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Time and Energy-Optimal Lane Change Maneuvers for Cooperating
Connected and Automated Vehicles*

Rui Chen, Christos G. Cassandras and Amin Tahmasbi-Sarvestani

Abstract— We derive optimal control policies for a Connected
and Automated Vehicle (CAV) cooperating with neighboring
CAVs to implement a highway lane change maneuver. We
optimize the maneuver time and subsequently minimize the
associated energy consumption of all cooperating vehicles in this
maneuver. We prove structural properties of the optimal policies
which simplify the solution derivations and lead to analytical
optimal control expressions. The solutions, when they exist, are
guaranteed to satisfy safety constraints for all vehicles involved
in the maneuver. Simulation results show the effectiveness of the
proposed solution and significant performance improvements
compared to maneuvers performed by human-driven vehicles.

I. INTRODUCTION

Advances in next generation transportation system tech-
nologies and the emergence of Connected and Automated
Vehicles (CAVs), also known as “autonomous vehicles”,
have the potential to drastically improve a transportation
network’s performance in terms of safety, comfort, conges-
tion reduction and energy efficiency. In highway driving, an
overview of automated intelligent vehicle-highway systems
was provided in [1] with more recent developments mostly
focusing on autonomous car-following control [2],[3],[4].
Automating a lane change maneuver remains a challenging
problem which has attracted increasing attention in recent
years [5],[61,[7],[8].

The basic architecture of an automated lane-change ma-
neuver can be divided into the strategy level and the control
level [9]. The strategy level generates a feasible (possibly op-
timal in some sense) trajectory for a lane-change maneuver.
The control level is responsible for determining how vehicles
track the aforementioned trajectory. For example, [7] adopts
such an architecture for an automated lane-change maneuver,
but does not provide an analytical solution and assumes
that there are no other vehicles in the left lane (the lane
in which the controllable vehicle ends up after completing
the maneuver). In [10], background vehicles are included in
the left lane and the goal is to check whether there exists a
lane-change trajectory or not; if one exists, the controllable
vehicle will then track this trajectory. A similar approach is
taken in [11] with the trajectory being updated during the
maneuver based on the latest surrounding information. In

*Supported by Honda R&D Americas. Also supported in part by NSF un-
der grants ECCS-1509084, CNS-1645681, and DMS-1664644, by AFOSR
under grant FA9550-19-1-0158, by ARPAE’s NEXTCAR program under
grant DE-AR0000796, and by the MathWorks.

The first two authors are with the Division of Systems Engineering
and Center for Information and Systems Engineering, Boston University,
Brookline, MA 02446 {ruic, cgc}@bu.edu. The third author was
with Honda R&D Americas, Inc., 2420 Oak Valley Drive, Ann Arbor, MI
48103 {atahmasbi}@hra.com.

978-1-7281-1397-5/19/$31.00 ©2019 IEEE

Fig. 1. The basic lane changing maneuver process.

these papers, only one vehicle can be controlled during the
maneuver and no analytical solutions are provided.

The emergence of CAVs brings up the opportunity for
cooperation among vehicles traveling in both left and right
lanes in carrying out an automated lane-change maneuver
[91,[12],[13]. Such cooperation presents several advantages
relative to the two-level architecture mentioned above. In
particular, when controlling a single vehicle and checking
on the feasibility of a maneuver depending on the state
of the surrounding traffic, as in [14],[15], the maneuver
may be infeasible without the cooperation of other vehicles,
especially under heavier traffic conditions. In contrast, a co-
operative architecture can allow multiple interacting vehicles
to implement controllers enabling a larger set of maneuvers.
Feasible, but not necessarily optimal, vehicle trajectories
for cooperative multi-agent lane-changing maneuvers are
derived in [16]. The case of multiple cooperating vehicles
simultaneously changing lanes is considered in [17] with
the requirement that all vehicles are controllable and their
velocities prior to the lane change are all the same. First,
vehicles with a lower priority must adjust their positions in
their current lane and give way to those with a higher priority
so as to avoid collisions. Then, a lane changing optimal con-
trol problem is solved for each vehicle without considering
the usual safe distance constraints between vehicles. This
“progressively constrained dynamic optimization” method
facilitates a numerical solution to the underlying optimal
control problem at the expense of some loss in performance.

