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 

Abstract— Estimation of joint kinematics plays an important role 

in intuitive human-machine interactions. However, continuous and 

reliable estimation of small (e.g., the finger) joint angles is still a 

challenge. The objective of this study was to continuously estimate 

finger joint angles using populational motoneuron firing activities. 

Multi-channel surface electromyogram (sEMG) signals were 

obtained from the extensor digitorum communis muscles, while the 

subjects performed individual finger oscillatory extension 

movements at two different speeds. The individual finger movement 

was first classified based on the EMG signals. The discharge timings 

of individual motor units were extracted through high-density EMG 

decomposition, and were then pooled as a composite discharge train. 

The firing frequency of the populational motor unit firing events 

was used to represent the descending neural drive to the motor unit 

pool. A second-order polynomial regression was then performed to 

predict the measured metacarpophalangeal extension angle using 

the derived neural drive based on the neuronal firings. Our results 

showed that individual finger extension movement can be classified 

with > 96% accuracy based on multi-channel EMG. The extension 

angles of individual fingers can be predicted continuously by the 

derived neural drive with R2 values > 0.8. The performance of the 

neural-drive-based approach was superior to the conventional 

EMG-amplitude-based approach, especially during fast movements. 

These findings indicated that the neural-drive-based interface was a 

promising approach to reliably predict individual finger kinematics. 

 
Index Terms— Biosignal processing, Joint angle prediction, 

Motor unit, Finger movement, Motor unit decomposition. 

 

I. INTRODUCTION 

uman-machine interactions have shown great promise in 

restoring motor function for individuals with 

neuromuscular disorders [1]–[3]. To drive these 

rehabilitative/assistive devices, biological signals, ranging from 

electrophysiological signals of the nerve system to limb 

biomechanical signals, are typically extracted to interface with 

the machine. In the past few years, we have seen substantial 

development in robust human-machine interface, in order to 

establish a reliable communication between humans and 

machines [4]–[6]. Specifically, the decoded neural information 

for the desired motor output can come from multiple sources, 

such as the brain, peripheral nerves, or muscles [7]–[9]. For 

example, motor intent has been decoded from neuronal 

activities of the motor cortex, and has been used to control 
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neuroprosthesis of a subject with tetraplegia [9]. A proportional 

and simultaneous control of multiple degrees of freedom 

prostheses is also possible with decoded motor intent based on 

intramuscular electromyogram (EMG) signals [10]. 

Surface EMG (sEMG) signals have also been widely used as 

a control input of robot-assisted devices [11]–[13]. Global EMG 

features (e.g. amplitude [14] or spatial activation pattern [15]) 

can be used to control rehabilitation/assistive devices. However, 

the stability and accuracy is not satisfactory, largely due to 

issues of the intrinsic stability of the global EMG features and 

the distortion of the neural signals after a series of 

transformations from the brain to the muscles. Specifically, 

EMG signals represent a spatial and temporal superimposition 

of motor unit action potential (MUAP) trains from hundreds of 

recruited motor units (MUs). Phase and amplitude cancellation 

of MUAPs during superposition can distort the actual 

descending neural information [16]. Variations of the MUAP 

amplitudes or shapes affected by the volume conductive process 

from the muscle to the skin surface can also bias global EMG 

features. Lastly, external factors during the acquisition of EMG 

signals can also contaminate the recordings. These include a 

shift of the electrode location relative to the targeted muscles, 

motion artifact interference [17], or a variation of the baseline 

noise in the EMG signals. 

To address these issues, a neural interface signal based on the 

discharge frequency of the motoneuron pool has been developed 

[18]. This neural interface first obtains motoneuron discharge 

information through decomposition of the high-density sEMG 

recordings. The discharge information of motoneurons at the 

population level (i.e., the output signals of spinal cord) can 

reflect the descending neural command from the brain to the 

muscles. The derived neural drive signal represents the neural 

command as binary motoneuron firing events, and can 

overcome the interference from MUAP variations or external 

interference during signal acquisition. Previous studies have 

shown that the derived neural drive signals can better predict 

muscle forces, compared with the global EMG features [19], 

[20]. However, previous research primarily focuses on force 

predictions at constant or slow varying levels of isometric 

muscle contractions. The neural-drive-based prediction of joint 

kinematics under dynamic movements has not been evaluated. 

