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Abstract—This paper addresses a one-dimensional optimal
persistent monitoring problem using second-order agents. The
goal is to control the movements of agents to minimize a perfor-
mance metric associated with the environment (targets) over a
finite time horizon. In contrast to earlier results limited to first-
order dynamics for agents, we control their accelerations rather
than velocities, thus leading to a better approximation of agent
behavior in practice and to smoother trajectories. Bounds on
both velocities and accelerations are also taken into consideration.
Despite these added complications to agent dynamics, we derive
a necessary condition for optimality and show that the optimal
agent trajectories can be fully characterized by two parameter
vectors. A gradient-based algorithm is proposed to optimize these
parameters and yield a minimal performance metric. Finally,
simulation examples are included to demonstrate the effectiveness
of our results.

Index Terms—Optimal control, persistent monitoring, second-
order agent.

I. INTRODUCTION

RECENT developments in cooperative multi-agent sys-
tems have enabled applications in which a group of

autonomous agents is used to perform tasks collectively in
order to optimize a global objective. In particular, persistent
monitoring arises in applications such as city patrolling [1],
[2], ecological surveillance [3], [4], traffic monitoring [5],
[6], smart-grid security [7], [8] and ocean sampling [9], [10].
The dynamically changing environments in these applications
require the agents to perpetually move in a large mission
space. The challenge in this type of problems is to design the
agent trajectories under physical motion constraints in order
to optimize an overall performance metric.

Relevant studies on persistent monitoring problem can be
categorized into two classes, namely, one with predefined
trajectories [11]–[13] and one without predefined trajectories
[14]–[17]. For the monitoring problem with predefined tra-
jectories, the main challenge is to design appropriate motion
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laws for agents to patrol on the given trajectories. Persistent
monitoring of a changing environment is addressed in [18],
where the object is to control the agents’ velocities to prevent
the unbounded growth of an accumulation function defined
on a finite number of locations. The increase or decrease of
the accumulation function depends on whether the location
is covered under an agent’s footprint. For the monitoring
problem without predefined trajectories, the main challenge
is to find an optimal target visiting schedule and conditions
for agents to switch if the problem is discrete [19], [20] or
to search for optimal trajectories if the problem is continuous
[17], [21], [22]. The latter paradigm is more flexible without
predefined agent trajectories and finds wider applications, such
as maneuvering targets [23], [24], detecting random events
[19], [25], and monitoring dynamically changing environments
[21], [26] or fields with motion constraints [27], [28]. An
optimal control framework for persistent monitoring problems
is proposed in [22], where an uncertainty metric is minimized
subject to first-order agent dynamics. Compared with the
accumulation function in [18], the uncertainty metric in [22]
is more general because the detection probability of a point
may vary depending on the distance between the agent and
the point.
The aforementioned literature deals with the monitoring

task using first-order agents by controlling their velocities.
However, in practice agents are subjected to maximum power
constraint which leads to bounds on both accelerations and
velocities. In this paper, we consider second-order agents with
such a power constraint. We control the agent accelerations
rather than the velocities leading to a better approximation of
agent behavior in practice and to smoother trajectories.
Based on the above discussion, we formulate the persis-

tent monitoring problem as a minimization problem of a
performance metric represented as an integral function of
average uncertainty over a fixed time horizon. Specifically,
this paper uses the accelerations of agents as control inputs
and takes into account the physical constraints that bound
both the acceleration and velocity. Through a Hamiltonian
analysis, we obtain a necessary condition for optimality.
The resulting optimal controller contains four modes, e.g.
i) maximal acceleration mode; ii) maximal velocity mode;
iii) maximal deceleration mode; iv) dwell mode. Under such
an optimal control structure, the agent trajectories can be
fully characterized and parameterized by the starting points
of each mode and the associated dwell times. The original
optimal control problem can then be transformed to a simpler
parametric one and thus the search for the optimal control
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is reduced from a functional space to some finite number of
parameters along the agent trajectories. Finally, a gradient-
based algorithm is proposed to minimize the performance
metric and to determine the optimal trajectories.

This paper is organized as follows. Section II formulates
the optimal persistent monitoring problem using second-order
multi-agent systems. Subsection III-A analyzes the optimal
control structure and Subsection III-B shows how to determine
the optimal trajectories through a gradient-based algorithm.
Simulation results are presented in Section IV to demonstrate
the effectiveness of the proposed algorithm and to show the
results of the persistent monitoring task. Section V concludes
the paper.

II. PROBLEM FORMULATION

Consider a one-dimensional (1D) mission space [0, L]. N
cooperating agents are assigned to move on the mission space
to accomplish a persistent monitoring task over the time
horizon [0, T ]. In this paper, we control the movement of each
agent through its acceleration as opposed to the velocity in the
first-order case. The dynamics of agent i are described by{

ṡi(t) = vi(t),
v̇i(t) = ui(t),

i = 1, 2, . . . , N, (1)

where t ∈ [0, T ], si(t) ∈ [0, L] is the agent position, vi(t)
is the velocity and ui(t) is the acceleration control input. We
assume that the velocity of each agent i is bounded by

|vi(t)| ≤ vmax
i , i = 1, 2, . . . , N, (2)

and the acceleration input is bounded by

U :

{
|ui(t)| ≤ Ca

i , if ui(t)vi(t) ≥ 0,
|ui(t)| ≤ Cd

i , if ui(t)vi(t) < 0,
i = 1, 2, . . . , N, (3)

where vmax
i , Ca

i and Cd
i are the maximal velocity, the maximal

acceleration and the maximal deceleration respectively. Note
that in the deceleration mode, the control direction is opposite
to the motion direction (i.e. ui(t)vi(t) < 0). The agent
dynamics under boundary constraints (2) and (3) can be
rewritten as

ṡi(t) = vi(t),

v̇i(t) =

 0, if |vi(t)| = vmax
i

and vi(t
+)ui(t

+) ≥ 0,
ui(t), otherwise,

i = 1, 2, . . . , N.

