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1.  Introduction

Micro air vehicles (MAVs) have become a pervasive 
technology over the past decade. Their applications 
are extensive, ranging from environmental mapping 
to remote sensing. Many applications require the 
MAV to be small so that it can navigate congested 
environments. For example, agricultural MAVs 
designed to identify stressed crops may need to 
negotiate dense thickets to carry out their objective 
effectively. However, conventional fixed-wing or rotor-
based MAVs cannot be reduced to the minuscule scales 
necessary to carry out such tasks. At the low Reynolds 
numbers of small-scale flight, viscous forces dominate 
lift-generating aerodynamic forces and conventional 
rotary motors cannot dissipate heat effectively [1, 2]. 
Consequently, the most successful MAVs at centimeter 

scale rely on flapping wings to realize flight [3]. 
These flapping wing micro air vehicles (FWMAVs) 
have the potential to revolutionize the way we carry 
out various tasks, including remote sensing and 
distributed infrastructure monitoring. Unfortunately, 
several issues preclude widespread realization of this 
promising technology. Perhaps the most obvious of 
these issues is inefficient energetics. Most FWMAVs 
demand excessive power and cannot carry their own 
power supplies, instead relying on tethers to provide 
power externally [4]. This severely limits the vehicle’s 
autonomy and ability to perform useful tasks. By 
comparison, flying insects are extremely efficient, 
sometimes sustaining flight for several hours [5]. 
Thus, understanding the energetics of insect flight can 
guide the design and optimization of small and energy 
efficient robotic vehicles.
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Abstract
Flapping insect wings deform under aerodynamic as well as inertial-elastic forces. This deformation  
is thought to improve power economy and reduce the energetic costs of flight. However, many flapping 
wing models employ rigid body simplifications or demand excessive computational power, and 
are consequently unable to identify the influence of flexibility on flight energetics. Here, we derive a 
reduced-order model capable of estimating the driving torques and corresponding power of flapping, 
flexible insect wings. We validate this model by actuating a tobacco hornworm hawkmoth Manduca 
sexta (L.) forewing with a custom single-degree-of-freedom mechanical flapper. Our model predicts 
measured torques and instantaneous power with reasonable accuracy. Moreover, the flexible wing 
model predicts experimental trends that rigid body models cannot, which suggests compliance should 
not be neglected when considering flight dynamics at this scale. Next, we use our model to investigate 
flight energetics with realistic flapping kinematics. We find that when the natural frequency of the 
wing is roughly three times that of the flapping frequency, flexibility can reduce energy expenditures by 
almost 25% compared to a rigid wing if negative work is stored as potential energy and subsequently 
released to do positive work. The wing itself can store about 30% of the 1200 µJ of total energy required 
over a wingbeat. Peak potential energy storage occurs immediately before stroke reversal. We estimate 
that for a moth weighing 1.5–2.5 g, the peak instantaneous power required for flight is 75–125 W kg−1. 
However, these peak values are likely lower in natural insect flight, where the wing is able to exchange 
strain energy with the compliant thorax. Our findings highlight the importance of flexibility in flapping 
wing micro aerial vehicle design and suggest tuned flexibility can greatly improve vehicle efficiency.
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Insects are efficient fliers largely because they lev-
erage the structural compliance of their bodies to 
reduce the energetic cost of flight. To flap their wings, 
insects deform their elastic thorax through two large 
sets of indirect flight muscles [6]. The small thoracic 
deformation is amplified into large, rotational wing 
motion through an intricate linkage mechanism called 
the wing hinge [7]. The benefit of thorax flexibility is 
that much of the stored strain energy can be recycled to 
slow down the wing upon reversal or speed up the wing 
at mid-stroke [8]. This diverges from a rigid system, 
where energy must be invested both to accelerate and 
to decelerate the wing. Much effort has been devoted 
to understand the elastic behavior of the insect tho-
rax as well as the corresponding energy expenditures. 
Hollenbeck et  al determined the force-displacement 
curve of the hawkmoth M. sexta (L.) thorax by apply-
ing varying static loads to the insects tergum [9]. Ando 
and Kanzaki measured the in vivo deformation of the 
hawkmoth A. convolvuli thorax using a high-speed 
laser profilometer [10]. Tu and Daniel employed a 
work-loop technique to actuate and measure the force 
and displacement of a large indirect flight muscle in an 
intact hawkmoth thorax [11]. Through these measure-
ments, they were able to estimate the power require-
ments of flapping wing flight.

