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Finger Joint Angle Estimation Based on
Motoneuron Discharge Activities

Chenyun Dai, and Xiaogang Hu

Abstract— Estimation of joint kinematics plays an important role
in intuitive human-machine interactions. However, continuous and
reliable estimation of small (e.g., the finger) joint angles is still a
challenge. The objective of this study was to continuously estimate
finger joint angles using populational motoneuron firing activities.
Multi-channel surface electromyogram (sEMG) signals were
obtained from the extensor digitorum communis muscles, while the
subjects performed individual finger oscillatory extension
movements at two different speeds. The individual finger movement
was first classified based on the EMG signals. The discharge timings
of individual motor units were extracted through high-density EMG
decomposition, and were then pooled as a composite discharge train.
The firing frequency of the populational motor unit firing events
was used to represent the descending neural drive to the motor unit
pool. A second-order polynomial regression was then performed to
predict the measured metacarpophalangeal extension angle using
the derived neural drive based on the neuronal firings. Our results
showed that individual finger extension movement can be classified
with > 96% accuracy based on multi-channel EMG. The extension
angles of individual fingers can be predicted continuously by the
derived neural drive with R? values > 0.8. The performance of the
neural-drive-based approach was superior to the conventional
EMG-amplitude-based approach, especially during fast movements.
These findings indicated that the neural-drive-based interface was a
promising approach to reliably predict individual finger kinematics.

Index Terms— Biosignal processing, Joint angle prediction,
Motor unit, Finger movement, Motor unit decomposition.

I. INTRODUCTION

Human-machine interactions have shown great promise in
restoring motor function for individuals with
neuromuscular  disorders  [1]-[3]. To drive these
rehabilitative/assistive devices, biological signals, ranging from
electrophysiological signals of the nerve system to limb
biomechanical signals, are typically extracted to interface with
the machine. In the past few years, we have seen substantial
development in robust human-machine interface, in order to
establish a reliable communication between humans and
machines [4]-[6]. Specifically, the decoded neural information
for the desired motor output can come from multiple sources,
such as the brain, peripheral nerves, or muscles [7]-[9]. For
example, motor intent has been decoded from neuronal
activities of the motor cortex, and has been used to control
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neuroprosthesis of a subject with tetraplegia [9]. A proportional
and simultaneous control of multiple degrees of freedom
prostheses is also possible with decoded motor intent based on
intramuscular electromyogram (EMG) signals [10].

Surface EMG (sEMG) signals have also been widely used as
a control input of robot-assisted devices [11]-[13]. Global EMG
features (e.g. amplitude [14] or spatial activation pattern [15])
can be used to control rehabilitation/assistive devices. However,
the stability and accuracy is not satisfactory, largely due to
issues of the intrinsic stability of the global EMG features and
the distortion of the neural signals after a series of
transformations from the brain to the muscles. Specifically,
EMG signals represent a spatial and temporal superimposition
of motor unit action potential (MUAP) trains from hundreds of
recruited motor units (MUs). Phase and amplitude cancellation
of MUAPs during superposition can distort the actual
descending neural information [16]. Variations of the MUAP
amplitudes or shapes affected by the volume conductive process
from the muscle to the skin surface can also bias global EMG
features. Lastly, external factors during the acquisition of EMG
signals can also contaminate the recordings. These include a
shift of the electrode location relative to the targeted muscles,
motion artifact interference [17], or a variation of the baseline
noise in the EMG signals.

To address these issues, a neural interface signal based on the
discharge frequency of the motoneuron pool has been developed
[18]. This neural interface first obtains motoneuron discharge
information through decomposition of the high-density sSEMG
recordings. The discharge information of motoneurons at the
population level (i.e., the output signals of spinal cord) can
reflect the descending neural command from the brain to the
muscles. The derived neural drive signal represents the neural
command as binary motoneuron firing events, and can
overcome the interference from MUAP variations or external
interference during signal acquisition. Previous studies have
shown that the derived neural drive signals can better predict
muscle forces, compared with the global EMG features [19],
[20]. However, previous research primarily focuses on force
predictions at constant or slow varying levels of isometric
muscle contractions. The neural-drive-based prediction of joint
kinematics under dynamic movements has not been evaluated.