(4)

Considering that sensors have various physical character-
istics, here we model the sensing capability of the ith agent
for detecting a target located at x ∈ [0, L] by a probability
function p(si(t), x) [29] that

p(si(t), x) =

{
1− (x−si(t))

2

r2i
, if |x− si(t)| < ri

0, otherwise
,

where ri is the effective sensing radius. The probability
that target x is sensed by all agents simultaneously can be
formulated as:

P (S(t), x) = 1−
N∏
i=1

[1− p(si(t), x)], (5)

where S(t) = [s1(t), s2(t), . . . , sN (t)] is the position vector
of all agents.
Referring to previous research, this paper adopts the defi-

nition of uncertainty from [18], [22]. A time-varying function
R(x, t) is defined to denote the uncertainty of target x at time
t with the following properties. If target x can’t be sensed
by any agent, R(x, t) increases with a prespecified rate I(x).
Meanwhile, if x is sensed with probability P (S(t), x), then
R(x, t) increases with rate I(x) − D(x)P (S(t), x), where
D(x) is the maximal monitoring effect on R(x, t). However, if
R(x, t) = 0 and I(x)−D(x)P (S(t), x) < 0, the uncertainty
remains 0. The dynamics of the uncertainty function are as
follows,

Ṙ(x, t) =

 0 if I(x)−D(x)P (S(t), x) < 0
and R(x, t) = 0,

I(x)−D(x)P (S(t), x) otherwise.
(6)

The purpose of this persistent monitoring task is to minimize
the performance metric which is defined as the average un-
certainty of all targets over the time horizon [0, T ]. In light
of [22], setting U(t) = [u1(t), u2(t), . . . , uN (t)], the optimal
control problem is formulated as

min
U(t)∈U

J =
1

M

∫ T

0

M∑
j=1

R(xj , t)dt, (7)

where U(t) is the acceleration vector of all agents and xj is
the position of target j (point of interest) j = 1, 2, . . . ,M .
Remark 1. The performance metric (7) is the average

over all target uncertainties instead of the average over the
time horizon in [22]. In addition, U(t) in this paper consists
of the accelerations of agents, which is more practical than
controlling velocities directly and makes it possible to keep
the trajectory smooth.

III. MAIN RESULTS

In this section, we focus on solving the optimal control
problem (7) by finding the optimal control policy. The main
challenge lies in three aspects: 1) the velocity and acceleration
are bounded, thus the dynamics of agents are hybrid, 2) R(x, t)
has non-smooth switching dynamics as seen in (6), 3) the
performance metric (7) is not a function of U(t) explicitly.
The work in this section contains two parts. Subsection III-A
shows the characteristics of the optimal control by using a
Hamiltonian analysis. Under such optimal control policies,
the agent trajectories can be parameterized by a sequence of
locations of control switches and the associated dwell times
when an agent switches its control from ±Cd

i to 0. Thus,
the performance metric in (7) can be transformed into a
parametric form as we will show later in subsection III-B. A
gradient-based algorithm is designed to calculate the minimal
performance metric and to determine the optimal trajectory of
each agent.

A. Optimal control policy

In this subsection, the optimal policy will be
determined. Let the acceleration vector be denoted by
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V (t) = [v1(t), v2(t), . . . , vN (t)], and the uncertainty
vector by R(t) = [R(x1, t), R(x2, t), . . . , R(xM , t)]. The
performance metric in (7) will be minimized subject
to the agent dynamics (1), uncertainty dynamics (6)
and control constraints (3). Introducing the associated
Lagrange multipliers λu(t) = [λu1(t), λu2(t), . . . , λuN

(t)],
λv(t) = [λv1(t), λv2(t), . . . , λvN (t)] and λR(t) =
[λR1

(t), λR2
(t), . . . , λRM

(t)] with the boundary conditions
λu(T ) = 0, λv(T ) = 0 and λR(T ) = 0 separately. The
performance metric is also subject to the velocity constraints
(2) and we introduce µ(t) = [µ1(t), µ2(t), . . . , µN (t)]:{

µi(t) = 0, if vi < vmax,
µi(t) > 0, if vi = vmax.

Then, the minimization problem (7) can be rewritten as

min
U(t)∈U

J =
1

M

∫ T

0

[1MRT (t) + λv(t)(V
T (t)− ṠT (t))

+ λu(t)(U
T (t)− V̇ T (t))

+ λR(t)(Ṙ
T (t)− ṘT (t))

+ µ(t)(V (t)− V max)T ]dt, (8)

where 1M = [1, 1, . . . , 1]M and V max =
[vmax

1 , vmax
2 , . . . , vmax

N ]. The Hamiltonian is defined as

H(R, S, V, U, λ, t) = 1MRT (t) + λv(t)V
T (t)

+ λu(t)U
T (t) + λR(t)Ṙ

T (t)

+ µ(t)(V (t)− V max)T . (9)

For simplicity, we write H ≡ H(R, S, V, U, λ, t) and (8) can
be rewritten as

min
U(t)∈U

J =
1

M

∫ T

0

[H − λv(t)Ṡ
T (t)

− λu(t)V̇
T (t)− λR(t)Ṙ

T (t)]dt, (10)

Furthermore, integrate the last three terms on the right
side of (10) by parts, which yields

∫ L

0
λv(t)Ṡ

T (t)dt =

λv(t)S
T (t)|T0 −

∫ L

0
λ̇v(t)S

T (t)dt and the same result applies
for

∫ L

0
λu(t)V̇

T (t) and
∫ L

0
λR(t)Ṙ

T (t). Hence, combining
with the boundary conditions of Lagrange multipliers, (10)
can be rewritten as

min
U(t)∈U

J =
1

M

∫ T

0

[H + λ̇v(t)S
T (t)

+ λ̇u(t)V
T (t) + λ̇R(t)R

T (t)]dt. (11)

Based on the optimal necessary conditions of the Hamilto-
nian analysis, the costates should satisfy

λ̇R(t) = − ∂H

∂R(t)
= −1M , (12)

λ̇v(t) = − ∂H

∂S(t)
= −λR(t)

∂Ṙ(t)

∂S(t)
, (13)

λ̇u(t) = − ∂H

∂V (t)
= −λv(t). (14)

Then it is ready to establish the following proposition, in
which the relationships between the optimal control input and
the Lagrange multipliers are revealed.

