,
and memory processing.>7 The NPY concentration in human
biological fluids is an important indicator in the diagnosis of
depression, anxiety, and stress-related disorders, including
post-traumatic stress disorder (PTSD).® The detection of NPY
levels remains a fundamental challenge for incorporation into
wearable devices. Traditional methods for NPY detection rely
on complex, time consuming, and expensive assays using an-
tibodies.»9 Antibodies against NPY can exhibit cross-reactivity

when used as sensing elements in microarrays, and the pro-
duction process is laborious and cost-ineffective. Moreover,
antibodies are large proteins with a short shelf-life as a result
of protein denaturation, which limits their scope in biosensor
development.5™°

Short peptides># are appealing as BREs because of their high
thermostability, strong selectivity, and low cost. In addition,
their small size places them in close proximity to the active
electronic or plasmonic material surface in sensors, greatly de-
creasing the limit of detection.” To date, most peptide-based
BREs are identified from natural sources' or from combinato-
rial phage display libraries’s which determine binders experi-
mentally from large pools of sequences. The identification of
peptides from combinatorial libraries can be a difficult exper-
iment as it is subject to artifacts related to parasitic se-
quences’ and sometimes yields peptides with low binding af-
finities that are difficult to use in biofluid sensors.

We have been working to develop fast and automated meth-
ods to design peptides with exceptional binding affinities for
protein or RNA targets.'+9 Our computational algorithm uses
atomistic force fields rather than knowledge-based infor-
mation to design peptide sequences; this enables us to design
high-affinity binding peptides to targets that have no known
binders available in the protein data bank. In recent work, we
used the computational algorithm to successfully evolve a 12-
mer peptide-based BRE for the detection of cardiac event bi-
omarker protein troponin I (cTnl).”7 The results showed that



the in-silico evolved peptide binds to cTnl with a high affinity
(0.27 nM), which is comparable to that of the natural antibody
(0.12 nM) for cTnl. Using plasmonic paper detection, we found
a detection limit of 10 fM (0.23 pg/mL), a significant improve-
ment over the commercial assays that require a clinical lab
and nearly 24 hours to develop.

In this work, we use two different approaches, viz. combina-
torial phage display library and computational peptide design
algorithm, to identify high affinity peptide-based BREs for de-
tection of NPY in sensors. The binding affinities of the phage-
display and in-silico discovered peptides were characterized
experimentally using bilayer interferometry (BLI),2° surface
plasmon resonance (SPR),2> and circular dichroism (CD).23-24
Our results show that the in-silico peptide
RNPQPMMWQMNW (N16) has an affinity equivalent to that
of the phage displayed peptide FPNWSLRPMNQM (N3) in
binding with NPY. The binding kinetic properties of peptides
to NPY were evaluated by experimentally measuring the asso-
ciation and dissociation coefficients, k, and kq. The N16 pep-
tide has more rapid NPY binding kinetics, so the in-silico de-
signed peptide might perform better in sensors.

MATERIALS AND METHODS

The reagents for buffers were purchased from Sigma-Aldrich
and used without purification. Peptides with a CGGG linker
for SPR and biotinylated peptides with a GGG linker were pur-
chased from Peptide 2.0 and HPLC purified to 95%.

Circular dichroism spectra were collected on a Jasco J-815 cir-
cular dichroism (CD) spectrometer using a 750 pL quartz cu-
vette from 180 to 260 nm with a data pitch of 0.1 nm, band-
width of 1 nm, scan rate of 50 nm/min, and averaged over 3
scans.

A BioNavis multiparametric surface plasmon resonance (MP-
SPR) Navi 210A instrument integrated with a degasser and au-
tomated for six samples was used to measure NPY binding ki-
netics. Gold coated SPR sensors purchased from BioNavis
were cleaned via UV-ozone treatment for 10 min, heated in a
7.5 1 11 solution of water—30% H202-NH4OH at 8o °C for 10
min, thoroughly rinsed with double deionized water, and
dried with N2. The clean gold coated SPR sensors were
mounted in a sensor holder and inserted into MP-SPR instru-
ment. For immobilization of NPY-binding peptides on gold
coated SPR sensors, 500 pL of peptide at a concentration of 50
pg/mL in deionized and filtered water was injected at a flow
rate of 30 pL/min using a pre-wait delay time of 2 min, 10 min
injection period of peptide or target, and 2-40 min post-wait
time to allow for peptide dissociation.

