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Abstract

Flapping insect wings deform under aerodynamic as well as inertial-elastic forces. This deformation

is thought to improve power economy and reduce the energetic costs of flight. However, many flapping
wing models employ rigid body simplifications or demand excessive computational power, and

are consequently unable to identify the influence of flexibility on flight energetics. Here, we derive a
reduced-order model capable of estimating the driving torques and corresponding power of flapping,
flexible insect wings. We validate this model by actuating a tobacco hornworm hawkmoth Manduca
sexta (L.) forewing with a custom single-degree-of-freedom mechanical flapper. Our model predicts
measured torques and instantaneous power with reasonable accuracy. Moreover, the flexible wing
model predicts experimental trends that rigid body models cannot, which suggests compliance should
not be neglected when considering flight dynamics at this scale. Next, we use our model to investigate
flight energetics with realistic flapping kinematics. We find that when the natural frequency of the
wing is roughly three times that of the flapping frequency, flexibility can reduce energy expenditures by
almost 25% compared to a rigid wing if negative work is stored as potential energy and subsequently
released to do positive work. The wing itself can store about 30% of the 1200 1] of total energy required
over a wingbeat. Peak potential energy storage occurs immediately before stroke reversal. We estimate
that for a moth weighing 1.5-2.5 g, the peak instantaneous power required for flight is 75-125W kg .
However, these peak values are likely lower in natural insect flight, where the wing is able to exchange
strain energy with the compliant thorax. Our findings highlight the importance of flexibility in flapping
wing micro aerial vehicle design and suggest tuned flexibility can greatly improve vehicle efficiency.

1. Introduction

Micro air vehicles (MAVs) have become a pervasive
technology over the past decade. Their applications
are extensive, ranging from environmental mapping
to remote sensing. Many applications require the
MAV to be small so that it can navigate congested
environments. For example, agricultural MAVs
designed to identify stressed crops may need to
negotiate dense thickets to carry out their objective
effectively. However, conventional fixed-wing or rotor-
based MAVs cannot be reduced to the minuscule scales
necessary to carry out such tasks. At the low Reynolds
numbers of small-scale flight, viscous forces dominate
lift-generating aerodynamic forces and conventional
rotary motors cannot dissipate heat effectively [1, 2].
Consequently, the most successful MAVs at centimeter

scale rely on flapping wings to realize flight [3].
These flapping wing micro air vehicles (FWMAVs)
have the potential to revolutionize the way we carry
out various tasks, including remote sensing and
distributed infrastructure monitoring. Unfortunately,
several issues preclude widespread realization of this
promising technology. Perhaps the most obvious of
these issues is inefficient energetics. Most FWMAV's
demand excessive power and cannot carry their own
power supplies, instead relying on tethers to provide
power externally [4]. This severely limits the vehicle’s
autonomy and ability to perform useful tasks. By
comparison, flying insects are extremely efficient,
sometimes sustaining flight for several hours [5].
Thus, understanding the energetics of insect flight can
guide the design and optimization of small and energy
efficient robotic vehicles.
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Insects are efficient fliers largely because they lev-
erage the structural compliance of their bodies to
reduce the energetic cost of flight. To flap their wings,
insects deform their elastic thorax through two large
sets of indirect flight muscles [6]. The small thoracic
deformation is amplified into large, rotational wing
motion through an intricate linkage mechanism called
the wing hinge [7]. The benefit of thorax flexibility is
that much of the stored strain energy can be recycled to
slow down the wing upon reversal or speed up the wing
at mid-stroke [8]. This diverges from a rigid system,
where energy must be invested both to accelerate and
to decelerate the wing. Much effort has been devoted
to understand the elastic behavior of the insect tho-
rax as well as the corresponding energy expenditures.
Hollenbeck et al determined the force-displacement
curve of the hawkmoth M. sexta (L.) thorax by apply-
ing varying static loads to the insects tergum [9]. Ando
and Kanzaki measured the in vivo deformation of the
hawkmoth A. convolvuli thorax using a high-speed
laser profilometer [10]. Tu and Daniel employed a
work-loop technique to actuate and measure the force
and displacement of a large indirect flight muscle in an
intacthawkmoth thorax [11]. Through these measure-
ments, they were able to estimate the power require-
ments of flapping wing flight.

While these studies and many others focus on the
flexibility and energetics of the thorax, the insect wing
isaviable strain energy storage mechanismaswell [ 12].
Like the thorax, insect wings bend and deform during
flight. This deformation arises from both aerodynamic
and inertial-elastic forcing [13]. Young et al used high-
speed videography to measure the rotational kinemat-
ics and wing deformation of a desert locust wing [15].
They used computational fluid dynamics (CFD) to
estimate the aerodynamic power for the real flexible
wing and a fictitious rigid wing. Wing motion was pre-
scribed based upon videographic measurements. They
found that wing deformation reduced aerodynamic
power while increasing lift. Lehmann et al studied both
the aerodynamic and inertial power of flexible blow fly
wings, again using high-speed videography to measure
the wing deformation [16]. They conjectured span-
wise bending gives rise to potential energy storage
that could reduce the overall energetic cost of flight.
These studies did not use predictive models to estimate
wing deformation, and instead relied on experimental
measurements. While this methodology is suitable for
investigating specific cases of flapping wing flight, it
cannot easily be extended to consider various flapping
kinematics or wing designs. The ability to conduct
parameter studies is essential to bio-inspired design
of FWMAVS, flapping foil energy harvesters and other
technologies.