Accordingly, our study systematically investigated the 

prediction of joint angles of individual fingers using the 

neural-drive-based approach. The individual finger movements 

were first classified using the linear discriminant analysis 

(LDA) classifier on multi-channel EMG signals of the extensor 

digitorum communis muscles. The LDA method has been shown 
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to be a robust and efficient approach for EMG-based pattern 

recognition [21]. Motoneuron discharge events were extracted 

through high-density EMG decomposition, and were then 

pooled into a composite train. The average discharge frequency 

of the composite discharge events was calculated to estimate the 

neural drive. The metacarpophalangeal (MCP) joint angle of 

individual fingers was predicted using a second-order 

polynomial regression of the derived neural drive signals. To 

evaluate the prediction performance, we compared the 

neural-drive-based approach with the global EMG-based 

approach. Our results showed that, compared with the global 

EMG-based method, the neural-drive-based approach can better 

predict the joint angles with a higher correlation (R2) and a 

lower root-mean-square error (RMSE) between the predicted 

and the measured joint angles. Our findings indicate that the 

neural-drive-based approach has great promise in predicting 

joint kinematics of individual fingers during dynamic 

movements. A preliminary study involving two subjects with 

limited analyses has been reported previously [22]. 

II. METHODS 

A. Subjects 

After providing the written informed consent, eight intact 

subjects (six males, two females; aged 26.6±5.6 years) 

participated in the experiment. The experimental protocol and 

all data analyses were approved by the Institutional Review 

Board of the University of North Carolina at Chapel Hill. 

B. Experimental Protocol 

Subjects were seated at a straight-back chair with the right 

shoulder comfortably abducted approximately 45°, their 

forearm fully pronated and supported on the soft foam pads, and 

the MCP joints of the four fingers (index, middle, ring, and 

little) naturally bent with approximately 120° to the palm 

(resting state). During the experiment, subjects extended one 

designated finger from the naturally relaxed position (~120° to 

the palm) to maximum joint angle they can extend, and then 

gradually decreased the extension angle back to the initial 

position. The subjects were asked to minimize muscle 

co-contractions. The movement speed was guided by a 

custom-built MATLAB (MathWorks Inc) display (see Fig. 1A). 

The red curve continuously moved over the blue trajectory as a 

series of positive phases of a sine wave at two different speeds 

(2 s or 5 s for each phase). Take the 2 s movement condition as 

an example, the subjects needed to reach maximum extension 

from resting in 1 s, and took 1 s to come back to the resting state. 

Subjects were asked to follow the movement of the red curve, 

with the full relaxation at the sine wave peak value of 1 and the 

resting state at the minimum value of 0. A 1-s resting was 

provided between two adjacent phases. The finger extension 

movements were repeated five times within each trial, and five 

trials were performed. Therefore, a total of twenty-five 

extension movements were acquired for each condition (per 

finger or movement speed). A 30-s rest period was provided 

between two consecutive trials to avoid cumulative fatigue. The 

order of designated finger or movement speed was randomized. 

Overall, a total of 40 trials (four fingers × two movement speeds 

× five trials) were recorded for each subject. 

 

 

C. Finger Motion Tracking and EMG Recording 

The angles of the MCP joints of each finger were acquired 

using an 8-camera Optitrack system (Natural Point Inc, 

Corvallis, OR). We attached three 6-mm reflective markers to 

each finger (see Fig. 1B). The 3D positions of the markers were 

recorded using the motion capture software (Motive, 

NaturalPoint Inc, Corvallis, OR) with a sampling rate of 120 Hz.  