Accordingly, our study systematically investigated the
prediction of joint angles of individual fingers using the
neural-drive-based approach. The individual finger movements
were first classified using the linear discriminant analysis
(LDA) classifier on multi-channel EMG signals of the extensor
digitorum communis muscles. The LDA method has been shown
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to be a robust and efficient approach for EMG-based pattern
recognition [21]. Motoneuron discharge events were extracted
through high-density EMG decomposition, and were then
pooled into a composite train. The average discharge frequency
of the composite discharge events was calculated to estimate the
neural drive. The metacarpophalangeal (MCP) joint angle of
individual fingers was predicted using a second-order
polynomial regression of the derived neural drive signals. To
evaluate the prediction performance, we compared the
neural-drive-based approach with the global EMG-based
approach. Our results showed that, compared with the global
EMG-based method, the neural-drive-based approach can better
predict the joint angles with a higher correlation (R?) and a
lower root-mean-square error (RMSE) between the predicted
and the measured joint angles. Our findings indicate that the
neural-drive-based approach has great promise in predicting
joint kinematics of individual fingers during dynamic
movements. A preliminary study involving two subjects with
limited analyses has been reported previously [22].

II. METHODS

A. Subjects

After providing the written informed consent, eight intact
subjects (six males, two females; aged 26.6+5.6 years)
participated in the experiment. The experimental protocol and
all data analyses were approved by the Institutional Review
Board of the University of North Carolina at Chapel Hill.

B. Experimental Protocol

Subjects were seated at a straight-back chair with the right
shoulder comfortably abducted approximately 45°, their
forearm fully pronated and supported on the soft foam pads, and
the MCP joints of the four fingers (index, middle, ring, and
little) naturally bent with approximately 120° to the palm
(resting state). During the experiment, subjects extended one
designated finger from the naturally relaxed position (~120° to
the palm) to maximum joint angle they can extend, and then
gradually decreased the extension angle back to the initial
position. The subjects were asked to minimize muscle
co-contractions. The movement speed was guided by a
custom-built MATLAB (MathWorks Inc) display (see Fig. 1A).
The red curve continuously moved over the blue trajectory as a
series of positive phases of a sine wave at two different speeds
(2 s or 5 s for each phase). Take the 2 s movement condition as
an example, the subjects needed to reach maximum extension
from resting in 1 s, and took 1 s to come back to the resting state.
Subjects were asked to follow the movement of the red curve,
with the full relaxation at the sine wave peak value of 1 and the
resting state at the minimum value of 0. A 1-s resting was
provided between two adjacent phases. The finger extension
movements were repeated five times within each trial, and five
trials were performed. Therefore, a total of twenty-five
extension movements were acquired for each condition (per
finger or movement speed). A 30-s rest period was provided
between two consecutive trials to avoid cumulative fatigue. The
order of designated finger or movement speed was randomized.

Overall, a total of 40 trials (four fingers x two movement speeds
x five trials) were recorded for each subject.

] red curve moves over the blue trajectory

A 2or5s -

1
(full extension)

0 (rest)L

one trial with 5 extensions

30 s rest

Fig. 1. Experimental setup. A: The visual display as a guide for finger
movement speed. Each positive phase of the sine wave represents one
extension movement. Each trial contains five extensions, and five trials were
recorded in total. B: The 8 x 20 high-density electrode grid recorded the
surface EMG signals from the extensor digitorum communis (EDC) muscle.
The reflective markers measured the angles of the metacarpophalangeal joints.