Our goal is to provide an optimal solution for the ma-
neuver in Fig. 1, in which the controlled vehicle C attempts
to overtake an uncontrollable vehicle U by using the left
lane to pass. In this case, the initial velocities of all vehicles
can be different and arbitrary. The overall lane changing
and passing maneuver consists of three steps: (i) The target
vehicle C moves to the left lane, (i) C moves faster than
U (and possibly other vehicles ahead of it) while on the
left lane, (iii) C moves back to the right lane. The first
step is further subdivided into two parts. First, vehicle C
adjusts its position in the current lane to prepare for a lane
shift, while vehicles 1 and 2 in Fig. 1 cooperate to create
space for C in the left lane. Next, the latitudinal lane shift
of C takes place. In this paper, we limit ourselves to the
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first part of this step. Our objective is to minimize both the
maneuver time and the energy consumption of vehicles C, 1
and 2 which are all assumed to share their state information.
We also impose a hard safe distance constraint between
all adjacent vehicles located in the same lane, as well as
constraints due to speed and acceleration limits imposed on
all vehicles. We first determine a minimum feasible time
for the maneuver (if one exists) and associated terminal
positions for vehicles C, 1 and 2. We then solve a fixed
terminal time decentralized optimal control problem for each
of the three vehicles. We derive several properties of the
optimal solution which facilitate obtaining explicit analytical
solutions. Our approach applies to a wider range of scenarios
relative to those in [10],[11],[14],[15] and incorporates the
safety distance constraint not included in [16] and [17].

II. PROBLEM FORMULATION
We define x;(7) to be the longitudinal position of vehicle
i along its current lane measured with respect to a given
origin, where we use i = 1,2,C,U. Similarly, v;(¢) and u;(7)
are vehicle i’s velocity and (controllable) acceleration. The
dynamics of vehicle i are

%i(t) =vi(t), vilt) = u(t) (1

The maneuvers carried out by vehicles 1,2,C are initiated
at time 7o and end at time fy. We define d;(vi(r)) to be
the minimal safe distance between vehicle i and the one
that precedes it in its lane, which in general depends on
the vehicle’s current speed. The control input and speed are
constrained as follows for all 1 € [tg,1/]:

Ujmin < ui(t) < Uimax, Vimin < Vi(t) < Vimax )

where Uimax, Uimins Vimax> Vimin are the maximal and minimal
acceleration (respectively speed) limits. In Fig.1, we control
vehicles 1, 2 and C to complete a lane change maneuver
while minimizing the corresponding energy consumption and
the maneuver time. For each vehicle i = 1,2,C we formulate
the following optimization problem assuming that x;(0) and
v;(0) are given:

J(tpui(t)) =
min /0 " wn a2 (6) + wa,atid (6) + w2 (6)))dt
s.t. (1), (2) and
x1(t) —x2(t) > da(v2(2)), t€[0,1f]
xu(t) =xc(t) > dc(ve(t)), t€[0,t]
xi(t) —xc(ty) > dc(ve(ty)), xc(ty) —x2(ty) > da(va(ty))

where w;, w;,, i =1,2,C, are weights associated with the

maneuver time ¢y and with a measure of the total energy

expended. The two terms in J(zf;u;(t)) need to be properly
1-p

normalized and we set w; = TL and w;, =
max

3)

max{uizmax Himin }
where p € [0,1] and T« is a prespecified upper bound on
the maneuver time (e.g., Tmax = !/ min{vimin }, i = 1,2,C,U,
where [ is the distance to the next highway exit). The
safe distance is defined as d;(v;(¢)) = ¢v;(¢r) + O where ¢
is the headway time (the general rule ¢ = 1.8 is usually