To enable such parametric studies, others have
developed physics-based models to estimate flapping
wing energetics. Berman and Wang approximated
the power-minimizing flapping kinematics of several
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insects in hover [17]. They assumed the wings were
rigid. Stanford et al carried out a similar study for flex-
ible wings and used an aeroelastic model to optimize
the wing shape and flapping kinematics [18]. Yin and
Luo studied the power economy of deformable wings
and found that flexibility increases aerodynamic power
efficiency [19]. In a separate study, they also showed
that wing flexibility enhances thrust production dur-
ing forward flight [20]. Both [19, 20] considered two-
dimensional motion. Nakata and Liu developed a
three-dimensional high-fidelity computational fluid-
structure interaction (FSI) model capable of exploring
flexible wing energetics [21]. Their approach relied on
a computationally intensive coupled finite element/
CFD solver. Shahzad et al utilized a coupled finite ele-
ment/CFD FSI approach to study the effects of wing
shape and aspect ratio on flapping wing force produc-
tion and power consumption [14]. Fitzgerald et al
developed a computationally efficient FSI model using
an unsteady vortex lattice fluid model, though they did
not consider the moments required to flap the flexible
wing [22]. Quantifying the torques required to drive
flexible wings is relevant to actuator sizing in insect-
inspired FWMAVs. Jankauski and Shen also developed
a low-order model to estimate flapping wing power
[12], but again this model was formulated via energy
quantities and did not provide insight into the aerody-
namic and inertial moments that govern power con-
sumption. To our knowledge, there are no validated
reduced-order models capable of estimating the driv-
ing torques as well as corresponding energetic expen-
ditures of flapping wings.

Given the motivation, there are three objectives
of this paper: (1) develop an accurate, low-order
model capable of estimating flexible wing torques,
(2) validate this model experimentally by measuring
the torques of a hawkmoth wing subject to artificial
flapping, and (3) estimate the energetic costs of hawk-
moth flight numerically using the derived model. The
model must accommodate arbitrarily complex wing
geometry and be able to account for three-dimen-
sional motion. The remainder of the paper is organ-
ized as follows. First, we derive the mathematical
framework necessary to estimate the driving torques
and corresponding instantaneous power of the flex-
ible wing. We assume a simple unilaterally-coupled
FSI framework, where the fluid affects the structure
but the deforming structure does not affect the fluid.
This assumption is reasonable for the purposes of this
work because of the high mass ratio of the wings con-
sidered [14]. Next, we describe a simple single degree-
of-freedom (SDOF) flapping experiment carried our
to validate the mathematical model. We then compare
experimental findings to numerical predictions. We
conclude by investigating the energetics of a flying
hawkmoth with realistic multiple degree-of-freedom
(MDOF) flapping kinematics and how these energet-
ics are affected by wing flexibility.
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2. Theory

In this section, we derive a novel reduced-order
method for determining the total torques and
mechanical power of a flapping, flexible insect wing.
We first summarize a previously developed FSI model
that allows us to estimate wing deformation. We
then formulate a new method to estimate the inertial
torques of a flexible wing. Based upon the net torques,
we calculate the total instantaneous power required to
flap the wing.

2.1. Flapping wing fluid-structure interaction

The framework detailed in this section originated in
[23] and [24] and is summarized here only to provide
clarity to the manuscript. For a detailed derivation, the
readerisencouraged to see these references. The benefit
of the following FSI model is that it is reduced-order
and can be solved with low computational demands.
Moreover, the model is general in the sense that it can
accommodate arbitrary wing geometry. Therefore,
it is well-suited for high dimensional geometric or
kinematic parameter studies.

First, we develop a reference frame that rotates with
the rigid body motion of a wing (figure 1). A wing is
placed into an inertial XYZ world-fixed coordinate.
The XYZ frame undergoes a X —y — 2z’ rotation
sequence about fixed point O with rotation amplitudes
«, Band 7y, respectively, where v is roll, B is pitch and y
is yaw. Note that because O is a fixed point, the motion
described in this paper is representative of hovering
flight. The wing-fixed xyz reference frame has an angu-
lar velocity €2, where

Q = (ccosBcosy + Bsiny) e, + (Bcosy — dcos Bsiny)e, ...

Wy wy
+ (9 + dsinf)e,.

Wz

Next, a position vector R is drawn from fixed point O
to a differential mass element in the wing-fixed frame.
The position vector R is

R=r + W(r,1)e, 2)

where r; describes the planar coordinates of the
differential mass (r; = xe, +ye,) and W(r,t) is
an infinitesimal, out-of-plane elastic deformation
of the wing. In-plane deformation is neglected. The
corresponding velocity of the differential mass is

R=Q xR+ W(rj, t)e,. (3)

We now discretize the out-of-plane deformation
W(ry,t) via an infinite series of space-dependent
vibration mode shapes ¢ (r;) multiplied by time-
dependent vibration modal responses gx() such that

W(ry,t) = Z Gr(r1)qr(t). (4)
k=1
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In the above expression, the vibration mode shapes
¢ can be solved either numerically via finite element
analysis or experimentally via modal analysis.
Vibration mode shapes are normalized with respect
to the wing mass such that they satisfy orthonormal
conditions. Using this discretization and the
differential mass velocity (equation (3)), we formulate
the kinetic energy T of the entire wing including both
elasticand rigid body motion. We assume the potential
energy U of the wing is described by a symmetric,
quadratic strain energy density function. It follows
that

_lgr Loa . ax~ 2, I~
T_EQ IOQ"’E(Wx"‘Wy)ZQk"‘EZQk"'
k=1 k=1
(o) (o)
—w ) g — 2> b
k=1 k=1
100
U=32 widi (5)
k=1

Using the Lagrangian approach, we derive the
equation of motion governing the time-dependent
modal response gy as

ik + 2Gwide + [Wf — (W) +w))] g = Q-
by — w, Q- a; + Qp (6)

where wy is the kth natural frequency of the wing, (i
is the kth viscous modal damping ratio and wy, w, are
the x and y components of €2, respectively. Note that
modal damping does not arise explicitly from our
derivation but is rather included after the undamped
equation of motion is established. In this case, viscous
modal damping may arise from both structural and
fluid effects. Vectors a; and by are directed from the
fixed point of rotation O to the inertial force center of
the kth vibration mode, and are defined as

a = /qﬁk(xex—i-yey) dm (7)

WZ/@FWﬁwwwn (8)

Lastly, Qg is the generalized aerodynamic force for the
kth modal response is

Q= /FN<rl)t)¢k(rl)ds’ )
s

where Fy is the physical aerodynamic force normal
to the wing surface S. Note that this formulation is
general and Fy can be determined through any fluid
modeling approach. For the purposes of this work,
we use reynolds averaged Navier Stokes (RANS) CFD.
Specifically, we utilize the Spalart—Allmaras RANS
model with Chimera grid available to STAR-CCM + v
12.04. The Chimera meshing approach accounts
for the large rigid body motion of the rotating wing
without requiring remeshing of the domain.
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Figure 1. Rotating reference frame attached to the rigid body motion of the wing. Position vector R is drawn from the fixed point of

origin O to a differential mass element.