NPY binding to peptides was also measured using bilayer in-
terference (BLI) on a Fortebio Octet 96 spectrometer in 96-
well plates under constant agitation. The streptavidin coated
sensors were equilibrated with biotinylated peptides, rinsed
and dipped into wells containing different concentrations of
NPY. All BLI experiments were performed in PBS buffer with
1% bovine serum albumin and 0.002% Tween 20.

Computational peptide design algorithm. Our peptide-
design algorithm is an iterative procedure that searches for
high-affinity peptide binders to a target biomolecule.’+59 Fig-
ure S1 shows a flow sheet for the computational peptide-de-

sign algorithm. The algorithm is initialized by choosing a ref-
erence peptide binder to the target and then determining the
initial structure of the peptide-target complex from the PDB,
crystallography or atomistic molecular dynamics simulation.
The initial rotamers (side-chain conformations) for amino
acid repacking along the chain are taken from Lovell’s rotamer
library.>s Two types of trial moves, sequence change and con-
formation change, are included in the algorithm to generate
new target-binding peptides. (i) Sequence change move:
There are two types of trial moves to change the peptide se-
quence. The first is a random substitution of a new residue for
an old one. The new residue should be of the same residue
type as the old one to maintain the peptide’s hydration prop-
erties. The second type of trial move is a random exchange of
two chosen residues, regardless of their residue type. Each
trial peptide is subjected to Broyden-Fletcher-Goldfarb-
Shanno (BFGS) energy minimization to determine optimal
side-chain configurations for the amino acids along the chain.
(ii) Conformation change move: There are three types of trial
“moves” to change the peptide backbone conformation. The
first uses the extended concerted rotation method to displace
a series of consecutive residues in the middle of the peptide
chain, leaving the other residues fixed. The second rotates a
peptide fragment on one of the two ends (N- and C- terminus)
and the third translates the entire peptide backbone confor-
mation. Two parameters, Smax and kTconformation, are used to
control the magnitude of the conformation change moves.
The root mean-square deviation (RMSD), 8imsd, of the new
trial conformer from its original peptide conformation is eval-
uated to make sure that it is not too big (<dmax) and not too
small (>8min). The parameter kTconformation controls the likeli-
hood that a new peptide conformer will be accepted, with
higher values making acceptance easier. All attempts to gen-
erate new peptide backbone conformers are considered as
long as (1) the torsion angles (¢ and ) satisfy the Ramachan-
dran plot2¢ and (2) there are no atomic overlaps between the
peptide’s backbone and the target. Once trial backbone con-
formers are generated, side chains are repacked on the trial
backbone conformers and BFGS energy minimization is con-
ducted to optimize their configurations. The score I'score Of
each trial peptide sequence or conformer is evaluated, and the
Monte Carlo (MC) Metropolis algorithm is used to accept or
reject the new trial peptide by calculating the acceptance
probability

P = min (1, exp[(Zi, — TE%)/KTI).

The score function that we use to evaluate the merits of each
trial peptide in the computational algorithm is given in equa-
tion (1), which takes into account the binding affinity of the
peptide to the target (first term) and the conformational sta-
bility of the peptide when bound to the target (second term):
Tscore = AUpinaing + 4+ (Upgptide-vow + Upeptide-gLe +
U{;’é’#ﬁﬁe-sas) ()

The binding energy AUpinding is defined to be the difference be-
tween the energy of the complex and the energies of the pep-
tide and the target prior to binding. The evaluation of energies
(U) of the complex, the peptide and the target involves the
calculation of the internal energy (INT), van der Waals energy
(VDW), electrostatic energy (ELE), the polar solvation energy
(EGB) and the non-polar solvation energy (GBSUR). More de-
tailed descriptions about the calculation of the energy and
score function can be seen in Supporting Information and our



previous paper.’s Lower scores (more negative values) mean
better binders. All the force field parameters are taken from
the Amber 14SB force field.?”

The input for the computational designs is an initial binding
structure of the peptide-target complex, and several control-
lable parameter settings, such as the pH value, the value of
(8maxs kTconformation), the number of residues of each of the six
residue types (see below), and an initial random seed that gen-
erates random numbers for the sequence and conformation
change moves. The computational algorithm cannot be used
to predict the active site of a target molecule. Our peptide de-
sign is limited to cases in which (i) the active site of a target
molecule is known from the protein data bank or can be pre-
determined using computational approaches, and (ii) an ini-
tial peptide sequence is known.

