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Abstract Given the rapid emergence of data science techniques in the sustainability sciences and 

the societal importance of many of these applications, there is an urgent need to prepare future 

scientists to be knowledgeable in both their chosen science domain and in data science. This 

article provides an overview of required competencies, educational programs and courses that 

are beginning to emerge, the challenges these pioneering programs face, and lessons learned by 

participating instructors, in the broader context of sustainability science competencies. In 

addition to data science competencies, competencies collaborating across disciplines are 

essential to enable sustainability scientists to work with data scientists. Programs and courses 

that target both sets of competencies – data science and interdisciplinary collaboration -  will 

improve our workforce capacity to apply innovative new approaches to yield solutions to 

complex sustainability problems. Yet developing these competencies is difficult and most 

instructors are choosing instructional approaches through intuition or trial and error. Research is 

needed to develop effective pedagogies for these specific competencies. 
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Introduction 

The past decade has seen the rise of data-intensive science (Hey et al., 2009), driven by 

advances in sensor technologies, expanded access to a wide variety of data sources, and a deluge 

of data generated by simulations. The term data science (DS) is widely used to denote the 

collection of scientific methods to extract meaningful insights or knowledge from data, and 

include emerging and rapidly changing methods in artificial intelligence, statistics, machine 

learning and data mining. As outlined in a recent National Academy of Sciences report on DS 

education (2018, p. 6),”data science is inherently concerned with understanding and addressing 

real-world problems”. Progress in application of DS to real world problems requires integration 

of general methodological knowledge along with knowledge of the particular data being 

analyzed (Fox and Hendler, 2014). Repko (2011) defined interdisciplinary integration as a 

process by which ideas, data and information, methods, tools, concepts, and/or theories are 

synthesized, connected, or blended. In this article we address the challenges of integrating DS 

methods with earth and sustainability science (ESS) content. While knowledge of both general 

DS methods and the ESS context of the data being analyzed can be held by a single individual, in 

practice this most often requires interdisciplinary (ID) collaboration between two or more 

individuals who work across their different disciplines (Pennington 2011b). 

As the amount of data relevant to ESS is increasing dramatically every year (Plale et al., 

2013), new methods from DS yield new scientific insights at record rates. For example, 

improved access to data and new technologies has driven innovations in sustainable cities, 

including the use of big visual data for managing construction sites (Tibaut and Zazula, 2018) 

and smart energy grids (Caputo et al., 2018). Yarime (2017) highlighted the importance of data 

science for achieving and monitoring the United Nations’ Sustainability Development Goals. 

Seele (2016) and Kitchin (2014) envisioned big data providing a pathway for rigorous 

observation of sustainability performance. Barile et al. (2018) stated that the challenge of 



 

sustainability requires a transformation in research and education to move towards approaches 

that combine people, technology, and governance, fostering “smartness” through application of 

DS. Data-intensive methods are increasingly being employed to answer environmental questions 

relevant to sustainability, such as prediction and forecasting of natural processes (e.g., for 

weather, climate, environmental conditions, sea level, sea ice, availability of ground water and 

food) and pattern recognition and event detection (e.g., identifying conditions leading to extreme 

weather events, earthquakes and volcanic eruptions). Great strides have been made in all of these 

areas in recent years (Gibert et al., 2018; The World Economic Forum, 2018; Xie et al., 2017; 

Sellars, S.L. and others, 2017; Gil, Y. and others, 2015; Monteleoni et al., 2013). The World 

Economic Forum (2018) has recently identified artificial intelligence and other emerging 

technologies as key disciplines to help address environmental issues and redesign how we 

manage our shared global environment. The potential of data-intensive approaches in 

sustainability science has also been recognized by the DS community, which has called for a 

pooling of “talents and knowledge to help find efficient and effective ways of managing and 

allocating natural resources” (Gomes, 2009, p. 6).  Likewise, the education section of the 

American Geophysical Union (AGU) concluded that “The changing landscape of information 

technology (e.g., big data, emerging technologies, access to a wide variety of tools, rich 

multimedia) also affects the kinds and quantities of resources that are available for problem 

solving. Students must learn to navigate this rapidly changing space, identifying and harnessing 

resources (e.g., tools, data, models, experts, collaborators [...]) that can be brought to bear on 

the convergent problems” (St. John et al., 2019, online - no page number). 

The research community and industry are quickly embracing new DS methods, and it is 

important that curricula in ESS keep up with these rapid developments to give future scientists 

working on sustainability-related problems the competencies they need to be effective and 

competitive in an increasingly information-driven environment. Professional competencies are 



 

frequently categorized as required knowledge, skill, and attributes (attitudes and behaviors) to be 

successful in a particular career, that can be addressed as learning outcomes 

implemented in specific class or training activities, as exemplified in Wiek et al. (2015). Yet 

there are no existing articles that assess the state of formal education in DS and ESS. This article 

seeks to fill that gap in knowledge. The authors are part of a collaboration between geoscientists 

(mostly focused on water resource and climate issues) and data scientists. We set out to identify 

existing formal educational opportunities (as opposed to informal training workshops) focused 

on applying DS techniques to earth and environmental data. Our objective was to learn what 

skills are being targeted, what pedagogies are being used and how well they are perceived to 

work by those faculty. In the process we discovered substantial DS education efforts under the 

umbrella of computational sustainability. Hence, this article focuses on existing opportunities for 

advanced DS training in the environmental pillar of sustainability science and across 

sustainability science more broadly, yet undoubtedly similar educational efforts are emerging in 

other specific fields relevant to sustainability science.  

The article consists of three major parts. The first part discusses key competencies needed to 

accelerate data-driven discovery in ESS, especially the need for collaboration competencies; the 

second part addresses programs and courses we identified and strategies being used in the design 

of individual courses, and the third part places our findings into the broader context of 

sustainability education competencies. While the second part integrates empirical information 

gathered from surveys and interviews of educators at the forefront of these emerging fields, the 

first and third parts synthesize theory and concepts from existing literature. 

