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Bridging Sustainability Science, Earth Science, and Data Science

through interdisciplinary education

Deana Pennington - Imme Ebert-Uphoff - Natalie Freed - Jo Martin and Suzanne A. Pierce

Abstract Given the rapid emergence of data science techniques in the sustainability sciences and
the societal importance of many of these applications, there is an urgent need to prepare future
scientists to be knowledgeable in both their chosen science domain and in data science. This
article provides an overview of required competencies, educational programs and courses that
are beginning to emerge, the challenges these pioneering programs face, and lessons learned by
participating instructors, in the broader context of sustainability science competencies. In
addition to data science competencies, competencies collaborating across disciplines are
essential to enable sustainability scientists to work with data scientists. Programs and courses
that target both sets of competencies — data science and interdisciplinary collaboration - will
improve our workforce capacity to apply innovative new approaches to yield solutions to
complex sustainability problems. Yet developing these competencies is difficult and most
instructors are choosing instructional approaches through intuition or trial and error. Research is

needed to develop effective pedagogies for these specific competencies.
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Introduction

The past decade has seen the rise of data-intensive science (Hey et al., 2009), driven by
advances in sensor technologies, expanded access to a wide variety of data sources, and a deluge
of data generated by simulations. The term data science (DS) is widely used to denote the
collection of scientific methods to extract meaningful insights or knowledge from data, and
include emerging and rapidly changing methods in artificial intelligence, statistics, machine
learning and data mining. As outlined in a recent National Academy of Sciences report on DS
education (2018, p. 6), "data science is inherently concerned with understanding and addressing
real-world problems”. Progress in application of DS to real world problems requires integration
of general methodological knowledge along with knowledge of the particular data being
analyzed (Fox and Hendler, 2014). Repko (2011) defined interdisciplinary integration as a
process by which ideas, data and information, methods, tools, concepts, and/or theories are
synthesized, connected, or blended. In this article we address the challenges of integrating DS
methods with earth and sustainability science (ESS) content. While knowledge of both general
DS methods and the ESS context of the data being analyzed can be held by a single individual, in
practice this most often requires interdisciplinary (ID) collaboration between two or more
individuals who work across their different disciplines (Pennington 2011b).

As the amount of data relevant to ESS is increasing dramatically every year (Plale et al.,
2013), new methods from DS yield new scientific insights at record rates. For example,
improved access to data and new technologies has driven innovations in sustainable cities,
including the use of big visual data for managing construction sites (Tibaut and Zazula, 2018)
and smart energy grids (Caputo et al., 2018). Yarime (2017) highlighted the importance of data
science for achieving and monitoring the United Nations’ Sustainability Development Goals.
Seele (2016) and Kitchin (2014) envisioned big data providing a pathway for rigorous

observation of sustainability performance. Barile et al. (2018) stated that the challenge of



sustainability requires a transformation in research and education to move towards approaches
that combine people, technology, and governance, fostering “smartness” through application of
DS. Data-intensive methods are increasingly being employed to answer environmental questions
relevant to sustainability, such as prediction and forecasting of natural processes (e.g., for
weather, climate, environmental conditions, sea level, sea ice, availability of ground water and
food) and pattern recognition and event detection (e.g., identifying conditions leading to extreme
weather events, earthquakes and volcanic eruptions). Great strides have been made in all of these
areas in recent years (Gibert et al., 2018; The World Economic Forum, 2018; Xie et al., 2017;
Sellars, S.L. and others, 2017; Gil, Y. and others, 2015; Monteleoni et al., 2013). The World
Economic Forum (2018) has recently identified artificial intelligence and other emerging
technologies as key disciplines to help address environmental issues and redesign how we
manage our shared global environment. The potential of data-intensive approaches in
sustainability science has also been recognized by the DS community, which has called for a
pooling of “talents and knowledge to help find efficient and effective ways of managing and
allocating natural resources” (Gomes, 2009, p. 6). Likewise, the education section of the
American Geophysical Union (AGU) concluded that “The changing landscape of information
technology (e.g., big data, emerging technologies, access to a wide variety of tools, rich
multimedia) also affects the kinds and quantities of resources that are available for problem
solving. Students must learn to navigate this rapidly changing space, identifying and harnessing
resources (e.g., tools, data, models, experts, collaborators [...]) that can be brought to bear on
the convergent problems” (St. John et al., 2019, online - no page number).

The research community and industry are quickly embracing new DS methods, and it is
important that curricula in ESS keep up with these rapid developments to give future scientists
working on sustainability-related problems the competencies they need to be effective and

competitive in an increasingly information-driven environment. Professional competencies are



frequently categorized as required knowledge, skill, and attributes (attitudes and behaviors) to be
successful in a particular career, that can be addressed as learning outcomes

implemented in specific class or training activities, as exemplified in Wiek et al. (2015). Yet
there are no existing articles that assess the state of formal education in DS and ESS. This article
seeks to fill that gap in knowledge. The authors are part of a collaboration between geoscientists
(mostly focused on water resource and climate issues) and data scientists. We set out to identify
existing formal educational opportunities (as opposed to informal training workshops) focused
on applying DS techniques to earth and environmental data. Our objective was to learn what
skills are being targeted, what pedagogies are being used and how well they are perceived to
work by those faculty. In the process we discovered substantial DS education efforts under the
umbrella of computational sustainability. Hence, this article focuses on existing opportunities for
advanced DS training in the environmental pillar of sustainability science and across
sustainability science more broadly, yet undoubtedly similar educational efforts are emerging in
other specific fields relevant to sustainability science.

The article consists of three major parts. The first part discusses key competencies needed to
accelerate data-driven discovery in ESS, especially the need for collaboration competencies; the
second part addresses programs and courses we identified and strategies being used in the design
of individual courses, and the third part places our findings into the broader context of
sustainability education competencies. While the second part integrates empirical information
gathered from surveys and interviews of educators at the forefront of these emerging fields, the

first and third parts synthesize theory and concepts from existing literature.



