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Derives from Bromo-Kynurenine Metabolism
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SUMMARY

Although in recent years there has been an increased awareness of the widespread nature of bio-
fluorescence in the marine environment, the diversity of the molecules responsible for this luminescent
phenotype has been mostly limited to green fluorescent proteins (GFPs), GFP-like proteins, and fluores-
cent fatty acid-binding proteins (FABPs). In the present study, we describe a previously undescribed
group of brominated tryptophan-kynurenine small molecule metabolites responsible for the green bio-
fluorescence in two species of sharks and provide their structural, antimicrobial, and spectral character-
ization. Multi-scale fluorescence microscopy studies guided the discovery of metabolites that were
differentially produced in fluorescent versus non-fluorescent skin, as well as the species-specific struc-
tural details of their unusual light-guiding denticles. Overall, this study provides the detailed description
of a family of small molecules responsible for marine biofluorescence and opens new questions related to
their roles in central nervous system signaling, resilience to microbial infections, and photoprotection.

INTRODUCTION

Biofluorescence is a widespread phenomenon in the marine environment, which results from the absor-
bance of the dominant ambient blue ocean light and its re-emittance at longer, lower-energy wavelengths,
visually resulting in green, orange, and red fluorescence. Following the seminal 1962 discovery of green
fluorescent protein (GFP) from Aequorea victoria, a hydrozoan medusa (Shimomura et al., 1962), fluores-
cent proteins (FPs) have since been described from cnidarians (Gruber et al., 2008; Matz et al., 1999), crus-
taceans (Meyers et al., 2004), and cephalochordates (Deheyn et al., 2007). The discovery of GFP has led to
numerous breakthroughs in biomedical science (Gruber and Pieribone, 2006) following the exhibition of its
heterologous expression (Chalfie et al., 1994) and mutations that led to brighter and spectrally modulat-
able variants (Tsien, 1998). GFP-like fluorescent proteins have since been identified in a wide range of other
cnidarians, including corals, anemones, hydroids, pennatulids, and corallimorpharians and are now recog-
nized as a ubiquitous metazoan protein superfamily (Shagin et al., 2004).

Within fishes, biofluorescence was only recently reported to be a phylogenetically widespread and phenotypi-
cally variable phenomenon that encompasses at least 16 orders, 50 families, 105 genera, and over 180 species
(Sparks et al., 2014). Yet among this multitude of biofluorescent fish species, the chemistry had only been eluci-
dated in the eels, Anguilla japonica (Hayashi and Toda, 2009; Kumagai et al., 2013), Kaupichthys hyoproroides,
and Kaupichthysn. sp (Gruber et al., 2015), all of which are bilirubin-inducible fluorescent proteins. Here, we focus
on the chemical mechanism of biofluorescence in two species of elasmobranchs, both in the family Scyliorhini-
dae, with Cephaloscyllium ventriosum (the swell shark) being endemic to the eastern Pacific (Compagno, 1984)
and Scyliorhinus retifer (the chain catshark) from the western Atlantic (Castro, 2011).

Regional biofluorescence of the skin of these sharks has previously been shown to exhibit a higher intensity
of the green-dominated fluorescence in the lighter, beige-colored areas, compared with the darker retic-
ulated lines for the chain catshark or the dark spots for the swell shark (Figure 1) (Gruber et al., 2016).
Through comparative metabolic profiling studies between these two distinctly pigmented tissue types,
we report the discovery of a suite of small molecule metabolites stimulated in the light skin tissue, relative
to the dark skin tissue from these two shark species. Specifically, high-resolution mass spectrometry (MS),
UV-visible spectroscopy, multidimensional nuclear magnetic resonance (NMR), and fluorescence spectros-
copy were used to unambiguously identify and characterize a family of brominated tryptophan-kynurenine
metabolic products that are responsible for the biofluorescence phenotype in these two species of shark.
Although GFP, GFP-like proteins, and bilirubin-binding fluorescent proteins have been reported from a va-
riety of invertebrate (Gruber et al., 2008; Matz et al., 1999) and vertebrate (Gruber et al., 2015; Hayashi and
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Figure 1. Fluorescent Shark Imaging

(A-H) Bright-field and fluorescence imaging of Scyliorhinus retifer (A-C) and Cephaloscyllium ventriosum (D-F). In
contrast to the dark denticles from C. ventriosum, those from S. retifer act as efficient optical waveguides, effectively
channeling the fluorescence signal along their length. S. retifer has a second type of larger, non-light-guiding denticles (G
and H), and bright-field (left) and fluorescence (right) imaging reveals that the larger non-light-guiding denticles can easily
be distinguished through bright-field imaging (due to their ability to weakly scatter blue light from their longitudinal
surface ridges). A patch of both denticle types is shown in (G), whereas the larger non-light-guiding denticles are
highlighted with asterisks in (H). Image widths: B, 20 mm; C, 1.2 mm; E, 20 mm; F, 1.5 mm; G, 7 mm; H, 3.3 mm.

Toda, 2009; Kumagai et al., 2013) taxa, these brominated tryptophan-kynurenine metabolites from elasmo-
branchs represent a previously undescribed family of biofluorescent small molecule metabolites.