 

 
Only EMG signals of the extensor muscles were recorded, 

since finger flexion movement was completed by the inertia of 

the fingers with relaxed extensor muscle. The surface EMG 

signals were acquired with the flexible high-density electrode 

grids (ELSCH064NM3, OT Bioelettronica, Torino, Italy). A 

total of 160 recording electrodes (8 × 20, Fig. 1B), with an 

inter-electrode distance of 10 mm in both directions, were 

placed over the extensor digitorum communis (EDC) muscle. 

Prior to the electrode placement, gel was applied to each 

electrode sensor to improve conductivity. The skin above the 

 
Fig. 1. Experimental setup. A: The visual display as a guide for finger 

movement speed. Each positive phase of the sine wave represents one 

extension movement. Each trial contains five extensions, and five trials were 

recorded in total. B: The 8 × 20 high-density electrode grid recorded the 

surface EMG signals from the extensor digitorum communis (EDC) muscle. 

The reflective markers measured the angles of the metacarpophalangeal joints.  

 
 

Fig. 2.  Block diagram of the data analysis. RMS: root mean square value, 

LDA: linear discriminant analysis. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JBHI.2019.2926307

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

EDC muscle was also cleaned with abrasive gel and then 

scrubbed with alcohol pads to further reduce the impedance 

between the electrodes and the skin. The EMG-USB2+ system 

(OT Bioelettronica, Torino, Italy) amplified and filtered the 

EMG signals (with a gain of 1000 and a band-pass filter of 

10-900 Hz), and sampled at 2048 Hz with a 12-bit resolution.  

D. Data Analysis 

All the data were analyzed offline using MATLAB. The 

block diagram of the data analysis procedures is illustrated in 

Fig. 2. We began by identifying individual finger movement. 

Previous studies [23], [24] have shown that the individual finger 

extension movement is driven by the distinct compartments of 

the EDC muscles. Therefore, the muscle activation regions were 

localized and distinguishable during individual finger 

movements, covering one third or less of the entire muscle [24]. 

Accordingly, the 2D root-mean-square values of the 8 × 20 

monopolar EMG grid were calculated as the spatial features, 

and the LDA classifier was used to identify each finger 

extension. For each condition (finger or movement speed), ten 

out of the twenty-five extension movements were randomly 

selected to train the parameters of the classifier, and the 

remaining fifteen trials were used to test the performance of the 

classifier within each subject. A total of four classes (index, 

middle, ring, or little) were evaluated, and only testing results 

were reported. The movement speed was evaluated separately. 

Given that localized activation regions of the EDC muscle 

were associated with individual finger movements, a large 

number of EMG channels contained mostly baseline noise 

during individual finger movements (Fig. 3). To reduce the 

influence of noise on joint angle prediction, only 8 × 8 channels 

with higher signal amplitude were used for the estimation [20]. 

Specifically, the channels from column 1-8, 13-20, and 7-14 

(Fig. 1B) were used for the index, middle, and ring/little finger 

joint estimations, respectively. Since the muscle activation 

regions of the ring and little fingers mostly overlapped, the same 

columns were used for these two fingers. 

The EMG signals in the selected 64 channels were then 

decomposed into individual MU spike trains using the fast 

independent component analysis (FastICA) method [25]. To 

obtain enough information for the acquisition of the MU spike 

trains, the decomposition was performed for each trial with 5 

extension movements. The accuracy of the algorithm has been 

verified by previous studies [26]–[28]. The detailed steps and 

the parameter selection of the algorithm were described in [28]. 

Briefly, the decomposition includes four main steps: 1) extend 

the raw EMG signals by adding the delayed replicas of each 

original channel [29]; 2) whiten the extended signals using 

eigenvalue decomposition; 3) deconvolute the whitened EMG 

signals using the FastICA algorithm; and 4) detect the discharge 

timings using k-means clustering [30].  