Challenges of Interdisciplinary Collaboration to Advance Data-

Driven Discovery in Sustainability Science
The necessity of collaboration in sustainability data science

It is becoming clear that attacking ESS problems with DS requires significant knowledge in
both (Sellars, S.L. and others, 2017; Ebert- Uphoff and Deng, 2017; Gil, Y. and others, 2015;
Monteleoni et al., 2013). DS typically requires training in statistics, computer science, or a
similar discipline, and choosing appropriate techniques requires a deep understanding of the
available data analysis methods, their underlying model assumptions, computational effort,
required sample size and pitfalls. While it is possible for an ESS expert to independently learn to
apply DS techniques to problems of interest if they have substantial training in statistics, many
ESS programs generally do not require statistics (Haider et al., 2018) or other DS courses, and it
is well-recognized that earth and environmental scientists, specifically, need additional training
to manage and use complex data (Hou, 2015). The Belmont Forum performed a skill gap
analysis for data-driven research in the environmental sciences, identifying a lack of
competencies in programming, visualization, data management, and data exchange - all core DS
competencies (Belmont Forum, 2017).

Conversely, while some data scientists focus on particular kinds of ESS data and develop
knowledge in that domain, defining the science question to be considered requires deep ESS
knowledge, such as awareness of important open science questions, understanding of their
underlying physical, economic, and social processes, including spatial and temporal scales,
availability of suitable datasets, and selection of data preprocessing strategies to maximize the
strength of the signal or patterns to be detected and minimize noise (Ebert-Uphoff and Deng,
2017). In addition, ESS data display spatial autocorrelation and geographic heterogeneity,
requiring special statistical techniques (Berman et al., 2018). Combined knowledge is required

throughout all phases of the research, in particular when it comes to interpreting the results and



explaining what they mean. As economist and Nobel laureate Ronald Coase once said, if you
torture the data long enough it will confess (Tullock, 2001, p. 205), implying that

algorithms that look for patterns long enough will eventually identify some kind of pattern, but it
might not actually be meaningful or new. Thus, it is important to carefully evaluate the results
obtained from such analyses. Do the results represent a real physical phenomenon, or are they
merely an unforeseen by-product of the data collection or analysis method? Both ESS and DS
competencies are required to make this assessment. Thus, working independently neither a data
scientist, nor an ESS expert, as trained in today’s educational environment, can be effective in
this area.

Virapongse et al. (2018) identified the need for education and training activities that
improve data scientists’ understanding of domain topics and improve ESS’s knowledge of data
management. There is a need to train current and next generation ESS professionals to extract
usable information from the vast supply of data, train DS professionals to be competent in
specific ESS areas, and train both to collaborate effectively to develop appropriate new methods
for identifying meaningful, interpretable patterns across heterogeneous datasets (Blei and Smyth,
2017; Pankratius et al., 2016; Sellars et al., 2013; Szalay and Gray, 2006). Workforce
development in ESS and DS and interdisciplinary collaboration are closely intertwined

(Hampton et al., 2017; Kempler and Mathews, 2017).

Barriers to collaborating across disciplines

There is a large body of literature on ID collaboration (see Stokols et al. (2008); Bozeman et
al. (2013); Hall et al. (2018) for summaries). While research on organizational teams dates back
many decades, research on science teams, also known as the science of team science, is relatively
recent (Falk-Krzesinski et al., 2011; Hall et al., 2008) and important challenges have become

apparent in these teams compared with better studied teams in organizations (Hall et al., 2018).



ID research is known to be fraught with difficulties, taking considerably more time and effort
compared with disciplinary research. Describing all important teamwork competencies is far
beyond the scope of this article; here we only summarize a few basic concepts. The next section
will address one of these concepts in detail.

Klein and Newell (1998, p. 3) provide the following widely used definition of
interdisciplinary studies (IDS): “interdisciplinary studies may be defined as a process of
answering a question, solving a problem, or addressing a topic that is too broad or complex to
be dealt with adequately by a single discipline or profession. [...] IDS draws on disciplinary
perspectives and integrates their insights through construction of a more comprehensive
perspective.” The concept of integrating is central in this definition and is key to any
interdisciplinary effort (Repko, 2011).

Interdisciplinary collaboration can be categorized by the level of integration, as outlined by
Klein (2010) and illustrated in Fig. 1. For an extensive review of the many ways these terms
have been used in literature, see (Choi and Pak, 2006). Although terminology has varied
substantially, most have converged on the following definitions:

e Multidisciplinary: Combines separate perspectives under a theme.

e Interdisciplinary: Combines separate perspectives through the development of connections
between them.

e Transdisciplinary (meaning 1): Combines separate perspectives across academic and other
sectors (e.g., government agencies, industry, organizations, etc.) through the development
of connections between them to generate research that is informed by stakeholders.

e Transdisciplinary (meaning 2): Generates a new area of knowledge that deeply combines
originally separate perspectives and may lead to new scientific frameworks, paradigms, or

disciplines (for example, bioinformatics combined genomics and data mining).



(&

Figure 1. Overview of different types of collaborations, where level of integration increases from left
to right. Once transdisciplinarity (meaning 2) is reached a new discipline is generated (e.g., the field
of bioinformatics) and the cycle can start over. Transdisciplinary (meaning 1) extends
interdisciplinary integration to sectors outside of academia. Image credit: Blog post by Alexander R.
Jensenius (Jensenius, 2012). Image modified to switch the terms Crossdisciplinary and
Multidisciplinary. Permission to use and modify image granted by the blog author.

In practice, it is exceedingly difficult to evaluate where any given team is along the
continuum from multi- to inter- to transdisciplinary (Masse et al., 2008). The remainder of this
article will use the term interdisciplinary (ID) to refer to the entire continuum from multi- to
transdisciplinary.