While our model is capable of accommodating
either unilateral or bilateral coupling between the fluid
and structure, we assume unilateral coupling, where
the flow affects the structure but the structure does not
affect the flow. While this assumption is not applicable
to the broad range of flapping insect wings, it is suit-
able for wings limited to small deformation. Moreover,
itallows us to compute solutions more efficiently since
CFD solvers do not need to be coupled to structural
solvers. Within the context of this work, the unilateral
coupling assumption yields good agreement between
model and experimental predictions of moments and
power. We have also observed that Fy scales quadrati-
cally with the flapping frequency and as a result can be
non-dimensionalized with respect to time. Thus, a sin-
gle CFD simulation can be used to identify Fy across
a broad range of flapping frequencies which greatly
reduces the computational resources required for this
work. Other research groups have considered high-
fidelity bilaterally-coupled FSI models [14, 21, 25],
however the lower-fidelity unliateral coupling assump-
tion provides adequate results for the purposes of this
work with low computational demands. For further
detail on our CFD model, the reader is encouraged to
refer to [24].

2.2. Torquesand power of flexible, flapping wings

The torques of a rigid body rotating in three
dimensions are well understood. However, the torques
governing the rotation of a flexible wing are more
difficult to characterize. In what follows, we derive a
reduced-order method to estimate the inertial torques
of a flexible wing undergoing three-dimensional
rotation. In the manuscript we consider only a high-
level summary of the derivation; for further detail,
refer to appendix A. Since the wing rotates about a
fixed point O, the angular momentum Hy about O is

HO:/Rdem. (10)
Substituting equations (2) and (3) into the above gives

H, = /(rl + We,) x [Q X (r; + We,) + We,] dm.
) (11)

Next, out-of-plane deformation W is expanded via
equation (4) which yields

Ho = Z/(rl + dudre:) X [ X (r1 + drqee:) + dudye:] dm.
k=17
(12)
We continue to simplify the angular momentum
expression until we find

Hy =I,Q2 + Z[—qk(ak . Q)ez + bqu e
k=1

— (e Dagg + (X —weer)qi),  (13)

where I is the wing’s rigid-body inertial tensor that is
constant with respect to the rotating coordinate frame.
The first term to the right of the equals sign represents
the rigid-body angular momentum of the wing
about O. The remaining four terms are the angular
momentum due to the wing’s elastic deformation.
The expression for Hy can be solved efficiently once the
modal response gy is calculated by equation (6). Finally,
the inertial-elastic moments of the flexible wing about
O are determined by differentiating Hy with respect to
time such that

MO,Inertial =0 x HO + HO,xyza (14)

where the first term to the right of the equals sign
indicates the change in direction of the Hy and the
second term indicates the change in magnitude of
H, with respect to the rotating xyz reference frame.

4
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Lastly, the instantaneous mechanical power P(t) of the
flapping wing is

P(t) = (Mo ertiat — Mo aero) - €2 (15)

where Mo ero is the aerodynamic moment determined
via CFD as detailed in the previous section. This
expression for total mechanical power is common
in flapping wing literature. However, it is typically
applied to rigid wings because an analytic expression
for My 1yerrial for flexible structures was not previously
available.

3. Experiment design

In this section, we detail an experiment intended to
validate the mathematical models derived in section 2
for SDOF flapping. We first describe the fabrication
of a custom mechanical flapper capable of measuring
both wing driving torques and angular position. We
next outline the preparation of insect specimens, as
well the procedures we use to estimate insect wing
natural frequencies. Finally, we discuss finite element
modeling of the forewing.

3.1. Mechanical flapper

To verify the theoretical model in the previous
section, we develop a simple SDOF flapper (figure 2).
A video of the flapper is included in the manuscript
supplementary data (stacks.iop.org/BB/14/056007/
mmedia). We equip the flapper with a custom torque
load cell and optical encoder so we can directly
measure the flapping torques and angular position.
From these measurements, we can estimate the
mechanical power required to flap the insect wing.
Note that this simple experiment cannot produce the
three-dimensional flapping kinematics observed in
real flight. Nonetheless, it is a reasonable first attempt
at validating the model derived in section 2. Then, we
can use our model to estimate the torque and power
requirements for flight conditions with realistic
flapping kinematics. Data presented in this paper are
from a single hawkmoth M. sexta forewing.

The central challenge of this experiment is to
minimize the inertia of the flapper itself so that the
torque of the wing can be clearly identified. We use a
low-inertia, high-torque brushless DC motor (EC-
Max16 283835, Maxon Motors) to flap the wing.
The motor is equipped with an 512 count-per-turn
optical encoder, which provides position feedback a
combination motor controller/driver (EPOS2 24/5,
Maxon Motors). The motor controller uses a PID
framework to ensure that the motor shaft maintains a
prescribed position profile in the presence of inertial
loads. All motor commands are prescribed using Lab-
view. The motor is bolted to a thick aluminum motor
plate, and standoffs separate the motor shaft and the
top aluminum plate. The top plate is equipped with
a quantized 12-bit analog encoder (MAE3, US Digi-
tal) to measure the angular position of the shaft. A

HEReid et al

slotted shaft coupler spans from the motor shaft to the
analog optical encoder. During experiments, the wing
is directly glued into this slot. The glue preserves the
natural camber at the base of the wing.