adopted as in [18]). As stated, the problem allows for a free

[l

terminal time 7 and terminal state constraints x;(fs), vi(tf).
We will next specify the terminal time 7/ as the solution of a
minimization problem which allows each vehicle to specify a
desired “aggressiveness level” relative to the shortest possible
maneuver time subject to (2). Then, we will also specify
xi(tp), i=1,2,C.
ITII. OPTIMAL CONTROL SOLUTION
Terminal time specification. We begin by formulating the
following minimization problem:
in t 4
21;% f “)
s.t. xq (0) +W (O)If +0.50 u]maxtj%
*XC(O) - Vc(O)tf — O.S%MCmaxt% > dc(vc(tf)) (4a)

xy(ty) —xc(0) —ve(0)ty

—O.SO(Cquinl‘J% > dc(Vc(lf)) (4b)
xc(0) +ve(0)ty +0.50cUcmint7
—x2(0) = v2(0)ty — 0.5 uomintf > da(va(ty))  (4c)

where @; € [0,1),i=1,2,C is an “aggressiveness coefficient”
for vehicle i which can be preset by the driver. Observe that
[xi(20) +v,~(t0)tf+0.5a,~u,~maxtf2~] is the terminal position of
i under control Ouimax. To minimize 7, vehicle 1 should
accelerate and vehicle 2 decelerate so as to increase the
gap between them in Fig. 1. If C accelerates, then (4a)
ensures the safety constraint is still satisfied. If C has to
decelerate because it is constrained by U, then (4b) ensures
that the safety constraint between U and C is satisfied and
(4c) ensures that the safety constraint between 2 and C is
also satisfied. As we will subsequently show, the optimal
control of C is either always non-positive or always non-
negative throughout [0,7/] so that either the first or the last
two constraints are relevant to it. Naturally, a solution to (4)
may not exist, in which case we must iterate on the values
of o; and possibly abort the maneuver.

Terminal position specifications. Assuming a solution
ty is determined, we next seek to specify terminal vehicle
positions x;(z¢), i=1,2,C, to be associated with problem (3).
To do so, we define Ax;(r7) = x;(t) —xi(to) — vi(fo)ty which
is the difference between the actual terminal position of i
and its ideal terminal position under constant speed v;(f);
this is ideal from the energy point of view in (5), since the
energy component is minimized when u;(¢) = 0. Thus, the
energy-optimal value is Ax;(z;) = 0. We then seek terminal
positions that minimize a measure of deviating form these
energy-optimal values over all three vehicles:

. 2 2 2
. (If)”ri‘(l(l);’j:] 2 CAXC(’f )+ Axi(ty) + Axs (1)
S.t. Axi(tf) ZX,'(tf) —x;(0) —v;(0 Iy
xi(ty) —xc(ty) > max{dc(ve(r)}
xelty) —xa(ir) > max{dy(v2(1))}
xy (1) = xc(ty) > max{dc(ve(r))}

The max values in (5) are assumed to be given by a
prespecified maximum inter-vehicle safe distance. However,
as subsequently shown in Theorem 1, they actually turn out
to be the known initial or terminal values of d»(v2(¢)) and
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Fig. 2. The feasible state set of lz:)ntrollable vehicles in the left lane.

dc(ve(t)). For example, max{dy(v2(t))} = da(v2(to)) and
max{dc(vc(t))} = dc(Vc(l‘o) + quaxtf).

Lemma 1: The solution x}(¢r), i =1,2,C, to (5) satisfies
Axi(tr) >0 and Ax;(ty) <O0.