It is known that disciplines each have their own culture, vocabulary, epistemology, and ways
of thinking that are barriers to integration across disciplines (O’Rourke et al., 2016; Stone, 2013)
and that integration across disciplines can be challenging (National Research Council and others,
2015; Kliskey et al., 2017). Researchers who successfully engage in ID efforts consistently
report that despite the challenges, they enjoy ID work because it causes them to think about their
own research in new ways. Hence, there is a cost/benefit trade off that must be assessed
individually.

ESS and DS professionals have little formal training in common beyond a core curriculum.
They have very different approaches to research, and little understanding of what constitutes
significant research for the other discipline (Pennington, 2011a). For example, we have observed
that research in ESS revolves around a specific science question to be answered, thus datasets

and algorithms are only seen as fools to answer that question. In contrast, research in DS is often



driven by a specific algorithm or dataset. In addition, ESS has traditionally relied on physics-
based approaches, namely developing models from governing equations and principles that were
discovered over the span of centuries. In contrast, today’s data-driven approaches often do away
with all of the rich domain knowledge and develop models entirely based on a single dataset - an
approach that has some well-known short-comings and may yield questionable results (Karpatne
et al., 2018). A great deal of learning across disciplines and close collaboration must occur
before connections can be made that result in integrated research for both (Pennington, 2008;
Pennington 2011b). ESS students, especially when first exposed to DS methods, often get the
impression that data-driven approaches may disregard their domain knowledge. In reality,
success using purely data-driven approaches without domain expertise is exceedingly rare. While
data-driven approaches have yielded good results in image processing or identification of gene
interactions, their application in other science domains is not as straight forward (Karpatne et al.,
2018). Hence, both DS and ESS science competencies must be synergistically applied. In fact,
the growing field of theory-guided data science is based on the idea that new DS approaches for
ESS applications are best developed in collaboration with scientists and that the most effective
DS approaches are achieved by incorporating domain knowledge (such as physical constraints or
relationships) in their algorithms (Faghmous and Kumar, 2014; Faghmous et al., 2014; Karpatne
etal., 2017).

Even when DS and ESS scientists are working well as a team, this type of work still requires
each one to have significant knowledge in the other area to achieve true synthesis. However, to
date there is very little consensus on how to teach these collaboration competencies. The report
of the 2017 workshop on Big Data and the Earth Sciences: Grand Challenges (Sellars, S.L. and
others, 2017, p. 9) summarizes a discussion on education as follows: “In the end, the recognition
that there is a dire need for people with skills in both camps was unanimous, but there was no

clear answer on how best to integrate or coordinate their knowledge, or what should be expected



from students and researchers who participate in this interface.” Thus, it is fair to say that even
among experts at the forefront of research in the sustainability data science field there is  little
consensus on how to overcome these obstacles themselves and to best train the future workforce.
ID competencies can only be developed in conjunction with certain attitudes (Haider et al.,
2018). A willingness to learn difficult topics from another discipline and appreciation of different
perspectives are critical (Pennington 2008). Also critical is the ability to work with others whose
personalities and work styles may be quite different from one’s own (Gosselin et al., unpublished
data). Methods are being developed for overcoming ID issues, focused on a variety of
challenges, including generic teamwork issues (Fiore, 2008); differing disciplinary values,
epistemologies, and philosophies (Eigenbrode et al., 2007; O’Rourke et al., 2013); and the
challenge of integrating knowledge across disciplines (Pennington, 2016; Pennington et al.,
2016; Pennington et al., in review). Research on ID education suggests that these skills are best
taught in the context of solving particular problems (Bosque-Prez et al., 2016; Derrick et al.,

2013).

Models of interdisciplinary programs

There are many different models for developing ID educational programs, each of which has
been successful in some settings. The most common approach is often referred to as T-shaped
education (Oskam, 2009) (Fig. 2(a)), with students acquiring specialized knowledge in one field
(the vertical leg of the T), along with broad elementary knowledge in adjacent fields and soft
skills (the horizontal bar of the T). Another proposed model is pi-shaped education (Fig. 2(b)),
which has been described in different ways. It may represent deep expertise by two separate
people in two disciplines (the two legs of the pi) connected either by a person who understands
something about both, or through development of improved cross-disciplinary skills by experts

from each discipline. It has also been used to represent a single person obtaining deep expertise



in two separate disciplines. There are examples of both of these in the team science literature.
Recently, Bosque-Perez et al. (Bosque-Prez et al., 2016) have proposed a shield-shaped model of
ID education (Fig. 2(c)), with deep expertise in one discipline combined with practical
understanding of one or two other disciplines, sufficient to enable collaboration with researchers
from those disciplines.

Ceri (2018) has proposed that DS should be taught using a pi-shaped model, with students
from any discipline also acquiring deep knowledge of DS, arguing that these are skills needed by
students from all disciplines. However, his description more closely resembles the shield-shaped
model. Hampton et al. (2017), discussing DS education for environmental scientists, argue that
these students should all obtain foundational knowledge and skills in 1) data management, 2)
analysis, 3) software for science, 4) visualization, and 5) communication methods for
collaboration and dissemination, although their description more closely resembles a T-shaped
model with the horizontal bar including DS basics. We think that perhaps these models represent
a continuum similar to the discussion above on multi-, inter-, and transdisciplinarity, and that the
model to choose depends on many factors at the host institution, including existing focal points,
resources and expertise available for new course development, and intended scope and goals. For
example, is the program’s goal to prepare graduates: (1) to become productive team members of
such ID efforts in industry or academia; (2) to /ead such ID efforts; or (3) to be able to conduct
ID efforts on their own, and thus be fully trained in both ESS and DS? These roles require
different training and thus different types of educational components.