RESULTS
Skin Tissue Structure in Microscopy

C. ventriosum has small intensely green fluorescent spots over much of the body (Video S1), which appear light
beige under white light. S. retifer, in contrast, exhibits an alternating light and dark reticulated pigmentation
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pattern, but it lacks the brightly fluorescent spots characteristic of C. ventriosum (Figure 1). Excised skin pieces
from C. ventriosum and S. retifer were examined in their native state using a dual-camera Zeiss Axio zoom v16
fluorescence microscope. For sequential data collection from identical areas, the bright-field images were
acquired with a Zeiss 506 color digital camera and the green fluorescence images were acquired with a
Hamamatsu Flash 4.0 black and white digital camera. We note a surprising finding that the dermal denticles
of C. ventriosum are not fluorescent, whereas those of S. retifer act as efficient optical waveguides, channeling
the fluorescent signal along their length (Figure 1). Further analysis of S. retifer denticle structural diversity re-
vealed that in addition to the smaller light-guiding denticles, a second type of larger, non-light-guiding denti-
cles are also present (Figures 1G and TH). This shows that the green fluorescence is not only targeted to varying
regions of the shark but also that the targeting is fine-tuned to specific denticle types within a shark species. It
has been previously demonstrated that these shark species possess the visual apparatus to detect bio-
fluorescence (484 and 488-nm monochromat visual pigments in C. ventriosum and S. retifer, respectively)
and that there are pronounced sexually dimorphic fluorescent patterns (Gruber et al., 2016). The green bio-
fluorescence thus creates greater visual contrast for these sharks at depth, due to the primarily blue mesophotic
marine environment (Gruber et al., 2016). It has also been shown that there are species-specific emission pat-
terns in other fluorescent fish species, leading to the suggestion that biofluorescence functions in intraspecific
communication and assists camouflage (Sparks et al., 2014). These observations of biofluorescent targeting to
specific denticle types further advances our understanding of the complexity of this unique biofluorescence in
the shark skin and the possible optical functions it may play. Itis also noteworthy, that the deep-sea lanternshark
(Etmopterus spinax) has also been shown to utilize its mineralized spines for the transmission of bioluminescent
signals (Claes et al., 2013).

Brominated Metabolites in Swell Shark Skin Tissue

To establish a molecular basis for shark skin biofluorescence, we first analyzed small molecule extracts of dark
and light skin tissue samples from the swell shark (C. ventriosum). Skin tissues were dissected using a fluores-
cence microscope (Zeiss-Axio Zoom V16 stereo fluorescent microscope) affixed with a Nikon D4 camera. The
organic crude extracts of skin tissue samples were analyzed using an ultrahigh-performance liquid chromatog-
raphy (UPLC) system equipped with a photodiode array detector and a high-resolution electrospray ionization-
quadrupole time-of-flight-mass spectrometer (HR-ESI-QTOF-MS) (Figures 2A and S1). We first analyzed two
major metabolites 4 and 5 eluting at retention times 19.2 and 11.2 min, respectively, which were similarly present
in both the dark and light tissue samples (Figures 2A and S2). Their high-resolution mass spectra in positive
mode showed an isotope distribution pattern attributable to the presence of bromine atoms at m/z
528.9875, 530.9859, and 532.9843 (relative intensity 1:2:1) for 4 and at m/z 283.0109 and 285.0090 (relative inten-
sity 1:1) for 5, indicating the molecular formulas of 4 and 5 to be Cy,H1gBroN4O2 and Cq1H11BrN,O5, respectively
(Table ST and Figure S1). In addition, UV-visible spectra of these peaks shared a characteristic indole chromo-
phore, suggesting the presence of a brominated tryptophan moiety known to be fluorescent (Figures S7A and
S8A) (Schnepel et al., 2016). The chemical structures of these metabolites isolated from swell shark skin were fully
elucidated using 'H and gradient-enhanced 2D NMR (correlation spectroscopy, heteronuclear single-quantum
coherence with adiabatic pulses, and heteronuclear multiple-bond correlation with adiabatic pulses) and Mar-
fey's analysis (Figures S7, S8, S15, and S16, and Table S3). The NMR interpretation of these metabolites revealed
resonances and correlations attributable to a 6-bromo tryptophan-derived diketopiperazine (4) and its mono-
mer substrate (5), respectively (Figure 2B). Marfey's analysis on 4 and 5 allowed us to establish their structures as
(9S, 9'R)-6-bromo-tryptophan-derived diketopiperazine and 95-bromo-tryptophan, respectively (Figures S7C
and S8C).

We then focused on small molecules differentially produced in light and dark skin tissue samples. We de-
tected five major metabolites (1-3, 7, and 8) that were significantly stimulated in the light samples relative
to the dark samples (Figure 2A). The UV-visible spectrum of metabolite 1 was similar to that of kynurenine
(Figure S4A), a major product of tryptophan catabolism in mammals (Cervenka et al., 2017; Kolodziej et al.,
2011). However, the HR-ESI-QTOF-MS data of 1 (m/z287.0032 and 289.0013 [relative intensity 1:1]) similarly
supported the presence of a bromine atom in its chemical formula (C;oH11BrN,O3) (Figure S1 and Table
S1), suggesting that the structure of 1 could be a bromo-kynurenine. The chemical formulas of 2, 3, 7,
and 8 were deduced as Cy1H11BrN;O4, C1oHeBrNO3, C;HBrNO,, and CyoH9BrNOs3, respectively, and
UV-visible spectroscopic data suggested that they were additional brominated metabolites processed
through the kynurenine pathway: N-formyl-bromo-kynurenine (2), bromo-CKA (carboxyketoalkene deriva-
tive of kynurenine) (3), bromo-anthranilic acid (7), and bromo-kynurenine yellow (8) Figures 2B, S5A, S6A,
S10A, and ST11A and Table S1).