 

 

 



 

Challenges of Interdisciplinary Collaboration to Advance Data-

Driven Discovery in Sustainability Science 

The necessity of collaboration in sustainability data science 

It is becoming clear that attacking ESS problems with DS requires significant knowledge in 

both (Sellars, S.L. and others, 2017; Ebert- Uphoff and Deng, 2017; Gil, Y. and others, 2015; 

Monteleoni et al., 2013). DS typically requires training in statistics, computer science, or a 

similar discipline, and choosing appropriate techniques requires a deep understanding of the 

available data analysis methods, their underlying model assumptions, computational effort, 

required sample size and pitfalls. While it is possible for an ESS expert to independently learn to 

apply DS techniques to problems of interest if they have substantial training in statistics, many 

ESS programs generally do not require statistics (Haider et al., 2018) or other DS courses, and it 

is well-recognized that earth and environmental scientists, specifically, need additional training 

to manage and use complex data (Hou, 2015). The Belmont Forum performed a skill gap 

analysis for data-driven research in the environmental sciences, identifying a lack of 

competencies in programming, visualization, data management, and data exchange - all core DS 

competencies (Belmont Forum, 2017).  

Conversely, while some data scientists focus on particular kinds of ESS data and develop 

knowledge in that domain, defining the science question to be considered requires deep ESS 

knowledge, such as awareness of important open science questions, understanding of their 

underlying physical, economic, and social processes, including spatial and temporal scales, 

availability of suitable datasets, and selection of data preprocessing strategies to maximize the 

strength of the signal or patterns to be detected and minimize noise (Ebert-Uphoff and Deng, 

2017). In addition, ESS data display spatial autocorrelation and geographic heterogeneity, 

requiring special statistical techniques (Berman et al., 2018). Combined knowledge is required 

throughout all phases of the research, in particular when it comes to interpreting the results and 



 

explaining what they mean. As economist and Nobel laureate Ronald Coase once said, if you 

torture the data long enough it will confess (Tullock, 2001, p. 205), implying that 

algorithms that look for patterns long enough will eventually identify some kind of pattern, but it 

might not actually be meaningful or new. Thus, it is important to carefully evaluate the results 

obtained from such analyses. Do the results represent a real physical phenomenon, or are they 

merely an unforeseen by-product of the data collection or analysis method? Both ESS and DS 

competencies are required to make this assessment. Thus, working independently neither a data 

scientist, nor an ESS expert, as trained in today’s educational environment, can be effective in 

this area. 

Virapongse et al. (2018) identified the need for education and training activities that 

improve data scientists’ understanding of domain topics and improve ESS’s knowledge of data 

management. There is a need to train current and next generation ESS professionals to extract 

usable information from the vast supply of data, train DS professionals to be competent in 

specific ESS areas, and train both to collaborate effectively to develop appropriate new methods 

for identifying meaningful, interpretable patterns across heterogeneous datasets (Blei and Smyth, 

2017; Pankratius et al., 2016; Sellars et al., 2013; Szalay and Gray, 2006). Workforce 

development in ESS and DS and interdisciplinary collaboration are closely intertwined 

(Hampton et al., 2017; Kempler and Mathews, 2017). 

 

Barriers to collaborating across disciplines 

There is a large body of literature on ID collaboration (see Stokols et al. (2008); Bozeman et 

al. (2013); Hall et al. (2018) for summaries). While research on organizational teams dates back 

many decades, research on science teams, also known as the science of team science, is relatively 

recent (Falk-Krzesinski et al., 2011; Hall et al., 2008) and important challenges have become 

apparent in these teams compared with better studied teams in organizations (Hall et al., 2018). 



 

ID research is known to be fraught with difficulties, taking considerably more time and effort 

compared with disciplinary research. Describing all important teamwork competencies is far 

beyond the scope of this article; here we only summarize a few basic concepts.  The next section 

will address one of these concepts in detail. 

Klein and Newell (1998, p. 3) provide the following widely used definition of 

interdisciplinary studies (IDS): “interdisciplinary studies may be defined as a process of 

answering a question, solving a problem, or addressing a topic that is too broad or complex to 

be dealt with adequately by a single discipline or profession. […]  IDS draws on disciplinary 

perspectives and integrates their insights through construction of a more comprehensive 

perspective.”  The concept of integrating is central in this definition and is key to any 

interdisciplinary effort (Repko, 2011).  

Interdisciplinary collaboration can be categorized by the level of integration, as outlined by 

Klein (2010) and illustrated in Fig. 1. For an extensive review of the many ways these terms 

have been used in literature, see (Choi and Pak, 2006). Although terminology has varied 

substantially, most have converged on the following definitions: 

● Multidisciplinary: Combines separate perspectives under a theme. 

● Interdisciplinary: Combines separate perspectives through the development of connections 

between them. 

● Transdisciplinary (meaning 1): Combines separate perspectives across academic and other 

sectors (e.g., government agencies, industry, organizations, etc.) through the development 

of connections between them to generate research that is informed by   stakeholders. 

● Transdisciplinary (meaning 2): Generates a new area of knowledge that deeply combines 

originally separate perspectives and may lead to new scientific frameworks, paradigms, or 

disciplines (for example, bioinformatics combined genomics and data mining). 