Proposition 1. For any given trajectory, the optimal control
policy satisfies

u∗
i (t) ∈

{
±Ca

i ,±Cd
i , 0

}
, for all t ∈ [0, T ]. (15)

Proof. Let Γ0(t) = {i|λ∗
ui
(t) = 0, i = 1, 2, . . . , N},

Γ1(t) = {i|λ∗
ui
(t) > 0, i = 1, 2, . . . , N} and Γ2(t) =

{i|λ∗
ui
(t) < 0, i = 1, 2, . . . , N}. The Pontryagin Minimum

Principle [30] holds for the optimal control problem (11) and
asserts that

H(R, S, V, U∗, λ∗, t) = min
U(t)

H(R, S, V, U, λ∗, t),

where U∗, λ∗ denote the vector of optimal controller and
Lagrange multiplier. Clearly, it is necessary for the optimal
control of agent i to satisfy

u∗
i (t) = −sgn(λ∗

ui
(t)) max

ui(t)∈U
|ui(t)|,

For i ∈ Γ1(t), agent i moves toward the negative direction
with maximal acceleration or toward the positive direction
with maximal deceleration, i.e.,

u∗
i (t) = −Ci

a, if vi(t) < 0,

u∗
i (t) = −Ci

d, if vi(t) > 0.

Similarly, for i ∈ Γ2(t) the optimal control of agent i satisfies

u∗
i (t) = Ci

a, if vi(t) > 0,

u∗
i (t) = Ci

d, if vi(t) < 0.

It is possible(see Ch.3 in [31]) that there are some agents
i ∈ Γ0(t) at some time intervals [t1, t2]. For these i ∈ Γ0(t),
λ∗
ui
(t)ui(t) = 0 which is omitted in the above analysis. From

(9), H(R, S, V, U, λ, t) is not an explicit function of t and
H(R, S, V, U∗, λ∗, t) ≡ C is constant [32]. Therefore, dH

dt =
0 which gives

dH

dt
= 1M ṘT (t) + (λ̇v(t)V

T (t) + λv(t)V̇
T (t))

+ (λ̇u(t)U
T (t) + λu(t)U̇

T (t))

+ (λ̇R(t)Ṙ
T (t) + λR(t)R̈

T (t))

+ µ̇(t)(V (t)− V max)T + µ(t)UT (t). (16)

Meanwhile, based on the necessary conditions (12) and (14),

1M ṘT (t) + λ̇R(t)Ṙ
T (t) = 0,

λv(t)V̇
T (t) + λ̇u(t)U

T (t) = 0,

which gives

dH

dt
= λ̇v(t)V

T (t) + λR(t)R̈
T (t) + λu(t)U̇

T (t)

+ µ̇(t)(V (t)− V max)T + µ(t)UT (t). (17)

For those agents i ∈ Γ0(t), we have λui(t) = 0, so that∑
i∈Γ0(t)

λui(t)u̇i(t) = 0, and for those agents i ∈ Γ1(t) ∪
Γ2(t), we have ui(t) = ±Ca

i or ±Cd
i , u̇i(t) = 0 and∑

i∈Γ1(t)∪Γ2(t)
λui(t)u̇i(t) = 0. The above analysis suggests

that λu(t)U̇
T (t) = 0. According to (14), if i ∈ Γ0(t), λui(t) =
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0, λ̇ui(t) = 0 = −λvi(t). Thus, for any time instant, (17) is
reduced to

dH

dt
=

∑
i∈Γ1(t)∪Γ2(t)

λ̇vi(t)vi(t) + λR(t)R̈
T (t)

+ µ̇(t)(V (t)− V max)T + µ(t)UT (t). (18)

From (6), since Ṙ(s(t), x) is not an explicit function of t, we
have

R̈(t) =
d(Ṙ(t))

d(S(t))
ṠT (t).

From (13), it follows that for i ∈ Γ1(t) ∪ Γ2(t),

λ̇vi(t)vi(t) + λRi(t)
d(Ṙ(t))

d(si(t))
ṡi(t) = 0.

which provides the fact that

dH

dt
=

∑
i∈Γ0(t)

λRi(t)
d(Ṙ(t))

d(si(t))
ṡi(t)

+ µ̇(t)(V (t)− V max)T + µ(t)UT (t). (19)

If the state evolves in an interior arc of velocity constraint (2),
i.e., vi(t) < vmax

i and µ(t) = 0, µ̇(t) = 0. Otherwise, the
state evolves in the boundary arc of (2), i.e., |vi(t)| ≡ vmax

i ,
then ui(t) = 0. Then, it can be obtained that µ̇(t)(V (t) −
V max)T + µ(t)UT (t) = 0. From (19),

dH

dt
=

∑
i∈Γ0(t)

λRi
(t)

d(Ṙ(t))

d(si(t))
ṡi(t). (20)

Thus, to ensure (20) holds at all t ∈ [0, T ], ṡi(t) = 0 for those
i ∈ Γ0(t) which means vi(t) = 0, ui(t) = 0.

Note also from (4), ui(t) = 0 if |vi(t)| = vmax
i for a

time period. Based on the above analysis, (15) holds, which
completes the proof. �

From Proposition 1, u∗
i (t) ∈ {±Ca

i ,±Cd
i , 0}, the optimal

control requires the agents to move with maximal acceleration
or fixed maximal velocity or maximal deceleration or remain
at rest. To be more specific, the motion of an agent, moving
from one point to another, may include four modes: i) maximal
acceleration mode: the agent moves with maximal acceleration
from one point to another, where the control direction is agree
with the motion direction; ii) maximal velocity mode: the
agent moves at a fixed maximal velocity for a period of time
larger than zero; iii) maximal deceleration mode: the agent
moves with maximal deceleration, where the control direction
is opposite to the motion direction; iv) dwell mode: the agent
dwells at some points for some time (possibly zero). The
resulting optimal agent trajectories can be fully characterized
by the starting points and end points of each mode and the
dwell times associated with each dwell mode.