Hydration properties of in-silico peptides. Since NPY
shows poor solubility at neutral pH, the peptide-binding ex-
periments are performed at pH=5.0. Below pH=6.0, the polar
histidine (His) is protonated, becoming a positively-charged
amino acid (Hip) (Table S1). To be consistent with the experi-
mental data, our peptide designs are conducted at pH=5.0. If
not specified, the letter “H” stands for the positively-charged
histidine (Hip). The twenty natural amino acids are classified
into six residue types according to their hydrophobicity, po-
larity, charge and size (Table S1). The length of the in-silico
evolved peptides is set to be the same as the phage-display-
discovered peptide FPNWSLRPMNQM which has twelve resi-
dues: five hydrophobic residues (Nhydrophobic=5), N0 negatively-
charged residue (Nnegative charge=0), one positively-charged resi-
due (Npositive charge=1), four hydrophilic residues (Nhydrophitic=4),
two other residues (Nother=2), and no glycine (Nglycine=0).

Explicit-solvent atomistic molecular dynamics simula-
tion. Explicit-solvent atomistic MD simulations are carried
out in the canonical (NVT) ensemble using the AMBERi15
package with the force field ffi4SB*7 to examine the dynamics
of the binding process of peptides to NPY. The peptides exam-
ined include one phage-display-discovered peptide N3 and
four in silico-discovered peptides. The starting conformations
of NPY complexed with the four evolved peptides for the at-
omistic MD simulations are obtained from our peptide-design
algorithm. Each peptide-NPY complex is solvated in a periodic
truncated octahedral box containing an 8 Angstrom buffer of
TIP3P water?® (~8000 water molecules) surrounding the com-
plex in each direction. Chloride counterions (Cl') are added to
neutralize the system. Three independent simulations are
conducted for the peptide-NPY complexes in 150 ns to ensure
that our systems reach an equilibrated state. K-means cluster-
ing analysis>93° is performed on the last 10 ns of the simulation
trajectories to obtain representative structures for these com-
plexes in solution. Using the implicit-solvent molecular me-
chanics/generalized born surface area (MM/GBSA)3' approach
with the variable internal dielectric constant model, we post-
analyze the last 10 ns simulation trajectories of all the peptide-
NPY complexes to calculate their binding free energies. De-
tails of the computational procedures can be found in our pre-
vious work.419

Phage display discovery of NPY-binding peptide. The de-
ployment of biochemical sensors for biofluids has been lim-
ited by the discovery of BREs for biomarkers of interest. The
phage display techniques for the peptide-based BRE discovery
and the challenges as well as the limitations of this approach
have been reviewed.3 In this study, we firstly utilized the com-
binatorial phage display library to identify a promising NPY-
binding peptide FPNWSLRPMNQM termed as “N3” for con-
venience. A measurement of the binding affinity of peptide N3
to NPY was obtained by quartz crystal microbalance (QCM);
the experimentally-measured disassociation constant was
Kaem=23.9 uM.33

Modeling of NPY-peptide structure. As noted in the sec-
tion on the computational peptide design algorithm above, an
initial structure of NPY complexed with a model peptide is re-
quired input for the in silico discovery of peptide-based BREs.
Since the initial structure of the NPY-N3 complex is not in the
Protein Data Bank, we used a molecular modeling approach
to identify the domains within NPY where peptide N3 binds.
The NMR solution structure of neuropeptide Y (NPY) was ob-
tained from the Protein Data Bank (PDB code: 1IRON).34 The
conformation of (isolated) peptide N3 was initially generated
using the Rosetta ab initio fragment assembly package.’s> An
ensemble of 200 folded structures was then generated using
replica exchange molecular dynamics simulations in 200-ns at
eight temperatures (277.15K, 284.53K, 292.uK, 299.89K,
307.88K, 316.09K, 324.51K and 333.15K). The conformation for
the peptide-NPY complex was generated by docking the
folded peptide N3 with the NMR structure of NPY in two
steps. Rigid docking was performed using the ZDOCK3® pack-
age with the default force field parameters, and the generated
structures were processed in Rosetta with the flexible docking
package. The refined complexes were scored and ranked ac-
cording to the Rosetta energy function. Table S2 shows the
scoring energy for the 5 best conformations of NPY with the
peptide N3. Figure 1(a) shows the low-energy structure for
NPY bound to the peptide N3 that was used as input for the in
silico peptide evolution.