C. Finger Motion Tracking and EMG Recording

The angles of the MCP joints of each finger were acquired
using an 8-camera Optitrack system (Natural Point Inc,
Corvallis, OR). We attached three 6-mm reflective markers to
each finger (see Fig. 1B). The 3D positions of the markers were
recorded using the motion capture software (Motive,
NaturalPoint Inc, Corvallis, OR) with a sampling rate of 120 Hz.
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Fig. 2. Block diagram of the data analysis. RMS: root mean square value,
LDA: linear discriminant analysis.

Only EMG signals of the extensor muscles were recorded,
since finger flexion movement was completed by the inertia of
the fingers with relaxed extensor muscle. The surface EMG
signals were acquired with the flexible high-density electrode
grids (ELSCHO064NM3, OT Bioelettronica, Torino, Italy). A
total of 160 recording electrodes (8 x 20, Fig. 1B), with an
inter-electrode distance of 10 mm in both directions, were
placed over the extensor digitorum communis (EDC) muscle.
Prior to the electrode placement, gel was applied to each
electrode sensor to improve conductivity. The skin above the
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EDC muscle was also cleaned with abrasive gel and then
scrubbed with alcohol pads to further reduce the impedance
between the electrodes and the skin. The EMG-USB2+ system
(OT Bioelettronica, Torino, Italy) amplified and filtered the
EMG signals (with a gain of 1000 and a band-pass filter of
10-900 Hz), and sampled at 2048 Hz with a 12-bit resolution.

D. Data Analysis

All the data were analyzed offline using MATLAB. The
block diagram of the data analysis procedures is illustrated in
Fig. 2. We began by identifying individual finger movement.
Previous studies [23], [24] have shown that the individual finger
extension movement is driven by the distinct compartments of
the EDC muscles. Therefore, the muscle activation regions were
localized and distinguishable during individual finger
movements, covering one third or less of the entire muscle [24].
Accordingly, the 2D root-mean-square values of the 8 x 20
monopolar EMG grid were calculated as the spatial features,
and the LDA classifier was used to identify each finger
extension. For each condition (finger or movement speed), ten
out of the twenty-five extension movements were randomly
selected to train the parameters of the classifier, and the
remaining fifteen trials were used to test the performance of the
classifier within each subject. A total of four classes (index,
middle, ring, or little) were evaluated, and only testing results
were reported. The movement speed was evaluated separately.

Given that localized activation regions of the EDC muscle
were associated with individual finger movements, a large
number of EMG channels contained mostly baseline noise
during individual finger movements (Fig. 3). To reduce the
influence of noise on joint angle prediction, only 8 x 8 channels
with higher signal amplitude were used for the estimation [20].
Specifically, the channels from column 1-8, 13-20, and 7-14
(Fig. 1B) were used for the index, middle, and ring/little finger
joint estimations, respectively. Since the muscle activation
regions of the ring and little fingers mostly overlapped, the same
columns were used for these two fingers.

The EMG signals in the selected 64 channels were then
decomposed into individual MU spike trains using the fast
independent component analysis (FastlCA) method [25]. To
obtain enough information for the acquisition of the MU spike
trains, the decomposition was performed for each trial with 5
extension movements. The accuracy of the algorithm has been
verified by previous studies [26]-[28]. The detailed steps and
the parameter selection of the algorithm were described in [28].
Briefly, the decomposition includes four main steps: 1) extend
the raw EMG signals by adding the delayed replicas of each
original channel [29]; 2) whiten the extended signals using
eigenvalue decomposition; 3) deconvolute the whitened EMG
signals using the FastICA algorithm; and 4) detect the discharge
timings using k-means clustering [30].