Remark 2. Proposition 1 reveals the agent’s optimal ac-
celeration for any given trajectory. From the optimal analysis
of Proposition 1, when the maximal velocity constraints is
not active the associate Lagrange multiplier can only be
λui(t) > 0, < 0,= 0, the agent’s optimal acceleration
should be maximal acceleration or deceleration, or zero ac-
celeration (with zero velocity), which leads to the maximal

acceleration or deceleration mode, or dwell mode respectively.
When the maximal velocity constraints is active, i.e. v∗i (t) =
vmax
i , u∗

i (t) = 0 for some time intervals, which leads to the
maximal velocity mode.
In the following, we will show that the agents will never

arrive at the boundary point 0 or L.

Proposition 2. On an optimal trajectory the agents will never
visit 0 and L, i.e., ∀ t ∈ (0, T ), i ∈ {1, 2, . . . , N}, s∗i (t) ̸= 0
and s∗i (t) ̸= L.

Proof. Suppose at t = t0 < T , si(t0) = 0 and si(t
−
0 ) > 0,

then vi(t−0 ) < 0 and ui(t
−
0 ) = Cd

i > 0. Following the standard
optimal control analysis [31], if −si(t0) ≤ 0 holds, λvi(t) may
experience a discontinuity so that

λvi(t
−
0 ) = λvi(t

+
0 )− πi (21)

where πi ≥ 0 is a scalar constant and there surely exist some
πi > 0. From (13), it is obvious that λvi(t) is a continuous
function, which is conflict with (21) above. The same argument
can be made for si(t0) = L. The proof is thus completed. �
For agent i, define the dwelling points θi =

[θi1, θi2, . . . , θiKi ] in [0, L] at which vi(t) = 0, ui(t) = 0 and
ωi = [ωi1, ωi2, . . . , ωiKi ] to be the associated dwelling times
at such Ki dwelling points. Further define the switching
points θaiki

(ending points of maximal acceleration mode), and
θdiki

(starting points of maximal deceleration mode) between
θiki and θi(ki+1), ki = 1, 2, . . . ,Ki− 1. For θaiki

= θdiki
being

a same point, at this point ui(t) changes from ui(t) = ±Ca
i

to ui(t)∓Cd
i directly. For θaiki

̸= θdiki
, agent i moves at fixed

maximal velocity between θaiki
and θdiki

, ui(t) changes from
ui(t) = ±Ca

i to ui(t) = 0 at θaiki
and from ui(t) = 0 to

ui(t)∓ Cd
i at θdiki

.
Remark 3. Note that once the dwelling points θi are

determined, the acceleration, deceleration and the possibly
maximum velocity modes between these points can be sub-
sequently calculated. Therefore, if the dwelling points and
the dwelling times are determined, the trajectory of agent i
will be fully determined and represented as [θi, ωi], and the
trajectories of all agents can be represented as [θ, ω] where
θ = [θ1, θ2, . . . , θN ], ω = [ω1, ω2, . . . , ωN ].
To proceed, the existence of the maximum velocity modes

will be analyzed in the following proposition.

Proposition 3. The maximum velocity mode exists between θih
and θi(h+1) when agent i moves from θih to θi(h+1) if and only
if

|θi(h+1) − θih| >
vmax
i

2

2Ca
i

+
vmax
i

2

2Cd
i

. (22)

Proof. Note that θih and θi(h+1) are both dwelling points at
which vi(t) = 0. The time it takes for the velocity of agent i to
increase from 0 to vmax

i with the maximal acceleration Ca
i is

vmax
i

Ca
i

and the time it takes for the velocity of agent i to decrease

from vmax
i to 0 with the maximal deceleration Cd

i is vmax
i

Cd
i

.
The average velocity of both the uniform acceleration and
deceleration process is vmax

i

2 . Therefore, the shortest distance
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between θih and θi(h+1) for agent i to reach the maximal
velocity is

vmax
i

Ca
i

vmax
i

2
+

vmax
i

Cd
i

vmax
i

2
.

Hence, the maximal velocity mode exists between θih and
θi(h+1) if and only if (22) holds. �

The next subsection is devoted to determining the optimal
dwelling points and the corresponding optimal dwelling times,
so as to determine the optimal trajectory.

B. Optimal trajectory

Since the agent trajectories are represented as [θ, ω], com-
bining with Proposition 1, the controller U(t) is also deter-
mined by [θ, ω]. In other words, the problem is simplified
as a parametric minimization problem of finding the optimal
dwelling points and the optimal dwelling times. Thus, the
objective is to determine [θ, ω] satisfying

min
U(t)∈U

J=min
[θ,ω]

J(θ, ω).

A gradient-based iterative algorithm is designed as follows,

[θ(m), ω(m)] = [θ(m− 1), ω(m− 1)] (23)

+ [θ̃, ω̃]∇J(θ(m− 1), ω(m− 1)),

where m = 1, 2, . . . is the index of iterations, [θ̃, ω̃] is the
step-size of the iterative algorithm and ∇J(θ(m), ω(m)) =

[∂J(θ(m),ω(m))
∂θ(m) , ∂J(θ(m),ω(m))

∂ω(m) ]T is the gradient of J with
respect to θ(m) and ω(m). The trajectory parameters are op-
timized through (23) by iterations with the terminal condition:

|J(θ(m+ 1), ω(m+ 1))− J(θ(m), ω(m))| < ε, (24)

where ε > 0 is a predetermined constant.
Therefore, what is left is to calculate ∇J(θ, ω). According

to (6), the uncertainty dynamics define a switching function.
Define a time sequence to describe the switching instants of
Ṙ(t), τ(θ, ω) = {τl(θ, ω)}, l = 0, 1, . . . ,L−1, with boundary
conditions τ0(θ, ω) = 0, τL(θ, ω) = T . Thus, the performance
metric (7) can be represented as

J(θ, ω) =
1

M

L−1∑
l=0

∫ τl+1(θ,ω)

τl(θ,ω)

M∑
j=1

R(xj , t)dt.