Two post-processing steps were performed to increase the 

reliability of the decomposition. First, the silhouette measure 

(SIL) was used to remove the MU spike trains with low 

clustering separation [28]. The SIL is a clustering index that 

measures how distinguishable the extracted MU was, compared 

with the activities of all remaining MUs and background noise 

during the k-means clustering. Any MU spike trains with 

SIL<0.8 were removed [31]. Second, the algorithm may 

converge to the same MU multiple times as well as its delayed 

replicas. Therefore, if a pair of MU spike trains had >50% 

synchronized firings within ± 1ms after adjusting the time delay, 

only the MU spike train with a higher SIL was reserved. The 

50% synchronization was selected as the threshold because the 

MU discharge synchronization level could reach up to 20 or 30 

% for a pair of MUs [32]. The use of 50% synchronization can 

avoid filtering two different MUs with strong firing 

synchronization. After the preprocessing procedures, all the 

retained MU spike trains were pooled into one composite spike 

train. The mean discharge frequency of the composite spike 

train was used to estimate the neural drive.  

 

 
In addition, the conventional EMG-amplitude-based 

approach was used as a control condition for joint angle 

estimation. Specifically, the same selected 8 × 8 EMG signals 

used for decomposition were band-pass filtered (4th order 

Butterworth with a cut-off frequency at 50 and 500 Hz) to reject 

motion artifacts and high frequency background noise. Then, 

the signals were notch filtered (2nd order notch filter at 60 Hz 

with a bandwidth of 1 Hz) to eliminate the power line noise. 

Lastly, the root-mean-square value of the processed 8 × 8 EMG 

signals were calculated, and then averaged across all 64 

channels. The mean root-mean-square value was used as an 

estimate of the EMG amplitude. 

A 200 ms sliding window with a moving step of 50 ms was 

 
 

Fig. 3. Two-dimensional heat map (root mean square value) during individual 

finger movements. A: Index. B: Middle. C: Ring. D: Little. X- or Y-axis labels 

represent the column or row numbers of the electrode grid. 
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applied to smooth both the EMG amplitude and the neural drive 

estimation. A larger size of the moving window can produce a 

smoother prediction, but can lead to a longer time delay. To 

meet the constraints of real-time control, a 200 ms window with 

an update rate of 50 ms is considered acceptable [18]. The EMG 

amplitude and the neural drive estimation were then associated 

with the joint angle using a regression analysis. Specifically, 

during the regression analysis, two of the five trials (each trial 

contained five extension movements) were randomly selected to 

calculate the regression coefficients using the EMG amplitude 

or neural drive and the measured joint angles. The remaining 

trials were used as the testing trials to predict the joint angles. 

All possible combinations of extension movements were used 

for regression/training. We also performed cross-validation 

using all possible combinations of extension movements (not in 

training) for testing. In addition, three regression models, linear, 

quadratic, and second-order polynomial, were tested with the 

Bayesian information criterion (BIC) [33] to acquire the 

parsimonious (simplest and best) model. The performance of the 

joint angle prediction was evaluated by the R2 and RMSE values 

between the estimated values and the actual joint movement. 

Both the regression and testing results were reported in the 

Results section. 

E. Statistical Analysis 

All statistical analyses were performed in SPSS 24 (IBM). The 

performance of the joint angle prediction was investigated on 

three factors [movement speed × finger × estimation method] 

using a repeated measures analysis of variance (ANOVA). Prior 

to the ANOVA, the R2 values were transformed using an 

arcsine-square-root transformation (𝑌 = 𝑎𝑟𝑐𝑠𝑖𝑛√𝑃, where P is 

the R2, and Y is the result of the transformation), given that the 

data are bounded between 0 and 1, and the transformation can 

release the bound. Normality of the residuals was tested for each 

of the ANOVA in the Results section, using the Shapiro-Wilk 

test. In addition, the histograms, Q-Q plots and box plots of the 

residuals were manually inspected for each condition. The 

homogeneity test was performed to verify the equal variance 

assumption using Levene’s test. Tests considered all the three 

factors: finger, movement speed, and estimation method. The 

tests affirmed normality (p > 0.05 in the Shapiro-Wilk test) with 

equal variances (p > 0.05 in the Levene’s test). The finger 

classification results were also tested using one-way ANOVA. 