We propose that all ESS students should be exposed to basic DS concepts and should
develop collaboration skills as part of an institutional core curriculum (T-shaped). In addition,
ESS students who desire to work on ESS/DS ID teams should be encouraged to take basic
statistics and DS courses as upper division electives to gain a practical understanding of DS

(shield-shaped). Statistics is not required for many ESS programs. Applied DS and statistics



courses should be developed for ESS graduate students who intend to conduct data-intensive
research on their own (pi-shaped, one person with depth in two disciplines). Finally,
educational paths should be developed for people who specialize in being the “connector” in a
pi-shaped model, critical to the success of ID research teams. This is especially relevant to role
(2) above, leading ID efforts. Graduate certificate programs could be developed exposing PhD

level students and/or post-graduates to practical results from the team science literature.

Breadth

Breadth

T-shaped pishaped shield-shaped
1 person 2+ people 1 person

Figure 2. Models of interdisciplinary education, using (a) T-,
(b) pi-, and (c) shield-shapes as metaphors for describing the
desired relationship between knowledge in a primary and
secondary disciplines (D1, D2, and D3).

Social Learning in the Context of Interdisciplinary Collaboration

The National Research Council report (2015) on enhancing the effectiveness of team science
identified seven features that challenge such ID efforts: 1) high membership diversity, 2) deep
knowledge integration, 3) large team size, 4) goal misalignment, 5) permeable boundaries, 6)
geographic dispersion, and 7) high task interdependence.

Among these, three are especially relevant in the context of ESS in general, and ESS data
science in particular: the high degree of disciplinary diversity between ESS and data scientists;

the need for deep knowledge integration across these fields; and high task interdependence.



These are particularly challenging because integrating deep knowledge depends on
understanding enough about the other discipline to be able to find interesting, synergistic
connections between the two that provide research opportunities for both.

Spelt et al. (2009, p. 365) define interdisciplinary thinking as: “the capacity to integrate
knowledge of two or more disciplines to produce a cognitive advancement in ways that would
have been impossible or unlikely through single disciplinary means” and include the ability to
change perspectives, to synthesize knowledge of different disciplines, and to cope with
complexity as specific skills that are needed. Newell and Luckie (2013) suggest students should
develop ID habits of the mind including 1) drawing insights from diverse perspectives; 2)
evaluating insights; 3) modifying insights; and 4) integrating insights, with specific suggestions
for actions that accomplish each of these. Yet in very diverse disciplines, there may be few basic
concepts understood by both, impeding progress integrating deeper knowledge. It requires
significant time spent learning each other’s vocabulary, methods, and concepts, usually in real
time during collaboration (Pennington 2008, 2011a, 2011b, 2013). This experiential, social
learning includes developing an understanding of the vocabulary, methods, and concepts around
specific research topics of interest to participants and also the more basic concepts needed to
understand those research topics. It is important to realize that no research team begins its work
at the inter- or transdisciplinary level; rather, teams begin as multidisciplinary groups and
develop into inter- or transdisciplinary teams as they learn each other’s perspectives and find
relevant connections (Pennington, 2011b). Teams that successfully navigate this social learning
space end up with deeply integrated knowledge across disciplines that can ultimately develop
into inter- and transdisciplinary outcomes. ESS data science and computational sustainability, if
they are to become more widespread and mainstream, depend on finding more effective ways of
supporting the difficult learning process involved in collaborating across ESS and DS

disciplines.



The Employing Model-Based Reasoning in Socio-Environmental Synthesis (EMBeRS)
initiative is a collaborative, social learning research effort initially formed through the U.S.
National Center for Socio-Environmental Synthesis (SESYNC) followed by funding from the
U.S. National Science Foundation (NSF). The goal of the initiative is to synthesize learning,
social, and organizational science theories relevant to social learning across disciplines to design
and test collaborative knowledge integration activities in the context of ESS, and develop new
understanding of how social learning occurs in this context (Pennington 2016; Pennington et al.
2016; Pennington et al., in review). “Model-based reasoning” is a theory derived from the
cognitive science community, who have found that during complex problem solving, progress
may be enabled by offloading information in the form of visual (or other) representations of
internal mental models, and that the creation of new external representations not only supports
conceptual change but actually invokes such change (Nersessian, 1999). Related theories have
come out of the social sciences, particularly the notion of “boundary objects” that support
exchange of information across disparate social groups (Star & Griesemer, 1989). Certain
boundary objects, boundary negotiating objects, have been found to facilitate negotiation of new
conceptualizations that cross boundaries between perspectives (Lee, 2007; D. Pennington, 2010).
Hence, model-based reasoning is a knowledge exchange process through which boundary
negotiating objects can be purposefully (co-)constructed to facilitate knowledge integration, and
is the basis for the EMBeRS method (Pennington, 2016; Pennington et al., 2016).

The EMBeRS method purposefully integrates boundary object negotiation with participatory
processes, with a specific focus on learning issues, applying transformative (Mezirow, 1997) and
experiential learning (Kolb, 1984) theories in addition to model-based reasoning theory. The
method balances individual mental model representation with group co-created representations,
enabling individuals to organize their own thinking before contributing to the group. In addition,

participants are guided to interact in certain ways during the process, by attending to



fundamental learning concepts such as active listening, jargon reduction and/or lay descriptions,
individual and group reflection on the process, among others. A key concept that must be
understood is that the group itself needs to develop into a working, distributed cognitive system
(Hutchins, 1995), and that takes time (Pennington, 2011b; Pennington 2016). Synergistic
research ideas will eventually emerge from the distributed cognitive system as it evolves and
connections are identified. Synergistic ideas are an emergent property of the system (Pennington
2011b, 2016). Until the multidisciplinary group truly becomes an inter- or transdisciplinary
distributed cognitive system, formulation of the collaborative research to be undertaken will be
vague and ambiguous (Pennington et al. 2013).

The EMBeRS method has been tested in two workshops for doctoral students held at the
University of Texas at El Paso (UTEP). A total of twenty-five students from seventeen different
U.S. institutions participated. Participants were recruited from eighty-six NSF-funded research
projects related to water sustainability. Five were doctoral students at UTEP. Participants had a
wide range of research interests and represented a variety of disciplines in the natural sciences,
social sciences, data science and engineering. The participants were 58% women, 23% Hispanic,
19% Asian, and 8% Black. A third (31%) were international students from Brazil, Ghana, India,
Libya, Nepal, Nigeria and Vietnam.