Proof: All proofs of lemmas and theorems are omitted
and may be found in [19]. B
A. Optimal Control of Vehicles 1 and 2

With the terminal time 7, and longitudinal position x;(zy),
i =1,2, set through (4) and (5) respectively, the optimal
control problems of vehicles i = 1,2 in (3) become:

ir1
min [* 2id@dt st (1, @ x(p)=x1y (6
w)Jo 2
L
min —us(t)dt st (1), ), x2(t7) <x2p, (D)
w)Jo 2 ’ ’

x1(t) —x2(t) > da(va(t)), t€0,tf]

where x; s and xp y are given as above. In (7), we use an
inequality x»(fy) < x2,¢ to describe the terminal position
constraint instead of the equality since it suffices for the
distance between the two vehicles to accommodate vehicle C
while at the same time allowing for the cost under a control
with x, (tf) < xp,r to be smaller than under a control with
x2(ty) = x2,. In (6), there is no need to consider the case
that x; (ty) > xy s since it is clear that the optimal cost when
x1(ty) = x1,5 is always smaller compared to x; (t7) > x1 . The
next result establishes the fact that the solution of these two
problems involves vehicle 1 never decelerating and vehicle
2 never accelerating.

Theorem 1 The optimal control in (6) is uj(r) > 0 and
the optimal control in (7) is u5(¢) <O0.

Based on Theorem 1, in addition to showing that vehicle
1 never decelerates and vehicle 2 never accelerates, we
also eliminate the safe distance constraint in (7) since the
distance between the vehicles will increase in the course of
the maneuver and the last two safety constraints in (3) ensure
that this distance is eventually large enough to accommodate
the length of vehicle C. Thus, (7) becomes

!
min/f lu%(t)dt s.t. (1), (2), xa2(tp) =x20  (8)
wn)Jo 2

Feasible terminal state set. The constraints in (2) limit
the sets of feasible terminal conditions (x; ¢,#¢), i=1,2,C as
shown in Fig. 2 where the feasible set is the unshaded area
defined as follows for each i = 1,2,C: (i) Vehicle i cannot
reach x; y under its maximal acceleration if u;maxty +vip <
Vimax and vilotf—l-O.Su,'maxthp < X; y —Xjp. (if) Vehicle i cannot

reach x; y under its maximal acceleration after attaining its
maximal velocity if Uimaxff 4+ Vio > Vimax and Vimax(tf —
I :

Vimax —Vi,0

_ < Xif —Xip— 5 . (iit) Vehicle i exceeds x;
Uimax L s Uimax s
under the minimal acceleration if #;mintf +Vip > Vimin and
viots —|—0.5uimmt12c > xif— Xio. (iv) Vehicle i exceeds x; ¢
under the minimal acceleration after attaining its minimal

Vimax —Vi,0 )

. P
velocity if Uiminf + Vi0 < Vimin and Vimin(tf - %10) >
! imin
2 2
Vinin =V .. . .
Xif —Xi0— %’0 In addition, vehicle C must also satisfy a

safety distance constraint with respect to vehicle U, hence if
xe,r > xy(0)+vytp—dc(va(tr)), there is no feasible solution.

Note that if an optimal ¢y is determined in (4) and the
solution of (5) guarantees that x;(r7), i = 1,2,C, do not
violate the safety constraints, (x;s,77) is expected to be
feasible. However, if (x; r,77) is infeasible for vehicle i, then
the following algorithm is used to find a feasible such pair:

Algorithm 1:

(1) t7 is updated using 1y = Bts, B > 1.

(2) With updated ¢y, (5) is re-solved to obtain new x; .

(3) If (xif,1r) is feasible in Fig. 2, stop; else return to step
(1) with a higher value of .

In the above, the coefficient § is used to relax the
maneuver time 77 so as to accommodate one or more of the
constraints in Fig. 2 until a feasible (x; ¢,77) is identified.

Solution of problem (6). We begin by adjoining the
constraints in (6) to obtain the Hamiltionian, so as to obtain
the Lagrangian functions:

L(vi,ui,A,1m) :Eu%(t) + A ()1 (1) + A (2)ur (1) +

772(f)(ul(t) - Mlmax) + HB(I)(Vlmin _Vl(t))
+ 774(1)(\’1 (t) - Vlmax)
)

where A(t) = [A,(¢),A:(¢)]" and 1 = [11(¢),...,n4(¢)]7. The
explicit solution of (6) is given next.