Two post-processing steps were performed to increase the
reliability of the decomposition. First, the silhouette measure
(SIL) was used to remove the MU spike trains with low
clustering separation [28]. The SIL is a clustering index that
measures how distinguishable the extracted MU was, compared
with the activities of all remaining MUs and background noise
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during the k-means clustering. Any MU spike trains with
SIL<0.8 were removed [31]. Second, the algorithm may
converge to the same MU multiple times as well as its delayed
replicas. Therefore, if a pair of MU spike trains had >50%
synchronized firings within + 1 ms after adjusting the time delay,
only the MU spike train with a higher SIL was reserved. The
50% synchronization was selected as the threshold because the
MU discharge synchronization level could reach up to 20 or 30
% for a pair of MUs [32]. The use of 50% synchronization can
avoid filtering two different MUs with strong firing
synchronization. After the preprocessing procedures, all the
retained MU spike trains were pooled into one composite spike
train. The mean discharge frequency of the composite spike
train was used to estimate the neural drive.
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Fig. 3. Two-dimensional heat map (root mean square value) during individual
finger movements. A: Index. B: Middle. C: Ring. D: Little. X- or Y-axis labels
represent the column or row numbers of the electrode grid.

In addition, the conventional EMG-amplitude-based
approach was used as a control condition for joint angle
estimation. Specifically, the same selected 8§ x 8 EMG signals
used for decomposition were band-pass filtered (4th order
Butterworth with a cut-off frequency at 50 and 500 Hz) to reject
motion artifacts and high frequency background noise. Then,
the signals were notch filtered (2nd order notch filter at 60 Hz
with a bandwidth of 1 Hz) to eliminate the power line noise.
Lastly, the root-mean-square value of the processed 8 x 8 EMG
signals were calculated, and then averaged across all 64
channels. The mean root-mean-square value was used as an
estimate of the EMG amplitude.

A 200 ms sliding window with a moving step of 50 ms was
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applied to smooth both the EMG amplitude and the neural drive
estimation. A larger size of the moving window can produce a
smoother prediction, but can lead to a longer time delay. To
meet the constraints of real-time control, a 200 ms window with
an update rate of 50 ms is considered acceptable [18]. The EMG
amplitude and the neural drive estimation were then associated
with the joint angle using a regression analysis. Specifically,
during the regression analysis, two of the five trials (each trial
contained five extension movements) were randomly selected to
calculate the regression coefficients using the EMG amplitude
or neural drive and the measured joint angles. The remaining
trials were used as the testing trials to predict the joint angles.
All possible combinations of extension movements were used
for regression/training. We also performed cross-validation
using all possible combinations of extension movements (not in
training) for testing. In addition, three regression models, linear,
quadratic, and second-order polynomial, were tested with the
Bayesian information criterion (BIC) [33] to acquire the
parsimonious (simplest and best) model. The performance of the
joint angle prediction was evaluated by the R? and RMSE values
between the estimated values and the actual joint movement.
Both the regression and testing results were reported in the
Results section.

E. Statistical Analysis

All statistical analyses were performed in SPSS 24 (IBM). The
performance of the joint angle prediction was investigated on
three factors [movement speed * finger % estimation method)|
using a repeated measures analysis of variance (ANOVA). Prior
to the ANOVA, the R? values were transformed using an
arcsine-square-root transformation (Y = arcsinvP, where P is
the R?, and Y is the result of the transformation), given that the
data are bounded between 0 and 1, and the transformation can
release the bound. Normality of the residuals was tested for each
of the ANOVA in the Results section, using the Shapiro-Wilk
test. In addition, the histograms, Q-Q plots and box plots of the
residuals were manually inspected for each condition. The
homogeneity test was performed to verify the equal variance
assumption using Levene’s test. Tests considered all the three
factors: finger, movement speed, and estimation method. The
tests affirmed normality (p > 0.05 in the Shapiro-Wilk test) with
equal variances (p > 0.05 in the Levene’s test). The finger
classification results were also tested using one-way ANOVA.
Post hoc pairwise comparisons with Bonferroni corrections
were conducted when necessary. The significant level of p <
0.05 was used.