Post hoc pairwise comparisons with Bonferroni corrections 

were conducted when necessary. The significant level of p < 

0.05 was used. 

III. RESULTS 

A. Finger Classification 

We first investigated the classification accuracy of specific 

finger movement using high-density EMG signals. Fig. 4 shows 

the overall classification results and the corresponding 

confusion matrix. The overall accuracy of the classification 

results was 98.6±1.37%, and the accuracy was 99.6%, 99.8%, 

98.3%, and 96.7% for the index, middle, ring, and little fingers, 

respectively. The one-way ANOVA on the finger factor found a 

significant difference [F(3,21) = 11.013, p = 0.007]. Further 

post hoc analysis showed that the classification accuracy of the 

index and middle fingers was higher than the other two fingers, 

and the little finger has the highest possibility to be detected as a 

different finger. Although the ANOVA results showed 

significant difference between fingers, numerically, the 

difference was within 3.1% between fingers. 

 

 

B. EMG Decomposition 

 
 

We then decomposed the high-density EMG recordings into 

individual MU spike trains. The overall decomposition results 

are summarized in Table 1. The numbers of decomposed MUs, 

after filtering, ranged from 14 to 16 for fast movements and 11 

to 13 for slow movements. The mean firing rate of decomposed 

MU spike train ranged from 5.7 Hz to 21.1 Hz. The mean 

minimal firing rate represented the minimal firing rate of the 

decomposed MUs and then averaged across subjects. The mean 

maximal firing rate represented the maximal firing rate of the 

decomposed MUs and then averaged across subjects. Three 

three-way ANOVAs combined with Post hoc pairwise 

comparisons were performed on the number of MUs, mean 

minimal firing rate and mean maximum firing rate. The main 

findings of statistical tests showed that (1) the fast movement 

can detect a greater number of MUs than the slow movement (p 

< 0.05); (2) the mean maximal firing rate of middle finger was 

higher than the rest of the fingers (p < 0.05); and (3) the mean 

maximal firing rate of fast movements of index and middle 

fingers was higher than that of slow movement (p < 0.05).  

C. Joint Angle Prediction 

The MU spike trains were then pooled into a composite spike 

train. The mean frequency of the composite spike train was 

calculated with a 200 ms smoothing window to predict the joint 

angle movement. In addition, the root-mean-square values of 

 
 

Fig. 4. The overall results of finger classification. Left: the classification 

accuracy of each subject. ‘M’ represents the mean accuracy of all the subjects. 

Right: confusion matrix. For example, if ‘0.4’ is shown in the index column 

and little row, it means the classifier falsely detected the index finger as the 

little finger 0.4% out of the entire index finger identification. 

  

TABLE I 

OVERALL RESULTS OF EMG DECOMPOSITION 

Finger 

Numbers of 

Motor Units 

Mean Minimal 

Firing Rate /Hz 

Mean Maximal 

Firing Rate /Hz 

Fast Slow Fast Slow Fast Slow 

Index 14±4 11±5 6.3±1.7 5.7±2.2 18.6±3.6 15.9±1.5 

Middle 16±7 12±4 6.7±1.4 6.6±3.1 21.1±4.3 19.1±2.9 

Ring 15±5 12±4 6.6±2.9 6.7±2.2 18.2±3.9 17.7±2.2 

Little 15±6 13±7 6.5±1.9 6.4±1.2 17.6±3.5 16.7±1.8 
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EMG signals with the same window parameters were also 

calculated to predict the joint angles. Three regression models: 

linear, quadratic, and second-order polynomial were used to 

identify the parsimonious function. The quadratic and 

second-order polynomial functions were used to account for 

curvilinear relation between the joint angle and the neural drive 

(or EMG amplitude), due to changes in muscle force moment 

arm during movements. The BIC measurement showed that the 

second-order polynomial model had the lowest BIC values for 

both neural-drive-based and EMG-amplitude-based regression 

analysis. Therefore, the second-order polynomial function was 

used for further analysis, and the results of the linear and 

quadratic functions were not reported. Given the collinearity 

between the linear term and the squared term, only the overall fit 

was evaluated, and the individual regression coefficient was not 

interpreted. The histogram illustrating the distribution of the 

residuals for the polynomial regression was also visually 

inspected to ensure that the residuals were normally distributed. 