While these studies and many others focus on the 
flexibility and energetics of the thorax, the insect wing 
is a viable strain energy storage mechanism as well [12]. 
Like the thorax, insect wings bend and deform during 
flight. This deformation arises from both aerodynamic 
and inertial-elastic forcing [13]. Young et al used high-
speed videography to measure the rotational kinemat-
ics and wing deformation of a desert locust wing [15]. 
They used computational fluid dynamics (CFD) to 
estimate the aerodynamic power for the real flexible 
wing and a fictitious rigid wing. Wing motion was pre-
scribed based upon videographic measurements. They 
found that wing deformation reduced aerodynamic 
power while increasing lift. Lehmann et al studied both 
the aerodynamic and inertial power of flexible blow fly 
wings, again using high-speed videography to measure 
the wing deformation [16]. They conjectured span-
wise bending gives rise to potential energy storage 
that could reduce the overall energetic cost of flight. 
These studies did not use predictive models to estimate 
wing deformation, and instead relied on experimental 
measurements. While this methodology is suitable for 
investigating specific cases of flapping wing flight, it 
cannot easily be extended to consider various flapping 
kinematics or wing designs. The ability to conduct 
parameter studies is essential to bio-inspired design 
of FWMAVS, flapping foil energy harvesters and other 
technologies.

To enable such parametric studies, others have 
developed physics-based models to estimate flapping 
wing energetics. Berman and Wang approximated 
the power-minimizing flapping kinematics of several 

insects in hover [17]. They assumed the wings were 
rigid. Stanford et al carried out a similar study for flex-
ible wings and used an aeroelastic model to optimize 
the wing shape and flapping kinematics [18]. Yin and 
Luo studied the power economy of deformable wings 
and found that flexibility increases aerodynamic power 
efficiency [19]. In a separate study, they also showed 
that wing flexibility enhances thrust production dur-
ing forward flight [20]. Both [19, 20] considered two-
dimensional motion. Nakata and Liu developed a 
three-dimensional high-fidelity computational fluid-
structure interaction (FSI) model capable of exploring 
flexible wing energetics [21]. Their approach relied on 
a computationally intensive coupled finite element/
CFD solver. Shahzad et al utilized a coupled finite ele-
ment/CFD FSI approach to study the effects of wing 
shape and aspect ratio on flapping wing force produc-
tion and power consumption [14]. Fitzgerald et  al 
developed a computationally efficient FSI model using 
an unsteady vortex lattice fluid model, though they did 
not consider the moments required to flap the flexible 
wing [22]. Quantifying the torques required to drive 
flexible wings is relevant to actuator sizing in insect-
inspired FWMAVs. Jankauski and Shen also developed 
a low-order model to estimate flapping wing power 
[12], but again this model was formulated via energy 
quantities and did not provide insight into the aerody-
namic and inertial moments that govern power con-
sumption. To our knowledge, there are no validated 
reduced-order models capable of estimating the driv-
ing torques as well as corresponding energetic expen-
ditures of flapping wings.

Given the motivation, there are three objectives 
of this paper: (1) develop an accurate, low-order 
model capable of estimating flexible wing torques, 
(2) validate this model experimentally by measuring 
the torques of a hawkmoth wing subject to artificial 
flapping, and (3) estimate the energetic costs of hawk-
moth flight numerically using the derived model. The 
model must accommodate arbitrarily complex wing 
geometry and be able to account for three-dimen-
sional motion. The remainder of the paper is organ-
ized as follows. First, we derive the mathematical 
framework necessary to estimate the driving torques 
and corresponding instantaneous power of the flex-
ible wing. We assume a simple unilaterally-coupled 
FSI framework, where the fluid affects the structure 
but the deforming structure does not affect the fluid. 
This assumption is reasonable for the purposes of this 
work because of the high mass ratio of the wings con-
sidered [14]. Next, we describe a simple single degree-
of-freedom (SDOF) flapping experiment carried our 
to validate the mathematical model. We then compare 
experimental findings to numerical predictions. We 
conclude by investigating the energetics of a flying 
hawkmoth with realistic multiple degree-of-freedom 
(MDOF) flapping kinematics and how these energet-
ics are affected by wing flexibility.

Bioinspir. Biomim. 14 (2019) 056007
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2.  Theory

In this section, we derive a novel reduced-order 
method for determining the total torques and 
mechanical power of a flapping, flexible insect wing. 
We first summarize a previously developed FSI model 
that allows us to estimate wing deformation. We 
then formulate a new method to estimate the inertial 
torques of a flexible wing. Based upon the net torques, 
we calculate the total instantaneous power required to 
flap the wing.

2.1.  Flapping wing fluid-structure interaction
The framework detailed in this section originated in 
[23] and [24] and is summarized here only to provide 
clarity to the manuscript. For a detailed derivation, the 
reader is encouraged to see these references. The benefit 
of the following FSI model is that it is reduced-order 
and can be solved with low computational demands. 
Moreover, the model is general in the sense that it can 
accommodate arbitrary wing geometry. Therefore, 
it is well-suited for high dimensional geometric or 
kinematic parameter studies.