Next, we discuss the torque measurement system.
Torque measurements are challenging because insect
wings have low rotational inertia. We found that due
to the mass of the entire flapper, standard foil-based
torque sensors were not a feasible option. Cells with
the necessary low-end sensitivity were too flexible,and
the reduced natural frequency of the loaded torque
sensor itself interfered with the dynamic response of
the wing. To mitigate this issue, we developed a cus-
tom torque transducer comprised of a piezoelectric
force sensor (209C11, PCB Piezotronics) cantilevered
approximately 8.9 cm from the flapper axis of rotation.
The benefit to using a piezoelectric sensing element
instead of a foil-based sensing element is that piezo-
electric sensors are much stiffer. With this force sensor
and the lever arm, the resolution of the custom torque
transducer is approximately 0.008 mN m. To ensure all
torque from the robotic flapper is transmitted to the
load cell, we mount the entire robotic flapper on a low-
friction ball bearing.

We flap the wing at £65° from 15 to 35 Hz continu-
ously over 60 s using a swept sine. For this research we
focus on measurements taken in the range of 20-30 Hz
because the wing beat frequency of the M. sexta is
approximately 25 Hz [26]. Measurements outside of
this frequency range are used primarily to align time
series data from separate trials. We perform ten trials
and average the recorded torque signals from each trial.
Because the overall moment of inertia of the flapping
mechanism about the rotational axis is approximately
8 times larger than that of the wing, we conduct a fre-
quency domain background subtraction to remove the
influence of the flapper inertia and to identify the rota-
tional torques of the wing only. Trials are conducted
both with and without the wing, and the averaged
torque measurements of the mechanism without the
wing are subtracted from the averaged torque meas-
urements with the wing. Both torque and position
measurements are sampled at 2.5 kHz using a National
Instruments cDAQ-9178 data acquisition system with
NI9215 analoginput module.

3.2. Insect preparation

Small larvae of the tobacco hornworm, M. sexta
(L.), were shipped overnight from Josh’s Frogs
(Owosso, MI) to Montana State University (MSU)
and immediately placed in a rearing room (7.65 m?)
with temperature of 28 °C + 2 °C, and a photoperiod
of 24:0 (L:D) h to inhibit photoperiodic induction of
pupal diapause [27]. The larvae were housed in 0.95L
insect rearing cups with perforated lids that contained
Repashy Superfoods Superhorn Hornworm Gutload
Diet from Repashy Ventures (Oceanside, CA). The
cups were retrofitted with gutter screen to provide a
structure for larvae to grasp.
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(a) Computer-drawn schematic. (b) Physical realization.

Figure 2. Computer rendering and physical realization of the SDOF mechanical flapper. The device is capable of flapping a
large moth wing up to 50 Hz at +90 degrees while simultaneously measuring reaction torques and angular position of the wing.

Between 3 and 6 larvae were added to each cup.
Cups were inverted and organized on a rack. Following
visual inspection of each larva, frass and other waste
were removed daily. Larvae developed for approxi-
mately 14-21 d in these conditions. Once the aorta
became prominent and the larvae ceased feeding, the
larvae were transferred to a large Sterlite latching box
(23cm L x 38cm W x 28 cm H) filled uniformly with
5cm of slightly moist peat soil. The larvae pupated
within 48h in this environment. Adults emerged
within 2—-3 weeks of pupation and wings were allowed
to fully develop before the adults were removed and
sacrificed. Adult moths were sacrificed in 3.78 L glass
kill jars with a plaster of Paris base and ethyl acetate
killing agent. Adults were frozen immediately after
euthanization and thawed in wet paper towels for 2h
before experimentation. While we acknowledge freez-
ing may affect the structural properties of the forewing,
this does not preclude us from validating the derived
mathematical as long as the natural frequencies of the
thawed wing are quantified.

3.3. Dynamic characterization

To inform the mathematical torque model used in
this research (equation (6)) we must know wing
natural frequencies wy. This is challenging because
wy is sensitive to boundary conditions, and the
boundary condition the insect wing experiences
in reality is difficult to replicate. As mentioned,
the forewing is glued directly into the slotted shaft
couple of the mechanical flapper to maintain the
camber at the base of the wing. It is likely that the real
boundary condition of the wing is more compliant
and that the natural frequency is lower than what we
measure experimentally. Recognizing this limitation,
we explore a range of natural frequencies through
simulation once the mathematical model is validated.
Natural frequency data for the hawkmoth forewing is

Table 1. Parameters for finite element model of wing tested in
mechanical flapper.

Parameter Symbol Value Unit
Mass m 30 mg
Surface area A 693 mm?
Average thickness ¢ 45 pum
Density p 945 kg m~?
Moment of iner- I 0.163 gcm?
tia (x)

Moment of iner- I, 0.016 g cm?
tia (y)

Moment of I, 0.179 g cm?
inertia (z)

Product of inertia I, 0.040 gcm?
(xy)

First natural w1 75 Hz
frequency

Second natural W 95 Hz
frequency

First Inertial a; 0.29e, +1.24e, kgem?
Force Center

Second Inertial  a, —0.19e, —0.21e, kgcm?

Force Center

well documented in the literature, and the first natural
frequency typically falls between 60-80 Hz [28, 29].

To identify the natural frequency of the wing
mounted in the flapper, we rely on the motor to pro-
vide excitation to the wing (figure 2(a)). The motor is
driven with small-amplitude broadband white noise
and the output spectrum is measured at several points
along the wing’s surface (figure 3). We determine wing
natural frequencies from single-point scans (table 1).
This procedure provides noisy measurements com-
pared to modal testing conducted with a vibration
shaker, however the boundary conditions are identical
to those in the flapping experiment which is critical to

model validation.
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Figure 3. Measuring the natural frequency of the wing. The mechanical flapper is excited by broadband white noise with low
rotational amplitude and the velocity at several points on the wing’s surface is measured with the laser vibrometer. (a) Laser
vibrometer measuring wing response. (b) Wing velocity output spectrum measured at a single point on wing surface with moving
mean filter applied. Note that w, cannot be observed from this measurement point.