iScience 19, 1277-1286, September 27, 2019 1279



iIScience

A
2 3x10%_ 1 Lighter 2 2x10% Lighter ¢ 1x10% Lighter Cephaloscyllium ventriosum
> = 2 g 3
8 2 1004 8 8
X =
= c i
L | 2 1x10% 4w S 5100 S\
B 1x10% owad 3 | Bake g | Darker
2 | Darker o | 3! 3
Ll>j 04 ﬁ 0 Jdaun ‘.A‘.L‘fg..A. 5 04 h‘
9 10 11 12 8 9 10 11 16 17 18
tr = min tr = min tr = min
2 5x10%+ Lighter £ 2x10%+ Lighter @ 1x10%4 o Lighter @ 1x10%+
c c
3 4x10%] 4 3 5 3 3
O (&) i ]
c 3x10% : c \ c : c
- | 2 1x100 2 541003 3 2 551093 e
2 2x10%4 | Darker 5 Darker 3 i Darker 3 Darker
8 1x100] | 8 \ g | S
2 f\ A < E~ 1 =
w 0+ w 0 ; — w (8 NVR PPV N 0 —fonsfuoitabou |
18 19 20 21 9 10 1112 13 17 18 19 10 11 12 13
tr =min tr =min tr =min tr =min
B
@)
3=
6
8 10
Br NH,
3
0]
Br NH, Br
6 7

Figure 2. Comparative Metabolic Profiles of Skin Extracts from Cephaloscyllium ventriosum

Cell

(A) Differential extracted ion counts chromatograms corresponding to eight representative metabolites from light and dark areas of skin.

(B) Chemical structures of metabolites 1-8. 1-4 and 8 represent previously unknown metabolites.

The structural characterization of metabolites 1-3 was achieved through chemical synthesis (Figures S3A
and S12-S14, and Table S2). Briefly, a substrate, 6-bromo-L-tryptophan (5), was prepared and meta-
chloroperoxybenzoic acid (0.32 g, 1.854 mmol, 10.5 equiv.) was added. The chemical reaction was stirred
at room temperature under air atmosphere for 20 h to yield the 8-bromo-N-formyl-L-kynurenine (2). De-
formylation with 50% trifluoroacetic acid (TFA) led to the product 8-bromo-L-kynurenine (1), which was
deaminated under 70°C to give the 8-bromo-CKA (3) (Figure S3A). Co-injection and Marfey’s analysis
with synthetic and natural materials unambiguously confirmed the absolute chemical structures of these
metabolites (Figures S4-S6). The structure of 7 was determined as 4-bromo-anthranilic acid by compar-
ison of UV spectra and liquid chromatography (LC)-MS co-injection with a commercial standard (Fig-
ure S10). Last, we chemically synthesized compound 8 employing a synthetic scheme analogous to a
previous report (Higgins et al., 2009) (Figures S3B, S17, and S18 and Table S4), and co-injection studies
with the synthetic standard and the natural skin material confirmed the proposed structure of 8
(Figure S11).

Brominated Metabolites in Chain Catshark Skin Tissue

We next examined whether these metabolites existed in the biofluorescent chain catshark, S. retifer.
Comparative metabolic analysis revealed that the same brominated metabolites are also present in chain
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Figure 3. Comparative Metabolic Analysis of Skin Extracts from Cephaloscyllium ventriosum (Swell Shark) and
Scyliorhinus rotifer (Chain Catshark)

catsharks (Figure 3), although metabolite 3 was below the detection limit under the conditions of our
experiments. In addition, we identified major metabolite 6, a brominated variant of indole-3-glyoxylic
acid in S. retifer and confirmed its structure by co-injection experiments with an authentic standard (Fig-
ure S9). These studies identified a total of eight small molecule metabolites from biofluorescent shark
skins.

Kynurenine Metabolism

The structures of the brominated metabolites in biofluorescent shark skins suggest that the brominated
tryptophan found in both dark and light skin tissues is promiscuously processed through the trypto-
phan-kynurenine pathway (Figure 4). In humans, kynurenine metabolism is known to regulate important
biological processes, including host-microbiome signaling and immune response, and is also linked to
the pathogenesis of a variety of diseases such as diabetes, inflammation, neurodegenerative disorders,
and cancer (Cervenka et al., 2017; Mazarei and Leavitt, 2015; Van der Leek et al., 2017). As enzymes involved
in kynurenine metabolism can also be found in diverse bacteria (Bortolotti et al., 2016; Forouhar et al., 2007;
Kurnasov et al., 2003), we tested if the common gut inhabitant E. coliis capable of metabolizing 6-bromo-L-
tryptophan to 8-bromo-L-kynurenine. Indeed, E. coli Nissle 1917 biotransformed 6-bromo-L-tryptophan to
8-bromo-L-kynurenine in the ratio of 64:1, as determined by LC-MS (Figure S19), further supporting flexi-
bility in functionalized tryptophan catabolism.
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Figure 4. Overview of the Kynurenine and Bromo-kynurenine Pathway
Bromo-tryptophan appears to be promiscuously processed through the kynurenine pathway to generate the
biofluorescent shark metabolites.

Absorbance and Fluorescence Emission of Metabolites

The absorbance and fluorescence excitation and emission spectra were taken for the characterized com-
pounds. First, absorbance and fluorescence spectra of all compounds were measured at 5 mM concentra-
tions in methanol. Based on the absorbance of the compounds, initial excitations were run using the absor-
bance values.

Compounds 1 and 7 were found to have similar excitation and emission spectra as L-kynurenine and were
found to have two excitation peaks (Figure 5). However, of the two excitation peaks, one was found to cause
a much stronger fluorescence emission. Peak absorbance of 1 and 7 was found to be 375 nm, whereas the
excitation spectra were found to be maximal at 407 and 374 nm, respectively. Emission spectra for 1 and 7
were found to be in the blue wavelength range at 447 nm (1) and 439 nm (7) (Figures 5A and 5G).