III. Resurts

A. Finger Classification

We first investigated the classification accuracy of specific
finger movement using high-density EMG signals. Fig. 4 shows
the overall classification results and the corresponding
confusion matrix. The overall accuracy of the classification
results was 98.6+1.37%, and the accuracy was 99.6%, 99.8%,
98.3%, and 96.7% for the index, middle, ring, and little fingers,
respectively. The one-way ANOVA on the finger factor found a
significant difference [F(3,21) = 11.013, p = 0.007]. Further
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post hoc analysis showed that the classification accuracy of the
index and middle fingers was higher than the other two fingers,
and the little finger has the highest possibility to be detected as a
different finger. Although the ANOVA results showed

significant difference between fingers, numerically, the
difference was within 3.1% between fingers.
Classification Accuracy Conquion Matrix
_ 100/ 5 Litle] 0.4 02|04 967
8 2
5 % L Ringl 0 | 0 (98.3|0.4
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2 90| 5
5 85 £ Middle| 0 (99.8| 0 | 1.9
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12345678M
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Fig. 4. The overall results of finger classification. Left: the classification
accuracy of each subject. ‘M’ represents the mean accuracy of all the subjects.
Right: confusion matrix. For example, if ‘0.4’ is shown in the index column
and little row, it means the classifier falsely detected the index finger as the
little finger 0.4% out of the entire index finger identification.

B. EMG Decomposition

TABLE I
OVERALL RESULTS OF EMG DECOMPOSITION

Numbers of Mean Minimal Mean Maximal
Finger Motor Units Firing Rate /Hz Firing Rate /Hz
Fast Slow Fast Slow Fast Slow
Index 1444 11+5 6.3+£1.7 57422 18.6£3.6  15.9+1.5
Middle 167 12+4 6.7£1.4  6.6£3.1 21.144.3  19.1+2.9
Ring 1545 12+4 6.6£2.9 6.742.2 18.2+£3.9 17.7+£2.2
Little 1546 1347 6.5¢1.9 6.4+£1.2 17.6£3.5 16.7£1.8

We then decomposed the high-density EMG recordings into
individual MU spike trains. The overall decomposition results
are summarized in Table 1. The numbers of decomposed MUs,
after filtering, ranged from 14 to 16 for fast movements and 11
to 13 for slow movements. The mean firing rate of decomposed
MU spike train ranged from 5.7 Hz to 21.1 Hz. The mean
minimal firing rate represented the minimal firing rate of the
decomposed MUs and then averaged across subjects. The mean
maximal firing rate represented the maximal firing rate of the
decomposed MUs and then averaged across subjects. Three
three-way ANOVAs combined with Post hoc pairwise
comparisons were performed on the number of MUs, mean
minimal firing rate and mean maximum firing rate. The main
findings of statistical tests showed that (1) the fast movement
can detect a greater number of MUs than the slow movement (p
< 0.05); (2) the mean maximal firing rate of middle finger was
higher than the rest of the fingers (p < 0.05); and (3) the mean
maximal firing rate of fast movements of index and middle
fingers was higher than that of slow movement (p < 0.05).

C. Joint Angle Prediction

The MU spike trains were then pooled into a composite spike
train. The mean frequency of the composite spike train was
calculated with a 200 ms smoothing window to predict the joint
angle movement. In addition, the root-mean-square values of
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EMG signals with the same window parameters were also
calculated to predict the joint angles. Three regression models:
linear, quadratic, and second-order polynomial were used to
identify the parsimonious function. The quadratic and
second-order polynomial functions were used to account for
curvilinear relation between the joint angle and the neural drive
(or EMG amplitude), due to changes in muscle force moment
arm during movements. The BIC measurement showed that the
second-order polynomial model had the lowest BIC values for
both neural-drive-based and EMG-amplitude-based regression
analysis. Therefore, the second-order polynomial function was
used for further analysis, and the results of the linear and
quadratic functions were not reported. Given the collinearity
between the linear term and the squared term, only the overall fit
was evaluated, and the individual regression coefficient was not
interpreted. The histogram illustrating the distribution of the
residuals for the polynomial regression was also visually
inspected to ensure that the residuals were normally distributed.
Fig. 5 shows the sample time-series of joint angle predictions of
both the EMG-amplitude-based and the neural-drive-based
approaches. The neural-drive-based approach exhibited a higher
R? and a lower RMSE value than the EMG-amplitude-based
estimation. A more stable estimation during the continuous
extension, especially at the full extension angle, was observed
using the neural-drive-based approach.