RESULTS

In-silico evolution of NPY binding peptides. We per-
formed four independent evolutions to ensure that the com-
putational algorithm samples peptides in a broad sequence
and conformation space. The four independent evolutions
start from random sequences and proceed along different
searching pathways that are controlled by setting distinct in-
put parameters, such as Smax and kTconformation. The first two
evolutions include sequence change moves only, while the last
two evolutions include both sequence and conformation
change moves. Figure 1(b) shows an example of the score vs.
number of steps when only sequence changes are attempted.
It is clear that the score profile fluctuates considerably with
the number of evolution steps, indicating that this procedure
examines a significant range in sequence space. By examining
the score profile over the course of the evolution steps, we can
identify the lowest scores which correspond to the best pep-
tide sequences for this search. Figure 1(c) shows an example of
the score vs. number of steps when both sequence and con-
formation changes are attempted at (Smax, kTconformation) = (4.0,
4.0). It is clear that the peptide conformations experience a
sizeable variation in the RMSD profile, implying that the



search is accessing a broad conformational space. The score
profile associated with newly-generated peptide confor-
mations fluctuates considerably, and eventually gets down to
an even lower value than in the absence of conformation
changes (Figure 1b).
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Figure 1. Computational peptide-design algorithm is used to
discover high-affinity NPY-binding peptides. (a) Docking pose
of the phage-display-discovered peptide N3 on the 36-mer
NPY is obtained using the ZDOCK package. This docking pose
is used as a starting conformation in the algorithm to evolve
other peptide binders. (b) Sequence evolution proceeds with
only sequence change attempts, resulting in the best-scoring
peptide N16. The fluctuation in the score vs. number of evolu-
tion step indicates the extent of variation of the peptide se-
quence. (¢) Sequence evolution proceeds with both sequence
and conformation change attempts at (Smax, kTconformation) =
(4.0, 4.0), resulting in the best-scoring peptide N2o. Profile of
RMSD vs. evolution step (red trace) indicates the extent of
variation of the peptide conformation. (d) The structures of
the complexes N16-NPY and N20-NPY are obtained via the
computational peptide-design algorithm.

The sequences of the four best-scoring peptides, viz. N16, N17,
N2o and Nz, identified by in-silico evolution are given in Ta-
ble 1. The peptides N16 and N17 result from sequence-change-
move-only searches at two distinct sets of random number
seeds, while the peptides N2o and N21 result from cases where
both sequence and conformation change moves were at-
tempted for (Smax, kTeconformation) = (4-0r 40) and (5'0! 4'0): re-
spectively. Figure 1(d) shows the structures of the in-silico
peptides N16 and N2o bound to NPY that are obtained via the
computational algorithm. By comparing Figures 1(a) and 1(d),
we can see that peptide N16 retains the same backbone con-
formation as the original N3, but with a different residue se-
quence draped on its backbone motif. The conformation and
sequence of Peptide N2o are both different from that of the
original N3.

Explicit-solvent atomistic MD simulations are carried out in
150 ns simulations to examine the dynamic properties of NPY
when bound to the phage-display-discovered peptide N3 and
to the four in-silico-discovered peptides N16, N17, N20o, and
N2z1. The motivation for these MD simulations is that the tar-
get NPY is not allowed to move in response to the changes of
peptide sequence, so we cannot guarantee that the in-silico

peptides with the lowest scores have higher affinity for NPY
than the original peptide N3. The last 10-ns simulation trajec-
tories of all the peptide-NPY complexes are analyzed to calcu-
late their respective binding free energies (AGcq) using the im-
plicit-solvent MM/GBSA approach with the variable internal
dielectric constant model, as listed in Table 1. Our simulation
results reveal that the original peptide N3 exhibits a good af-
finity to NPY with a low computed binding free energy -14.43
kcal/mol. (Note that the lower the value of AGcq, the higher
the binding affinity.) By comparison, , three out of the four in-
silico peptides, viz. N16, N17 and N21, are found to have even
lower binding free energies: -18.86 kcal/mol, -16.83 kcal/mol,
and -18.90 kcal/mol, respectively, suggesting that the three in-
silico peptides may bind to the target NPY with higher affinity
than the original N3.

Table 1. Sequences of the original peptide N3 and the four
evolved peptides as well as their corresponding scores and
binding free energies obtained from the computational algo-
rithm and the atomistic MD simulations, respectively.

