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ABSTRACT Existing methods for pedestrian motion trajectory prediction are learning and predicting the
trajectories in the 2D image space. In this work, we observe that it is much more efficient to learn and
predict pedestrian trajectories in the 3D space since the human motion occurs in the 3D physical world
and and their behavior patterns are better represented in the 3D space. To this end, we use a stereo camera
system to detect and track the human pose with deep neural networks. During pose estimation, these twin
deep neural networks satisfy the stereo consistence constraint. We adapt the existing SocialGAN method to
perform pedestrian motion trajectory prediction from the 2D to the 3D space. Our extensive experimental
results demonstrate that our proposed method significantly improves the pedestrian trajectory prediction
performance, outperforming existing state-of-the-art methods.

INDEX TERMS Trajectory prediction, deep learning, pose estimation, stereo vision.

I. INTRODUCTION
Human motion behaviors and trajectories are driven by
human behavioral reasoning, common sense rules, social
conventions, and interactions with others and the surround-
ing environment. Human can effectively predict short-term
body motion of others and respond accordingly. The ability
for a machine to learn these rules and use them to under-
stand and predict human motion in complex environments is
highly valuable with a wide range of applications in social
robots, intelligent systems, and smart environments [1], [2].
In human trajectory prediction, the central task is: with
motion trajectories of pedestrians observed during the past
period of time, can we predict their future trajectories within
the future short period of time, for example, 10 seconds?

Predicting human motion is a very challenging task [3].
An efficient algorithm for human trajectory prediction needs
to model physical constraints of the environment on human
motion and anticipate movements of other persons or vehicles
and their social behaviors. Recently, a number of methods
based on deep neural networks have been developed for
human trajectory prediction [3], [4]. Earlier methods have
been focused on learning dynamic patterns of moving agents
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(human and vehicles) [3] and modeling the semantics of the
navigation environment [5]. Recent approaches focus more
on interactions between all agents in the scene in order to
predict the future trajectory for each agent. Methods have
been developed to model human-human interactions [6],
understand social acceptability using data-driven techniques
based onRecurrent Neural Networks (RNNs) [4], [7], [8], and
model the joint influence of all agents in the scene [9].

In this work, we observe that it is much more efficient to
learn and predict pedestrian trajectories in the 3D space than
the 2D image space, since the human motion occurs in the 3D
physical world and and their behavior patterns are better rep-
resented in the 3D space. Therefore, its natural behavior and
motion patterns are better represented by its 3D trajectory,
instead of the 2D image coordinates. For example, the tra-
jectory of a person walking near the camera is much different
from that of a personwalking far away from the camera due to
the camera perspective transform. Based on this observation,
we propose to extend the existing deep learning-based pose
estimation and trajectory prediction from the 2D image space
to the 3D space. Specifically, we construct and calibrate a
stereo camera system to capture pedestrian videos. We use
a twin-network satisfying stereo consistency constraint to
estimate the human pose in both video sequences simul-
taneously and reconstruct the trajectory in the 3D space.
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We extend the SocialGAN method [9] for trajectory predic-
tion from 2D to 3D. Our experimentally results demonstrate
that, by estimating, learning, and predicting the human pose
and trajectories in the 3D space instead of the 2D image
space, our method is able to significantly reduce the trajec-
tory prediction error by up to 71% with an average error
reduction of 47%.

The rest of the paper is organized as follows. Section II
reviews related work on human trajectory prediction. The
proposed 3D stereo human trajectory learning and prediction
method is presented in Section III. Section IV presents the
experimental results, performance comparisons, and ablation
studies. Section V summarizes our major contributions and
concludes the paper.

II. RELATED WORK
In this section, we review related work on trajectory predic-
tion and pose estimation.

A. HUMAN TRAJECTORY PREDICTION
A number of methods have been developed in the literature
to predict human trajectories in dynamic scenes. Helbing and
Molnar [6] introduced the Social Force Model to characterize
social interactions among people in crowded scenes using
coupled Langevin equations. Social pooling [8] was intro-
duced to share features and hidden representations between
different moving agents. Reference [9] used a Generative
Adversarial Network (GAN) to discriminate between multi-
ple feasible paths. Their pooling mechanism relies on relative
positions between all pedestrians with the target pedestrian.
This model is able to capture different movement styles
but does not differentiate between structured and unstruc-
tured environments. [10] predicted human trajectories using
a spatio-temporal graph to model both position evolution and
interactions between pedestrians.