! ! ! e
0 100 200 300 400 500
f (Hz)

(b)

3.4. Structural modeling

Lastly, we develop a simple finite element (FE) model
of the insect forewing. From our FE model, we estimate
mode shapes ¢y as well as inertial force center vectors
a; and by, which are the remaining constants required
to solve the modal response equation of motion
(equation (6)). Other groups have developed similar
FE models [22, 28], however insect wings exhibit
significant variation in morphological parameters
such as surface area, mass and length [30]. Since all
these parameters critically affect flapping torques
and power, we must develop a FE model specific to
the experimental wing rather than rely on existing
FE models. We also note that while the mode shapes
of our wing could be found experimentally, they will
not generally satisfy the orthonormality conditions
required by equation (6).

We develop our FE model using ABAQUS CAE.
All model parameters are shown in table 1. We cre-
ate the geometry by digitally tracing the forewing
planform (figure 4). We assume constant volumetric
density and vary the thickness of the wing such that
the surface density agrees with existing mass distribu-
tion measurements. For more information on mass
distributions, please refer to appendix B. We neglect
venation and wing camber. While these assumptions
do not capture the rich complexity of a real insect
wing, the resulting FE model agrees reasonably well
with the experimental work presented in section 4. We
emphasize that the primary focus of this work is not
high-fidelity FE modeling, however more complex FE
models can be used with our framework if desired. For
a more thorough treatment on FE modeling of insect
wings, the reader is encouraged to refer to [28].

Once the FE model is created, we determine the
vibration mode shapes ¢, and natural frequencies wy
numerically. We find the first mode is a bending mode
and the second mode is a torsional mode (figure 5)

Figure 4. Hawkmoth forewing used for the mechanical
flapping experiment. FE model is based upon this wing’s
planform. Each grid box is 5mm x 5 mm.

which agrees with past experimental modal analy-
sis [28]. We retain only two vibration modes in this
work given that higher-order modes are unlikely to
be excited over the range of flapping frequencies con-
sidered. However, in other applications, high-order
modes can be retained if necessary. Owing to the sim-
plified geometric properties used in the FE model,
the natural frequencies calculated numerically do not
agree closely with those observed experimentally. To
reconcile this, we adjust the natural frequencies of each
vibration mode in post-processing so they agree with
the experimental values reported in table 1. This is
analogous to adjusting the directional Young’s moduli
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(@

(b) Second vibration mode (torsion).

Figure 5. Vibration modes of the FE model wing superimposed on undeformed wing geometry. (a) First vibration mode (bending).
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so numerically predicted natural frequencies agree
with those measured experimentally.

4. Resultsand discussion

Here, we investigate the effect flexibility has on
flapping wing driving torques and mechanical power.
We first compare experimental data to theoretic
predictions of torque and power to assess the accuracy
of the mathematical model. Then, we investigate more
realistic MDOF flapping kinematics via numerical
simulation.

4.1. Experiment-model comparison

We first compare torque measurements taken from the
20-30 Hz swept sine flapping experiment (section 3.1)
to those predicted via the mathematical model
in section 2. Because swept sine simulations are
computationally expensive in CFD, we instead solve

equation (6) assuming single frequency flapping and
repeat this several times over the entire frequency
range of interest. To attenuate the free response of the
wing, we include modal damping at ¢ = 0.1 for both
modes and simulate the numeric response over 50
wing beat periods. This damping value is selected as
the average between those presented in [31] and [32]
and produced good agreement between theoretical
and experimental results. We record simulation data
once the wing dynamics have achieved a periodic
steady-state. We conduct simulations for both rigid
and flexible wings to identify which model better
predicts experimental trends. For each simulation
with flap frequency fpq), we record the magnitude of
torque at fjq, as well as any harmonic with appreciable
frequency content. The comparison between theory
and experiment is shown in figure 6.

Opverall, agreement between theory and experi-
ment is good. The flexible wing theory predicts the
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magnitude of flapping wing torques|M( f)|at fqp and
3ffiap within reasonable accuracy. While rigid and flex-
ible body models predict a similar torque magnitude
at ffqp> the rigid body model cannot identify the 3fg,,
response that is clearly observed in the experiment.
Thus, we believe that the flexible body model more
accurately predicts flapping torques and offers math-
ematical insights unavailable to the rigid body model.
Despite good agreement between the model and
experiment, there are two discrepancies we must
address. First, we see that both rigid and flexible body
models slightly overstimate the torque magnitude at
ffiap- We believe this stems from differences between the
real inertial properties of the wing and those of the ide-
alized FE model. While the cut-and-weigh procedure
detailed in appendix B provides a rough estimation of
the mass distribution, it is challenging to identify this
distribution exactly. Even modest errors will affect the
inertial properties in table 1. If the estimated moments
of inertia are higher than those of the actual wing, our
mathematical model will overestimate the torques at
ffiap- Second, the experiment reveals a torque comp-
onent at 2f,, that is not accounted for by our model.
This discrepancy likely comes from misalignment
between the mechanical flapper and the torque sen-
sor. If the two are misaligned by even a few degrees, the
asymmetry effectively causes the wing to rotate abouta
secondary yaw axis. Despite being small in amplitude,
the yaw rotation is geometrically coupled to the pri-
mary roll rotation and causes large gyroscopic forces to
excite the wing at twice the driving frequency [23, 33].
These gyroscopic forces cause wing deformation at
2fap which in turn affects the torque. Indeed, if we
include a yaw rotation with an amplitude of 10° into
our model, it predicts the torque response at 2fpq, with
excellent quantitative accuracy (figure 6, bottom).