 

driven by a specific algorithm or dataset. In addition, ESS has traditionally relied on physics-

based approaches, namely developing models from governing equations and principles that were 

discovered over the span of centuries. In contrast, today’s data-driven approaches often do away 

with all of the rich domain knowledge and develop models entirely based on a single dataset - an 

approach that has some well-known short-comings and may yield questionable results (Karpatne 

et al., 2018). A great deal of learning across disciplines and close collaboration must occur 

before connections can be made that result in integrated research for both (Pennington, 2008; 

Pennington 2011b). ESS students, especially when first exposed to DS methods, often get the 

impression that data-driven approaches may disregard their domain knowledge. In reality, 

success using purely data-driven approaches without domain expertise is exceedingly rare. While 

data-driven approaches have yielded good results in image processing or identification of gene 

interactions, their application in other science domains is not as straight forward (Karpatne et al., 

2018). Hence, both DS and ESS science competencies must be synergistically applied. In fact, 

the growing field of theory-guided data science is based on the idea that new DS approaches for 

ESS applications are best developed in collaboration with scientists and that the most effective 

DS approaches are achieved by incorporating domain knowledge (such as physical constraints or 

relationships) in their algorithms (Faghmous and Kumar, 2014; Faghmous et al., 2014; Karpatne 

et al., 2017).  

Even when DS and ESS scientists are working well as a team, this type of work still requires 

each one to have significant knowledge in the other area to achieve true synthesis. However, to 

date there is very little consensus on how to teach these collaboration competencies. The report 

of the 2017 workshop on Big Data and the Earth Sciences: Grand Challenges (Sellars, S.L. and 

others, 2017, p. 9) summarizes a discussion on education as follows:  “In the end, the recognition 

that there is a dire need for people with skills in both camps was unanimous, but there was no 

clear answer on how best to integrate or coordinate their knowledge, or what should be expected 



 

from students and researchers who participate in this interface.” Thus, it is fair to say that even 

among experts at the forefront of research in the sustainability data science field there is little 

consensus on how to overcome these obstacles themselves and to best train the future workforce. 

ID competencies can only be developed in conjunction with certain attitudes (Haider et al., 

2018). A willingness to learn difficult topics from another discipline and appreciation of different 

perspectives are critical (Pennington 2008). Also critical is the ability to work with others whose 

personalities and work styles may be quite different from one’s own (Gosselin et al., unpublished 

data). Methods are being developed for overcoming ID issues, focused on a variety of 

challenges, including generic teamwork issues (Fiore, 2008); differing disciplinary values, 

epistemologies, and philosophies (Eigenbrode et al., 2007; O’Rourke et al., 2013); and the 

challenge of integrating knowledge across disciplines (Pennington, 2016; Pennington et al., 

2016; Pennington et al., in review). Research on ID education suggests that these skills are best 

taught in the context of solving particular problems (Bosque-Prez et al., 2016; Derrick et al., 

2013).  

 

Models of interdisciplinary programs 

There are many different models for developing ID educational programs, each of which has 

been successful in some settings. The most common approach is often referred to as T-shaped 

education (Oskam, 2009) (Fig. 2(a)), with students acquiring specialized knowledge in one field 

(the vertical leg of the T), along with broad elementary knowledge in adjacent fields and soft 

skills (the horizontal bar of the T). Another proposed model is pi-shaped education (Fig. 2(b)), 

which has been described in different ways. It may represent deep expertise by two separate 

people in two disciplines (the two legs of the pi) connected either by a person who understands 

something about both, or through development of improved cross-disciplinary skills by experts 

from each discipline. It has also been used to represent a single person obtaining deep expertise 



 

in two separate disciplines. There are examples of both of these in the team science literature. 

Recently, Bosque-Perez et al. (Bosque-Prez et al., 2016) have proposed a shield-shaped model of 

ID education (Fig. 2(c)), with deep expertise   in one discipline combined with practical 

understanding of one or two other disciplines, sufficient to enable collaboration with researchers 

from those disciplines. 

Ceri (2018) has proposed that DS should be taught using a pi-shaped model, with students 

from any discipline also acquiring deep knowledge of DS, arguing that these are skills needed by 

students from all disciplines. However, his description more closely resembles the shield-shaped 

model. Hampton et al. (2017), discussing DS education for environmental scientists, argue that 

these students should all obtain foundational knowledge and skills in 1) data management, 2) 

analysis, 3) software for science, 4) visualization, and 5) communication methods for 

collaboration and dissemination, although their description more closely resembles a T-shaped 

model with the horizontal bar including DS basics. We think that perhaps these models represent 

a continuum similar to the discussion above on multi-, inter-, and transdisciplinarity, and that the 

model to choose depends on many factors at the host institution, including existing focal points, 

resources and expertise available for new course development, and intended scope and goals. For 

example, is the program’s goal to prepare graduates: (1) to become productive team members of 

such ID efforts in industry or academia; (2) to lead such ID efforts; or (3) to be able to conduct 

ID efforts on their own, and thus be fully trained in both ESS and DS? These roles require 

different training and thus different types of educational   components. 

We propose that all ESS students should be exposed to basic DS concepts and should 

develop collaboration skills as part of an institutional core curriculum (T-shaped). In addition, 

ESS students who desire to work on ESS/DS ID teams should be encouraged to take basic 

statistics and DS courses as upper division electives to gain a practical understanding of DS 

(shield-shaped). Statistics is not required for many ESS programs. Applied DS and statistics 





 

These are particularly challenging because integrating deep knowledge depends on 

understanding enough about the other discipline to be able to find interesting, synergistic 

connections between the two that provide research opportunities for both. 