Theorem 2 Let xf(t), vi(r), uj(tr) be a solution
of (6). Then, () = argming<y,<u,,, %u% +

* 2
ui (10)"(¢ ~ ——, Where 7 is the first time

vio —Vi(tr) + (T —10)uj(to)
that vi(7) = Vimax and 7 =t7 if vimax is never reached.

Furthermore, following a derivation similar to that in [20]
we can obtain the optimal cost J{(¢¢) in (6) based on several
cases depending on the initial acceleration uj, and the
terminal velocity vi(f;) which can be explicitly evaluated
as in [20]. The final optimal cost is the minimal among all
possible values obtained.

Case I: uj = uimay and i (1) = 0. If 1y < =510 then
ui(t) = uimax for all ¢ € [0,7f]. Otherwise, when v(t) =
Vimax, the control switches to uj(¢) = 0. Therefore,

if tf Z Vimax —V1,0

1
T (t7) = julmax(vlmax - V],O) . 10
i) { Ty (17 = 10) otherwise (10)

Case II: u] ) = Uimax and vi(tf) = Vimax. We define 7 as
the time that u}(¢) begins to decrease and 7 as the first time
that uj(7) = 0. Thus, uj(¢) is a piecewise linear function of
time ¢ and (following calculations similar to those in [20]):

1 ) 1 U (T—11)3
Ji(tr) = = (01 —to)ulpmax + — max
1 ( f) 2( 1 0) Imax 24 [VI,O — Vimax + (T — tO)ulmele]i
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Using similar calculations, we summarize below the remain-
ing three cases:

MT,O = Ulmax _ lu%max (tf +21 —31)

Case III: T (1) =
Vi (tf) < Vimax ! ( f) 2 3
1 2
Case Iv; ‘Lo <tmax oy 2 (Vimax = vi0)”
Vl(tf) = Vlmax 3 T—1
* . 3 o s 5
Case V: .10 < tima Jity) == Py —violty - 0)]
Vl(tf) < Vimax 2 (tf —1p)-

Solution of problem (8). Similar to the solution of (6),
we can derive an explicit solution for (8), as follows.

Theorem 3 Let xj(r), vi(r), u;(t) be a solution
of (8. . Then, u3(t) = argming, , <u,<o3U3 +

) () (r — 1)z , where 7 is the first time
v3(tr) —va0— (T —to)uz(to)
that v](7) = vomin and T =ty if vopi, is never reached.

We can also obtain the optimal cost J;(z7) in (7) based on
several cases depending on the initial acceleration 3, and
the terminal velocity v3 () which can be explicitly evaluated
as in [20]. In what follows, we define #; as the time that 1} (r)
begins to increase and 7 as the first time that u5(7) = 0.

J;(tf) = %(1‘1 _to)u%min_'_

u§70 = U2min

CaseI. o7 | B (1)
Vs ([f ) = Vomin 30 [V2‘07V211n+ G —
% 2
Case II: ’;‘2,0 = U2min B(ty) = w5 (L7 +211 — 3t0)
V3(tf) > Vamin 6
> 2
Va (tf) = V2min ’ 3 T—1
2 i 3 —vao(ty —10)]?
Case IV: 32»0 ~ Uzmin Bty == Pea.r = vao( f3 0)]
V5 (1f) = Vamin 2 (tr—10)’

B. Optimal Control of Vehicle C
Unlike (6) and (8), deriving the optimal control of vehicle
C as in Fig. 1 is more challenging. First, since we need to
keep a safe distance between vehicles C and U, a constraint
xy(0) + vyt —xc(t) > de(ve(t)) must hold for all £ € [0,1/].
The resulting problem formulation is:
. /’f 1, (t)dt
min —~u
Mc(t) 0 2 ¢
s.t. (1), ), xc(tf) =xc g, t €10,1f]
N xy(0) + vyt —xc(t) > de(ve(r))
in which dc(vc(tsl) is time-varying. To simplify (12), we use
dc =max{dc(vc(t))} instead of de(ve(t)), which is a more
conservative constraint still ensuring that the original one is
not violated (the problem with dc(ve(t)) = ¢ve(r) + 6 can
still be solved at the expense of added complexity and is the
subject of ongoing research). The Lagrangian is now
1
L(xc,ve,uc,Asm) = Sug () + A()ve(t) + Au(t)uc(t) (13)
+n01(2) (uc(t) — tcmax) +M2(t) (e min — uc(t))
+M3() (ve(t) = vemax) +M4(1) (Vemin — ve(t))
+15 (1) (xc(t) —xv (0) — vy (0)t +dc)