Peptide Sequence Tscore AGea
(kcal/mol) | (kcal/mol)

N32 FPNWSLRPMNQM -21.86 -14.43

N16° | RNPQPMMWQMNW | -32.58 -18.86

N17 RNPQPWTWWLTW -32.86 -16.83

N20¢ WQYMPMQWQRAQ -37.34 -3.34

N21 YNPQPMTMRYNW -36.12 -18.90

(a) The peptide N3 is discovered using phage display tech-
nique; (b) the peptides N16 and N1y result from the in-silico
evolution with only sequence change attempts; (c) the pep-
tides N2o and N2i result from the in-silico evolution with both
sequence and conformation change attempts.
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Figure 2. The last 10-ns MD simulation trajectories of NPY
only, NPY+N3 and NPY+Ni6 complexes are analyzed to ob-
serve the secondary structures of the 36-mer NPY in solution.
The random coils are colored in orange, the turns are in blue,
and the a-helices are in pink. The secondary structure content
along with the sequence is shown to facilitate comparison of
the structural changes of NPY when bound to the three pep-
tides.

The effect of binding on the secondary structures of NPY was
examined using the VMD program suite.37 In order to com-
pare the structures of the bound peptides, we analyzed all the
residues on NPY in the last 10-ns MD simulation trajectories



to obtain a probability distribution for the secondary structure
content along the 36 chain sites (Figure S2). K-means cluster-
ing analysis® is performed to obtain representative structures
of NPY alone in TIP3P water and when bound by the peptides
N3 and N16 in TIP3P water. Three primary secondary struc-
tures: coil, turn, and o-helix, were observed for NPY in both
the free and bound states. In comparison with free NPY (Fig-
ure 2), we found that when bound to NPY, the peptides N3
and N16 do not cause a significant change in the folded struc-
ture of NPY; instead NPY (more-or-less) maintains the same
o-helix in the middle (Ay,-Ls).

Experimental Validation of In-silico Binding Peptides.
The binding affinities for the phage-display and in silico dis-
covered peptides were measured using bilayer interferometry
(BLI)> and surface plasmon resonance (SPR).22 The BLI exper-
iments were performed using biotin-labeled peptides with
GGG linkers on the amino terminus. The signals were meas-
ured following exposure to concentrations of NPY between
0.074 and 2.38 puM. The SPR experiments used thiolated pep-
tides with a CGGG linker on a gold surface.

Both BLI and SPR are sensitive to the changes in refractive in-
dex when the target molecules bind to the BRE attached to the
surface. In BLI the reflected light from a probe dipped in target
solutions of varying concentrations will change as the target
binds to the surface. Under optimal conditions the reflected
intensity will rise as the target binds and the time-dependent
signal change can be directly related to the association con-
stant k,. The signal then saturates as the system reaches equi-
librium. Finally, the dissociation coefficient kq can be calcu-
lated from the time-dependent change in intensity as the sur-
face is washed with buffer.
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Figure 3. The BLI data (signal intensity R) for the peptides (a)
N3 and (b) Ni6 with increasing concentrations ([NPY]) of
NPY. Changes in signal intensity are due to changes in refrac-
tive index as NPY binds the surface-attached peptide. The
change in signal is proportional to the amount bound and
changes to nonspecific binding have been subtracted. After
surface coating with the peptides, NPY was added at 480 s and
buffer washed starting at 780 s.

Figure 3 shows the baseline-subtracted BLI data for the pep-
tides N3 and Ni6. In both cases, a rapid rise in signal was ob-
served upon exposure to NPY followed by a plateau as the sys-
tem comes to equilibrium. A return to the baseline signal is
observed after washing with buffer at 780 s due to dissociation
of the NPY. No rise in the BLI signal was observed for the in-
silico peptides N17 and N21 peptides under these conditions.
It is possible that the N17 and N21 are weaker peptide binders
and that signals could have been observed at higher NPY con-
centrations, but we did not pursue these experiments.