Measured Angle — Neural Drive —EMG ‘

200 | R2 Neural Drive: 0.88; EMG: 0.71
RMSE: Neural Drive: 5.50°; Neural Drive: 8.41°
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Fig. 5. A: Example time-series plots of joint angle prediction using both
EMG-amplitude-based and neural-drive-based approaches. B: One
representative EMG channel with the largest root mean square (RMS) value.
C: Motor unit (MU) spike trains. Blue bars represent discharge timings of
individual MUs. The MUs are presented in recruitment order. Namely, MU
#1 was recruited first, and MU #10 was recruited last.

The overall performance of the two methods for each finger
and movement speed are summarized in Fig. 6. For the R? of the
regression, the values varied from 0.69 to 0.86 for the
neural-drive-based estimates, and varied from 0.66 to 0.81 for
the EMG-amplitude estimates. A three-way repeated measures
ANOVA was performed on the three factors—movement speed,

finger, and method (p = 0.8 in the Levene’s test). The results
showed a significant difference on the factors of speed [F(1,7) =
7.093, p = 0.032] and method [F(1,7) = 9.611, p = 0.017], but
found no significant difference on the factor of finger [F(3,21) =
1.057, p = 0.389]. A further post hoc analysis found that the
neural-drive-based estimates were always better than the
EMG-amplitude-based estimates at both fast (p = 0.006) and
slow (p = 0.043) movement speeds, and the fast movement
showed a better estimate than the slow movement only for the
neural-drive-based estimates (p = 0.005). For the RMSE
between the estimated and the measured joint angles, the
absolute RMSE values were normalized by the maximum angle
of individual fingers. The three-way repeated measure ANOVA
was performed on the normalized RMSE values. The ANOVA
(» = 0.1 in the Levene’s test) showed that a significant
interaction between the factors of speed and method [F(1,7) =
6.039, p = 0.044], but found no significant difference on the
factor of finger [F(3,21) = 0.540, p = 0.660]. Further post hoc
analysis showed that the neural-drive-based estimates always
had lower RMSE than the EMG-amplitude-based estimates on
both fast (p = 0.008) and slow (p = 0.044) movement speeds,
and the fast movement showed a lower RMSE than the slow
movement only for the neural-drive-based estimates (p = 0.006).
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Fig. 6. The overall R? and root mean square error (RMSE) results of both
neural-drive-based and EMG-amplitude-based approaches. A: R? values. B:
normalized RMSE values. The error bars represent the standard errors across
eight subjects. Individual circles represent individual subjects.

Finally, the overall difference of R? and RMSE values during
regression and testing are summarized in Fig. 7. The grand mean
value of each condition was calculated. A small difference
(~0.03 for R? values and ~0.02 for RMSE values) was found
between the regression and testing results for both approaches.
The results indicated that both approaches exhibited a consistent
estimate across different trials.
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IV. DISCUSSION

In this study, we estimated the joint kinematics of individual
fingers based on populational MU firing frequency, which
reflected the descending neural drive to the motoneuron pool.
The MU firing properties were obtained from high-density
EMG recordings of finger extensor muscles. The dynamic
movement of each finger was first classified based on spatial
patterns of muscle activations during individual finger
movements. The joint angles were estimated using a
second-order polynomial regression. The performance of the
joint angle prediction based on the derived neural drive was also
compared with the global EMG-amplitude-based prediction.
Our results showed that individual finger movement can be
classified with high accuracy, and that the joint angle can be
predicted accurately using the neural-drive-based approach. In
addition, we showed that the neural-drive-based approach
outperformed the EMG-amplitude-based approach. These
findings indicate that the neural-drive-based approach had great
promise in accurately predicting joint angles of individual
fingers, which can potentially be wused as a reliable
human-machine interface signal.