First, we develop a reference frame that rotates with 
the rigid body motion of a wing (figure 1). A wing is 
placed into an inertial XYZ world-fixed coordinate. 

The XYZ frame undergoes a X − y
′′ − z′ rotation 

sequence about fixed point O with rotation amplitudes 
α, β and γ , respectively, where α is roll, β is pitch and γ  
is yaw. Note that because O is a fixed point, the motion 
described in this paper is representative of hovering 
flight. The wing-fixed xyz reference frame has an angu-
lar velocity Ω, where

Ω = (α̇ cosβ cos γ + β̇ sin γ)︸ ︷︷ ︸
ωx

ex + (β̇ cos γ − α̇ cosβ sin γ)︸ ︷︷ ︸
ωy

ey . . .

+ (γ̇ + α̇ sinβ)︸ ︷︷ ︸
ωz

ez.

�

(1)

Next, a position vector R is drawn from fixed point O 
to a differential mass element in the wing-fixed frame. 
The position vector R is

R = r1 +W(r1, t)ez,� (2)

where r1 describes the planar coordinates of the 
differential mass (r1 = x ex + y ey) and W(r1, t) is 
an infinitesimal, out-of-plane elastic deformation 
of the wing. In-plane deformation is neglected. The 
corresponding velocity of the differential mass is

Ṙ = Ω× R+ Ẇ(r1, t)ez.� (3)

We now discretize the out-of-plane deformation 
W(r1, t) via an infinite series of space-dependent 
vibration mode shapes φk(r1) multiplied by time-
dependent vibration modal responses qk(t) such that

W(r1, t) =
∞∑
k=1

φk(r1)qk(t).� (4)

In the above expression, the vibration mode shapes 
φk  can be solved either numerically via finite element 
analysis or experimentally via modal analysis. 
Vibration mode shapes are normalized with respect 
to the wing mass such that they satisfy orthonormal 
conditions. Using this discretization and the 
differential mass velocity (equation (3)), we formulate 
the kinetic energy T of the entire wing including both 
elastic and rigid body motion. We assume the potential 
energy U of the wing is described by a symmetric, 
quadratic strain energy density function. It follows 
that

T =
1

2
ΩT I0 Ω+

1

2
(ω2

x + ω2
y )

∞∑
k=1

q2k +
1

2

∞∑
k=1

q̇2k . . .

− ωz Ω ·
∞∑
k=1

akqk −Ω ·
∞∑
k=1

bkq̇k

U =
1

2

∞∑
k=1

ω2
k q

2
k.

�

(5)

Using the Lagrangian approach, we derive the 
equation  of motion governing the time-dependent 
modal response qk as

q̈k + 2ζkωkq̇k + [ω2
k − (ω2

x + ω2
y )] qk = Ω̇·

bk − ωz Ω · ak + Qk,
�

(6)

where ωk is the kth natural frequency of the wing, ζk 
is the kth viscous modal damping ratio and ωx, ωy  are 
the x and y  components of Ω, respectively. Note that 
modal damping does not arise explicitly from our 
derivation but is rather included after the undamped 
equation of motion is established. In this case, viscous 
modal damping may arise from both structural and 
fluid effects. Vectors ak and bk are directed from the 
fixed point of rotation O to the inertial force center of 
the kth vibration mode, and are defined as

ak =

∫
φk(x ex + y ey) dm� (7)

bk =

∫
φk(−y ex + x ey) dm.� (8)

Lastly, Qk is the generalized aerodynamic force for the 
kth modal response is

Qk =

∫

S
FN(r1, t)φk(r1) dS,� (9)

where FN is the physical aerodynamic force normal 
to the wing surface S. Note that this formulation is 
general and FN can be determined through any fluid 
modeling approach. For the purposes of this work, 
we use reynolds averaged Navier Stokes (RANS) CFD. 
Specifically, we utilize the Spalart–Allmaras RANS 
model with Chimera grid available to STAR-CCM  +  v 
12.04. The Chimera meshing approach accounts 
for the large rigid body motion of the rotating wing 
without requiring remeshing of the domain.