Based on Pontryagin’s principle, we have

12)

—Ay(t)  if temin < —Ay(t) < Ucmax
ué(t) = UCmin if — A’v(t) < UCmin (14)
UCmax if — 2'\/(l‘) > UCmax

when none of the constraints is active along an optimal
trajectory. In order to account for the constraints becoming
active, we identify several cases depending on the terminal
states of vehicles U and C. Let us define Xc(ff) to be the
terminal position of C if uc(r) =0 for all r € [0,z7]. If
Xc(tr) < xc(tr), vehicle C must accelerate in order satisfy the
terminal position constraint. Otherwise, C must decelerate.
Also critical is the value of xy (t7) —dc, i.e., the upper bound
of the safe terminal position of C. In addition, during the
entire maneuver process, we require that xc (1) < xy (¢) —dc.

We begin with the 3! cases for ordering x¢(t7), Xc(ty) and
xy(ty) —dc. Fortunately, we can exclude several cases as
infeasible because xc(ff) < xy(ty) —dc is a necessary con-
dition to have feasible solutions. This leaves three remaining
cases as follows.

Case I: )fc(l‘f) < xc(tf) < xU(tf) —dc.

Case 2: xc(tf) < )fc(tf) < XU(tf) —dc.

Case 3: xc(ty) <xy(tf) —dc < Xc(ty).

These are visualized in Fig. 3. The following results
provide structural properties of the optimal solution (14)
depending on which case applies.

Lemma 2: If xy(0) 4+ vy (0)t —xc(¢) = de, then ve(r) =
vy (0), 1 €[0,14].

Theorem 4 [Case 1 in Fig. 3]: If Zc(ty) < xc(tf) <
xy(tf) —dc, then ug(t) >0 and n3(¢) = 0.

Theorem 5 [Case 2 in Fig. 3]: If xc(1f) < Xc(ty) <
xy(tr) —dc, then ug.(t) <0 and ni(r) =0.

Theorem 6 [Case 3 in Fig. 3] If xc(tf) < xy(tf) —dc <
Zc(ty), then ug.(r) <O.

Based on Theorems 4,5, Cases 1,2 in Fig. 3 can be
solved without the safety constraint in (12) since we have
shown that nZ(r) = 0. Therefore, the optimal control is the
same as that derived for vehicles 1 and 2 in Theorems 2,3.
This leaves only Case 3 to analyze. We proceed by first
solving (12) without the safety constraint, so it reduces to
the solution in Theorem 3, since we know that uf.(¢) <O0.
If a feasible optimal solution exists, then the problem is
solved. Otherwise, we need to re-solve the problem in order
to determine an optimal trajectory that includes at least one
arc in which xy (0) +vy (0)t — x5 (t) —dc = 0.

Based on Lemma 2, there exists a time 7; € (0,77) that
satisfies ve (1) = vy (0) and x¢c(71) = xp (0) +vy (0)T) —de =
a (it is easy to see that there is at most one such constrained
arc, since ve(r) = vy (0) as soon as this arc is entered.) We
then spliTt Iiroblem (12) into two subproblems as follows:

. 1 2
f}%/o 2uc(t)dt

s.t. (1), (2), xc(11) =a, ve(n) =vy(11), 1 €[0,7]
L[l ,
mln/ —uc(t)de s.t. (1), (2),
u(t) Jr 2
xc(n) =a, ve(n) = vy (1), xc(ty) =xef, t € [T],tfgl6)
where (15) has a fixed terminal time 7; (to be determined),
position a, and speed vy (0), while (16) has a fixed terminal
time 7, and position x¢ s with given xc(71) = a.
Let us first solve (15). Since u/.(t) <0 and the terminal
speed is vy (0), only the acceleration constraint uc iy — e <

15)
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" Vehiclec

: *c(tr)
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'
1

O (@ xy(ty) — de> xclty) > %eltr) 7

Fig. 3.