Ml Neural Drive Regression lBIEMG Regression
Bl Neural Drive Testing [ |EMG Testing
0.3

o o o
o o
. o]
0.9 E E w 0.25/ ° °
o @ 8 B 3
8 = e ° o
0.8 5 x© g2, _ 8 E §
> B 3 ° g E 8
0.7 : | Zo1s! g & -
. o Y- & ]
8 g £
0.6 s S 2 o1
:
05 8 0.05

EMG EMG

Neural Drive
Fig. 7. The grand mean values of R? and root mean square error (RMSE)
values between regression and testing results for both neural-drive-based and
EMG-amplitude-based approaches. Individual circles represent individual
regression or testing results.

Neural Drive

A. Finger Classification

Individual finger extension is driven by the EDC muscle
compartments in the forearm. The current study identified
individual finger extension based on spatial patterns of
activation from the EDC muscle. The synchronized finger
extension can arise from mechanical couplings and neural
control from common synaptic inputs among different fingers.
The enslaving effect can bias the EMG amplitude estimation
[35], [36]. Furthermore, because of the complex anatomical
organization of the EDC, traditional EMG recordings may not
accurately capture the muscle activations due to potential
cross-talk [35]. On the other hand, EDC is a multi-compartment
muscle [37], and distinct subpopulations of the motoneuron pool
control the individual compartments of the EDC [38]. A
previous study [24] has shown that the active compartments
during individual finger extension are localized and spatially
distinguishable. Therefore, the use of high-density EMG
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recordings, which can capture the activation patterns of the
entire muscle, is an effective approach to extract the different
spatial activation patterns during different finger movements.
Our results showed that the average classification accuracy was
> 98%. We also notice that the classification accuracy of the
index, middle, and ring fingers are slightly higher than that of
the little finger. The low accuracy can arise from the fact that the
activation of the little finger spans a major surface region of the
EDC muscle, and the index (distal), middle (proximal), and ring
(central) fingers are relatively localized as shown in Fig. 3 and a
previous study [24].

B. EMG Decomposition

Our results showed that the FastICA-based algorithm can
extract MU behaviors under dynamic movements. The dynamic
contraction conditions impose challenges to the algorithm,
largely due to muscle fiber shift beneath the recording
electrodes, which can lead to variations of the EMG signals.
Specifically, the shift of the muscle fibers can affect the MUAP
waveforms (in both shape and amplitude) recorded at a
particular channel. Furthermore, external factors, including
motion artifacts and changes in electrode-electrolyte contact
during dynamic movements, can further aggravate the accuracy
of the decomposition. It has been reported that only about 50%
of common MUs can be found between two different trials for a
given task, due to changes of MUAP waveform [31]. However,
our results showed that the FastICA-based algorithm was not
sensitive to the variation of MUAP under the controlled
dynamic movement condition, providing high decomposition
yield with > 10 MUs per task. The decomposition yield was
similar to the results reported in a recent study under dynamic
wrist movement conditions [31].

During the experiment, different speeds of extension
movements were evaluated. Our results showed that the
decomposed MU discharge events can still predict the fast
changes of recruitment and derecruitment during the relatively
fast dynamic motions. In addition, we noticed that the fast
movement can yield more MUs than the slow movement. It is
likely that the fast movement required higher levels of muscle
contractions, and, consequently, more MUs were recruited [39].
A larger number of MU spike trains can better represent the
population behavior of the motoneuron pool, which can lead to a
better prediction of the neural drive.