Next, we investigate experimental energetics. We
determine the instantaneous power by multiplying
the measured torques with the angular velocity of the
wing, where the velocity is estimated by differentiating
the measured angular position. To reduce differen-
tiation noise, we apply a low-pass filter with a 250 Hz
cutoff frequency to both torque and angular velocity
signals. Again, we conduct simulations to estimate the
power delivered to both rigid and flexible wings and
compare simulation results to experimental measure-
ments (figure 7).

In general, the model-agreement for power magni-
tude|P( f)|is acceptable. The experiment shows |P( f)]
occurs at 2fpq, and 4fp,, and the flexible wing model
predicts the magnitude at these frequencies well. While
the rigid wing theory estimates |P(f)]| at 2fj,, more
closely than the flexible wing theory, the rigid wing
theory does not estimate any power concentrated at
4fqp. This further corroborates that the flexible wing
model offers novel insight into flapping wing dynam-
ics unavailable to conventional rigid body models. The
discrepancies between the model and experiment are
again due to errors in the mass distribution as well
as the misalighment between the torque sensor and
mechanical flapper. Reducing the inertial properties
of the idealized FE wing improves the model estimates
of the power magnitude at 2fp,, whereas including
a small yaw rotation in the model generates a power
magnitude response at 3fp,, similar to that observed in
the experiment (figure 7, bottom).

4.2. Energetic costs of flight

In the previous section, we demonstrated that our
model is capable of estimating the torques and power
for a wing rotating about a single axis with reasonable
accuracy. However, real flapping kinematics are more
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Table 2. Multiple degree-of-freedom flapping kinematics.

Parameter ~ Description Value Unit

g Roll amplitude 60 Degrees

Bo Pitch amplitude 45 Degrees

Y Yaw amplitude 0 Degrees

bap Pitch/roll phase 7 Rad
difference

fap Flap frequency 25 Hz

complex and wings are generally subject to multi-
dimensional rotation. While we have yet to validate
our model for MDOF rotation, we can explore the
influence of wing flexibility on torques and power
through numerical simulation.

First, we establish the flapping kinematics (table 2).
Rotation amplitudes and phase are estimated from
[26]. We include pitch and roll and neglect yaw. For
simplicity, we assume all rotations are harmonic with a
frequency of 25 Hz. We include modal dampingat ¢ =
0.05 and solve equation (6) numerically over 50 wing-
beats. All results are taken from the periodic steady-
state response of the wing. Because we are chiefly inter-
ested the effect of flexibility on energetics, we vary the
first natural frequency of the wing w; from 60 Hz to
90 Hz in 50 evenly spaced increments, conduct simula-
tions for each natural frequency, and record net energy
expended over a single wing beat. This range includes
the 75 Hz natural frequency measured for the exper-
imental wing. We maintain the second natural fre-
quency w; at 95 Hz, as we did not identify any notable

changes in energetics while varying w;.

According the Sun and Tang, there are two possible
ways to estimate energy spent [34], which is equivalent
to the work done by the driving moments. The first
is to calculate the positive work done by the moment
and to assume the negative work is negligible because
the metabolic costs associated with negative work are
small. Under this assumption, the work #  done is

T
V4 :/ P (t) dt, (16)
0

where T is the wing beat period and P' (¢) is the
positive instantaneous power. The second way to
estimate energy spent is to assume negative work is
stored as potential energy via some flexible structure,
such as the thorax or wing itself. In this scenario, we
assume that all potential energy is recovered when the
wing does positive work. For this second scenario, the
work done is

T
W:/ ) — [P ())d.  (17)
0
We record # for both scenarios (with and without
elastic storage assumed) as well as peak moments for
all natural frequencies considered. We report only the
moment about x, since it is significantly larger than the
moments about y or z. All simulations are conducted
for both rigid and flexible wings so we can identify how

HEReid etal

the structural compliance affects moments and power.
We report the ratio between quantities determined for
the rigid and flexible wing (figure 8).

While flexibility tends to have a variable effect on
energy expenditures, we believe structural compli-
ance is favorable to flight efficiency. Consider the case
where elastic energy storage is assumed. Across the
entire range of natural frequencies, the flexible wing
requires less energy to flap compared to the rigid wing.
At approximately w; = 79 Hz, wing flexibility reduces
energetic costs by as much as 25%. Interestingly, at this
natural frequency, the peak moments of the flexible
wing are approximately 60% higher and the peak posi-
tive power is roughly 15% higher than that required
by the rigid wing. This highlights a potential trade-
off between maximum force generation and overall
efficiency. These results also illuminate the impor-
tance of elastic energy storage to flight efficiency. If
we assume that no elastic energy is stored and instead
assume negative work is dissipated as heat, the flexible
wing requires more energy to flap compared to the
rigid wing. This is true over almost the entire natural
frequency range considered. While some portion of
energy is invariably dissipated, it is likely that a large
percentage of negative work is indeed stored as poten-
tial energy and recycled over the wingbeat. Poten-
tial energy storage does not necessarily have to reside
entirely in the flexible wing; instead, some percent-
age could be stored in the compliant thorax as well.
To identify how much potential energy U is stored in
the wing, we calculate the potential energy using equa-
tion (5). We evaluate the maximum potential energy
U nax and multiply this quantity by two because poten-
tial energy storage occurs on both the wing upstroke
and downstroke. We divide 2U,,,,, by the net positive
work done #* to identify how much energy the flexi-
ble wing can recycle relative to how much is required to
flap the wing. We evaluate 2U,,,.c/# t over the range
of natural frequencies from 60-90 Hz. The results are
shown in figure 9.

The wing has the largest potential energy stored
divided by energy required around w; = 79 Hz. At this
natural frequency, the wing can store almost 30% of
the energy that is required to flap the wing. We con-
jecture that the elastic thorax also plays a notable role
in energy storage, however we cannot assess this claim
because the thorax is not modeled in the present work.
From this finding, we conclude that the wing itself is a
viable energy storage mechanism, and one that is often
overlooked in terms of robotic design. This requires
that the natural frequency of the wing be tuned
accordingly to achieve favorable energetics, which can
be done easily via manipulation of the artificial wing
geometric or material properties.