Fig. 5 shows the sample time-series of joint angle predictions of 

both the EMG-amplitude-based and the neural-drive-based 

approaches. The neural-drive-based approach exhibited a higher 

R2 and a lower RMSE value than the EMG-amplitude-based 

estimation. A more stable estimation during the continuous 

extension, especially at the full extension angle, was observed 

using the neural-drive-based approach.  

 

 
The overall performance of the two methods for each finger 

and movement speed are summarized in Fig. 6. For the R2 of the 

regression, the values varied from 0.69 to 0.86 for the 

neural-drive-based estimates, and varied from 0.66 to 0.81 for 

the EMG-amplitude estimates. A three-way repeated measures 

ANOVA was performed on the three factors—movement speed, 

finger, and method (p = 0.8 in the Levene’s test). The results 

showed a significant difference on the factors of speed [F(1,7) = 

7.093, p = 0.032] and method [F(1,7) = 9.611, p = 0.017], but 

found no significant difference on the factor of finger [F(3,21) = 

1.057, p = 0.389]. A further post hoc analysis found that the 

neural-drive-based estimates were always better than the 

EMG-amplitude-based estimates at both fast (p = 0.006) and 

slow (p = 0.043) movement speeds, and the fast movement 

showed a better estimate than the slow movement only for the 

neural-drive-based estimates (p = 0.005). For the RMSE 

between the estimated and the measured joint angles, the 

absolute RMSE values were normalized by the maximum angle 

of individual fingers. The three-way repeated measure ANOVA 

was performed on the normalized RMSE values. The ANOVA 

(p = 0.1 in the Levene’s test) showed that a significant 

interaction between the factors of speed and method [F(1,7) = 

6.039, p = 0.044], but found no significant difference on the 

factor of finger [F(3,21) = 0.540, p = 0.660]. Further post hoc 

analysis showed that the neural-drive-based estimates always 

had lower RMSE than the EMG-amplitude-based estimates on 

both fast (p = 0.008) and slow (p = 0.044) movement speeds, 

and the fast movement showed a lower RMSE than the slow 

movement only for the neural-drive-based estimates (p = 0.006). 

 

 
Finally, the overall difference of R2 and RMSE values during 

regression and testing are summarized in Fig. 7. The grand mean 

value of each condition was calculated. A small difference 

(~0.03 for R2 values and ~0.02 for RMSE values) was found 

between the regression and testing results for both approaches. 

The results indicated that both approaches exhibited a consistent 

estimate across different trials. 

 

 
 

Fig. 5. A: Example time-series plots of joint angle prediction using both 

EMG-amplitude-based and neural-drive-based approaches. B: One 

representative EMG channel with the largest root mean square (RMS) value. 

C: Motor unit (MU) spike trains. Blue bars represent discharge timings of 

individual MUs.  The MUs are presented in recruitment order. Namely, MU 

#1 was recruited first, and MU #10 was recruited last. 

 
 

Fig. 6. The overall R2 and root mean square error (RMSE) results of both 

neural-drive-based and EMG-amplitude-based approaches.  A: R2 values. B: 

normalized RMSE values. The error bars represent the standard errors across 

eight subjects. Individual circles represent individual subjects. 
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IV. DISCUSSION 

In this study, we estimated the joint kinematics of individual 

fingers based on populational MU firing frequency, which 

reflected the descending neural drive to the motoneuron pool. 

The MU firing properties were obtained from high-density 

EMG recordings of finger extensor muscles. The dynamic 

movement of each finger was first classified based on spatial 

patterns of muscle activations during individual finger 

movements. The joint angles were estimated using a 

second-order polynomial regression. The performance of the 

joint angle prediction based on the derived neural drive was also 

compared with the global EMG-amplitude-based prediction. 