In human trajectory prediction, it is also very important
to model the effects of physical environments. For exam-
ple, people tend to walk along the sidewalk, around a tree
or other physical obstacles. Sadeghian et al. [11] incorpo-
rated scene context to human trajectory prediction based
on GAN (Generative Adversarial Network). Reference [12]
extracted multiple visual features, including each person’s
body keypoints and the scene semantic map to predict human
behavior and model interaction with the surrounding envi-
ronment. Reference [3] proposed a Bayesian framework to
predict unobserved paths from previously observed motions
and to transfer learned motion patterns to new scenes.
Scene-LSTM [13] divided the static scene into grids and
predicted pedestrian’s location using LSTM. The CAR-Net
method [14] integrated past observations with bird’s eye
view images and analyzed them using a two-levels attention
mechanism.

B. HUMAN POSE ESTIMATION USING DEEP
NEURAL NETWORKS
Our work is als related to human pose estimation. The task
of human pose estimation is to determine the precise pixel

locations of body keypoints from a single image. Since the
work of DeepPose [15], human pose estimation has recently
achieved significant progress with deep convolutional neural
networks. Human pose estimation is often formulated as a
regression problem, predicting locations of body joints from
deep neural network features [15]. DeepPose uses a deep
neural network (DNN) to directly regress the coordinates
of body joints. Tompson et al. [16] argued that it is more
efficient to use DNNs to regress heatmap images at multiple
scales.While bodymodels are not necessary for effective part
localization, constraints between parts allow us to assemble
independent detection results into an accurate body config-
uration. Detection-based methods are relying on powerful
DNNS to detect body parts and then combine them into a
human pose using a graphical model [17]–[19].

III. 3D STEREO HUMAN TRAJECTORY LEARNING
AND PREDICTION
In this section, we present our stereo human pose tracking,
trajectory learning, and prediction in the 3D space.

A. METHOD OVERVIEW
The objective of our work is to learn and predict the motion
trajectories of pedestrians in the scene for the next period
of time, say 10 seconds. We propose to perform the trajec-
tory learning and prediction in the 3D space, instead of the
conventional 2D image space used in all existing methods.
As illustrated in Figure 1, we construct and calibrate a stereo
camera system to observe the pedestrian scene. Each camera
is capturing a live video, which will be analyzed by our deep
neural network module for 2D pose estimation. We enforce
stereo consistence between these two networks to improve
the 3D pose estimation accuracy. With camera calibration,
we reconstruct the 3D trajectories for all pedestrians in the
scene. We then adapt the socialGAN network from 2D to 3D
to predict the pedestrian trajectories for the next period of
time (e.g. 10 seconds) based on the observed trajectories of
the past time period (e.g., 8 seconds).

The standard formulation of trajectory prediction prob-
lem in the literature [10], [12] is in the 2D image space.
With observed trajectories of all moving agents in the scene,
including persons and vehicles, the task is to predict the
moving trajectories of all agents for the next period of time,
say 10 seconds, in the near future. In this work, we extend
the trajectory prediction from 2D to 3D. Specifically, let
X = X1,X2, · · · ,XN be the trajectories of all pedestrian
in the scene. Our task is to predict the future trajectories of
all human Ŷ = Ŷ1, Ŷ2, · · · , ŶN simultaneously. The input
trajectory of human n is given by Xn = (x tn, y

t
n, z

t
n) for time

steps t = 1, 2, · · · ,To. The ground truth of future trajectory
is given by Yn = (x tn, y

t
n, z

t
n) for time step t = To+1, · · · ,Tp.

B. TWIN DEEP NEURAL NETWORKS WITH STEREO
CONSTRAINT FOR 3D HUMAN POSE ESTIMATION
The first component of our proposed method is human body
pose estimation and tracking. Existing regression-based pose

VOLUME 8, 2020 23481



J. Zhong et al.: Pedestrian Motion Trajectory Prediction With Stereo-Based 3D Deep Pose Estimation and Trajectory Learning

FIGURE 1. The overall framework of our proposed stereo 3D pedestrian pose tracking and trajectory prediction.