Spelt et al. (2009, p. 365) define interdisciplinary thinking as: “the capacity to integrate 

knowledge of two or more disciplines to produce a cognitive advancement in ways that would 

have been impossible or unlikely through single disciplinary means” and include the ability to 

change perspectives, to synthesize knowledge of different disciplines, and to cope with 

complexity as specific skills that are needed. Newell and Luckie (2013) suggest students should 

develop ID habits of the mind including 1) drawing insights from diverse perspectives; 2) 

evaluating insights; 3) modifying insights; and 4) integrating insights, with specific suggestions 

for actions that accomplish each of these. Yet in very diverse disciplines, there may be few basic 

concepts understood by both, impeding progress integrating deeper knowledge. It requires 

significant time spent learning each other’s vocabulary, methods, and concepts, usually in real 

time during collaboration (Pennington 2008, 2011a, 2011b, 2013). This experiential, social 

learning includes developing an understanding of the vocabulary, methods, and concepts around 

specific research topics of interest to participants and also the more basic concepts needed to 

understand those research topics. It is important to realize that no research team begins its work 

at the inter- or transdisciplinary level; rather, teams begin as multidisciplinary groups and 

develop into inter- or transdisciplinary teams as they learn each other’s perspectives and find 

relevant connections (Pennington, 2011b). Teams that successfully navigate this social learning 

space end up with deeply integrated knowledge across disciplines that can ultimately develop 

into inter- and transdisciplinary outcomes. ESS data science and computational sustainability, if 

they are to become more widespread and mainstream, depend on finding more effective ways of 

supporting the difficult learning process involved in collaborating across ESS and DS 

disciplines.  



 

The Employing Model-Based Reasoning in Socio-Environmental Synthesis (EMBeRS) 

initiative is a collaborative, social learning research effort initially formed through the U.S. 

National Center for Socio-Environmental Synthesis (SESYNC) followed by funding from the 

U.S. National Science Foundation (NSF). The goal of the initiative is to synthesize learning, 

social, and organizational science theories relevant to social learning across disciplines to design 

and test collaborative knowledge integration activities in the context of ESS, and develop new 

understanding of how social learning occurs in this context (Pennington 2016; Pennington et al. 

2016; Pennington et al., in review). “Model-based reasoning” is a theory derived from the 

cognitive science community, who have found that during complex problem solving, progress 

may be enabled by offloading information in the form of visual (or other) representations of 

internal mental models, and that the creation of new external representations not only supports 

conceptual change but actually invokes such change (Nersessian, 1999). Related theories have 

come out of the social sciences, particularly the notion of “boundary objects” that support 

exchange of information across disparate social groups (Star & Griesemer, 1989). Certain 

boundary objects, boundary negotiating objects, have been found to facilitate negotiation of new 

conceptualizations that cross boundaries between perspectives (Lee, 2007; D. Pennington, 2010). 

Hence, model-based reasoning is a knowledge exchange process through which boundary 

negotiating objects can be purposefully (co-)constructed to facilitate knowledge integration, and 

is the basis for the EMBeRS method (Pennington, 2016; Pennington et al., 2016). 

The EMBeRS method purposefully integrates boundary object negotiation with participatory 

processes, with a specific focus on learning issues, applying transformative (Mezirow, 1997) and 

experiential learning (Kolb, 1984) theories in addition to model-based reasoning theory. The 

method balances individual mental model representation with group co-created representations, 

enabling individuals to organize their own thinking before contributing to the group. In addition, 

participants are guided to interact in certain ways during the process, by attending to 



 

fundamental learning concepts such as active listening, jargon reduction and/or lay descriptions, 

individual and group reflection on the process, among others. A key concept that must be 

understood is that the group itself needs to develop into a working, distributed cognitive system 

(Hutchins, 1995), and that takes time (Pennington, 2011b; Pennington 2016). Synergistic 

research ideas will eventually emerge from the distributed cognitive system as it evolves and 

connections are identified. Synergistic ideas are an emergent property of the system (Pennington 

2011b, 2016). Until the multidisciplinary group truly becomes an inter- or transdisciplinary 

distributed cognitive system, formulation of the collaborative research to be undertaken will be 

vague and ambiguous (Pennington et al. 2013). 

The EMBeRS method has been tested in two workshops for doctoral students held at the 

University of Texas at El Paso (UTEP). A total of twenty-five students from seventeen different 

U.S. institutions participated. Participants were recruited from eighty-six NSF-funded research 

projects related to water sustainability. Five were doctoral students at UTEP. Participants had a 

wide range of research interests and represented a variety of disciplines in the natural sciences, 

social sciences, data science and engineering. The participants were 58% women, 23% Hispanic, 

19% Asian, and 8% Black. A third (31%) were international students from Brazil, Ghana, India, 

Libya, Nepal, Nigeria and Vietnam. 

The workshop focused on training students to integrate knowledge across disciplines using 

water sustainability in the Middle Rio Grande Basin in the southwestern U.S. as a case study. 

This region was selected because almost any ESS researcher can relate their research in some 

way to water; research has shown that ID projects are more likely to be successful if they are 

place-based (Bosque-Prez et al., 2016; Derrick et al., 2013); UTEP is located in the region, and 

the workshop leader (Pennington) is familiar with its water sustainability issues. That enabled the 

workshop design to incorporate a wide variety of perspectives on the problem; diverse methods 

and data; guest lectures; and fieldtrips to meet with stakeholders of different types (including 



 

farmers, water managers, environmental restoration specialists, and civil engineers). Since the 

students recruited were already associated with water sustainability projects, they 

already understood parts of the problem and did not need to struggle with completely new 

problem content while also struggling to acquire new skills working across disciplines. 

Therefore, while the goal of the workshop was to provide training on ID collaboration and 

especially knowledge integration across disciplines, these skills were embedded in a real 

problem so that students could experience how these skills are applied in a concrete rather than 

abstract way. Experiential learning theory, under development and tested rigorously for decades, 

has indicated that concrete experiences lead to abstraction of content and transfer to other 

applications (Kolb 1984 and thousands of subsequent references). This same approach has been 

used by Pennington in a semester-long graduate course that has been taught four semesters and is 

now a required course for Masters and Doctoral programs at UTEP. 