Our results showed that individual finger movement can be 

classified with high accuracy, and that the joint angle can be 

predicted accurately using the neural-drive-based approach. In 

addition, we showed that the neural-drive-based approach 

outperformed the EMG-amplitude-based approach. These 

findings indicate that the neural-drive-based approach had great 

promise in accurately predicting joint angles of individual 

fingers, which can potentially be used as a reliable 

human-machine interface signal.  

 

 

A.  Finger Classification 

Individual finger extension is driven by the EDC muscle 

compartments in the forearm. The current study identified 

individual finger extension based on spatial patterns of 

activation from the EDC muscle. The synchronized finger 

extension can arise from mechanical couplings and neural 

control from common synaptic inputs among different fingers. 

The enslaving effect can bias the EMG amplitude estimation 

[35], [36]. Furthermore, because of the complex anatomical 

organization of the EDC, traditional EMG recordings may not 

accurately capture the muscle activations due to potential 

cross-talk [35]. On the other hand, EDC is a multi-compartment 

muscle [37], and distinct subpopulations of the motoneuron pool 

control the individual compartments of the EDC [38]. A 

previous study [24] has shown that the active compartments 

during individual finger extension are localized and spatially 

distinguishable. Therefore, the use of high-density EMG 

recordings, which can capture the activation patterns of the 

entire muscle, is an effective approach to extract the different 

spatial activation patterns during different finger movements. 

Our results showed that the average classification accuracy was 

> 98%. We also notice that the classification accuracy of the 

index, middle, and ring fingers are slightly higher than that of 

the little finger. The low accuracy can arise from the fact that the 

activation of the little finger spans a major surface region of the 

EDC muscle, and the index (distal), middle (proximal), and ring 

(central) fingers are relatively localized as shown in Fig. 3 and a 

previous study [24]. 

B. EMG Decomposition 

Our results showed that the FastICA-based algorithm can 

extract MU behaviors under dynamic movements. The dynamic 

contraction conditions impose challenges to the algorithm, 

largely due to muscle fiber shift beneath the recording 

electrodes, which can lead to variations of the EMG signals. 

Specifically, the shift of the muscle fibers can affect the MUAP 

waveforms (in both shape and amplitude) recorded at a 

particular channel. Furthermore, external factors, including 

motion artifacts and changes in electrode-electrolyte contact 

during dynamic movements, can further aggravate the accuracy 

of the decomposition. It has been reported that only about 50% 

of common MUs can be found between two different trials for a 

given task, due to changes of MUAP waveform [31]. However, 

our results showed that the FastICA-based algorithm was not 

sensitive to the variation of MUAP under the controlled 

dynamic movement condition, providing high decomposition 

yield with > 10 MUs per task. The decomposition yield was 

similar to the results reported in a recent study under dynamic 

wrist movement conditions [31]. 

During the experiment, different speeds of extension 

movements were evaluated. Our results showed that the 

decomposed MU discharge events can still predict the fast 

changes of recruitment and derecruitment during the relatively 

fast dynamic motions. In addition, we noticed that the fast 

movement can yield more MUs than the slow movement. It is 

likely that the fast movement required higher levels of muscle 

contractions, and, consequently, more MUs were recruited [39]. 

A larger number of MU spike trains can better represent the 

population behavior of the motoneuron pool, which can lead to a 

better prediction of the neural drive. 

C. Joint Angle Prediction 

The results showed a consistently better performance of 

neural-drive-based approach for joint angle predictions, 

compared with the classic EMG-amplitude-based approach. The 

neural drive was derived from the populational discharge 

frequency of the composite spike train, which has several 

advantages over the EMG-amplitude-based approach. First, the 

binary spike train was minimally influenced by the MUAP 

variation, such as the change or cancellation of the waveforms. 