Compounds 2-5 and 6 were found to have similar excitation and emission spectra as L-tryptophan (Fig-
ure 5). Unlike 1 and 7, these compounds were only excited by one peak. Compounds 2, 4, and 5 were found
to emitin the blue wavelength with emissions close to 450 nm (453, 448, and 454 nm, respectively) and were
excited at 370 nm. Compound 3 was found to exhibit significantly red-shifted fluorescence than the other
compounds, which exhibited a blue wavelength emission peak of 477 nm with broad green spectrum
tailing. Similarly, compound 6 was found to have a blue wavelength emission, although it trailed into the
green spectra with a peak emission of 484 nm. Non-brominated kynurenine yellow is known to exhibit
bright green fluorescence with an emission maxima of ~520 nm (Mizdrak et al., 2007; Zelentsova et al.,
2013), whereas our experimental fluorescence spectrum of bromo-kynurenine yellow (8) obtained in
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Figure 5. Absorbance and Fluorescence Emission of Shark Skin Metabolites
(A-H) Fluorescence Spectra of Pure Compounds 1-8 in methanol. See Figure 520 for spectra in PBS.

methanol revealed a blue wavelength emission maximum of 472 nm (Figure 5H). Given the discrepancy, we
further obtained fluorescence spectra of the compounds in a more biologically relevant phosphate buff-
ered saline (PBS) system, and the compounds displayed significant shifts of their fluorescence spectra
compared with those in methanol (Table 1 and Figure 520). Specifically, the fluorescence emission spec-
trum of 8 exhibited a green emission maximum of 507 nm (Table 1 and Figure S20H). Consistent with ky-
nurenine yellow, a large Stokes shift was observed in 8, which is known to be derived from a charge transfer
from the amino group to the carbonyl group in the kynurenine yellow scaffold (Zelentsova et al., 2013).
Thus, bromo-tryptophan-kynurenine metabolism products in an aqueous environment represent the
chemical source of bright green biofluorescence in shark skins.

Antibacterial Activities of the Metabolites

Collectively, we structurally characterized the previously undescribed chemical source of green-dominated
biofluorescence in the skin of both sharks (Figure é). In the marine environment, C. ventriosum is benthic
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Methanol PBS

Excitation Max (nm) Emission Max (nm) Excitation Max (hm) Emission Max (nm)

Compound 1 407 447 414 451
Compound 2 370 453 401 481
Compound 3 323 477 NA*® NA*
Compound 4 370 448 360 400
Compound 5 370 454 363 465
Compound 6 403 484 388 495
Compound 7 374 439 360 420
Compound 8 422 472 438 507

Table 1. Fluorescence of Compounds in Methanol and PBS
°Not applicable due to low solubility.

(bottom-dwelling) and predominantly remains in direct contact with underwater sediment. Figures S21
and S22 show the demersal habitat of C. ventriosum from Scripps Canyon, California. As marine sediments
have higher concentrations of bacteria than the water column (Karl and Novitsky, 1988), we evaluated
the antibacterial activities of metabolites 1-7 against two bacterial pathogens, including a Gram-
positive methicillin-resistant Staphylococcus aureus (MRSA) and a Gram-negative Vibrio parahaemolyticus.
V. parahaemolyticus was chosen as a candidate as it is a common marine bacterium, often found in sedi-
ment. Major compound 4 found in both light and dark skin tissue samples exhibited a half-maximal inhib-
itory concentration (ICsp) value of 66 uM against MRSA, and compound 3 showed growth inhibitory activity
against V. parahaemolyticus at an I1Csg of 14 uM. The other metabolites showed no significant activity at
concentrations up to 100 uM (Figures S23 and S24). Based on these observations, the antibacterial prop-
erties of these biofluorescent metabolites may thus also contribute in part to chemical defense against mi-
crobial pathogens in the marine environment.

DISCUSSION

Although biofluorescence is a fascinating phenomenon that has been reported in an increasing diversity of
marine species in recent years, including sharks (Gruber et al., 2016; Sparks et al., 2014) and sea turtles
(Gruber and Sparks, 2015), its molecular origins remain largely unexplored. In this study, we describe a fam-
ily of natural small molecule fluorophores that significantly contribute to shark skin biofluorescence. Inter-
estingly, these small molecule metabolites represent a parallel bromo-tryptophan-kynurenine biosynthetic
pathway to that of the established tryptophan-kynurenine pathway widely found in vertebrates (Cervenka
et al.,, 2017). For example, kynurenine and its analogs regulate diverse human biological processes, and
accumulation of kynurenine in the brain is tightly associated with mental health disorders such as depres-
sion and schizophrenia (Cervenka et al., 2017). Of note, a halogenated kynurenine, L-4-chloro-kynurenine,
is a neuro-pharmaceutical prodrug of 7-chlorokynurenic acid, used to treat major depressive disorder (Véc-
sei et al., 2012). Although potential neurological activities of the brominated variant 1 and its analogs
remain an open question, it is intriguing to find brominated variants of mammalian signaling molecules
in shark skin. Although the exact source of the halogenase and its bromo-tryptophan product (whether
it be of shark, microbial symbiont, or environmental origin) remain unresolved, the observed diversity of
bromo-tryptophan catabolic processing in E. coli suggests that similarly flexible metabolic pathways
may also be at play in shark skin. As we observed differential regulation of these metabolites in light versus
dark skin, future studies aimed at assessing whether tryptophan-kynurenine metabolism genes are similarly
regulated, are warranted. Analogous to non-brominated kynurenine molecules functioning as UV radiation
filters in the human lens, these brominated kynurenine molecules could, in principle, complement melanin
pigments within shark skin to offer photo-protection from low-wavelength light (Sweet et al., 2012; Taylor
et al., 2002). Collectively, the discovery of brominated tryptophan-kynurenine metabolism products from
marine shark skins in our study not only illuminates the likely source of naturally occurring biofluorescence
of shark skins but also raises new questions regarding their potential roles in central nervous system
signaling, the resilience of shark skins to microbial infections, and diverse skin pigmentation phenotypes.
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Figure 6. Cross-Section of Sharks Showing Localization of Fluorescence in Skin Tissue
(A) Scyliorhinus retifer excited with 450-500 nm and imaged through 514nmLP, (B) cross section of skin with white light; (C)
fluorescence emission, (D) Cephaloscyllium ventriosum excited with 450-500 nm and imaged through 514nmLP, (E) cross

section of skin with white light, (F) fluorescence emission.