FIGURE 2. The overall framework of our proposed poseGAN for the joint human pose estimation and conditional image
synthesis.

estimation methods work well with visible limbs. In this
work, we are dealing with scenes with multiple pedestrians
which often have significant body occlusion. To handle the
partially occluded body joints and limbs, existing methods try
to learn a body configuration model to infer their locations.
In our experiments, we recognize that they cannot efficiently
handle fully occluded limbs, which occur quite often in prac-
tical scenarios, especially when the person is moving around.
Ideally, we wish that the training data contains images of all
different poses of human body, including samples with fully
occluded limbs. In this way, the deep neural network can be
carefully designed and trained to predict the body joints of
these fully occluded limbs. However, this is a nearly impossi-
ble task in practice since persons with free-style motion will
have a wide variety of body poses being occluded by different
objects, especially in highly cluttered environments. In the
training data, some typical body poses are dominating while
difficult cases are very rare. This pose a significant challenge
for learning highly efficient human pose estimation.

1) GAN-BASED POSE ESTIMATION
To address this issue, we propose to incorporate generative
adversary training into human pose estimation and train the
following three networks jointly: the human pose estimator,
the semantic data generator, and the semantic data discrimi-
nator. Specifically, the generative (G) network augments the
training data, enforces the pose estimator to estimate more
precisely of the joints. The discriminative (D) network eval-
uates the conditional pair, i.e., the training image and the
estimated pose heatmaps, to enforce the G network to gen-
erate semantically-similar human pose images. An overview
of the human pose estimation system is illustrated in Fig. 2.

An RGB image is fed into the feature extraction module (FE)
for visual feature extraction, and then fed into the pose esti-
mation module to infer pose heatmaps. The visual features
will be concatenated with the estimated heatmaps and the
ground truth heatmaps to form an overall conditioned feature
vector C , where the estimated heatmaps serve as the condi-
tioning augmentation. The conditioned features C will be fed
into the Discriminator and Generator networks to generate
synthetic pose images. The discriminator is a matching-aware
discriminator. The positive pair is the real image paired with
the ground truth pose Pt concatenated with the extracted
visual features V . The negative pairs have two groups. The
first group is the real image paired with the estimated pose
Pe concatenated with V . The second group is the synthetic
image paired with Pt and V .

Generative Adversarial Networks (GAN) [20] consist of
twomodels that are trained in an alternative manner. The gen-
erator G is optimized to reproduce the true data distribution
pdata by generating data that are hard for the discriminator D
to differentiate them from real data. Meanwhile, D is opti-
mized to distinguish real data from synthetic ones generated
byG. The overall training procedure is similar to a two-player
min-max game with the following objective function,

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)]

+Ez∼pz [log(1− D(G(z)))], (1)

where x is an instance from the true data distribution pdata,
and z is a noise vector sampled from distribution pz. Con-
ditional GAN [21] is an extension of GAN where both the
generatorG(z, c) and discriminatorD(x, c) receive additional
conditioning variables c, thus allowing G to generate images
conditioned on variables c.
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The task of the Generator Network is to infer a RGB
image from a stack of body part heatmaps with latent feature
vectors, aiming to produce synthetic images with the same
human pose but not necessarily with the same visual elements
such as texture or color. It is complementary to geometric
data augmentation that includes translation, rotation and scal-
ing. The purpose is to train the semantic-aware generator
that implicitly help the training of person-centric perception
networks. Our hypothesis is that a generative network from
adversarial training distills information from the distribution
of training data, and is capable of reconstructing data with
semantic meaning from the distilled visual elements. The task
of the discriminator network is to distinguish the real and fake
pairs of images and heatmaps. With adversary training, the
generator, the pose estimator, and the discriminator will be
learned jointly.

2) NETWORK TRAINING
Inspired by the work of [22], we use a modified version
of the hourglass network [23] as our human pose esti-
mator. The hourglass design is a state-of-the-art architec-
ture for bottom-up and top-down inference with residual
blocks. It processes input images at multiple scales with
down-scaling and up-scaling. In this work, We find out that,
by replacing the residual block in the hourglass network with
an inception-residual [24] block, we can achieve improved
accuracy in estimating occluded poses. The overall structure
is shown in Fig. 3.

FIGURE 3. An illustration of hourglass design. Pixel-wise addition fuses
the information from two branches while keeping the input and output
resolution uniform. The illustration gives an example of a 4-level
hourglass.