Bioinspir. Biomim. 14 (2019) 056007
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While our model is capable of accommodating 
either unilateral or bilateral coupling between the fluid 
and structure, we assume unilateral coupling, where 
the flow affects the structure but the structure does not 
affect the flow. While this assumption is not applicable 
to the broad range of flapping insect wings, it is suit-
able for wings limited to small deformation. Moreover, 
it allows us to compute solutions more efficiently since 
CFD solvers do not need to be coupled to structural 
solvers. Within the context of this work, the unilateral 
coupling assumption yields good agreement between 
model and experimental predictions of moments and 
power. We have also observed that FN scales quadrati-
cally with the flapping frequency and as a result can be 
non-dimensionalized with respect to time. Thus, a sin-
gle CFD simulation can be used to identify FN across 
a broad range of flapping frequencies which greatly 
reduces the computational resources required for this 
work. Other research groups have considered high-
fidelity bilaterally-coupled FSI models [14, 21, 25],  
however the lower-fidelity unliateral coupling assump-
tion provides adequate results for the purposes of this 
work with low computational demands. For further 
detail on our CFD model, the reader is encouraged to 
refer to [24].

2.2.  Torques and power of flexible, flapping wings
The torques of a rigid body rotating in three 
dimensions are well understood. However, the torques 
governing the rotation of a flexible wing are more 
difficult to characterize. In what follows, we derive a 
reduced-order method to estimate the inertial torques 
of a flexible wing undergoing three-dimensional 
rotation. In the manuscript we consider only a high-
level summary of the derivation; for further detail, 
refer to appendix A. Since the wing rotates about a 
fixed point O, the angular momentum H0 about O is

H0 =

∫

m
R× Ṙ dm.� (10)

Substituting equations (2) and (3) into the above gives

H0 =

∫

m
(r1 +Wez)× [Ω× (r1 +Wez) + Ẇez] dm.

� (11)

Next, out-of-plane deformation W is expanded via 
equation (4) which yields

H0 =

∞∑
k=1

∫

m
(r1 + φkqk ez)× [Ω× (r1 + φkqk ez) + φkq̇k ez] dm.

� (12)

We continue to simplify the angular momentum 
expression until we find

H0 =I0Ω+

∞∑
k=1

[−qk(ak ·Ω)ez + bkq̇k . . .

− (ez ·Ω)akqk + (Ω− ωzez)q
2
k],�

(13)

where I0 is the wing’s rigid-body inertial tensor that is 
constant with respect to the rotating coordinate frame. 
The first term to the right of the equals sign represents 
the rigid-body angular momentum of the wing 
about O. The remaining four terms are the angular 
momentum due to the wing’s elastic deformation. 
The expression for H0 can be solved efficiently once the 
modal response qk is calculated by equation (6). Finally, 
the inertial-elastic moments of the flexible wing about 
O are determined by differentiating H0 with respect to 
time such that

M0,Inertial = Ω×H0 + Ḣ0,xyz,� (14)

where the first term to the right of the equals sign 
indicates the change in direction of the H0 and the 
second term indicates the change in magnitude of 
H0 with respect to the rotating xyz reference frame. 

Figure 1.  Rotating reference frame attached to the rigid body motion of the wing. Position vector R is drawn from the fixed point of 
origin O to a differential mass element.

Bioinspir. Biomim. 14 (2019) 056007
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Lastly, the instantaneous mechanical power P(t) of the 
flapping wing is

P(t) = (M0,Inertial −M0,Aero) ·Ω� (15)

where M0,Aero is the aerodynamic moment determined 
via CFD as detailed in the previous section. This 
expression for total mechanical power is common 
in flapping wing literature. However, it is typically 
applied to rigid wings because an analytic expression 
for M0,Inertial for flexible structures was not previously 
available.

3.  Experiment design

In this section, we detail an experiment intended to 
validate the mathematical models derived in section 2 
for SDOF flapping. We first describe the fabrication 
of a custom mechanical flapper capable of measuring 
both wing driving torques and angular position. We 
next outline the preparation of insect specimens, as 
well the procedures we use to estimate insect wing 
natural frequencies. Finally, we discuss finite element 
modeling of the forewing.

3.1.  Mechanical flapper
To verify the theoretical model in the previous 
section, we develop a simple SDOF flapper (figure 2). 
A video of the flapper is included in the manuscript 
supplementary data (stacks.iop.org/BB/14/056007/
mmedia). We equip the flapper with a custom torque 
load cell and optical encoder so we can directly 
measure the flapping torques and angular position. 
From these measurements, we can estimate the 
mechanical power required to flap the insect wing. 
Note that this simple experiment cannot produce the 
three-dimensional flapping kinematics observed in 
real flight. Nonetheless, it is a reasonable first attempt 
at validating the model derived in section 2. Then, we 
can use our model to estimate the torque and power 
requirements for flight conditions with realistic 
flapping kinematics. Data presented in this paper are 
from a single hawkmoth M. sexta forewing.