Limitations of the Study

A wide range of marine organisms are known to be biofluorescent, but the chemical ecological contribu-
tions to naturally occurring biofluorescence phenotypes has not been investigated at the detailed molec-
ular level. As representative marine vertebrate animals, we focused on elucidating the bright green bio-
fluorescence phenotype in swell sharks and in chain catsharks. A bromo-tryptophan precursor and a
bromo-diketopiperazine antibiotic were found in both skin types, whereas in light skin, the bromo-trypto-
phan precursor was processed through the kynurenine metabolic pathway, generating a collection of
brominated metabolites with varying spectral properties. Although we focused on the characterization
of small molecule sources involved in shark biofluorescence phenotypes in this study, underlying biosyn-
thesis of these metabolites still remains to be explored. As aqueous sodium hydroxide was the solvent
used for extraction of shark skin materials in our system, we cannot rule out the possibility that the small
molecule fluorophores derive from base-catalyzed ester hydrolysis of currently uncharacterized parent
molecules. However, pure bromo-tryptophan as a standard solubilized under basic conditions and precip-
itated under acidic conditions (Figure S25), consistent with our small molecule findings.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/].is¢i.2019.07.019.
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Transparent Methods
General

'"H and 2D (gCOSY, gHSQCAD, and gHMBCAD) NMR spectra were obtained from an
Agilent 600 MHz spectrometer with a cold probe (Agilent, Santa Clara, CA, USA) in methanol-ds
(Cambridge Isotope Laboratories, Inc. Tewksbury, MA, USA). High-resolution (HR) ESI-QTOF-
MS data were recorded using an Agilent iFunnel 6550 system with a Phenomenex Kinetex C1s
(100 A) 5 ym (250 x 4.6 mm) column. For general HR-ESI-QTOF-MS analysis, extracts were
prepared by resuspension in 100 pl methanol (LC-MS grade, Fisher, USA). 2 pl of samples were
injected and analyzed at 25 °C and 0.7 ml/min with a water:acetonitrile gradient solvent system
containing 0.1% formic acid: 0-30 min, 10-100% acetonitrile; hold for 5 min, 100% acetonitrile; 2
min, 100-10% acetonitrile; 5 min equilibration time 10% acetonitrile. Mass spectra were acquired
in the range of 25-1700 m/z in positive ion mode. Collected data was analyzed using Agilent
MassHunter Qualitative Analysis Software (Version B.06.00, Agilent Technologies), and all
targeted mass ions were extracted and analyzed within a 10 ppm error range [extracted ion count
(EIC) chromatograms]. Sep-Pak® Vac 35 cc (10 g) Cis cartridge (Waters Corporation, Milford,
MA) was used for the flash column chromatography. Reversed-Phase High-Performance Liquid
Chromatography (RP-HPLC) was performed on an Agilent Prepstar HPLC system. Two reversed-
phase columns, an Agilent Polaris C18-A 5 um (250 x 21.2 mm) column and a Phenomenex Luna
C18(2) (100 A) 10 ym (250 x 10.0 mm) column, were used for the separation and purification of
metabolites, respectively. Routine low-resolution HPLC-MS analysis was acquired by using an
Agilent 1260 Infinity Quaternary LC system with an autosampler and a photo diode array (PDA)
detector coupled to an Agilent 6120 single quadrupole Electrospray lonization (ESI) mass
spectrometer.
Shark skin collection and extraction

Specimens of Cephaloscyllium ventriosum were obtained from Marinus Scientific, LLC.
This study was approved and carried out in strict accordance with the recommendations in the
Guidelines for the Use of Fishes in Research of the American Fisheries Society and the John B.
Pierce Laboratory’s Institutional Animal Care and Use Committee (IACUC) # VP5-2019. The
Scyliorhinus retifer skin used in this study was from Gruber et al (2016). A small fragment of the
fluorescent skin of each shark species was dissected and used for extraction studies. As the
fluorescent molecules are soluble in 0.1 M sodium hydroxide, samples of the shark were cut in 1
cm x 1 cm pieces and allowed to incubate in 0.1 M sodium hydroxide for 1 h before experiments
were conducted. Fluorescence spectra of shark skin extracts were recorded on a Hitachi F-7000

Fluorimeter.