The workshop focused on training students to integrate knowledge across disciplines using
water sustainability in the Middle Rio Grande Basin in the southwestern U.S. as a case study.
This region was selected because almost any ESS researcher can relate their research in some
way to water; research has shown that ID projects are more likely to be successful if they are
place-based (Bosque-Prez et al., 2016; Derrick et al., 2013); UTEP is located in the region, and
the workshop leader (Pennington) is familiar with its water sustainability issues. That enabled the
workshop design to incorporate a wide variety of perspectives on the problem; diverse methods

and data; guest lectures; and fieldtrips to meet with stakeholders of different types (including



farmers, water managers, environmental restoration specialists, and civil engineers). Since the
students recruited were already associated with water sustainability projects, they

already understood parts of the problem and did not need to struggle with completely new
problem content while also struggling to acquire new skills working across disciplines.
Therefore, while the goal of the workshop was to provide training on ID collaboration and
especially knowledge integration across disciplines, these skills were embedded in a real
problem so that students could experience how these skills are applied in a concrete rather than
abstract way. Experiential learning theory, under development and tested rigorously for decades,
has indicated that concrete experiences lead to abstraction of content and transfer to other
applications (Kolb 1984 and thousands of subsequent references). This same approach has been
used by Pennington in a semester-long graduate course that has been taught four semesters and is
now a required course for Masters and Doctoral programs at UTEP.

Data were collected before, during, and six to nine months after each workshop. Detailed
design of the workshops and research agenda are described in Thompson et al. (2017) and
Pennington (in review); participant outcomes are reported in Pennington et al. (in review) and
findings from studies of the process are in (Thompson, 2009; Thompson et al., 2013; Thompson,
et al., 2016).

We have continued to hear from many of these students through time. One measure of the
effectiveness of the EMBeRS method is the enthusiastic and frequent use of the ID skills they
learned in all aspects of their professional lives. Several have reported the value of the EMBeRS
approach in planning and presenting their own research and in a diverse array of ID research
projects and proposals. The 2017 cohort highlighted two aspects they found extraordinary: 1)
how they all came to respect and trust each other and how that allowed them to effectively
integrate individual personalities and strengths, perspectives and disciplines; and 2) how the

experience gave them the confidence to better understand and articulate their own ideas. They



also noted that the workshop broadened their perspectives and helped them develop
understanding of how to effectively negotiate and compromise in developing shared
understanding and consensus.

The two EMBeRS workshops did not include participants from DS by design, although
some participants had strong, targeted DS skills. However, early work on the method
successfully brought together environmental scientists with computer scientists (Pennington,
2008, 2010, 2011b, 2011a). As the method continues to develop, it may be an effective way to
train students from any discipline to more effective integrate their knowledge with other

disciplines. Such skills are a critical need in the future ESS workforce.

Methods for collecting information on existing programs and
courses

We now turn our attention to how all of the above education and competency issues are
playing out in specific ESS and DS education contexts. We contacted an array of relevant
research communities and individual educators to get a broad selection of existing programs and
courses integrating earth science and data science. The first set of activities included reaching out
to mailing lists, conducting web searches and querying the NSF award database. Although our
search was not constrained to the U.S., it resulted in a U.S. bias because we searched English
language sources, personally contacted participants in our own, U.S. based network, and

searched the database of a U.S. funding agency.

1. Mailing lists: We reached out to the following three mailing lists.
(a) Intelligent Systems in the Geosciences (IS-GEO) email list: serves our NSF-funded

network that partners earth, computer, data, and intelligent systems scientists;



(b) American Geophysical Union (AGU) Earth and Space Science Informatics (ESSI) Section
email list: reaches a large international community of earth, computer, and data
scientists who are very active in research and development of sustainability data science-
related techniques; and

(¢) Machine Learning-news email list: ML-news is an international Google group that covers
all topics related to machine learning, data mining and other data analysis techniques and

reaches a large community of computer scientists working in this area.



2. Web searches: We performed extensive web searches using the following keywords alone
and in many combinations, e.g., combining one term each from Groups 1, 2 and 3:

- Group 1: data science, data mining, machine learning, intelligent systems, artificial
intelligence.

- Group 2: computational sustainability, geo, geosciences, earth sciences, geology, climate,
environment, earth.

— Group 3: course, curriculum, education.

3. ICS resources: In addition to the above web searches we perused the extensive resources of
Cornell University’s Institute for Computational Sustainability (ICS) focused on
“developing computational methods for balancing environmental, economic, and societal
needs for a sustainable future”, see https://computational-sustainability.cis.cornell.edu/.

4. NSF award searches: The above activities yielded only two ID programs funded by the
NSF through Research Traineeship (NRT) grants. We then searched through all current and
past NSF NRT and IGERT grants (IGERT was the predecessor program to NRT) using NSF
award searches. This yielded one more ID program, bringing the total to only three, all in the
U.S.

5. Survey and follow-up interviews: We conducted a survey of people who responded to the
above contacts using a Google form that requested information about any programs, courses,
course modules, or training workshops in which they participated. The survey requested
information regarding the type of course, level taught, focus of course, and other information
detailed in a later section on Course Design. The survey was open from January of 2017
through February of 2018. This returned 11 different responses to the survey from 9 unique
respondents some of whom filled out the survey for more than one course, for a total of 14
courses. Seven respondents were from the U.S. and 2 from non-U.S. institutions. At the

beginning of April 2018, survey respondents were contacted with a more detailed survey,



and 2 more detailed responses were received. Using a grounded theory approach (Corbin
and Strauss, 1990) keywords related to subject matter and pedagogy were extracted  from
the survey responses, and courses were classified based on whether or not the responses
mentioned these keywords.