So why does w; = 79 Hz appear to be optimal in
terms of power economy? The natural frequencies
of the wing used in our experiment as well as those
tested by Fitzgerald and Balachandran are close to this
value [29]. Perhaps not by coincidence, this natural

10
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storage and the energy required to flap a flexible wingas a
function of the wing natural frequency.

frequency is roughly three times greater than the flap-
ping frequency. Vanella et al showed via computational
simulation that if an insect flaps at 1/3 its wing’s natu-
ral frequency, it generates a higher lift per unit power
relative to a rigid wing [35]. Dai et al estimated similar
aerodynamic benefits for the same flapping-to-natural
frequency ratio [29, 36]. Jankauski et al suggested that
flapping at 1/3 the wing’s natural frequency improves
inertial power economy as well [12].

HEReid et al

Interestingly, this flapping-to-natural frequency
relationship appears across many species of flying
insects [37]. We believe these aerodynamic and ener-
getic benefits are brought about due to a near reso-
nant response of the wing. Because the equation of
motion (equation (6)) governing wing deformation is
time-varying, even SDOF flapping at wp,, will gener-
ate wing deformation at odd harmonics of wy,. If the
third harmonic of the flapping frequency is near the
wing fundamental frequency, the result will be a large
dynamic response of the wing at three times the driv-
ing frequency. To investigate the effect of structural
compliance at w; = 79 Hz more closely, we plot the
instantaneous power for rigid and flexible wings over
a wing beat in figure 10. For the flexible wing, we also
plot the potential energy stored in the wing.

There are a number of interesting insights that can
be determined from figure 10. We observe that for the
flexible wing, the minima of negative power corre-
spond to the maxima of potential energy. This provides
further evidence that the wing serves as an energy stor-
age mechanism. Maximum potential energy of about
160 uJ occurs immediately before the wing reversal,
where the wing is transitioning from downstroke to
upstroke or visa versa. It is plausible that the wing elas-
ticity facilitates this reversal. The total energy required
by the flexible wing over a wingbeat is 1200 pJ, how-
ever we emphasize that this number does not include
recovered potential energy. The power delivered to the
rigid wing also has a negative component, however the
wing itself cannot absorb this as strain energy. Poten-
tial energy storage for the rigid wing must occur in
the insect thorax or another compliant component.
Nonetheless, the negative power of the rigid wing is
smaller in magnitude compared to the flexible wing.
This indicates that the capacity to store strain energy
even in another flexible component is less than that of
the flexible wing.

In terms of power, the maximum positive power is
about 58 mW for the rigid wing and 95 mW for the
flexible wing. Assuming the insect weighs between 1.5—
2.5g and two wings are flapping symmetrically, the
mass normalized peak power is between 46-77 W kg ™!
for the rigid wing and 75-125W kg™! for the flexible
wing. Both rigid and flexible peak power values are
on the same order of magnitude as those estimated by
Daniel and Tu, who determined peak power require-
ments of the hawkmoth using an experimental work
loop technique [11]. These values also agree with those
determined by Berman and Wang, who investigated
peak power requirements of a rigid hawkmoth wing
computationally [17]. Thus, we feel confident our
model is producing accurate quantitative results.

However, we should point out that these peak
power estimates are likely greater than the real peak
power required during flight. Two limitations of the
present study are that (1) rotational kinematics of the
wing are prescribed and (2) the wing cannot interact
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with the flexible thorax. In reality, the deformation of
the wing potentially affects the deformation of the tho-
rax, which in turn alters the rotational kinematics of
the wing. The change in kinematics, and the release of
potential energy stored in the thorax, may reduce the
peak positive power for both rigid and flexible wings.
Thus, the coupled nature of the wing-thorax must be
modeled to fully realize the benefits of structural com-
pliance on energetic efficiency. We also note that the
present work does not account for aerodynamic effi-
ciencies gained due to the wing deformation because
we have assumed unilateral coupling between the fluid
structure. Nonetheless, the methodology developed
through this work suggests that the wing is a viable
energy storage mechanism that may reduce the overall
energetic cost of flight. It is probable that the flexible
wing works synergistically with the elastic thorax on
the system level to improve flight power economy.

The findings detailed in this section suggest that
wing compliance can reduce energetic expenditures
in smal, artificial flapping wing robotic vehicles. Our
results suggest that the vehicle should flap at a fre-
quency roughly 1/3 of the wing’s natural frequency.
This can be achieved through several simple design
modifications, for example varying the wing’s thick-
ness or material. Many artificial flapping wings use
small carbon fiber struts to provide support [4, 38],
similar to how veins provide structural support in
insect wings. Small variations in the effective diam-
eter of these struts will substantially affect the wing’s
natural frequency—this is akin to how the natural
frequency of a simply supported beam scales with the
square value of its effective diameter [39]. Once the
Wilap /w; = 3ratio hasbeen achieved via careful design,
the wing will nearly resonate while flapping. As a result
of the resonant response, the wing will store significant

potential energy immediately before the stroke rever-
sal phase. Our results also indicate that the vehicles
airframe or actuator system should also be compliant
and capable of storing strain energy to maximize the
energetic efficiency of flight.

5. Conclusions

Flapping insect wings bend and deform during flight
due to the influence of both aerodynamic and inertial
elastic forces. This deformation gives rise to strain
energy that can potentially be recycled over a wingbeat
to reduce the net energy expenditures. However,
many models of flapping wing dynamics employ
rigid body approximations and cannot estimate the
power required by flexible wings. Many models are too
high order to effectively carry out parametric studies
efficiently, where the ability to conduct parametric
studies efficiently is critical to bio-inspired design of
FWMAVs and other technologies.