Larger-scale extraction and isolation of metabolites

Crude materials from skin of the swell shark were extracted in a 0.1 M sodium hydroxide
solution, followed by subsequent extraction of the small molecule fraction with butanol. The small
molecules were fractionated by reversed-phase analytical HPLC system, eluting 30 HPLC
fractions using a Phenomenex Kinetex Cig (2) 5 pm column (250 x 4.6 mm) with a gradient of
0.01% trifluoroacetic acid in acetonitrile/water (Flow rate: 1 ml/min; 0-60 min, 10/90—100/0%, 1
min fraction window). HPLC fraction 12 was further subjected to reversed-phase HPLC [Column:
Phenomenex Luna C1s (100A) 10 um (250 x 4.6 mm)] with a linear gradient in acetonitrile/water
mobile phase elution (Flow rate: 1 ml/min; 0-60 min, 10/90—100/0%) to yield a 6-bromo-
tryptophan (5) (tz = 10.5 min). The butanol-soluble fraction was subjected to a Sep-Pak® Vac 35
cc (10 g) C1g cartridge with a step gradient elution (20%, 40%, 60%, 80%, and 100% methanol in
water). The 80% methanol fraction was further fractionated using an Agilent Prepstar HPLC
system [Agilent Polaris C1s-A 5 ym (250 x 21.2 mm) column] with a linear gradient elution (50-
100% acetonitrile in water over 60 min, 8 ml/min, 1 min fraction collection window). The HPLC
fraction 18 was purified on an Agilent Phenyl-Hexyl 5 um (250 x 9.4 mm) column using a linear
gradient separation (50-100% acetonitrile in water, 2 ml/min) to yield 6-bromo-DKP (4) (& = 10.1
min). The purified compounds were dried under reduced pressure on a Genevac HT-4X system
over 12 h for NMR analysis. All chemical structures of materials were fully characterized by LC-
MS co-injection with standards, 2D-NMR, and MS analysis.

Chemical synthesis of metabolites

6-Bromo-bL-tryptophan was purchased from Santa Cruz Biotechnology (Dallas, TX, USA).
To synthesize 8-bromo-bL-N-formyl-kynurenine, 6-bromo-pL-tryptophan (50 mg, 0.177 mmol, 1.0
eq) was added to a 10 ml round-bottom flask under air atmosphere. The chemical was suspended
in 2 ml water and meta-chloroperoxybenzoic acid (0.32 g, 1.854 mmol, 10.5 eq) was subsequently
added. The reaction was stirred at room temperature under air atmosphere for 20 h and
completion of the reaction was monitored by LC-MS analysis. Upon completion, the reaction was
transferred to a 20 ml scintillation vial using methanol and completely dried down using nitrogen
gas. The reaction material was fractionated on a Sep-Pak® Vac 35 cc (10 g) Cs cartridge with a
step gradient elution (20, 40, and 60% methanol in water). The 40% methanol fraction containing
8-bromo-bL-N-formyl-kynurenine (tr = 22.4 min, 3 mg) was then purified using a reversed-phase
HPLC with a Phenomenex Luna C1s (100A) 10 um column (250 x 4.6 mm) and a gradient of 20%
to 80% aqueous methanol for 30 min with a flow rate of 2 ml/min. For the deformylation, 8-bromo-
pL-N-formyl-kynurenine (2 mg, 0.006 mmol, 1.0 eq) was dissolved in a 1:1 mixture of trifluoroacetic

acid:water (600 ul). The reaction was stirred for 4 h at room temperature and dried using nitrogen



gas. The 8-bromo-bL-kynurenine (fr = 24.3 min, 2 mg) was then isolated on a Phenomenex Luna
Ci1s (100A) 10 um column (250 x 4.6 mm) at a flow rate of 2 ml/min with a linear gradient from
10%-80% over 30 min. Syntheses of enantiopure 8-bromo-L-N-formyl-kynurenine (2) and 8-
bromo-L-kynurenine (1) were conducted as above, but with using enantiopure 6-bromo-L-
tryptophan (5) as starting material. For the deamination, 8-bromo-pL-kynurenine (2 mg) was
dissolved in anhydrous dimethylformamide (1 ml) and the reaction was initiated at 70 °C and
completed after 3 h. The reaction mixture was dried and was purified by reversed-phase HPLC
[Phenomenex Luna C+g (100A) 10 um column (250 x 4.6 mm), 2 ml/min] with a linear gradient of
10% acetonitrile/0.1% formic acid-100% acetonitrile/0.1% formic acid in water over 60 min with a

flow rate of 2 ml/min to yield 8-bromo-CKA (carboxyketoalkene) (3) (f&r = 36.1 min, 0.6 mg).

For the chemical synthesis of compound 8, 7-bromoquinoline-2-carboxylic acid (8a) was
purchased from Millipore Sigma (St. Louis, MO, USA). Compound 8a (200 mg) was suspended
in a solvent mixture (acetone/water = 10:1). Methyl iodide (300 pl) and potassium carbonate (600
mg) were added and refluxed for 2 h. The reaction mixture was dried and extracted with ethyl
acetate to yield 8b (~200 mg). Reduction of 8b in glacial acetic acid (5 ml) was performed utilizing
sodium cyanoborohydride (150 mg) at 25 °C for 3 h. The reaction mixture was neutralized with
saturated sodium bicarbonate followed by the ethyl acetate extraction twice. The crude reaction
materials were directly treated with acetic anhydride (8 ml) and heated at 90 °C for 3 h and was
separated by reversed-phase HPLC [Phenomenex Luna C1s (100A) 10 um column (250 x 4.6
mm), 2 ml/min] with a linear gradient of 20% acetonitrile/0.1% formic acid-60% acetonitrile/0.1%
formic acid in water for 30 min with a flow rate of 2 ml/min to yield 8d (tr = 16.2 min, 110 mg). The
benzylic oxidation on 8d (80 mg) was initiated with chromium hexacarbonyl (50 mg) and tert-butyl
hydroperoxide (70 wt% in water, 600 pl) in acetonitrile and refluxed for 24 h. The product 8e was
eluted at tr = 16.5 min under the aforementioned purification condition for 8d. The deprotection
of 8e (15 mg) was achieved in water containing potassium carbonate (20 mg) and refluxed for 2
h, yielding 8 (13 mg).