From the surveys, 2 people were selected for follow up video conference interviews. These
interviews were conducted on April 24, 2018 and May 16, 2018 and were 28 and 18 minutes
long, respectively. Participants for video interviews were selected based on survey
responses, particularly the amount of detail, specificity and reflection provided. The video
interviews were semi-structured, with questions informed by the interviewees’ prior survey
responses. Semi-structured interviews were chosen to allow both survey participants the
opportunity to speak on the same topics while allowing the interviewer to pursue things
brought up in the interview with more depth. Participants were asked to give more detail
about their responses to the questions about overall course design, challenges encountered,
and successful student projects. The interview notes were then summarized into key points,
and keywords from the interviews were used to classify which courses from the survey
responses addressed points brought up by interview participants.

The survey and interview research on human subjects were overseen and determined to be
exempt by the University of Texas at Austin Institutional Review Board under protocol
2018-05-0069.

. Authors’ experience: We synthesized our own knowledge and experiences working in these
contexts with our findings from the surveys and interviews. The authors are all part of the
afore-mentioned IS-GEO program and some of the authors have long term (many years) of
experience working across science and information technology disciplinary boundaries on

other research and education projects.



Results

First, we report on the programs and courses identified through our searches. Then we

present the results from surveys and interviews with instructors.

Existing interdisciplinary education programs

We identified the following three ID data science education programs, all of which
implement some of the principles discussed above. Two are directly relevant to sustainability
science; the third is earth science focused:

e Data Science for Energy and Environmental Research — University of Chicago (USA),
e Environment and Society: Data Sciences for the 21st Century — UC Berkeley (USA),
e Integrated Data-Driven Discovery in Earth and Astrophysical Sciences (IDEAs) —

Northwestern University (USA),

All three are NSF NRT programs. They primarily supplement traditional graduate work, and
they most closely resemble the shield shape model of ID education, with a student’s PhD
discipline serving as the field in which they have deep expertise. The NRT then exposes the
students to a breadth of disciplines through a variety of means, including bootcamps, workshops,
and traditional courses. Each NRT builds up practical understanding in DS through coursework
and projects. All three programs emphasize ID teamwork, either through coursework or, in the
case of the IDEAs program, a citizen science project that partners students with non-scientists in
the community to train citizens to collect and contribute relevant and valid scientific data.
Communication is also emphasized in all programs, with the University of Chicago and
Northwestern programs having courses to train students in communication, and the Berkeley
program including a communication bootcamp. The Berkeley program explicitly addresses other

aspects of ID education, including interdepartmental immersion programs and an



Interdisciplinary Research Design and Methods class. The Appendix contains links to all three
programs.

In addition, the University of Colorado Boulder offers an Earth Data Analytics Certificate
that is obtained by completing three courses (9 credits) within three years. Available courses are
1) Earth Analytics Data Science Bootcamp, 2) Earth Analytics Python, and 3) Earth Analytics
Applications. The only prerequisite is an undergraduate degree in any field. As a 3-course
program with a target audience that might have neither an earth science nor DS background, this
is a good example of an entry-level program. It does not specifically address topics such as ID
collaboration but provides many detailed lesson plans; see the list of related resources in the

appendix.

Existing courses

A major driving force for courses in Computational Sustainability is Cornell University’s
Institute for Computational Sustainability (ICS), created through a large U.S. NSF Expeditions
in Computing grant awarded in 2008, that focuses on “developing computational methods for
balancing environmental, economic, and societal needs for a sustainable future”. In addition to
engaging in research activities, ICS runs CompSustNet, a multi-institutional research network
that includes Cornell, 11 other U.S. academic institutions, and international collaborators.
CompSustNet runs an annual doctoral consortium on Computational Sustainability, and a Journal
of Computational Sustainability is planned for the near future, to serve the growing needs of this
emerging field. Table 1 provides a list of courses in computational sustainability identified by
Fisher et al. (2016), most of which are described in more detail in the corresponding
CompSustNet blog post. Fisher et al. (2016) point out that most of these courses are seminar-

based, and only a few include projects.



Table 1. Courses related to Computational Sustainability as identified in Fisher et al.
(2016) and discussed in more detail in the corresponding CompSustNet blog entry (see
https://blog.computational-sustainability.org/2016/04/11/university-courses-in-
computational-sustainability/ ).

Course Title Institution Source
Sustainability and Assistive Bryn Mawr College Fisher et al. (2016) &
Computing (Fall 2010) CompSustNet blog
Computing and the Vanderbilt University Fisher et al. (2016) &
Environment (Spring 2011) CompSustNet blog

Computing, Energy, and the Vanderbilt University Fisher et al. (2016)
Environment (Fall 2016)

Topics in Computational Cornell University Fisher et al. (2016)
Sustainability (Spring 2011)

Computational Methods in Carnegie Mellon Fisher et al. (2016) &
Sustainable Energy (Fall 2012) | University CompSustNet blog
Computational Sustainability University of British Fisher et al. (2016) &
(Winter 2013-2014) Columbia CompSustNet blog
Computational Sustainability Georgia Tech Fisher et al. (2016) &
(Spring 2014) CompSustNet blog
Seminar on Computational University of Fisher et al. (2016) &

Sustainability: Algorithms for | Massachusetts Amherst | CompSustNet blog
Ecology and Conservation

(Spring 2014)
Topics in Computational Stanford University Fisher et al. (2016) &
Sustainability (Spring 2016) CompSustNet blog

Furthermore, the body of literature focusing on Computing Education for Sustainability
(Mann et al., 2008; Mann et al. 2009; Mann 2016) seeks to integrate sustainability topics into
computing education. Mann et al. (2009) provide important guidelines for material selection and
material collections, which are discussed in the subsection on material selection below, while
Mann (2016) discusses challenges for this area and how they might be resolved.