Let I be the input RGB image and Pt be the ground truth
heatmap. We use P to denote the pose estimation network.
P(I ) represents the predicted heatmap of body joints from
the input image I and is denoted by Pe The Generator and
Discriminator networks are denoted byG andD, respectively.
⊗ denotes the concatenation operation of tensors. The overall
loss is the sum of GAN loss, the pose estimator loss, and L2
loss:

L = LGAN + LPose + λL2,

where the GAN loss is the sum of the generator loss and
discriminator loss:

LGAN = LG + LD. (2)

The pose estimator loss is the standard MSE (mean squared
error) loss for heatmap regression:

LPose = ‖P(I )− Pt‖2 + ‖P(G(I ,Pt ))− Pt‖2. (3)

In this work, we use a stereo camera system to observe
the pedestrian trajectory. The human pose estimation results
obtained from these two networks should satisfy the stereo
consistency constraint. Specifically, let P(IA) and P(IB) be the
pose estimation results from cameras A and B, respectively.
let MA→B[·] be the stereo mapping from A to B. The stereo
consistency error is then given by

Cp = ||P(IB)−MA→B[P(IA)]||2
+||P(IA)−MB→A[P(IB)]||2 (4)

Then, the new pose estimator loss is given by LPose
(P; I ,Pt ) + α · Cp, where α is a weighting parameter whose
default value is set to be 0.5 in our experiments.

C. CONSTRUCTING THE FORWARD AND BACKWARD
PREDICTION NETWORKS
Both networks for the left and right video sequences the same
network structure and weights. As illustrated in Figure 4,
we adopt the existing Social-GAN in [9] as our baseline pre-
diction network. Our model consists of two key components:
(1) a feature extraction module and (2) an LSTM (Long Short
Term Memory)-based GAN (generative adversarial network)
module.

1) FEATURE EXTRACTOR
Specifically, we first use the LSTM encoder to capture the
temporal pattern and dependency within each trajectory of
human n and encode them into a high-dimensional fea-
ture Fth(n). In order to capture the joint influence of all
surrounding human’s movements on the prediction of the
target human n, we borrow the idea from [9] to build a
social pooling module which extracts the joint social feature
Fts(n) of all human in the scene to encode the human-human
interactions. The relative distance values between the target
person and others are calculated. These distance vectors are
concatenated with the hidden state in the LSTM network for
each person and then embedded by anMLP and followed by a
Max-Pooling function to form the joint feature. A maximum
number of moving human in the scene is set and a default
value of 0 is used if the corresponding agent does not exist at
the current time.

As recognized in [11], [25], the environmental context
affects the decision of the human in planning its next step of
movement. Features of the current scene can be incorporated
into the reasoning process. Similar to prior work [11], we use
VGGNet-19 [26] pre-trained on the ImageNet [26] to extract
the visual feature of background scene I t , which is then fed
into an LSTM encoder to compute the hidden state tensor Ftv.

2) LSTM-BASED GAN FOR TRAJECTORY PREDICTION
Inspired by previous work [9], [11], in this paper we use an
LSTM based Generative Adversarial Network (GAN) mod-
ule to generate human’s future path as illustrated in Figure 4.
The generator is constructed by a decoder LSTM. Similar to
the conditional GAN [2], a white noise vector Z is sampled
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FIGURE 4. Overview of our prediction model. Our model consists of two key components: (1) Feature Extraction Module, (2) LSTM-based GAN module.

from a multivariate normal distribution. Then, a merge layer
is used in our proposed network which concatenates all
encoded features mentioned above with the noise vector Z.
We take this as the input to the LSTM decoder to generate
the candidate future paths for each human. The discriminator
is built with an LSTM encoder which takes the input as ran-
domly chosen trajectory from either ground truth or predicted
trajectories and classifies them as ‘‘real’’ or ‘‘fake’’. Gen-
erally speaking, the discriminator classifies the trajectories
which are not accurate as ‘‘fake’’ and forces the generator to
generator more realistic and feasible trajectories.

Within our 3D method for human trajectory prediction, let
Gθ : X → Y be the generator of the prediction network
Fθ . Dθ is the discriminator for Fθ . Its input Y′ is randomly
selected from either ground truth Y or the predicted future
trajectory Ŷ. To train the prediction network Fθ , we combine
the adversarial loss with the trajectory prediction loss J [θ ]

Lθ = LθGAN + J [θ ], (5)

where the trajectory prediction loss is defined as

J [θ ] = ||Y− Fθ (X)||2, (6)

and the adversarial loss LθGAN is defined as:

LθGAN = min
G

max
D

EY′∼p(Y,OY)[logD(Y
′)]

+EX∼p(X),Z∼p(Z)[log(1−D(G(X,Z)))]. (7)