The binding affinities can be determined in principle from ei-
ther the rate of change in signal intensity upon exposure to
NPY or the plateau signal intensity in either the BLI or SPR
experiments. The initial change in signal intensity can be fit
to a rising exponential given by

t
R(t) = Req(1 — e kovs),

where R(t) is the observed signal, R, is the plateau value of
the observed intensity, and the observed association coeffi-
cient kps is related to the association and dissociation coeffi-
cients by
kops = ko [NPY] +kq ()
The slope of a plot of kops vs. [NPY] (not shown) gives kg, the
intercept gives ky, and the binding affinity Ky is given by the
ratio of ka/k,. The kq value can independently be determined
from a fit of the decrease in signal intensity when the sample
equilibrated with NPY is washed with buffer. The buffer wash
occurs at 780 s in the data shown in Figure 3. The binding
affinity can also be determined from the equilibrium plateau
value of the signal intensity R in the BLI or SPR experiments
as a function of NPY concentration. In this case the plateau
value R is related to the maximum change in R (Rmax) and
the Ky as a function of NPY concentration by
— INPY]Rmax

°4 " (Ka+INPY]) G)
and the values for K4 and Rmax are obtained from a least
squares fit of Req vs [NPY].

The BLI signal intensity for probes with the surface-attached
N3 and Ni6 peptides in Figure 3 shows large changes in the
BLI response with changing NPY concentrations, demonstrat-
ing that both peptides bind to NPY. The initial rise in inten-
sity is too rapid to be accurately fit by the kinetic equation,
but the data give an accurate measure of the equilibrium bind-
ing plateau and the disassociation coefficient kq. Figure 4
shows that the BLI plateau values gives a good fit to the equi-
librium model, allowing us to determine the value for Kq. Alt-
hough the association kinetics are too fast to accurately meas-
ure by BLI at these concentrations, we can directly measure
the dissociation constant kq. Given that Kgand kg can be accu-
rately measured, the value for the association coefficient k,
can be inferred from the ratio of kq/Kj.
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Figure 4. The equilibrium analysis of the BLI data (signal in-
tensity R) for the peptides N3 (red) and N16 (black). The value
of Req was determined from the plateau binding intensity as a
function of NPY concentration as shown in Figure 3.

Table 2. The NPY kinetics and binding affinities for surface
attached biotinylated N3 and Ni6.

ko (Ms) | kq(s) Kq(pM) | AGexp(kcal/mol)
bN3 3.2x103 1.9X1073 0.59+0.1 -8.49
bN16 7.1x103 4.6x103 | 0.64+0.1 -8.44
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Figure 5. The CD spectra of NPY (blue) in solution and in the
presence of the 3-fold excess of the peptides N3 (red) and N16
(green). The spectra of the free peptide have been subtracted
for the N3 and N16.

Table 2 shows the results of the kinetic and equilibrium bind-
ing analysis for biotinylated N3 and N16 binding to NPY. The
binding affinities for both peptides are below the uM limit
(N3: 0.5920.1 pM and N16: 0.64+0.1 uM,) and are very similar
to each other. According to the equation AG = —RTIn(K,), we
calculated the experimental binding free energies, -8.49 and -
8.44 kcal/mol, of the peptides N3 and N6, respectively. By
comparing the calculated and experimentally-measured bind-
ing free energies in Tables 1 and 2, we found that the values of
AGq; (-14.43 and -18.86 kcal/mol) are lower than the values of
AGeyyp (-8.49 and -8.44 kcal/mol). The reason for this incon-
sistency is that we neglect the enthalpic and entropic contri-
butions from water. This is a consequence of our use of the

implicit-solvent MM/GBSA approach with the variable inter-
nal dielectric constant model to calculate the binding free en-
ergy of peptide and NPY. While the affinities are similar, the
results show that the N16 peptide has both faster association
and dissociation with NPY.

The secondary structure of the peptide-NPY complexes was
also evaluated by Circular Dichroism (CD) spectroscopy? for
comparison with our atomistic MD simulation. Previous stud-
ies have shown NPY to be partially folded in an a-helix, with
the helical content depending on the solvent, pH, tempera-
ture and the presence of lipid micelles.3438 Figure 5 shows the
CD spectra of NPY in the absence and presence of the N3 and
N16 peptides. For direct comparison with the NPY confor-
mation, the spectra from the free peptides have been sub-
tracted from the NPY-peptide mixture. The results for NPY
show the typical features expected from an a-helical peptide,
with negative peaks at 208 and 222 nm. No significant changes
are observed in the CD spectra of NPY in the presence of the
N16, suggesting that the o-helix is maintained during the
binding event. The CD intensity increases in the presence of
N3, but there is no significant change in the intensity ratio of
208 to 222 peaks that are a signature of o-helix formation.
Taken together these data suggest that the binding of N3 or
N16 does not lead to loss in a-helical content, which is con-
sistent with our molecular dynamics simulations and the
structures shown above (Figure 2).