Data were collected before, during, and six to nine months after each workshop. Detailed 

design of the workshops and research agenda are described in Thompson et al. (2017) and 

Pennington (in review); participant outcomes are reported in Pennington et al. (in review) and 

findings from studies of the process are in (Thompson, 2009; Thompson et al., 2013; Thompson, 

et al., 2016).  

We have continued to hear from many of these students through time. One measure of the 

effectiveness of the EMBeRS method is the enthusiastic and frequent use of the ID skills they 

learned in all aspects of their professional lives. Several have reported the value of the EMBeRS 

approach in planning and presenting their own research and in a diverse array of ID research 

projects and proposals. The 2017 cohort highlighted two aspects they found extraordinary: 1) 

how they all came to respect and trust each other and how that allowed them to effectively 

integrate individual personalities and strengths, perspectives and disciplines; and 2) how the 

experience gave them the confidence to better understand and articulate their own ideas. They 



 

also noted that the workshop broadened their perspectives and helped them develop 

understanding of how to effectively negotiate and compromise in developing shared 

understanding and consensus. 

The two EMBeRS workshops did not include participants from DS by design, although 

some participants had strong, targeted DS skills. However, early work on the method 

successfully brought together environmental scientists with computer scientists (Pennington, 

2008, 2010, 2011b, 2011a). As the method continues to develop, it may be an effective way to 

train students from any discipline to more effective integrate their knowledge with other 

disciplines. Such skills are a critical need in the future ESS workforce. 

 

Methods for collecting information on existing programs and 

courses 

We now turn our attention to how all of the above education and competency issues are 

playing out in specific ESS and DS education contexts. We contacted an array of relevant 

research communities and individual educators to get a broad selection of existing programs and 

courses integrating earth science and data science. The first set of activities included reaching out 

to mailing lists, conducting web searches and querying the NSF award database. Although our 

search was not constrained to the U.S., it resulted in a U.S. bias because we searched English 

language sources, personally contacted participants in our own, U.S. based network, and 

searched the database of a U.S. funding agency. 

 

1. Mailing lists: We reached out to the following three mailing lists. 

(a) Intelligent Systems in the Geosciences (IS-GEO) email list: serves our NSF-funded 

network that partners earth, computer, data, and intelligent systems scientists;  



 

(b) American Geophysical Union (AGU) Earth and Space Science Informatics (ESSI) Section 

email list: reaches a large international community of earth, computer, and data 

scientists who are very active in research and development of sustainability data science-

related techniques; and 

(c) Machine Learning-news email list: ML-news is an international Google group that covers 

all topics related to machine learning, data mining and other data analysis techniques and 

reaches a large community of computer scientists working in this area.



 

2. Web searches: We performed extensive web searches using the following keywords alone 

and in many combinations, e.g., combining one term each from Groups 1, 2 and 3: 

– Group 1: data science, data mining, machine learning, intelligent systems, artificial 

intelligence. 

– Group 2: computational sustainability, geo, geosciences, earth sciences, geology, climate, 

environment, earth. 

– Group 3: course, curriculum, education. 

3. ICS resources: In addition to the above web searches we perused the extensive resources of 

Cornell University’s Institute for Computational Sustainability (ICS) focused on 

“developing computational methods for balancing environmental, economic, and societal 

needs for a sustainable future”, see https://computational-sustainability.cis.cornell.edu/. 

4. NSF award searches: The above activities yielded only two ID programs funded by the 

NSF through Research Traineeship (NRT) grants. We then searched through all current and 

past NSF NRT and IGERT grants (IGERT was the predecessor program to NRT) using NSF 

award searches. This yielded one more ID program, bringing the total to only three, all in the 

U.S. 

5. Survey and follow-up interviews: We conducted a survey of people who responded to the 

above contacts using a Google form that requested information about any programs, courses, 

course modules, or training workshops in which they participated. The survey requested 

information regarding the type of course, level taught, focus of course, and other information 

detailed in a later section on Course Design. The survey was open from January of 2017 

through February of 2018. This returned 11 different responses to the survey from 9 unique 

respondents some of whom filled out the survey for more than one course, for a total of 14 

courses. Seven respondents were from the U.S. and 2 from non-U.S. institutions. At the 

beginning of April 2018, survey respondents were contacted with a more detailed survey, 



 

and 2 more detailed responses were received. Using a grounded theory approach (Corbin 

and Strauss, 1990) keywords related to subject matter and pedagogy were extracted from 

the survey responses, and courses were classified based on whether or not the responses 

mentioned these keywords. 

From the surveys, 2 people were selected for follow up video conference interviews. These 

interviews were conducted on April 24, 2018 and May 16, 2018 and were 28 and 18 minutes 

long, respectively. Participants for video interviews were selected based on survey 

responses, particularly the amount of detail, specificity and reflection provided. The video 

interviews were semi-structured, with questions informed by the interviewees’ prior survey 

responses. Semi-structured interviews were chosen to allow both survey participants the 

opportunity to speak on the same topics while allowing the interviewer to pursue things 

brought up in the interview with more depth. Participants were asked to give more detail 

about their responses to the questions about overall course design, challenges encountered, 

and successful student projects. The interview notes were then summarized into key points, 

and keywords from the interviews were used to classify which courses from the survey 

responses addressed points brought up by interview participants. 

The survey and interview research on human subjects were overseen and determined to be 

exempt by the University of Texas at Austin Institutional Review Board under protocol 

2018-05-0069. 

6. Authors’ experience: We synthesized our own knowledge and experiences working in these 

contexts with our findings from the surveys and interviews. The authors are all part of the 

afore-mentioned IS-GEO program and some of the authors have long term (many years) of 

experience working across science and information technology disciplinary boundaries on 

other research and education projects. 

 



 

Results 

First, we report on the programs and courses identified through our searches. Then we 

present the results from surveys and interviews with instructors. 