Then, ∇J(θ, ω) can be rewritten as

∇J(θ, ω) =
1

M

L−1∑
l=0

M∑
j=1

∫ τl+1(θ,ω)

τl(θ,ω)

∇R(xj , t)dt, (25)

where ∇R(xj , t) = [
∂R(xj ,t)

∂θ ,
∂R(xj ,t)

∂ω ]. Therefore, in order to
compute ∇J(θ, ω) we need to first compute ∇R(xj , t).

It’s obvious that R(xj , t) is not an explicit function of
(θ, ω). Therefore, transforming the performance metric in (7)
to a function of (θ, ω) is necessary in the following analysis.
Note that from the motion law in Proposition 1, the optimal
trajectories are described by [θ, ω], therefore, the positions of
agents are also represented by [θ, ω], i.e., the position vector
is S(t) ≡ S(t, (θ, ω)). The following discussion is carried out
in three steps, in which a numerical computation method is

utilized to calculate∇R(xj , t). Let tk = kδ, k = 1, 2 . . . be the
computation time sequence in [0, T ], where the computation
step δ is sufficiently small and t0 = 0.
Step 1). For two adjacent instants tk and tk−1, there are

two cases to be discussed.
Case 1.1 No switches between tk and tk−1. In this case,

tk−1, tk ∈ (τl(θ, ω), τl+1(θ, ω)) and the dynamics of target
uncertainties do not switch. According to (6), utilizing the
Euler method ∇R(xj , tk) = ∇R(xj , tk−1) +∇Ṙ(xj , tk−1)δ,

∇R(xj , tk) = ∇R(xj , tk−1)

−

{
0, if Ṙ(xj , tk−1) = 0,

D(xj)
∂P (S(tk−1),xj)

∂S(tk−1)
∇S(tk−1)δ, otherwise,

(26)

where ∇S(tk−1) = (∂S(tk−1)
∂θ , ∂S(tk−1)

∂ω ) needs further to be
calculated in Step 2) and 3).
Case 1.2 There exists a switch between tk and tk−1. In

this case, tk−1, tk satisfy tk−1 ≤ τl(θ, ω) ≤ tk. Suppose it
is target j∗ that switches its dynamics: Ṙ(xj∗ , t) switches
from 0 to I(xj∗) − D(xj∗)P (S(t), xj∗), or from I(xj∗) −
D(xj∗)P (S(t), xj∗) to 0 at τl(θ, ω). Therefore, there are two
subcases to be discussed.
Before the analysis, we introduce the Infinitesimal Perturba-

tion Analysis method [22], [33] to specify how the arguments
θ influences the system state s(θ, t), ultimately, how they
influence the performance metric which can be expressed in
terms of such arguments. Let {τl(θ)}, l = 0, 1, . . . ,L − 1,
denote the occurrence time of all events in the state trajec-
tory. For convenience, we set τ0 = 0 and τL = T . For
t ∈ [τl−1, τl), based on the Jacobian matrix notation, we define
s′(t) ≡ ∂s(θ,t)

∂θ and ṡ(t) = fl(s, θ, t). In the following we use
fl(t) for simplicity. Since t is independent on θ,

d

dt
s′(t) =

∂fl(t)

∂s
s′(t) +

∂fl(t)

∂θ
, (27)

with boundary condition:

s′(τ+l ) = s′(τ−l ) + [fl−1(τ
−
l )− fl(τ

+
l )]

∂τl(θ)

∂θ
. (28)

Then, let’s focus on the gradient ∂τl(θ)
∂θ . If there exists a

continuously differentiable function gl(s(θ, t), θ), such that
gl(s(θ, τl), θ) = 0 for any τl (in the following we use gl for
simplicity) holds, then we have

d

dθ
gl =

∂gl
∂s

[
∂s

∂θ
+

∂s

∂τl

∂τl
∂θ

] +
∂gl
∂θ

=
∂gl
∂s

[s′(τl) + fl(τl)
∂τl
∂θ

] +
∂gl
∂θ

= 0,

Thus, if ∂gl
∂s fl(τ

−
l ) ̸= 0,

∂τl(θ)

∂θ
= −[

∂gl
∂s

fl(τ
−
l )]−1(

∂gl
∂θ

+
∂gl
∂s

s′(τ−l )). (29)

We are now ready to discuss the two subcases.
Case 1.2.1 Ṙ(xj∗ , tk−1) < 0 switches to Ṙ(xj∗ , tk) = 0. In

this case, R(xj∗ , t) satisfies the endogenous condition in [22],
(29) applies with gl = R(xj∗ , τl) = 0, we get

∇tk = − ∇R(xj∗ , tk−1)

I(xj∗)−D(xj∗)P (S(tk−1), xj∗)
,
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and combine with (28) that

∇R(xj∗ , tk) = 0. (30)

Case 1.2.2 Ṙ(xj∗ , tk−1) = 0 switches to Ṙ(xj∗ , tk) > 0.
In this case, Ṙ(xj∗ , t) is continuous, so that fl(τ+l ) = fl(τ

−
l )

in (28) applied to R(xj∗ , t) we have

∇R(xj∗ , tk) = ∇R(xj∗ , tk−1). (31)

Note that it is impossible for the uncertainty dynamics to
switch from Ṙ(xj∗ , tk−1) > 0 to Ṙ(xj∗ , tk) = 0; this is
because if Ṙ(xj∗ , tk−1) > 0, Ṙ(xj∗ , tk) > Ṙ(xj∗ , tk−1) > 0,
the uncertainty dynamics remain Ṙ(xj∗ , tk) > 0 and switching
does not take place. Also, it is impossible for the dynamics to
switch from Ṙ(xj∗ , tk−1) = 0 to Ṙ(xj∗ , tk) < 0.