The central challenge of this experiment is to 
minimize the inertia of the flapper itself so that the 
torque of the wing can be clearly identified. We use a 
low-inertia, high-torque brushless DC motor (EC-
Max16 283835, Maxon Motors) to flap the wing. 
The motor is equipped with an 512 count-per-turn 
optical encoder, which provides position feedback a 
combination motor controller/driver (EPOS2 24/5, 
Maxon Motors). The motor controller uses a PID 
framework to ensure that the motor shaft maintains a 
prescribed position profile in the presence of inertial 
loads. All motor commands are prescribed using Lab-
view. The motor is bolted to a thick aluminum motor 
plate, and standoffs separate the motor shaft and the 
top aluminum plate. The top plate is equipped with 
a quantized 12-bit analog encoder (MAE3, US Digi-
tal) to measure the angular position of the shaft. A 

slotted shaft coupler spans from the motor shaft to the 
analog optical encoder. During experiments, the wing 
is directly glued into this slot. The glue preserves the 
natural camber at the base of the wing.

Next, we discuss the torque measurement system. 
Torque measurements are challenging because insect 
wings have low rotational inertia. We found that due 
to the mass of the entire flapper, standard foil-based 
torque sensors were not a feasible option. Cells with 
the necessary low-end sensitivity were too flexible, and 
the reduced natural frequency of the loaded torque 
sensor itself interfered with the dynamic response of 
the wing. To mitigate this issue, we developed a cus-
tom torque transducer comprised of a piezoelectric 
force sensor (209C11, PCB Piezotronics) cantilevered 
approximately 8.9 cm from the flapper axis of rotation. 
The benefit to using a piezoelectric sensing element 
instead of a foil-based sensing element is that piezo
electric sensors are much stiffer. With this force sensor 
and the lever arm, the resolution of the custom torque 
transducer is approximately 0.008 mN m. To ensure all 
torque from the robotic flapper is transmitted to the 
load cell, we mount the entire robotic flapper on a low-
friction ball bearing.

We flap the wing at ±65° from 15 to 35 Hz continu-
ously over 60 s using a swept sine. For this research we 
focus on measurements taken in the range of 20–30 Hz  
because the wing beat frequency of the M. sexta is 
approximately 25 Hz [26]. Measurements outside of 
this frequency range are used primarily to align time 
series data from separate trials. We perform ten trials 
and average the recorded torque signals from each trial. 
Because the overall moment of inertia of the flapping 
mechanism about the rotational axis is approximately 
8 times larger than that of the wing, we conduct a fre-
quency domain background subtraction to remove the 
influence of the flapper inertia and to identify the rota-
tional torques of the wing only. Trials are conducted 
both with and without the wing, and the averaged 
torque measurements of the mechanism without the 
wing are subtracted from the averaged torque meas-
urements with the wing. Both torque and position 
measurements are sampled at 2.5 kHz using a National 
Instruments cDAQ-9178 data acquisition system with 
NI 9215 analog input module.

3.2.  Insect preparation
Small larvae of the tobacco hornworm, M. sexta 
(L.), were shipped overnight from Josh’s Frogs 
(Owosso, MI) to Montana State University (MSU) 
and immediately placed in a rearing room (7.65 m2) 
with temperature of 28 °C ± 2 °C, and a photoperiod 
of 24:0 (L:D) h to inhibit photoperiodic induction of 
pupal diapause [27]. The larvae were housed in 0.95 L 
insect rearing cups with perforated lids that contained 
Repashy Superfoods Superhorn Hornworm Gutload 
Diet from Repashy Ventures (Oceanside, CA). The 
cups were retrofitted with gutter screen to provide a 
structure for larvae to grasp.

Bioinspir. Biomim. 14 (2019) 056007
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Between 3 and 6 larvae were added to each cup. 
Cups were inverted and organized on a rack. Following 
visual inspection of each larva, frass and other waste 
were removed daily. Larvae developed for approxi-
mately 14–21 d in these conditions. Once the aorta 
became prominent and the larvae ceased feeding, the 
larvae were transferred to a large Sterlite latching box 
(23 cm L × 38 cm W × 28 cm H) filled uniformly with 
5 cm of slightly moist peat soil. The larvae pupated 
within 48 h in this environment. Adults emerged 
within 2–3 weeks of pupation and wings were allowed 
to fully develop before the adults were removed and 
sacrificed. Adult moths were sacrificed in 3.78 L glass 
kill jars with a plaster of Paris base and ethyl acetate 
killing agent. Adults were frozen immediately after 
euthanization and thawed in wet paper towels for 2 h 
before experimentation. While we acknowledge freez-
ing may affect the structural properties of the forewing, 
this does not preclude us from validating the derived 
mathematical as long as the natural frequencies of the 
thawed wing are quantified.