Second, the neural-drive-based approach was not sensitive to 

background noise, including variations in the baseline noise and 

motion artifacts. These factors tend to bias the joint angle 

estimations using the EMG-amplitude-based approach, 

  

 
Fig. 7. The grand mean values of R2 and root mean square error (RMSE) 

values between regression and testing results for both neural-drive-based and 

EMG-amplitude-based approaches. Individual circles represent individual 

regression or testing results. 
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especially during dynamic contractions.  

We also noticed that the fast movements showed a better 

performance than the slow movements using the 

neural-drive-based approach. As we have discussed earlier, 

more MUs can be recruited from fast movements [39], leading 

to better estimates of the joint movements. The speed of 5 s per 

extension was relatively slow, likely to be much slower than a 

majority of daily activities, only requiring a small amount of 

muscle activations. Nevertheless, we still found that the 

neural-drive-based approach was slightly better than the 

EMG-amplitude-based approach under the slow movement 

condition. The 2-s movement speed condition is likely to be 

more representative to daily activities, and we found more 

distinct differences in the angle prediction performance between 

the two approaches.  

To further evaluate the neural-drive-based approach, model 

regression and testing analysis was performed on individual 

fingers across different trials. We found a minor difference on 

the goodness of fit (R2) and angle prediction errors (RMSE 

values) between the regression and testing, and similar 

performance was observed across individual fingers. These 

outcomes indicated the stability of using the neural-drive-based 

approach across different fingers, consistent with earlier studies 

[40]. In addition, we used the BIC index to select the simplest 

and best model for the joint angle predictions. A complex model 

can capture more variations in the existing data, but can over-fit 

the data and lose generalizability to new observations. In our 

study, the second-order polynomial model was selected. The 

model selection was consistent with earlier observations, which 

showed non-linearity between the joint movements and the 

EMG signals [41]. 

D. Limitations 

In our current study, all the analyses were performed offline. 

The EMG-amplitude-based approach is suitable for real-time 

processing, because minimal computation is required. However, 

the computational load of the neural-drive-based approach is 

high, largely during the EMG decomposition process. FastICA 

indeed is more efficient compared with other ICA algorithms, 

but online calculation is still a challenge. As a result, real-time 

joint angle estimation was not tested using MU firing activities 

in the current study. Nonetheless, online decomposition can be 

achieved as shown in previous studies [42], [43]. The strategy of 

online decomposition is to acquire the separation matrix for the 

extraction of motoneuron discharge events using a short initial 

data segment (approximately 5-10 s, which typically requires 

approximately 10 s for computation). The subsequent MU 

discharge information can be obtained iteratively by multiplying 

the separation matrix with the incoming data segments. The 

separation matrix may require periodic update during long-term 

use. In addition, it has also been shown that the performance of 

the real-time processing is worse than the offline processing 

[43], but the neural-drive-based approach is still beneficial 

compared with the EMG-amplitude-based approach during 

prolonged muscle activation. Although the performance 

difference in joint angle estimation was small between the 

neural-drive-based and the EMG-amplitude-based approach in 

the short trial period. We are optimistic that the 

neural-drive-based approach will show more stable performance 

over time, which is critical for human-machine interactions. 

V. CONCLUSION 

The current study shows that individual finger movements 

can be identified, and the individual finger joint angles can be 

continuously predicted using populational MU firing events. 

The classification accuracy of individual finger movements was 

> 96% using the spatial patterns of muscle activations. The 

neural-drive-based approach, through high-density EMG 

decomposition, provided a more accurate estimation of the 

finger movements, compared with the classic 

EMG-amplitude-based approach. Overall, the 

neural-drive-based approach can further facilitate the 

development of human-machine interactions. This technique 

can shift the interface signal from the macro EMG to 

populational MU activities, which is more robust to external 

interference. Our results verified the feasibility of using the 

neural-drive-based approach to reliably and continuously 

estimate the joint angles of individual fingers. These findings 

provide support on an alternative interface signal that could be 

used for human-machine interactions. 
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