Step 2). In this step, case 1.1 will be further discussed.
Based on (26), the remaining work is to calculate ∇S(tk).

From the agent dynamics (4), S(t) is a continuously differ-
entiable function. According to the optimal control structure
in Proposition 1, the dynamics of S(t) fall into four cases.
Between each adjacent dwelling points [θih, θih+1], we define
tih as the time instant when agent i leaves from θih and
taih, t

u
ih, t

d
ih are the time intervals that agent i spends in the hth

acceleration mode, maximal velocity mode and deceleration
mode, respectively. Then, we have

tih =

h−1∑
q=1

[ωiq + taiq + tuiq + tdiq]+ωih. (32)

To proceed, the mode of agent i will firstly be discussed
from the hth dwelling point θih to the (h+1)th dwelling point
θi(h+1), which is illustrated in Fig. 1 (in the figure, the case
of θih < θi(h+1) is illustrated; the opposite case is similar).

Acceleration

motion

Static

status

Deceleration

motion

Uniform

motion

Fig. 1. The schematic for the motion of agent i.

According to the kinematic laws of uniformly variable
motion and uniform motion, the motion of agent i between
θih and θi(h+1) is obtained as follows.

Case 2.1 For the hth maximal acceleration mode, si(t) ∈
[θih, θ

a
ih), t ∈ [tih, tih + taih), then,

si(t) = θih + sgn(θi(h+1) − θih)
1

2
Ca

i (t− tih)
2, (33)

∇si(t) = ∇θih − sgn(θi(h+1) − θih)vi(t)∇tih. (34)

Case 2.2 For the hth maximal velocity mode, the existence
depends on the length of |θih+1 − θih| as presented in Propo-
sition 3. If the hth maximal velocity mode exists, the two
points θaih and θdih are not the same and tuih > 0. Thus, for
si(t) ∈ [θaih, θ

d
ih), t ∈ [tih + taih, tih + taih + tuih),

si(t) = θaih + sgn(θi(h+1) − θih)v
max
i (t− tih − taih), (35)

∇si(t) = ∇θaih − sgn(θi(h+1) − θih)v
max
i ∇(tih + taih). (36)

Case 2.3 For the hth maximal deceleration mode, si(t) ∈
[θdih, θi(h+1)), t ∈ [tih + taih + tuih, ti(h+1) − ωi(h+1)), then,

si(t) = θdih + sgn(θi(h+1) − θih)[v
max
i (t− tih − taih − tuih)

− 1

2
Cd

i (t− tih − taih − tuih)
2], (37)

∇si(t) = ∇θdih − sgn(θi(h+1) − θih)vi(t)

×∇(tih + taih + tuih). (38)

Case 2.4 For the hth dwell mode, si(t) = θih, t ∈ [tih −
ωih, tih), then,

∇si(t) = ∇θih. (39)

Step 3). In (34),(36),(38) and (39), ∇taih, ∇tuih, ∇θih, ∇θaih,
∇θdih and ∇tih remain to be calculated. From (32),

∇tih =
h−1∑
q=1

∇[ωiq + taiq + tuiq + tdiq] +∇ωih, (40)

and obviously,
∂ωh

∂θiq
= 0, (41)

and {
∂ωih

∂ωih
= 1,

∂ωih

∂ωq
= 0, q = 1, . . . , h− 1, h+ 1, . . . ,Ki.

(42)

From Proposition 3, the existence of the maximum velocity
modes is determined by the length of |θi(h+1) − θih|. Thus,
the motion between θih and θi(h+1) can be divided into two
categories according to Proposition 3.
Case 3.1 If tuih > 0, the maximal velocity mode exists at a

time interval [tih + taih, tih + taih + tuih)(refer to Fig. 1) when
agent i moves from θih to θi(h+1).
In this case, agent i firstly moves from θih to θaih with fixed

acceleration Ca
i , then moves to θdih with fixed velocity vmax

i ,
at last moves to θi(h+1) with fixed deceleration Cd

i . According
to the kinematics law, the following conditions hold:

taih =
vmax
i

Ca
i
,

tdih =
vmax
i

Cd
i

,

tuih =
|θi(h+1)−θih|−(taih

vmax
i
2 +tdih

vmax
i
2 )

vmax
i

.

(43)

Therefore, taking the derivative with respect to the parameters,
we obtain: {

∇taih = 0,
∇tdih = 0,

(44)
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
∂tuih

∂θi(h+1)
=

sgn(θi(h+1)−θih)

vmax
i

,
∂tuih
∂θih

= − sgn(θi(h+1)−θih)

vmax
i

,
∂tuih
∂θiq

= 0, q = 1, . . . , h− 1, h+ 2,Ki,

(45)

and

∂tuih
∂ωiq

= 0, q = 1, . . . ,Ki. (46)

In addition, the associated control switching point from
maximal acceleration mode to maximal velocity mode is θaih
and from maximal velocity mode to maximal deceleration
mode is θdih which can be calculated as follows. The switching
points between θih and θi(h+1) are θaih, θ

d
ih,

θaih = θih + sgn(θi(h+1) − θih)t
a
ih

vmax
i

2
,

θdih = θi(h+1) − sgn(θi(h+1) − θih)t
d
ih

vmax
i

2
. (47)

Subsequently,{
∂θa

ih

∂θih
= 1,

∂θa
ih

∂θiq
= 0, q = 1, . . . , h− 1, h+ 1, . . . ,Ki,

(48)

∂θaih
∂ωiq

= 0, q = 1, . . . ,Ki, (49)


∂θd

ih

∂θi(h+1)
= 1,

∂θd
ih

∂θiq
= 0, q = 1, . . . , h, h+ 2, . . . ,Ki,

(50)

and

∂θdih
∂ωiq

= 0, q = 1, . . . ,Ki. (51)

Case 3.2 If tuih = 0, the maximal velocity mode does not
exist when agent i moves from θih to θi(h+1). The velocity of
agent i does not have enough time to accelerate to vmax

i or it
can increase to vmax

i but then decreases immediately.
In this case, agent i leaves from θih with acceleration Ca

i

until θaih (θaih = θdih) and then moves with deceleration Cd
i

until θi(h+1). According to the kinematics law of uniformly
variable motion, the following conditions hold:{

Ca
i t

a
ih = Cd

i t
d
ih,

1
2C

a
i (t

a
ih)

2
+ 1

2C
d
i (t

d
ih)

2
= |θi(h+1) − θih|.