3.3.  Dynamic characterization
To inform the mathematical torque model used in 
this research (equation (6)) we must know wing 
natural frequencies ωk. This is challenging because 
ωk is sensitive to boundary conditions, and the 
boundary condition the insect wing experiences 
in reality is difficult to replicate. As mentioned, 
the forewing is glued directly into the slotted shaft 
couple of the mechanical flapper to maintain the 
camber at the base of the wing. It is likely that the real 
boundary condition of the wing is more compliant 
and that the natural frequency is lower than what we 
measure experimentally. Recognizing this limitation, 
we explore a range of natural frequencies through 
simulation once the mathematical model is validated. 
Natural frequency data for the hawkmoth forewing is 

well documented in the literature, and the first natural 
frequency typically falls between 60–80 Hz [28, 29].

To identify the natural frequency of the wing 
mounted in the flapper, we rely on the motor to pro-
vide excitation to the wing (figure 2(a)). The motor is 
driven with small-amplitude broadband white noise 
and the output spectrum is measured at several points 
along the wing’s surface (figure 3). We determine wing 
natural frequencies from single-point scans (table 1). 
This procedure provides noisy measurements com-
pared to modal testing conducted with a vibration 
shaker, however the boundary conditions are identical 
to those in the flapping experiment which is critical to 

model validation.

Figure 2.  Computer rendering and physical realization of the SDOF mechanical flapper. The device is capable of flapping a 
large moth wing up to 50 Hz at ±90 degrees while simultaneously measuring reaction torques and angular position of the wing. 
(a) Computer-drawn schematic. (b) Physical realization.

Table 1.  Parameters for finite element model of wing tested in 
mechanical flapper.

Parameter Symbol Value Unit

Mass m 30 mg

Surface area A 693 mm2

Average thickness t̄ 45 µm

Density ρ 945 kg m−3

Moment of iner-

tia (x)

Ixx 0.163 g cm2

Moment of iner-

tia (y)

Iyy 0.016 g cm2

Moment of 

inertia (z)

Izz 0.179 g cm2

Product of inertia 

(xy)

Ixy 0.040 g cm2

First natural 

frequency

ω1 75 Hz

Second natural 

frequency

ω2 95 Hz

First Inertial 

Force Center

a1 0.29 ex  +  1.24 ey kg cm2

Second Inertial 

Force Center

a2 −0.19 ex  −0.21 ey kg cm2

Bioinspir. Biomim. 14 (2019) 056007
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3.4.  Structural modeling
Lastly, we develop a simple finite element (FE) model 
of the insect forewing. From our FE model, we estimate 
mode shapes φk  as well as inertial force center vectors 
ak and bk, which are the remaining constants required 
to solve the modal response equation  of motion 
(equation (6)). Other groups have developed similar 
FE models [22, 28], however insect wings exhibit 
significant variation in morphological parameters 
such as surface area, mass and length [30]. Since all 
these parameters critically affect flapping torques 
and power, we must develop a FE model specific to 
the experimental wing rather than rely on existing 
FE models. We also note that while the mode shapes 
of our wing could be found experimentally, they will 
not generally satisfy the orthonormality conditions 
required by equation (6).

We develop our FE model using ABAQUS CAE. 
All model parameters are shown in table 1. We cre-
ate the geometry by digitally tracing the forewing 
planform (figure 4). We assume constant volumetric 
density and vary the thickness of the wing such that 
the surface density agrees with existing mass distribu-
tion measurements. For more information on mass 
distributions, please refer to appendix B. We neglect 
venation and wing camber. While these assumptions 
do not capture the rich complexity of a real insect 
wing, the resulting FE model agrees reasonably well 
with the experimental work presented in section 4. We 
emphasize that the primary focus of this work is not 
high-fidelity FE modeling, however more complex FE 
models can be used with our framework if desired. For 
a more thorough treatment on FE modeling of insect 
wings, the reader is encouraged to refer to [28].

Once the FE model is created, we determine the 
vibration mode shapes φk  and natural frequencies ωk 
numerically. We find the first mode is a bending mode 
and the second mode is a torsional mode (figure 5) 

which agrees with past experimental modal analy-
sis [28]. We retain only two vibration modes in this 
work given that higher-order modes are unlikely to 
be excited over the range of flapping frequencies con-
sidered. However, in other applications, high-order 
modes can be retained if necessary. Owing to the sim-
plified geometric properties used in the FE model, 
the natural frequencies calculated numerically do not 
agree closely with those observed experimentally. To 
reconcile this, we adjust the natural frequencies of each 
vibration mode in post-processing so they agree with 
the experimental values reported in table  1. This is 
analogous to adjusting the directional Young’s moduli 

Figure 3.  Measuring the natural frequency of the wing. The mechanical flapper is excited by broadband white noise with low 
rotational amplitude and the velocity at several points on the wing’s surface is measured with the laser vibrometer. (a) Laser 
vibrometer measuring wing response. (b) Wing velocity output spectrum measured at a single point on wing surface with moving 
mean filter applied. Note that ω2 cannot be observed from this measurement point.