 

Existing interdisciplinary education programs 

We identified the following three ID data science education programs, all of which 

implement some of the principles discussed above. Two are directly relevant to sustainability 

science; the third is earth science focused: 

● Data Science for Energy and Environmental Research – University of Chicago (USA), 

● Environment and Society: Data Sciences for the 21st Century – UC Berkeley (USA), 

● Integrated Data-Driven Discovery in Earth and Astrophysical Sciences (IDEAs) – 

Northwestern University (USA), 

All three are NSF NRT programs. They primarily supplement traditional graduate work, and 

they most closely resemble the shield shape model of ID education, with a student’s PhD 

discipline serving as the field in which they have deep expertise. The NRT then exposes the 

students to a breadth of disciplines through a variety of means, including bootcamps, workshops, 

and traditional courses. Each NRT builds up practical understanding in DS through coursework 

and projects. All three programs emphasize ID teamwork, either through coursework or, in the 

case of the IDEAs program, a citizen science project that partners students with non-scientists in 

the community to train citizens to collect and contribute relevant and valid scientific data. 

Communication is also emphasized in all programs, with the University of Chicago and 

Northwestern programs having courses to train students in communication, and the Berkeley 

program including a communication bootcamp. The Berkeley program explicitly addresses other 

aspects of ID education, including interdepartmental immersion programs and an 



 

Interdisciplinary Research Design and Methods class.  The Appendix contains links to all three 

programs. 

In addition, the University of Colorado Boulder offers an Earth Data Analytics Certificate 

that is obtained by completing three courses (9 credits) within three years.  Available courses are 

1) Earth Analytics Data Science Bootcamp, 2) Earth Analytics Python, and 3) Earth Analytics 

Applications.  The only prerequisite is an undergraduate degree in any field.  As a 3-course 

program with a target audience that might have neither an earth science nor DS background, this 

is a good example of an entry-level program. It does not specifically address topics such as ID 

collaboration but provides many detailed lesson plans; see the list of related resources in the 

appendix. 

 

Existing courses 

A major driving force for courses in Computational Sustainability is Cornell University’s 

Institute for Computational Sustainability (ICS), created through a large U.S.  NSF Expeditions 

in Computing grant awarded in 2008, that focuses on “developing computational methods for 

balancing environmental, economic, and societal needs for a sustainable future”. In addition to 

engaging in research activities, ICS runs CompSustNet, a multi-institutional research network 

that includes Cornell, 11 other U.S. academic institutions, and international collaborators. 

CompSustNet runs an annual doctoral consortium on Computational Sustainability, and a Journal 

of Computational Sustainability is planned for the near future, to serve the growing needs of this 

emerging field. Table 1 provides a list of courses in computational sustainability identified by 

Fisher et al. (2016), most of which are described in more detail in the corresponding 

CompSustNet blog post. Fisher et al. (2016) point out that most of these courses are seminar-

based, and only a few include projects. 



 

Table 1. Courses related to Computational Sustainability as identified in Fisher et al. 

(2016) and discussed in more detail in the corresponding CompSustNet blog entry (see 

https://blog.computational-sustainability.org/2016/04/11/university-courses-in-

computational-sustainability/ ). 

Course Title Institution Source 

Sustainability and Assistive 

Computing (Fall 2010) 

Bryn Mawr College Fisher et al. (2016) & 

CompSustNet blog 

Computing and the 

Environment (Spring 2011) 

Vanderbilt University Fisher et al. (2016) & 

CompSustNet blog 

Computing, Energy, and the 

Environment (Fall 2016) 

Vanderbilt University Fisher et al. (2016) 

Topics in Computational 

Sustainability (Spring 2011) 

Cornell University Fisher et al. (2016) 

Computational Methods in 

Sustainable Energy (Fall 2012) 

Carnegie Mellon 

University 

Fisher et al. (2016) & 

CompSustNet blog 

Computational Sustainability 

(Winter 2013-2014) 

University of British 

Columbia 

Fisher et al. (2016) & 

CompSustNet blog 

Computational Sustainability 

(Spring 2014) 

Georgia Tech Fisher et al. (2016) & 

CompSustNet blog 

Seminar on Computational 

Sustainability: Algorithms for 

Ecology and Conservation 

(Spring 2014) 

University of 

Massachusetts Amherst 

Fisher et al. (2016) & 

CompSustNet blog 

Topics in Computational 

Sustainability (Spring 2016) 

Stanford University Fisher et al. (2016) & 

CompSustNet blog 

 

Furthermore, the body of literature focusing on Computing Education for Sustainability 

(Mann et al., 2008; Mann et al. 2009; Mann 2016) seeks to integrate sustainability topics into 

computing education. Mann et al. (2009) provide important guidelines for material selection and 

material collections, which are discussed in the subsection on material selection below, while 

Mann (2016) discusses challenges for this area and how they might be resolved. 

We also identified a broad selection of courses that combine ESS and DS (Table 2) spanning 

undergraduate and graduate courses, taught primarily by DS instructors (e.g., [C14]), by ESS 

instructors (e.g., [C3,C7]), or by a combination of the two  (e.g., [C1-C2,C4-C6]). 

 

 



 

Table 2. List of additional courses we identified that bridge ESS and DS. Contact person 

and email addresses are included with permission from each instructor, since many of these 

are available online at course websites. 