(52)

Solving (52) in terms of control switching time taih and tdih,
we have 

taih =

√
2Cd

i

Ca
i (C

a
i +Cd

i )
|θi(h+1) − θih|,

tdih =
√

2Ca
i

Cd
i (C

d
i +Ca

i )
|θi(h+1) − θih|.

tuih = 0.

(53)

Taking the derivative we obtain

∇tuih = 0. (54)


∂taih

∂θi(h+1)
=

√
2Cd

i

Ca
i (C

a
i +Cd

i )

sgn(θi(h+1)−θih)

2
√

|θi(h+1)−θih|
,

∂taih
∂θih

= −
√

2Cd
i

Ca
i (C

a
i +Cd

i )

sgn(θi(h+1)−θih)

2
√

|θi(h+1)−θih|
,

∂taih
∂θiq

= 0, q = 1, . . . , h− 1, h+ 2, . . . ,Ki,

(55)

∂taih
∂ωiq

= 0, q = 1, . . . ,Ki, (56)



∂tdih
∂θi(h+1)

=

√
2Cd

i

Ca
i (C

a
i +Cd

i )

sgn(θi(h+1)−θih)

2
√

|θi(h+1)−θih|
,

∂tdih
∂θih

= −
√

2Cd
i

Ca
i (C

a
i +Cd

i )

sgn(θi(h+1)−θih)

2
√

|θi(h+1)−θih|
,

∂tdih
∂θiq

= 0, q = 1, . . . , h− 1, h+ 2, . . . ,Ki,

(57)

and
∂tdih
∂ωiq

= 0, q = 1, . . . ,Ki. (58)

Moreover, in this case, θaih = θdih,

θaih = θih + sgn(θi(h+1) − θih)
1

2
Ca

i t
a
ih

2, (59)

∇θaih = ∇θih + sgn(θi(h+1) − θih)C
a
i t

a
ih∇taih.

Replacing ∇taih with (55) and (56),
∂θa

ih

∂θih
= 1− Cd

i

(Ca
i +Cd

i )
,

∂θa
ih

∂θi(h+1)
=

Cd
i

(Ca
i +Cd

i )
,

∂θa
ih

∂θiq
= 0, q = 1, . . . , h− 1, h+ 1, . . . ,Ki.

(60)

∂θaih
∂ωiq

= 0, q = 1, . . . ,Ki. (61)

This ends the analysis of Step 3) in which
∇taih,∇tuih,∇θih,∇θaih,∇θdih and ∇tih are obtained. In
addition, for k ̸= i and ∂si(t)

∂θk
= 0, ∂si(t)

∂ωk
= 0.

Remark 4. For a certain trajectory of agent i, the total
number of dwelling points Ki is determined by the time
horizon T . Based on the analysis of Step 3), the dwelling
points its dwelling time will be updated constantly until the
optimal trajectory is obtained. Therefore, the total number of
dwelling points Ki will change with the iterative process of
trajectory.
In summary, Steps 2) and 3) show the calculation of ∇S(t).
Based on the above analysis, ∇J(θ, ω) is obtained and the

gradient-based iterative algorithm is designed as illustrated in
Algorithm 1.

C. Collision avoidance
Note that in [22], the optimal trajectory will avoid the

collision as shown in Proposition III.4 of [22]. However, in
this paper, the agent will ensure a deceleration process before
it can fully stop and change its moving direction, which will
bring cost, therefore, theoretically it may be a better strategy
for the agent to collide its neighbor with a certain velocity
rather than it stops before the collision. Consequently, we need
to take a certain strategy in the algorithm to avoid the collision.
To do so, we present Algorithm 3.
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Algorithm 1 Gradient-based iteration algorithm
Initialization: The maximal velocities, accelerations and de-

celerations of agents, vmax
i , Ca

i , C
d
i . The initial trajecto-

ries of all agents [θ(0), ω(0)], a given terminal condition
ε, a sufficient small computation step δ, and the index of
iterations m = 1.

1: repeat
2: Calculate S(t) using (4)(15) and [θ(m), ω(m)];
3: for j = 1 : M do
4: Calculate Ṙ(xj , t) according to (6);
5: if Ṙ(xj , t) switches then
6: Calculate ∇R(xj , t) according to (30) and (31);
7: else
8: if Ṙ(xj , t) does not switch then
9: Calculate ∇R(xj , t) according to (26) by acti-

vating Algorithm 2 to calculate ∇S(t);
10: end if
11: end if
12: end for
13: Calculate ∇J according to (25);
14: Update [θ(m), ω(m)] according to (23) and set m =

m+ 1;
15: until |J(θ(m+ 1), ω(m+ 1))− J(θ(m), ω(m))| < ε;
16: The resulting trajectory: [θ̌, ω̌] = [θ(m), ω(m)];

Algorithm 2 Calculation of ∇S(t)

Input: Time t, trajectories [θ(m), ω(m)] and S(t).
1: for i = 1 : N do
2: Get the length of vector θi(m), denoted by H;
3: for h = 1 : H do
4: if |θi(h+1) − θih| > vmax2

i

2Ca
i

+
vmax2

i

2Cd
i

then
5: Calculate ∇taih,∇tuih,∇tdih,∇θih,∇θaih,∇θdih ac-

cording to (44),(45),(46), (48),(49),(50), (51);
6: else
7: if |θi(h+1) − θih| ≤ vmax2

i

2Ca
i

+ tdih
vmax2

i

2Cd
i

then
8: Calculate ∇taih,∇tuih,∇tdih,∇θih,∇θaih,∇θdih

according to (54),(55),(56), (57),(58),(60), (61);
9: end if

10: end if
11: Calculate ∇ωih according to (41),(42);
12: Calculate ∇tih according to (40);
13: end for
14: end for
15: Calculate ∇S(t) according to (34),(36),(38),(39).