C. Joint Angle Prediction

The results showed a consistently better performance of
neural-drive-based approach for joint angle predictions,
compared with the classic EMG-amplitude-based approach. The
neural drive was derived from the populational discharge
frequency of the composite spike train, which has several
advantages over the EMG-amplitude-based approach. First, the
binary spike train was minimally influenced by the MUAP
variation, such as the change or cancellation of the waveforms.
Second, the neural-drive-based approach was not sensitive to
background noise, including variations in the baseline noise and
motion artifacts. These factors tend to bias the joint angle
estimations using the EMG-amplitude-based approach,
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especially during dynamic contractions.

We also noticed that the fast movements showed a better
performance than the slow movements using the
neural-drive-based approach. As we have discussed ecarlier,
more MUs can be recruited from fast movements [39], leading
to better estimates of the joint movements. The speed of 5 s per
extension was relatively slow, likely to be much slower than a
majority of daily activities, only requiring a small amount of
muscle activations. Nevertheless, we still found that the
neural-drive-based approach was slightly better than the
EMG-amplitude-based approach under the slow movement
condition. The 2-s movement speed condition is likely to be
more representative to daily activities, and we found more
distinct differences in the angle prediction performance between
the two approaches.

To further evaluate the neural-drive-based approach, model
regression and testing analysis was performed on individual
fingers across different trials. We found a minor difference on
the goodness of fit (R?) and angle prediction errors (RMSE
values) between the regression and testing, and similar
performance was observed across individual fingers. These
outcomes indicated the stability of using the neural-drive-based
approach across different fingers, consistent with earlier studies
[40]. In addition, we used the BIC index to select the simplest
and best model for the joint angle predictions. A complex model
can capture more variations in the existing data, but can over-fit
the data and lose generalizability to new observations. In our
study, the second-order polynomial model was selected. The
model selection was consistent with earlier observations, which
showed non-linearity between the joint movements and the
EMG signals [41].

D. Limitations

In our current study, all the analyses were performed offline.
The EMG-amplitude-based approach is suitable for real-time
processing, because minimal computation is required. However,
the computational load of the neural-drive-based approach is
high, largely during the EMG decomposition process. FastICA
indeed is more efficient compared with other ICA algorithms,
but online calculation is still a challenge. As a result, real-time
joint angle estimation was not tested using MU firing activities
in the current study. Nonetheless, online decomposition can be
achieved as shown in previous studies [42], [43]. The strategy of
online decomposition is to acquire the separation matrix for the
extraction of motoneuron discharge events using a short initial
data segment (approximately 5-10 s, which typically requires
approximately 10 s for computation). The subsequent MU
discharge information can be obtained iteratively by multiplying
the separation matrix with the incoming data segments. The
separation matrix may require periodic update during long-term
use. In addition, it has also been shown that the performance of
the real-time processing is worse than the offline processing
[43], but the neural-drive-based approach is still beneficial
compared with the EMG-amplitude-based approach during
prolonged muscle activation. Although the performance
difference in joint angle estimation was small between the
neural-drive-based and the EMG-amplitude-based approach in

the short trial period. We are optimistic that the
neural-drive-based approach will show more stable performance
over time, which is critical for human-machine interactions.

V. CONCLUSION

The current study shows that individual finger movements
can be identified, and the individual finger joint angles can be
continuously predicted using populational MU firing events.
The classification accuracy of individual finger movements was
> 96% using the spatial patterns of muscle activations. The
neural-drive-based approach, through high-density EMG
decomposition, provided a more accurate estimation of the

finger = movements, compared with the classic
EMG-amplitude-based approach. Overall, the
neural-drive-based approach can further facilitate the

development of human-machine interactions. This technique
can shift the interface signal from the macro EMG to
populational MU activities, which is more robust to external
interference. Our results verified the feasibility of using the
neural-drive-based approach to reliably and continuously
estimate the joint angles of individual fingers. These findings
provide support on an alternative interface signal that could be
used for human-machine interactions.
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