Course title Institution Contact Person 

[C1] Spatial Computing U Minnesota Shashi Shekhar 

(shekhar@umn.edu) 

[C2] Spatial Data Science 

Research 

U Minnesota Shashi Shekhar 

(shekhar@umn.edu) 

[C3] Computer Applications in 

the Geosciences 

UTEP Deana Pennington 

(ddpennington@utep.edu) 

[C4] Geoinformatics for Natural 

Hazards Monitoring 

MIT Victor Pankratius 

(pankrat@mit.edu) 

[C5] Decision Pathways for 

Earth Resources 

UT Austin Suzanne Pierce 

(spierce@tacc.utexas.edu) 

[C6] Big Data Wageningen U Ioannis N. Athanasiadis 

(ioannis@athanasiadis.info) 

[C7] Food, Energy, Water, the 

Environment, and Public Policy 

U. of Kansas Mary C. Hill (mchill@ku.edu) 

[C8] Climate Science and 

Engineering 

Northeastern U Auroop Ganguly 

(a.ganguly@northeastern.edu) 

[C9] Temporal and Spatial Data 

Science 

Northeastern U Auroop Ganguly 

(a.ganguly@northeastern.edu) 

[C10] Critical Infrastructure 

Resilience 

Northeastern U Auroop Ganguly 

(a.ganguly@northeastern.edu) 

[C11] Machine Learning U Oklahoma Amy McGovern 

(amcgovern@ou.edu) 

[C12] Artificial Intelligence U Oklahoma Amy McGovern 

(amcgovern@ou.edu) 

[C13] Advanced Machine 

Learning 

U Oklahoma Amy McGovern 

(amcgovern@ou.edu) 

[C14] Data camp / RAMP 

(https://www.ramp.studio) 

U Paris Saclay Balazs Kegl 

(balazs.kegl@gmail.com) 

 

Strategies for course design 

This section presents quotes by the instructors of the above courses that highlight their 

motivation in course design, challenges encountered, and the lessons they learned while teaching 

these classes. Quotes are attributed to specific people with permission. These quotes often refer 

to the terms IS (for intelligent systems) and GEO, because those terms are commonly used by the 



 

community from which many of the surveys and interviews were derived. In the context of this 

article, one can think of replacing IS with DS and GEO with ESS in these quotes. 

Course prerequisites 

A challenge in any ID course is the need to establish common ground for students from 

different disciplines. For example, Sellars et al. (2017) state that students with interests in DS 

from disciplines outside of the traditional Statistics and Computer Science “can’t just pop in” on 

courses that focus on statistical and computational methods. Ritu Arora (course [C5]) observes 

that “A preliminary programming course should be made a prerequisite so that the IS-GEO 

class can be made more about the application of CS/IS techniques and has more depth on 

selected topics”. Thus, a sequence of special introductory courses or bootcamps is essential, to 

bring both DS and ESS students up to speed with the other discipline. 

Group projects 

Group projects are an extremely powerful means to develop ID skills, such as 

communication and working in teams. Of the courses surveyed (Table 2), every course that 

included both DS and ESS students featured group projects. Pankratius (video interview) 

observes that “Bringing together PhD students from different departments (earth science, 

computer science, physics, etc.) and working on case study projects together enables cross-

fertilization and interdisciplinary learning experience for everyone at early career stages.” 

McGovern (video interview) pointed out that although desirable, bringing together students from 

different disciplines is not always easy. For group projects, given the option, students may be 

inclined to pair up with peers from the same discipline because of shared background 

knowledge, approaches, and/or interests. Instructors may explicitly require ID teams. Leaving 

room for more ID teamwork to emerge from teams that do not start out aligned, reinforces that 

even teams that do not start out functioning in a perfectly ID way can grow into it, as pointed out 



 

by Pierce ([C5]): “Leaving ambiguity in the project description results in the best outcomes and 

learning by students; while the students are uncomfortable at first they usually commit to the 

project as a team to define it (e.g. active co-design) and I receive messages from past students in 

the workforce stating that the course was the most valuable in their graduate careers.” 

Material selection 

In this section we discuss general frameworks and considerations for material selection, 

including a summary of feedback obtained from our surveys and follow-up interviews. Please 

see the appendix for a list of additional educational resources we identified from other sources. 

Mann et al. (2009) provide an interesting framework for the evaluation and selection of resources 

for computer science educators to help them integrate sustainability topics in computing courses. 

The evaluation framework was developed by a working group and consists of a list of five 

categories, and within each category of several questions that guide the evaluation of any 

considered resource.  They also provide a list of 14 sample resources they identified, namely 8 

papers or news stories, 1 set of lecture notes, and 5 related books.   

Considering the question of breadth vs. depth, we observed a variety of approaches among 

the courses we identified, ranging from specifically targeting an ESS domain for deep study 

([C4]) to providing a wide set of example data sets to support a variety of student interests and 

backgrounds ([C11]). Furthermore, many instructors emphasize the importance of grounding 

courses in concrete examples and real science questions, rather than disconnected sample data, in 

order to keep students’ interest and to encourage synthesis11. Case study data and real open 

problems seem to work best. Athanasiadis ([C6]) suggests to “Teach with good examples. Even 

if they come from a different application area, students can follow it as long it is well explained 

 

1 In fact, Mann (2016) even goes one step further and proposes to make a computing student’s entire 
curriculum project-based, namely selecting the student’s courses for the degree based on a self-selected 

sustainability project. Learning would be on-demand as needed by the project. 



 

and documented.” McGovern ([C11]) keeps the DS students interested as follows: “I use a lot of 

GEO examples when I teach the methods. The biggest challenge is keeping the non-GEO 

student’s interest. Since we live in an area with high severe weather, I use a lot of severe weather 

examples because everyone is familiar with that around here.” Pennington ([C3]) motivates the 

ESS students as follows: “Geo students have difficulty understanding abstract techniques unless 

they are shown applications, and purposefully reflect on how a technique might be applied in 

their own work.” Hill ([C7]) gets all students excited through her “policy conference”: “The 

whole point is to make the students realize they can be part of societal decision making. It 

worked really well to focus on producing a poster and related research paper, and the two-class 

policy conference where they role play currently active politicians, business people, scientists, 

and NGO leaders worked really well.” 