We also identified a broad selection of courses that combine ESS and DS (Table 2) spanning
undergraduate and graduate courses, taught primarily by DS instructors (e.g., [C14]), by ESS

instructors (e.g., [C3,C7]), or by a combination of the two (e.g., [C1-C2,C4-C6)).



Table 2. List of additional courses we identified that bridge ESS and DS. Contact person
and email addresses are included with permission from each instructor, since many of these
are available online at course websites.

Course title Institution Contact Person

[C1] Spatial Computing U Minnesota Shashi Shekhar
(shekhar@umn.edu)

[C2] Spatial Data Science U Minnesota Shashi Shekhar

Research (shekhar@umn.edu)
[C3] Computer Applications in UTEP Deana Pennington

the Geosciences (ddpennington@utep.edu)
[C4] Geoinformatics for Natural | MIT Victor Pankratius
Hazards Monitoring (pankrat@mit.edu)

[C5] Decision Pathways for UT Austin Suzanne Pierce

Earth Resources (spierce(@tacc.utexas.edu)

[C6] Big Data Wageningen U Ioannis N. Athanasiadis
(ioannis@athanasiadis.info)
[C7] Food, Energy, Water, the U. of Kansas Mary C. Hill (mchill@ku.edu)

Environment, and Public Policy
[C8] Climate Science and Northeastern U Auroop Ganguly
Engineering (a.ganguly(@northeastern.edu)
[C9] Temporal and Spatial Data | Northeastern U Auroop Ganguly
Science (a.ganguly(@northeastern.edu)
[C10] Critical Infrastructure Northeastern U Auroop Ganguly
Resilience (a.ganguly@northeastern.edu)
[C11] Machine Learning U Oklahoma Amy McGovern

(amcgovern@ou.edu)
[C12] Artificial Intelligence U Oklahoma Amy McGovern

(amcgovern@ou.edu)
[C13] Advanced Machine U Oklahoma Amy McGovern

Learning (amcgovern@ou.edu)

[C14] Data camp / RAMP U Paris Saclay Balazs Kegl

(https://www.ramp.studio) (balazs.kegl@gmail.com)

Strategies for course design

This section presents quotes by the instructors of the above courses that highlight their
motivation in course design, challenges encountered, and the lessons they learned while teaching
these classes. Quotes are attributed to specific people with permission. These quotes often refer

to the terms IS (for intelligent systems) and GEO, because those terms are commonly used by the



community from which many of the surveys and interviews were derived. In the context of this

article, one can think of replacing IS with DS and GEO with ESS in these quotes.

Course prerequisites

A challenge in any ID course is the need to establish common ground for students from
different disciplines. For example, Sellars et al. (2017) state that students with interests in DS
from disciplines outside of the traditional Statistics and Computer Science “can’t just pop in” on
courses that focus on statistical and computational methods. Ritu Arora (course [C5]) observes
that “A preliminary programming course should be made a prerequisite so that the IS-GEO
class can be made more about the application of CS/IS techniques and has more depth on
selected topics”. Thus, a sequence of special introductory courses or bootcamps is essential, to

bring both DS and ESS students up to speed with the other discipline.

Group projects

Group projects are an extremely powerful means to develop ID skills, such as
communication and working in teams. Of the courses surveyed (Table 2), every course that
included both DS and ESS students featured group projects. Pankratius (video interview)
observes that “Bringing together PhD students from different departments (earth science,
computer science, physics, etc.) and working on case study projects together enables cross-
fertilization and interdisciplinary learning experience for everyone at early career stages.”
McGovern (video interview) pointed out that although desirable, bringing together students from
different disciplines is not always easy. For group projects, given the option, students may be
inclined to pair up with peers from the same discipline because of shared background
knowledge, approaches, and/or interests. Instructors may explicitly require ID teams. Leaving

room for more ID teamwork to emerge from teams that do not start out aligned, reinforces that

even teams that do not start out functioning in a perfectly ID way can grow into it, as pointed out



by Pierce ([C5]): “Leaving ambiguity in the project description results in the best outcomes and
learning by students; while the students are uncomfortable at first they usually commit to the
project as a team to define it (e.g. active co-design) and I receive messages from past students in

the workforce stating that the course was the most valuable in their graduate careers.”

Material selection

In this section we discuss general frameworks and considerations for material selection,
including a summary of feedback obtained from our surveys and follow-up interviews. Please
see the appendix for a list of additional educational resources we identified from other sources.
Mann et al. (2009) provide an interesting framework for the evaluation and selection of resources
for computer science educators to help them integrate sustainability topics in computing courses.
The evaluation framework was developed by a working group and consists of a list of five
categories, and within each category of several questions that guide the evaluation of any
considered resource. They also provide a list of 14 sample resources they identified, namely 8
papers or news stories, 1 set of lecture notes, and 5 related books.

Considering the question of breadth vs. depth, we observed a variety of approaches among
the courses we identified, ranging from specifically targeting an ESS domain for deep study
([CA4)) to providing a wide set of example data sets to support a variety of student interests and
backgrounds ([C11]). Furthermore, many instructors emphasize the importance of grounding
courses in concrete examples and real science questions, rather than disconnected sample data, in
order to keep students’ interest and to encourage synthesis'!. Case study data and real open
problems seem to work best. Athanasiadis ([C6]) suggests to “Teach with good examples. Even

if they come from a different application area, students can follow it as long it is well explained

!'In fact, Mann (2016) even goes one step further and proposes to make a computing student’s entire
curriculum project-based, namely selecting the student’s courses for the degree based on a self-selected
sustainability project. Learning would be on-demand as needed by the project.



and documented.” McGovern ([C11]) keeps the DS students interested as follows: “I use a lot of
GEO examples when I teach the methods. The biggest challenge is keeping the non-GEO
student’s interest. Since we live in an area with high severe weather, [ use a lot of severe weather
examples because everyone is familiar with that around here.” Pennington ([C3]) motivates the
ESS students as follows: “Geo students have difficulty understanding abstract techniques unless
they are shown applications, and purposefully reflect on how a technique might be applied in
their own work.” Hill ([C7]) gets all students excited through her “policy conference”: “The
whole point is to make the students realize they can be part of societal decision making. It
worked really well to focus on producing a poster and related research paper, and the two-class
policy conference where they role play currently active politicians, business people, scientists,
and NGO leaders worked really well.”