Biotransformation of 6-bromo-tryptophan to 8-bromo-kynurenine in E. coli

E. coli Nissle 1917 (EcN) colonies were used to inoculate 5 ml of lysogeny broth (LB) (BD,
Franklin Lakes, NJ, USA; 1% (w/v) tryptone, 0.5% (w/v) yeast extract, and 1% (w/v) sodium
chloride) for a total of three biological replicates and incubated at 37 °C with shaking at 250 rpm
for 16 h. After overnight, 20 ul of each seed culture was used to inoculate 2 ml of M9 minimal
medium (VWR Funding Inc., West Chester, PA, USA; 0.6% (w/v) Na;HPO4, 0.3% (w/v) KH2PO4,
0.05% (w/v) NaCl, 0.1% (w/v) NH4ClI, 0.2% (w/v) glucose, 2 mM MgSOs4, and 0.1 mM CacCl,)



supplemented with 10 mM 6-bromo-p-tryptophan, 10 mM 6-bromo-L-tryptophan, 1 mM 6-bromo-
D-tryptophan, 1 mM 6-bromo-L-tryptophan, or nothing (negative control). The inoculated cultures
were grown at 37 °C with shaking at 250 rpm. After 20 h cultivation, each culture was extracted
with 3 ml butanol, vortexed, and centrifuged. The organic layers were dried and resuspended in
80 pl methanol for LC-MS analysis. These experiments were performed with biological triplicates.
Addition of the amino acids required solubilization in 1N sodium hydroxide, followed by
neutralization with 1N hydrochloric acid.
Fluorescence spectra

Fluorescence spectra from all compounds 1-8 were measured at a concentration of 5 mM

in methanol on a Hitachi-F-7000 Spectrophotometer.
In situ and microscope fluorescence imaging

To excite a fluorescence response of the sharks, a Aquatica Rouge underwater housing
was fitted with custom designed blue excitation lighting. The LED light (Royal Blue) was collimated
to ensure its perpendicular incidence on the scientific grade 450/70 nm interference filter surface
(Semrock, Inc., Lake Forest, IL), minimizing the transmission of out-of-band energy. The ultra-
bright LEDs, collimating lenses, filters, and exit diffusers were contained in custom-made water-
and pressure-proof housings and powered by NiMH Battery Packs (lkelite Underwater Systems,
Indianapolis, IN). To image and record biofluorescence, a scientific-grade 514 nm long-pass
emission filter (Semrock, Inc.) was placed in front of the sensor of the camera. Cross-sections of
both sharks were taken on an AxioZoom v16 stereo fluorescent microscope using a PlanNeoFluar
Z 2.3%/0.57 objective and 38 HE GFP filter set.

Marfey’s analysis for absolute configuration determination

Dried 6-bromo-DKP (diketopiperazine) (4) (~0.1 mg) was acid-hydrolyzed in 1 N
hydrochloric acid (250 pl) at 110 °C for 1 h with stirring. After cooling down, the hydrolysate was
dried under the purge of nitrogen gas. The standards p- and L-6-bromo-tryptophan were
purchased from LabNetwork, Inc. (South Portland, ME, USA). The standards b- and L-8-bromo-
kynurenines and 8-bromo-N-formyl-kynurenines were prepared as described in the chemical
synthesis section. The dried hydrolysates, naturally-purified compounds, and commercial
standards, were treated with 25 pl of a solution of Ng-(2,4-dinitro-5-fluorophenyl)-L-alaninamide
(FDAA) (10 mg/ml in acetone) followed by the addition of 100 pl of 1 N sodium bicarbonate to
yield L.-FDAA derivatized compounds. The reactions were heated at 80 °C for 3 min and
neutralized with 25 pl of 2 N hydrochloric acid. The Marfey’s derivatives were then diluted to 20-
100 pl methanol for single quadrouple LC-MS and/or HR-ESI-QTOF-MS analysis. 2-10 pl



samples were analyzed using a Phenomenex Kinetex C1s (100A) 5 ym (250 x 4.6 mm) column
with a flow rate (0.7 ml/min) and a solvent system of water and acetonitrile containing 0.1% formic
acid (v/v). The retention times of L-FDAA derivatized compounds were determined as follows: a
linear gradient elution with 50-100% acetonitrile, 6.2 min for L-FDAA derivatized 6-bromo- L-
tryptophan, 6.8 min for L-FDAA derivatized 6-bromo-p-tryptophan, 6.5 min for L-FDAA derivatized
8-bromo- L-kynurenine, and 7.1 min for L-FDAA derivatized 8-bromo-p-kynurenine.
Antibacterial activity of metabolites

Antibacterial activities of metabolites were evaluated using the minimum inhibitory
concentration (MIC) assay in 96-well plates. Stock solutions of metabolites were prepared in
sterile dimethyl sulfoxide with a concentration of 10 mM. Dimethyl sulfoxide was used as a
negative control, and chloramphenicol was prepared as positive control for the antibacterial
activity against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio parahaemolyticus.
The stock solutions of compounds (10 mM) were serially diluted and adjusted to ten different final
concentrations (100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, 0.39, and 0.19 yM) in the same
concentration of fresh dimethyl sulfoxide. MRSA was grown in tryptic soy broth (TSB) and V.
parahaemolyticus was grown in Marine Broth. Media (50 ul) containing compound at the varying
concentrations was added to each well. Overnight cultures of the bacteria were diluted to ODsggo
= 0.05, 50 pl of the cell culture broth was then dispensed into individual wells, and the plates were
sealed and incubated at 37 °C overnight. Plates were then read for ODsoo using a PerkinElmer
Envision 2100 multimode plate reader (PerkinElmer, Waltham, MA, USA). All samples were

tested in triplicate.
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Figure $1. HR-ESI-QTOF-MS spectra of metabolites 1-8. Related to Figure 2.
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Figure S2. HPLC chromatogram of crude extract from the skin of C. ventriosum. The 10 mg of
crude samples were dissolved in 100 pl methanol and 10 yl of samples were analyzed for HPLC-
MS analysis. This figure shows the two major metabolites, 4 and 5 (210 and 254 nm spectra are

shown). Related to Figure 2.
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of 7. (C) Co-injection with skin extract and standard 7. Related to Figure 2.
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(PBS). Related to Figure 5.