Figure 4.  Hawkmoth forewing used for the mechanical 
flapping experiment. FE model is based upon this wing’s 
planform. Each grid box is 5 mm × 5 mm.

Bioinspir. Biomim. 14 (2019) 056007
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so numerically predicted natural frequencies agree 
with those measured experimentally.

4.  Results and discussion

Here, we investigate the effect flexibility has on 
flapping wing driving torques and mechanical power. 
We first compare experimental data to theoretic 
predictions of torque and power to assess the accuracy 
of the mathematical model. Then, we investigate more 
realistic MDOF flapping kinematics via numerical 
simulation.

4.1.  Experiment-model comparison
We first compare torque measurements taken from the 
20–30 Hz swept sine flapping experiment (section 3.1)  
to those predicted via the mathematical model 
in section  2. Because swept sine simulations are 
computationally expensive in CFD, we instead solve 

equation (6) assuming single frequency flapping and 
repeat this several times over the entire frequency 
range of interest. To attenuate the free response of the 
wing, we include modal damping at ζ = 0.1 for both 
modes and simulate the numeric response over 50 
wing beat periods. This damping value is selected as 
the average between those presented in [31] and [32] 
and produced good agreement between theoretical 
and experimental results. We record simulation data 
once the wing dynamics have achieved a periodic 
steady-state. We conduct simulations for both rigid 
and flexible wings to identify which model better 
predicts experimental trends. For each simulation 
with flap frequency f flap, we record the magnitude of 
torque at f flap as well as any harmonic with appreciable 
frequency content. The comparison between theory 
and experiment is shown in figure 6.

Overall, agreement between theory and experi-
ment is good. The flexible wing theory predicts the 

Figure 5.  Vibration modes of the FE model wing superimposed on undeformed wing geometry. (a) First vibration mode (bending). 
(b) Second vibration mode (torsion).

Figure 6.  Comparison of the experimental and theoretical torque spectra for a wing flapping via swept sine excitation between 
20–30 Hz at ±66°. A moving average filter is applied to the experimental data. (Top) without yaw. (Bottom) yaw included at 10°.
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magnitude of flapping wing torques |M( f )| at f flap and 
3f flap within reasonable accuracy. While rigid and flex-
ible body models predict a similar torque magnitude 
at f flap, the rigid body model cannot identify the 3f flap 
response that is clearly observed in the experiment. 
Thus, we believe that the flexible body model more 
accurately predicts flapping torques and offers math-
ematical insights unavailable to the rigid body model.

Despite good agreement between the model and 
experiment, there are two discrepancies we must 
address. First, we see that both rigid and flexible body 
models slightly overstimate the torque magnitude at 
f flap. We believe this stems from differences between the 
real inertial properties of the wing and those of the ide-
alized FE model. While the cut-and-weigh procedure 
detailed in appendix B provides a rough estimation of 
the mass distribution, it is challenging to identify this 
distribution exactly. Even modest errors will affect the 
inertial properties in table 1. If the estimated moments 
of inertia are higher than those of the actual wing, our 
mathematical model will overestimate the torques at 
f flap. Second, the experiment reveals a torque comp
onent at 2f flap that is not accounted for by our model. 
This discrepancy likely comes from misalignment 
between the mechanical flapper and the torque sen-
sor. If the two are misaligned by even a few degrees, the 
asymmetry effectively causes the wing to rotate about a 
secondary yaw axis. Despite being small in amplitude, 
the yaw rotation is geometrically coupled to the pri-
mary roll rotation and causes large gyroscopic forces to 
excite the wing at twice the driving frequency [23, 33].  
These gyroscopic forces cause wing deformation at 
2f flap which in turn affects the torque. Indeed, if we 
include a yaw rotation with an amplitude of 10° into 
our model, it predicts the torque response at 2f flap with 
excellent quantitative accuracy (figure 6, bottom).

Next, we investigate experimental energetics. We 
determine the instantaneous power by multiplying 
the measured torques with the angular velocity of the 
wing, where the velocity is estimated by differentiating 
the measured angular position. To reduce differen-
tiation noise, we apply a low-pass filter with a 250 Hz 
cutoff frequency to both torque and angular velocity 
signals. Again, we conduct simulations to estimate the 
power delivered to both rigid and flexible wings and 
compare simulation results to experimental measure-
ments (figure 7).