0 can be active in [0,7;]. Suppose that this constraint be-
comes active at time 7, < T;. Since ucmin — Uc is independent
of ¢, xc(), and vc(z), it follows (see [21]) that there are
no discontinuities in the Hamiltonian or the costates, i.e.,
2(ty) = A(T). M(ty) = A(5), H(zy) = H(z). I
follows from H (7, ) —H(t;} ) =0 and (13) that

. (55) — (5 g (e (55)) + 5 6 (55) + Aa(55)] =0
Therefore, either uj(7; ) = up(7y) or ui(7y) = —Au(15)
based on (14). Either condition used in the above equation
leads to the conclusion that u} (7, ) = uf(7y), ie., ug(r) is
continuous at 7.

Let us now evaluate the objective function in (15) as a
function of 7; and a, denoting it by J;(7},a), under optimal
control. In view of (14), there are two cases.

(@) u(t) = ucmin for t € [0,72), ui(t) = —A,(t) for t €
[T2,71]. As in the proof of Theorem 2, the costate equations
are A,(1) = —A.(t) and A.(r) = 0. Therefore, A,(t) =ct —b
where b,c are to be determined. It follows that

uc(t) = c(t — ) +ucmin, € [72,71) (17)
and the following boundary conditions hold:
ve () = ve(0) + ucminT (18)

Vc(‘L‘l) = vU(O) = vC(Tz) + Lfl [C(t — Tz) + quin}dt

1
=Xxc (O) +vc (O) T + ~UCmin 722

2

1 c
xe(t) = a = xe(12) + / (52 + (ucmin — ) (1~ )
(%)

xc(n)

C
) 75 +vc(0) + ucminT2dt

Using (17) and (18) to eliminate ¢ and 7, and then evaluate
Ji(71,a) in (15) after some algebra yields:

Ji(11,a) :%quin(sz(O) —2vc(0) — ucminT1)
2000(0) = ve(0) —uemnr)* 1P
9(a—xc(0) —ve(0)T — 0. Sucmmfl)
(b) ui(t) = —A(t) for t € [0,72), ui(t) = ucmin for t €

[12,71]. Proceeding as above, we get

2 — l + MCmm]dl‘ (20)

) + (Tl - TZ)“len

O+/ ve(0

xe(t) = a = xe(5)+ / e (T2) + tcmin(t — 7))t

—t + Ucmint]dt

:
0 2 xy(ty) —de>%c(ty) > x(t)) tr ¢

0 @)xc(t,) > xy(ty) — de > xc(zy) T

The three feasible cases for the optimal maneuver of vehicle C.

and, after some calculations, we obtain J;(7;,a) in (15):

1
Ji (Tl s a) = Equin(sz (0) - ZVC(O) — UCmin Tl)

2(vy(0) —ve(0) — ueminT)?
9(a —XC(O) —VvyTi+ O.SMCminle)

2y

Proceeding to the second subproblem (16), note that the
control at the entry point of the constrained arc at time
71 is no longer guaranteed to be continuous. This problem
is of the same form as the optimal control problem for
vehicle 2 in (8) whose solution is given in Theorem 3,
except that initial conditions now apply at time 7| as given
in (16). Proceeding exactly as before, we can obtain the cost
Jo(71,a) under optimal control. Adding the two costs, we
obtain Je(11,a) = J1(11,a) + J2(T1,a) in (12). This results
in a simple nonlinear programming problem whose solution
(e, 9Ie(0,a) _ ) ang 99 _ g e
0 T1 da

optimal control is the one corresponding to (7},a").