Figure S21. Cephaloscyllium ventriosum imagined in their natural habitat in the eastern Pacific,

demonstrating their sedentary bottom-dwelling nature. Related to Figure 6.



Figure S22. Fluorescent imaging camera system used for Cephaloscyllium ventriosum in its

natural habitat in the eastern Pacific (30 m, Scripps Canyon, CA). Related to Figure 6.
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Figure S23. Growth inhibitory assay of metabolites against methicillin-resistant S. aureus

(MRSA). Related to Figure 6.
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Figure S24. Growth inhibitory assay of metabolites against Vibrio parahaemolyticus. Related to

Concentration ( uM)

Figure 6.
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6-Bromo-L-tryptophan

INNaOH 0.1% TFA  Water

Figure S25. Solubility of 6-bromo-L-tryptophan in varying solvents. Figure shows fluorescence

image of 6-bromo-L-tryptophan from typhoon instrument with a scanning progress of Alexa Fluor
488. Related to Figure 4.



Table S1. HR-ESI-QTOF-MS data of metabolites 1-8. Related to Figure 2.

No | Obsd. Calcd. Chemical
formula

[M]* [M+2]* [M+4]* [M]* [M+2]* [M+4]*
1 287.0032 | 289.0013 287.0031 | 289.0011 C10H11BrN2O3
2 |314.9991 | 316.9971 314.9980 | 316.9960 C11H11BrN2O4
3 | 269.9777 | 271.9758 269.9766 | 271.9745 C10HoBrNO3
4 | 528.9875 | 530.9859 | 532.9843 | 528.9875 | 530.9854 | 532.9834 | C2,H1sBraN4O>
5 |283.0109 | 285.0090 283.0082 | 285.0062 C11H11BrN2O>
6 | 267.9605 | 269.9584 267.9609 | 269.9589 C10HsBrNO3
7 | 215.9667 | 217.9647 215.9660 | 217.9640 C7HeBrNO;
8 |269.9748 | 271.9731 269.9766 | 271.9745 C10HoBrNO3




Table S2. NMR assignments of compounds 1-3 in MeOD. Related to Figure 2.

Compound 1 Compound 2 Compound 3
On mult On mult On mult
No (Hz) % (Hz) % (4, Hz)
1720 C 1720 C 1706 C
4.01dd 4.01dd 6.76 d 135.7 C
2 9.0,29) 904 CH g5 33 502 CH 454 H
3.66 dd 3.75dd 7.76 d 1345 C
3 (18.5, 39.0 CH: (18.6, 399 CH; (15.4) H
2.9) 3.3)
3.48 dd 3.57 dd
(18.5, (18.6,
9.0) 8.5)
4 1981 C 200.7 C 1911 C
5 115.0 C 1212 C 116.2 C
7.63d 7.95d 7.69d 1328 C
(8.7) 132.2 CH (8.5) 132.2 CH 8.7) H
6.72dd 118.0 C
6.70 dd 7.42 dd
7 (8.7, 2.0) 117.8 CH (8.5, 2.0) 126.4 CH 2897) H
8 129.2 C 129.2 C 129.2 C
6.96 d 6.97d 119.0 C
9 (2.0) 119.0 CH 885brs 124.0 CH (1.9) H
10 1525 C 139.8 C 153.1 C
N-formyl 843brs 1611 CH




Table S3. NMR assignments of compounds 4 and 5 in MeOD. Related to Figure 2.

Compound 4 Compound 5
Position  &n mult (J, Hz) Oc Position  &n mult (J, Hz) Oc
1, 1 NH 1 NH
2,2 6.60 s 1251 CH 2 718 s 1246 CH
3,3 108.7 C 3 108.7 C
3a, 3a' 126.2 C 3a 1261 C
4, 4 7.26 d (8.5) 1198 CH 4 7.60d (8.4) 119.5 CH
5 5 7.12 dd (8.5, 1219 CH 5 7.14 dd (8.5, 1218 CH
1.7) 1.7)
6, 6' 1146 C 6 1147 C
7,7 7.47d(1.7) 113.8 CH 7 7.51d (1.6) 1139 CH
7a, 7a' 1374 C 7a 137.8 C
\ 2.89dd (14.5, 3.44 dd (15.3,
8,8 3.8) 298 CH; 8 4.2) 27.0 CH:
2.18 dd (14.5, 3.14 dd (15.3,
7.1) 9.0)
\ 4.04 dd (7.0, 3.81 dd (9.0,
99 3.9) 556 CH 9 4.2) 553 CH

10, 10' 168.1 C 10 172.8 C




Table S4. NMR assignments of compound 8 in MeOD. Related to Figure 2.

Compound 8
No on mult (J, HZz) Oc
1 173.0 C
2 4.32m 54.0 CH
3 2.93 dd (16.5, 6.0) 39.1 CH:
2.85dd (16.5, 7.5)
4 192.3 C
5 116.8 C
6 7.54 d (8.5) 128.0 CH
7 6.78 dd (8.5, 1.5) 120.2 CH
8 130.1 C
9 7.07d (1.5) 118.4 CH
10 152.4 C

Video S$1. Footage of Cephaloscyllium ventriosum. Related to Figure 1.
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