Pankratius (video interview) described his strategy for helping students select tools and 

techniques that match their science goals. In this course, students present their project ideas early 

in the semester. The instructors then use the list of projects to curate the selection of data science 

concepts and techniques to be addressed in subsequent classes in order to align with student 

project interests. Narrowing in on a specific geoscience problem of interest in combination with 

guidance from instructors in choosing appropriate techniques can help provide a good synthesis 

of geoscience and DS strategies. Without this guidance, students may be inclined to overly rely 

on the first few DS techniques they master, regardless of their match to a particular problem or 

dataset. 

Shekhar ([C2]) emphasizes that - in order to learn about different disciplinary values, 

epistemologies, and philosophies - it is important to “compare research cultures across IS 

(conference publication) and GEO (e.g., journal publication). Include papers from both IS and 

GEO in the reading list”. 



 

When asked about their wish list for future ID education resources, several researchers 

described the need for curated datasets for students to work with, particularly for open 

problems in ESS. There is a need to develop such datasets (Ebert-Uphoff et al., 2017).  The 

appendix contains a list of data sets and other educational material we identified that are already 

available for immediate use.  

 

Discussion: The Role of Data Science Competencies in Sustainability 

Science 

Wiek et al. (2011) identified systems, anticipatory, strategic, and normative thinking as key 

competencies in sustainability science, all dependent on interpersonal (collaboration and 

teamwork) competencies. They provided examples of concepts and methods relevant to each. 

Expanding on that initial work, Wiek et al. (2015) considered how to operationalize these skills 

in the context of formal education and expanded the list of concepts and methods related to each. 

The methods they identified are data analysis and modeling methods, all of which depend on 

data inputs, and generate data outputs. DS competencies are implicitly required by the methods. 

DS competencies, then, are foundational in the same way that interpersonal & collaboration 

competencies are foundational (Figure 3). For example, some of the methods require simulation 

modeling (e.g. scenario analysis, forecasting, backcasting). Simulation models require data 

inputs that can be quite complex, and they generate voluminous data outputs that must be 

analyzed and/or visualized to be understood. In addition, the data inputs and outputs must be 

managed effectively. The model itself depends on programming and software development.  All 

of these are DS competencies (Hampton et al, 2015). Similarly, methods that require statistical 

analysis depend on solid knowledge of statistics and the most important data analysis algorithms, 

e.g. methods for prediction, classification, pattern recognition and causal discovery (Kempler & 

Mathews, 2017). Equally important is an understanding of the limitations of these methods, in 



 

particular how to interpret results from these algorithms and when to question their validity. In 

practice this has typically been achieved by a person with training in both the content area and 

data/programming skills. Yet people with both sets of knowledge and skills are few, and as 

shown above there are few formal programs that target both. As DS progresses it is increasingly 

difficult to maintain awareness of how the field is changing (Huppenkothen et al., 2018). In 

addition, making data and models findable, accessible, interoperable, and reusable (FAIR) 

requires substantial time, effort, and expertise (Wilkinson et al., 2016). Yet this is essential to 

address the complex sustainability issues confronting society (Creutzig et al., 2019). Not 

everyone applying data analysis and modeling methods needs to have a full set of DS 

competencies but they should have enough background in DS to enable collaboration with 

 

Figure 3 A framework for incorporating data science competencies proposed by Hampton et al. 

(2015) into sustainability competencies proposed by Wiek et al (2011). 

generate



 

someone who does. Similarly, those with DS competencies must collaborate with someone who 

has deep ESS knowledge in order to generate valid models.  

 

Limitations of the research 

Although we used a variety of mechanisms to identify relevant programs and courses that 

could inform our effort, we did not attempt a rigorous, comprehensive search. There exists a 

large body of literature on ESS and DS education that could provide additional insights. 

However, our goal was primarily to initiate discussion within the ESS and DS communities 

regarding the challenges of workforce development in this area and provide examples for 

consideration of how some faculty are navigating this space. 

 

Conclusion 

Despite the fact that data science is rapidly changing virtually all areas of knowledge, and 

that data science has many important applications in the earth and sustainability sciences, there 

are very few efforts in formal educational programs attempting to incorporate data science 

training for earth and sustainability students. New courses and programs are urgently needed at 

the intersection of sustainability science and data science to prepare the future workforce. We 

identified several pioneering programs and courses that can serve as guides and inspiration for 

instructors and institutions. Nevertheless, much more work remains to make this type of 

education easy to implement, and thus to enable it to become mainstream. Curated datasets and 

accompanying education resources that support such efforts were identified as one of the major 

gaps to be addressed. 

These efforts must be accompanied by purposeful training in interdisciplinary collaboration, 

because many sustainability scientists will need to collaborate with data science experts in order 



 

to generate and/or apply advanced techniques that are appropriate for the problem being 

addressed. Interdisciplinary collaborations are known to be fraught with difficulties; these are 

compounded in collaborations between sustainability and data scientists because of the extreme 

diversity of these disciplines and the lack of shared background concepts. Hence, progress 

developing curricula to systematically incorporate data science competencies into sustainability 

science education must be accompanied by development of more systematic training in 

interdisciplinary collaboration. New methods for purposeful development of interdisciplinary 

collaboration skills are beginning to emerge.  

There is currently active discussion in the sustainability science education community 

regarding competencies needed by the future workforce to work effectively in this arena. 

Because sustainability science problems are complex, they can rarely be addressed effectively by 

one discipline or one type of knowledge. For this reason, collaboration has been previously 

identified as a fundamental competency that underlies every other required competency. In the 

same way, basic competencies for managing, integrating, analyzing, and/or visualizing data, as 

well as developing models and software, are data science competencies that underlie most (if not 

all) other competencies. Both sets competencies – collaboration and data science – require 

additional research to determine the most effective pedagogies for instilling these in students. 
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