DISCUSSION

Our experimental and in-silico results show that it is feasible
to identify peptide binders with high affinity to NPY using
both computational peptide design algorithms and phage-dis-
play combinatorial libraries. As noted in the literature, phage
display discovery can be experimentally challenging and time
consuming.3* Thus, it is reasonable to believe that our compu-
tational protocols represent a significant advance in the state-
of-the-art since they are applicable to a wide variety of exper-
imental systems. The in-silico discovery of target-binding pep-
tides will also be advanced further by improving our compu-
tational resources in the future.

The initial binding affinity measurements using QCM sug-
gested that the phage display binding peptide N3 had a low
binding affinity (Kqqcm=23.9 pM) for NPY and therefore
would not have been useful in sensors measuring biologically
relevant NPY concentrations.3> However, using the high sen-
sitivity BLI device, we measured a much stronger affinity for
the N3 peptide (0.59+0.1 pM). Our hypothesis is that this dis-
crepancy is a consequence of the lower sensitivity of QCM39
compared to BLI. The resonant frequency of the quartz crystal
changes with adsorbed mass as NPY binds to a surface-at-
tached peptide and the concentration ranges for the BLI ex-
periments ([NPY] > 0.07 pM) are well below those that can be
measured by QCM. We believe that the more sensitive BLI al-
lows us to measure a binding mode that is not accessible to
QCM. To confirm this hypothesis, we measured a binding af-
finity of N16 for NPY using an independent method. The re-
sults from an SPR analysis (Figure S3) also shows a sub-uM
affinity for NPY (Kg¢=0.25 pM).

While equivalent binding affinities were observed for the N3
and N16, we note that a significant difference is observed in
the association and dissociation kinetics. These differences
could have an important impact on sensor response since the



association rate determines the time required for signal meas-
urements and the dissociation rate is critical for sensor regen-
eration.

Although the values of Kj for the peptides N3 and Ni6 are be-
low the pM range, they are significantly higher than the con-
centration of NPY in human plasma (nM) and sweat (pM).4°
Recent studies have shown that such peptide-based BREs can
be useful for sensors. It has been reported that peptide BREs
with pM affinities can be used to create sensors based on gra-
phene transistors with a lower limit of detection of 10 pM.33
We would therefore expect that the in-silico peptide N16 could
be used as a drop-in replacement for the N3. The more rapid
association and dissociation kinetics would be useful for gen-
eration of the signal responses in continuous monitoring sen-
sors.

As with the phage-display peptide, the in-silico peptides dis-
covered by the computational algorithm must be validated in
experimental binding studies. Of the three in-silico peptides
considered here, N16, N17 and N21, only the peptide N16 shows
a good binding affinity to NPY. The in-silico peptides N17 and
N21 are false positives in our computational designs because
they exhibit better affinities than the phage-display peptide
N3 in the atomistic MD simulations but poorer affinities in the
experimental measurements. The peptide N17 is similar to N16
but contains two extra hydrophobic residues tryptophan (W),
giving N17 a low solubility in solution and therefore making it
difficult to test experimentally. The peptide N21 does not have
the solubility issue, but it also fails to show a proper response
in the BLI NPY-binding experiments over the uM concentra-
tion range. Thus, we consider N21 to be either a weak binder
or a non-binder. One of the challenges in our current algo-
rithm for peptide-based BRE discovery is that the in-silico
peptides with the best scores may not represent the best ex-
perimental binders. Based on the feedback from experiments,
we will further improve the score function in future work by
introducing a peptide hydration term to address the solubility
issues, thus enhancing the performance of the computational
algorithm in designing good binding peptides. An expression
that describes a peptide’s hydration properties given in
Pawar’s work#, will be introduced and modified in our work
to avoid the designed peptides being over-hydrophobic.

CONCLUSION

The discovery of peptide-based BREs for targets of interest for
monitoring human health remains a significant challenge. In
this study, we have combined the combinatorial phage display
technique with an in-silico peptide design method to identify
high affinity peptide binders for neuropeptide Y (NPY), a bi-
omarker for stress and cognitive performance.37 The experi-
mental results show that the in-silico evolved peptide exhibits
an affinity equivalent to the phage display discovered peptide
in binding with NPY but with more rapid kinetics. We have
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