Pankratius (video interview) described his strategy for helping students select tools and
techniques that match their science goals. In this course, students present their project ideas early
in the semester. The instructors then use the list of projects to curate the selection of data science
concepts and techniques to be addressed in subsequent classes in order to align with student
project interests. Narrowing in on a specific geoscience problem of interest in combination with
guidance from instructors in choosing appropriate techniques can help provide a good synthesis
of geoscience and DS strategies. Without this guidance, students may be inclined to overly rely
on the first few DS techniques they master, regardless of their match to a particular problem or
dataset.

Shekhar ([C2]) emphasizes that - in order to learn about different disciplinary values,
epistemologies, and philosophies - it is important to “compare research cultures across IS
(conference publication) and GEO (e.g., journal publication). Include papers from both IS and

GEO in the reading list”.



When asked about their wish list for future ID education resources, several researchers
described the need for curated datasets for students to work with, particularly for open
problems in ESS. There is a need to develop such datasets (Ebert-Uphoff et al., 2017). The
appendix contains a list of data sets and other educational material we identified that are already

available for immediate use.

Discussion: The Role of Data Science Competencies in Sustainability
Science

Wiek et al. (2011) identified systems, anticipatory, strategic, and normative thinking as key
competencies in sustainability science, all dependent on interpersonal (collaboration and
teamwork) competencies. They provided examples of concepts and methods relevant to each.
Expanding on that initial work, Wiek et al. (2015) considered how to operationalize these skills
in the context of formal education and expanded the list of concepts and methods related to each.
The methods they identified are data analysis and modeling methods, all of which depend on
data inputs, and generate data outputs. DS competencies are implicitly required by the methods.
DS competencies, then, are foundational in the same way that interpersonal & collaboration
competencies are foundational (Figure 3). For example, some of the methods require simulation
modeling (e.g. scenario analysis, forecasting, backcasting). Simulation models require data
inputs that can be quite complex, and they generate voluminous data outputs that must be
analyzed and/or visualized to be understood. In addition, the data inputs and outputs must be
managed effectively. The model itself depends on programming and software development. All
of these are DS competencies (Hampton et al, 2015). Similarly, methods that require statistical
analysis depend on solid knowledge of statistics and the most important data analysis algorithms,
e.g. methods for prediction, classification, pattern recognition and causal discovery (Kempler &

Mathews, 2017). Equally important is an understanding of the limitations of these methods, in
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Figure 3 A framework for incorporating data science competencies proposed by Hampton et al.
(2015) into sustainability competencies proposed by Wiek et al (2011).

particular how to interpret results from these algorithms and when to question their validity. In
practice this has typically been achieved by a person with training in both the content area and
data/programming skills. Yet people with both sets of knowledge and skills are few, and as
shown above there are few formal programs that target both. As DS progresses it is increasingly
difficult to maintain awareness of how the field is changing (Huppenkothen et al., 2018). In
addition, making data and models findable, accessible, interoperable, and reusable (FAIR)
requires substantial time, effort, and expertise (Wilkinson et al., 2016). Yet this is essential to
address the complex sustainability issues confronting society (Creutzig et al., 2019). Not
everyone applying data analysis and modeling methods needs to have a full set of DS

competencies but they should have enough background in DS to enable collaboration with



someone who does. Similarly, those with DS competencies must collaborate with someone who

has deep ESS knowledge in order to generate valid models.

Limitations of the research

Although we used a variety of mechanisms to identify relevant programs and courses that
could inform our effort, we did not attempt a rigorous, comprehensive search. There exists a
large body of literature on ESS and DS education that could provide additional insights.
However, our goal was primarily to initiate discussion within the ESS and DS communities
regarding the challenges of workforce development in this area and provide examples for

consideration of how some faculty are navigating this space.

Conclusion

Despite the fact that data science is rapidly changing virtually all areas of knowledge, and
that data science has many important applications in the earth and sustainability sciences, there
are very few efforts in formal educational programs attempting to incorporate data science
training for earth and sustainability students. New courses and programs are urgently needed at
the intersection of sustainability science and data science to prepare the future workforce. We
identified several pioneering programs and courses that can serve as guides and inspiration for
instructors and institutions. Nevertheless, much more work remains to make this type of
education easy to implement, and thus to enable it to become mainstream. Curated datasets and
accompanying education resources that support such efforts were identified as one of the major
gaps to be addressed.

These efforts must be accompanied by purposeful training in interdisciplinary collaboration,

because many sustainability scientists will need to collaborate with data science experts in order



to generate and/or apply advanced techniques that are appropriate for the problem being
addressed. Interdisciplinary collaborations are known to be fraught with difficulties; these are
compounded in collaborations between sustainability and data scientists because of the extreme
diversity of these disciplines and the lack of shared background concepts. Hence, progress
developing curricula to systematically incorporate data science competencies into sustainability
science education must be accompanied by development of more systematic training in
interdisciplinary collaboration. New methods for purposeful development of interdisciplinary
collaboration skills are beginning to emerge.

There is currently active discussion in the sustainability science education community
regarding competencies needed by the future workforce to work effectively in this arena.
Because sustainability science problems are complex, they can rarely be addressed effectively by
one discipline or one type of knowledge. For this reason, collaboration has been previously
identified as a fundamental competency that underlies every other required competency. In the
same way, basic competencies for managing, integrating, analyzing, and/or visualizing data, as
well as developing models and software, are data science competencies that underlie most (if not
all) other competencies. Both sets competencies — collaboration and data science — require

additional research to determine the most effective pedagogies for instilling these in students.
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