IV. ILLUSTRATIVE EXAMPLES

In this section, two simulation examples are presented for
persistent monitoring in a 1-D space over 20s, using one and
two agents respectively. Through these simulations, we are
able to understand: 1) the optimal trajectory under second-
order agent dynamics with physical constraints; 2) to verify the
result of Proposition 1; and 3) to demonstrate the effectiveness
of the gradient-based algorithm. The mission space [0, 5] and
the uncertainty dynamics of sampling points remain consistent
in the two examples. The set of interested targets is X =

Algorithm 3 Collision avoid algorithm
1:
2:
3:
4:

{xj}, xj = 0 + 0.25j, j = 1, 2, . . . ,M , M = 20 with the
increasing and decreasing rates I(xj) = 0.1, D(xj) = 0.5
respectively. The initial value of the uncertainty is R(xj , 0) =
0. The effective sensing ranges of the two agents are r1 =
r2 = 1. The maximum acceleration and deceleration are Ca

i =
1, Cd

i = 1. The maximum velocity vmax
1 = vmax

2 = 1.5. The
error tolerance ε = 1.0 × 10−4 in the termination condition
(24).

In the simulation, there are three aspects that should be paid
attention to: 1). The overflow problem. Since it is impossible
to know the number of optimal dwelling points in advance,
the dimensions of both θi(k) and ωi(k) are unknown, it is,
therefore, necessary to choose the dimensions large enough
by using 0 to fill in at the end of the vectors; 2). The step-
sizes [θ̃, ω̃]. Diminishing step-size should be applied as the
performance metric is approaching to the optimal value; 3).
The calculation of derivative. In the numerical simulations, in
order to calculate Ṙ(s(t), xj) in Algorithm 1, (6) is modified
as follows. If R(xj , tk) = 0 and I(xj) − D(xj)P (xj , tk) <
0, Ṙ(xj , tk+1) = 0. Otherwise, Ṙ(xj , tk+1) = I(xj) −
D(xj)P (xj , tk+1).

The simulation results of the two persistent monitoring
examples are shown in Fig. 2 and Fig. 3 respectively.

In Fig. 2, the persistent monitoring task is executed by
agent 1. Let [θ̃, ω̃] = [0.04, 0.04] before 5th times iteration
and [θ̃, ω̃] = [0.02, 0.04] after 5th times iteration. The initial
trajectory is θ(0) = [1.0, 4.0, 1.0, . . .], ω(0) = [0.3, 0.3, . . .]
shown by the dotted line in Fig. 2(a) and the optimal
trajectory is denoted by the solid line in Fig. 2(a). The
optimal velocity and acceleration of agent 1 are shown in
Fig. 2(b) where −1.5 ≤ v1(t) ≤ 1.5. From Fig. 2(b), in
the acceleration or deceleration modes, u1(t) = ±1 and
in the maximal velocity or dwell modes u1(t) = 0 which
confirm the conclusion of Proposition 1. Moreover, compared
with the simulation results in [22], the trajectory is smooth
in this paper, and the velocity of agent is continuous. This
demonstrates that our second order model better approximates
reality. The performance metric decreases as iteration times
increase in Fig. 2(c), which demonstrates the effectiveness of
Algorithm 1. At the 12-th iteration, the performance metric
J1(θ(12), ω(12)) = 4.053 satisfies the terminal condition that
|J1(θ(12), ω(12))− J1(θ(11), ω(11))| < ε.
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(a) Initial trajectory (green dash line) and
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(b) Optimal velocity (blue) and acceleration (red) of agent 1
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(c) Performance metric J1 (decreases as the number of iterations increases)
Fig. 2. Persistent monitoring task executed by agent 1.

Fig. 3 shows the result of a persistent monitoring
task executed by two agents. The iteration steps are
[θ̃, ω̃] = [0.02, 0.01] before the 20th iteration and [θ̃, ω̃] =
[0.008, 0.004] after the 20th iteration. The initial trajectories
are θ1(0) = [0.5, 2.0, 0.5, . . .], ω1(0) = [0.2, 0.2, . . .] and
θ2(0) = [3.0, 4.5, 3.0, . . .], ω2(0) = [0.2, 0.2, . . .] shown by
the dotted line in Fig. 3(a) and the optimal trajectories are
denoted by the solid line in Fig. 3(a). In this example, the
optimal velocity and acceleration of agent 1 are shown in Fig.
3(b). Please note that the distances between the switching
points do not satisfy conditions in Proposition 3, then the
maximal velocity mode doesn’t exist and the velocity of agent
1 cannot increase to vmax

1 . The performance metric decrease as
the increase of iteration times in Fig. 3(c), J2(θ(23), ω(23)) =
0.8865, |J2(θ(24), ω(24)) − J2(θ(23), ω(23))| < ε. Compar-

ing to Fig. 2(a), in Fig. 3(a) two agents have a better sensing
capability than one agent. It is apparent that using two agents
to complete the monitoring task leads to a smaller optimal
performance metric in Fig. 3(c) that J2(θ(12), ω(12)) <
J1(θ(24), ω(24)).

(a) Initial trajectory (green dash line) and
optimal trajectory (blue) obtained by Algorithm 1
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(b) Optimal velocity (blue) and acceleration (red) of agent 1
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Fig. 3. Persistent monitoring task executed by agent 1 and 2.

V. CONCLUSION

In this paper, optimal persistent monitoring tasks are per-
formed via second-order multiple agents. The results of this
paper bring persistent monitoring one step closer to realistic
applications in the sense that the existing results are improved
in two aspects, 1) the physical constraints on both the velocity
and the acceleration are taken into consideration, 2) the control
is on the acceleration leading to smooth agent trajectories. Our
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future work is to extend this model to 2D spaces or even with
obstacles and possibly to control the agents in a distributed
manner.
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