IV. EXPERIMENTAL RESULTS
A. 3D PEDESTRIAN TRAJECTORY DATASET
Our work is one of the first efforts to study the learning and
prediction of pedestrian trajectory in the 3D space. To eval-
uate the performance of our algorithm and support future
research on this topic, we establish a dataset of stereo videos
with 3D pedestrian trajectories and will make it publicly
available. This dataset contains 5 long stereo videos, each
having a time duration of about 30 minutes and a resolu-
tion of 1920×1080 at 30 frames per second. Each stereo
video has two synchronized video sequences captured by
a stereo GoPro camera system constructed and calibrated
by our self. Assisted by human pose detection and tracking
tools, we manually examine the correctness of human pose
detection and tracking results and correct errors. Based on
the stereo camera calibration results, we combine the results

TABLE 1. Comparing the ADE between our method and the SocialGAN
method on our test dataset.

from two stereo cameras and compute the human trajectory
in the 3D coordinate system.

B. EVALUATION METRICS AND PROTOCOL
We use the same error metrics in [8], [27] for performance
evaluation. (1) Average Displacement Error (ADE) is the
average L2 distance between the ground truth and our predic-
tion over all predicted time steps from To + 1 to Tp. (2) Final
Displacement Error (FDE) is the Euclidean distance between
the predicted final destination and the true final destination at
end of the prediction period Tp. They are defined as:

ADE =

∑
n∈9

Tp∑
t=To+1

√
((x̂ tn, ŷtn)− (x tn, ytn))2

|9| · Tp
, (8)

FDE =

∑
n∈9

√
((x̂

Tp
n , ŷ

Tp
n )− (x

Tp
n , y

Tp
n ))2

|9|
, (9)

where (x̂ tn, ŷ
t
n) and (x

t
n, y

t
n) are the predicted and ground truth

coordinates for human n at time t , 9 is the set of human
and |9| is the total number of human in the test set. Follow-
ing previous papers [8], [9], [11], we use the similar leave-
one-out evaluation methodology. Four datasets are used for
training and the remaining one is used for testing. Given the
human trajectory for the past 8 time steps (3.2 seconds), our
model predicts the future trajectory for next 12 time steps
(4.8 seconds). All location coordinates are normalized to
0 to 1 for training and testing.

C. PERFORMANCE EVALUATIONS AND COMPARISON
Fig. 5 shows examples of body poses estimated by the pro-
posed poseGANmethod.With these accurately detected body
joints in each frame of the two video sequences captured
by the stereo camera system, we are able to construct the
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FIGURE 5. Examples of human pose detection results.

TABLE 2. Comparing the FDE between our method and the SocialGAN
method on our test dataset.

FIGURE 6. Illustration of our method predicting future 12 time steps
trajectories, given previous 8 time steps ones.

3D trajectory of each body joint and track the person across
frames. Following the evaluation protocol outlined in the
above section, we train the 3D stereo trajectory prediction
network, measure its performance using the ADE and FDE
error metrics, and compare its performance with the stateo-
of-the-art method SocialGAN [9]. The SocialGANmethod is
only able to learn and predict the trajectory from the image
in the 2D coordinate system. We apply the method to both
sequences, compute the prediction error for each sequence,
and report the smaller one for performance comparison.
Table 1 summarizes the ADE prediction error comparison

with our method and SocialGAN. Table 1 summarizes the
FDE prediction error comparison. The third rows show the
percentage of error reduction. We can see that, by estimat-
ing, learning, and predicting the human trajectory in the 3D
domain, our new method is able to significantly reduce the
prediction error by up to 71.6% with an average of 47%.
Figure 6 shows examples of our trajectory prediction with the
observed trajectory shown in green, the predicted trajectory
shown in blue, and the ground truth shown in red. We can
see that our algorithm is able to accurately predict the motion
trajectory of the pedestrians.

V. CONCLUSION
In this work, we have extended the pedestrian trajectory
learning and prediction from the 2D image space into the 3D
physical space. To this end, we constructed and calibrated a
stereo camera system. We developed a twin poseGAN net-
work with stereo consistence constraint to detect human pose
and construct their trajectories in the 3D space. We extended
the SocialGAN from 2D into the 3D and demonstrated that
our newmethod is able to significantly improve the trajectory
prediction accuracy, reducing the prediction error by an aver-
age of 47%. The proposed system andmethod have important
applications in advanced video surveillance and intelligent
human-computer interaction applications.
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