Toinvestigate the influence of flexibility on flapping
wing energetics, we develop a reduced-order model
capable of estimating the torques driving a compliant
wing in three-dimensional rotation. We calculate the
power by taking the inner product of the torque and
the angular velocity. First, we fabricate a custom SDOF
flapping mechanism and use it to flap a real hawkmoth
forewing. We record the torques required to flap the
wingand compare those to model predictions. Overall,
the agreement between model and theory for flapping
wing torque and power is good. Our model predicts
that flexible wings have a torque response at the flap-
ping frequency and three times the flapping frequency
whereas rigid wings have only a torque response at the
flapping frequency. Experimental measurements of
flexible wing torques clearly show a response at three
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times the driving frequency, which shows that certain
dynamic features are not well predicted by rigid body
models. The derived theory also predicts experimental
power trends fairly well, and again captures higher-
order harmonics of instantaneous power not pre-
dicted by rigid body models.

After showing that our model works well for SDOF
flapping, we explore the energetics of more realistic
MDOF flapping computationally. First, we investigate
the net energy spent over a wingbeat as a function of
fundamental frequency w;. We find that if all nega-
tive work is stored as potential energy, a flexible wing
requires only 75% of the energy to flap compared to a
rigid wing if the natural frequency of the flexible wing
is approximately 79 Hz. However, the x-axis moment
required to flap the flexible wing when w; = 79 Hz are
60% larger than those required to flap the rigid wing.
This highlights a potential trade-off, where the flexible
wing needs larger forces to generate motion but con-
sumes less energy than the rigid wing. We estimate that
the flexible wing can store approximately 30% of the
total energy required over a flapping cycle.

However, to fully examine the energetic benefits
of structural compliance, we recognize a need to also
include the insect thorax in future modeling efforts.
This will enable the wing to exchange energy with the
thorax which may potentially affect the flapping kin-
ematics. Moving forward, we will develop a general
system-level model of the wing-thorax assembly that
is applicable to flying insects as well as FWMAV's so we
can investigate trends in system-level power flow.
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AppendixA. Moments of a flexible
rotating structure

Here, we provide a detailed derivation of the inertial
moments governing the rotation of an elastic planar
wing (equation (14)). We derive these moments
starting from angular momentum. Given that the
rotation of the wing occurs about fixed point O, the
angular momentum Hj can be written as

HEReid et al

Hoz/Rdem (A.1)
[Q X (r; + We,) + We,] dm.

(A.2)
For ease of derivation, we will break the angular
momentum up into six terms such that

Ho = /(1'1 + Wez) X

m

6
Ho =) H; (A3)
i=1

The terms, and their expansion to useful form, are
detailed as follows. The first term corresponds to rigid
body angular momentum and is

le/rlx(ﬂxrl)dm:IoQ<: (A4)

where Ij is the inertial tensor if the wing were rigid.
It is constant with respect to the rotating frame.
Also, due to the planar wing, I, = I, =0, and
L + I, = I,,. The remaining terms correspond to the
angular momentum associated with the out-of-plane
elastic deformation. We expand these terms as

H, = / r; X (% Wez)dm:/ Wr x (Q X e,)dm
" " (A.5)

Z / dxr1) X (2 X e)dm  (A.6)

oo

= ZQk [ar x (€2 x e;)] (A7)
k=1

Mg

ak ez — € (ak : Q)] (AS)

k=1

- Z ak (ax - e, (A.9)
k=1

H3=/r1 xWede:/(xex+yey)xWezdm

(A.10)
:*ZQk/ —ye, + xe,) dm (A.11)
= b = (A.12)
k=1
H4:/ We, x (2 X 11) dm (A.13)

k=1 (A.14)
Hy=—(e; Q) aq (A.15)
k=1
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Figure B1. FE Thickness distribution of the wing based upon spatial mass measurements. Color bar units are in meters.

H; = / We, x (Q x We,)dm (A.16)

@ / Gles x (Q x &) dm (A17)

0o
k=1

Hy =) gi[Q(e.e)—e (R e) <= (A1)
k=1

H6:/Wez><Wezdm:0¢. (A.19)
m

Lastly, we differentiate the angular momentum with
respect to time, including the derivative of the rotating
coordinate frame position vectors, to determine the
moments acting on the wing. This gives

M, = Q x Hy + H,. (A.20)

Appendix B. Wing mass distribution

In this appendix, we detail our method for estimating
the mass distribution of a hawkmoth wing. The wing
described hereafter is not the wing used in the flapping
experiment. Instead, we assume mass distribution
is similar between different wings and scale the
distribution based upon the total mass.

To estimate this distribution, one left forewing
from a frozen adult was thawed using a moist paper
towel and a small plastic scaffold to prevent the wing
coming in direct contact with the moisture. We cut
the wing into 36 approximately square pieces, each
approximately 5mm X 5mm, and the individual
pieces massed on a Mettler Toledo XS205 scale accu-
rate to 100 micrograms. We used 5mm x 5mm grid-
ded paper to guide the locations of cuts made to the
wing. The wing was traced and held firm to the grid
during and cut with a scalpel. The wing sections were
transferred from cutting surface to scale using small
dissection tweezers. Each piece was placed on a piece
of weighing paper and massed individually in the scale.
Wing sections were then placed in order on a separate
trace, covered in parafilm, and replaced in the freezer.
We recorded the coordinates of each piece as well as
the corresponding mass. In MATLAB, we developed

a second-order two dimensional polynomial fit of the
mass distribution. We vary wing thickness while main-
taining constant density to adjust the spatial surface
density of the wing. The thickness variation #(x, y) is

t(x,y) = 0.000 1154 — 0.008 402x — 0.001 112y.. ..
+ 0.1929x* — 0.012 19y* + 0.081 24xy, (B.1)

where the origin is referenced from a point on the wing
root (figure B1). The maximum thickness of the wing
is approximately 110 ym and the minimum thickness
of the wing is approximately 6.5 pym. The average
thickness is 45 pum, consistent with the uniform
thickness used in the FE model developed by Combes
and Daniel [40].
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