Based on our analysis, we find that Case 3 is the only one
where the safety constraint may become active. This provides
an option to the vehicle C controller: if Case 3 applies, the
maneuver may either be implemented or delayed until the
conditions change to either one of Cases 1,2 so as avoid the
situation that arises through (15),(16).

a*) results from

IV. SIMULATION RESULTS

We provide simulation results illustrating the time and
energy-optimal optimal maneuver controller we have derived
and compare its performance to a baseline of human-driven
vehicles. In what follows, we set the minimal and maximal
vehicle speeds to 1m/s and 33m/s respectively and the max-
imal acceleration and deceleration to 3.3m/s*> and —7m/s?
respectively. The aggressiveness coefficients ¢;,i =1,2,C in
(4) are all set to o;; = 0.5. Extensive simulation examples for
all three cases may be found in [19]. Here, we limit ourselves
to an example for the more interesting Case 3.

Case 3 in Fig. 3. We set x1(0) = 40m, v;(0) = 11m/s,
xy(0) = 40m, vy (0) = 8m/s x2(0) = 10m, v»(0) = 23m/s,
xc(0) = 13m, v¢(0) = 19m/s. Solving (4) and (5), we get
1y = 14.49s and x; (lf) = 199.37m, )Q(l‘f) =75m, xc(tf) =
105.9m. The optimal trajectories of vehicles 1,2 are similar to
Case 1,2 and omitted here. In this case, vehicle 1 accelerates
and vehicle 2 decelerates in order to create space for vehicle
C. For vehicle C, we first solve the optimal control problem
(12) without considering the safety constraint and find that
it actually becomes active. Therefore, we proceed with the
two subproblems (15) and (16) to derive the true optimal
trajectories. We obtained a* = 43m and 7} = 3.2s, and Fig.
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TABLE I
INITIAL STATES OF VEHICLES

oo [t [ w0 | o (0] wOs

(1) 95 13 0 18 13 10 120 9 30
[B)] 120 13 30 18 13 16 100 10 30
3) 100 11 10 23 213 19 290 8 30

y(0)[m/s]

ve(0)[mfs]

y7(0) m]

delm]

TABLE I
ENERGY COMPARISON: CAVs vs HUMAN-DRIVEN VEHICLES

Cases nergy Consumption ‘ CAVs | Human-driven Vehicles | Improvement
[€D) 6.8 16.4 59%
2) 23.0 46.0 50%
3) 59.5 103.5 43%

4 shows the optimal trajectory of vehicle C. Observe that
C decelerates over the maneuver and the safety distance
constraint is active at 7 = 3.2s when there is a jump in the
acceleration trajectory. Following that, vehicle C continues
decelerating until it reaches its terminal position.

Comparison of optimal maneuver control and human-
driven vehicles. We use standard car-following models in
the commercial SUMO simulator to simulate a lane change
maneuver implemented by human-driven vehicles with the
requirement that vehicle C changes lanes between vehicles 1
and 2. We considered all cases in Fig. 3 with both CAVs
and human-driven vehicles sharing the same initial states
as shown in Table 1. The associated energy consumption is
shown in Table II and provides evidence of savings in the
range 43 —59% over all three cases.

Acceleration trajectory of vehicle C 19 Velocity trajectory of vehicle C

°

Acceleration [m/s?]
Velocity [m/s]

7 4
time [sec.] 145 time [sec.] 145
288 Position trajectory of vehicle C
_-
— xc(® -~
- Xc(t) -~
xy(8) -
— — Safety Constraint - -

Position [m]“

" 14.5

time [sec.]

Fig. 4. Optimal trajectories of vehicle C in case (3) of Fig. 3.

V. CONCLUSION AND FUTURE WORK

We used an optimal control framework to derive time
and energy-optimal policies for a CAV cooperating with
neighboring CAVs to implement a highway lane change
maneuver. Our solution is limited to the first step of the
complete maneuver, i.e., all three cooperating vehicles adjust
their positions before the lane-changing vehicle makes the
lane shift. Our ongoing work aims to complete this step. In
addition, we plan to incorporate a “comfort” factor in the
problem by minimizing any resulting jerk and adopt a more
general velocity-varying safety distance constraint.
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