In general, the model-agreement for power magni-
tude |P( f )| is acceptable. The experiment shows |P( f )| 
occurs at 2f flap and 4f flap and the flexible wing model 
predicts the magnitude at these frequencies well. While 
the rigid wing theory estimates |P( f )| at 2f flap more 
closely than the flexible wing theory, the rigid wing 
theory does not estimate any power concentrated at 
4f flap. This further corroborates that the flexible wing 
model offers novel insight into flapping wing dynam-
ics unavailable to conventional rigid body models. The 
discrepancies between the model and experiment are 
again due to errors in the mass distribution as well 
as the misalignment between the torque sensor and 
mechanical flapper. Reducing the inertial properties 
of the idealized FE wing improves the model estimates 
of the power magnitude at 2f flap, whereas including 
a small yaw rotation in the model generates a power 
magnitude response at 3f flap similar to that observed in 
the experiment (figure 7, bottom).

4.2.  Energetic costs of flight
In the previous section, we demonstrated that our 
model is capable of estimating the torques and power 
for a wing rotating about a single axis with reasonable 
accuracy. However, real flapping kinematics are more 

Figure 7.  Comparison of the experimental and theoretical power spectra for a wing flapping via swept sine excitation between 
20–30 Hz at ±66°. A moving average filter is applied to the experimental data. (Top) without yaw (Bottom) yaw included at 10°.
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complex and wings are generally subject to multi-
dimensional rotation. While we have yet to validate 
our model for MDOF rotation, we can explore the 
influence of wing flexibility on torques and power 
through numerical simulation.

First, we establish the flapping kinematics (table 2).  
Rotation amplitudes and phase are estimated from 
[26]. We include pitch and roll and neglect yaw. For 
simplicity, we assume all rotations are harmonic with a 
frequency of 25 Hz. We include modal damping at ζ = 
0.05 and solve equation (6) numerically over 50 wing-
beats. All results are taken from the periodic steady-
state response of the wing. Because we are chiefly inter-
ested the effect of flexibility on energetics, we vary the 
first natural frequency of the wing ω1 from 60 Hz to 
90 Hz in 50 evenly spaced increments, conduct simula-
tions for each natural frequency, and record net energy 
expended over a single wing beat. This range includes 
the 75 Hz natural frequency measured for the exper
imental wing. We maintain the second natural fre-
quency ω2 at 95 Hz, as we did not identify any notable 

changes in energetics while varying ω2.
According the Sun and Tang, there are two possible 

ways to estimate energy spent [34], which is equivalent 
to the work done by the driving moments. The first 
is to calculate the positive work done by the moment 
and to assume the negative work is negligible because 
the metabolic costs associated with negative work are 
small. Under this assumption, the work W  done is

W =

∫ T

0
P+(t) dt,� (16)

where T is the wing beat period and P+ (t) is the 
positive instantaneous power. The second way to 
estimate energy spent is to assume negative work is 
stored as potential energy via some flexible structure, 
such as the thorax or wing itself. In this scenario, we 
assume that all potential energy is recovered when the 
wing does positive work. For this second scenario, the 
work done is

W =

∫ T

0
(P+(t)− |P−(t)|) dt.� (17)

We record W  for both scenarios (with and without 
elastic storage assumed) as well as peak moments for 
all natural frequencies considered. We report only the 
moment about x, since it is significantly larger than the 
moments about y  or z. All simulations are conducted 
for both rigid and flexible wings so we can identify how 

the structural compliance affects moments and power. 
We report the ratio between quantities determined for 
the rigid and flexible wing (figure 8).

While flexibility tends to have a variable effect on 
energy expenditures, we believe structural compli-
ance is favorable to flight efficiency. Consider the case 
where elastic energy storage is assumed. Across the 
entire range of natural frequencies, the flexible wing 
requires less energy to flap compared to the rigid wing. 
At approximately ω1 = 79 Hz, wing flexibility reduces 
energetic costs by as much as 25%. Interestingly, at this 
natural frequency, the peak moments of the flexible 
wing are approximately 60% higher and the peak posi-
tive power is roughly 15% higher than that required 
by the rigid wing. This highlights a potential trade-
off between maximum force generation and overall 
efficiency. These results also illuminate the impor-
tance of elastic energy storage to flight efficiency. If 
we assume that no elastic energy is stored and instead 
assume negative work is dissipated as heat, the flexible 
wing requires more energy to flap compared to the 
rigid wing. This is true over almost the entire natural 
frequency range considered. While some portion of 
energy is invariably dissipated, it is likely that a large 
percentage of negative work is indeed stored as poten-
tial energy and recycled over the wingbeat. Poten-
tial energy storage does not necessarily have to reside 
entirely in the flexible wing; instead, some percent
age could be stored in the compliant thorax as well. 
To identify how much potential energy U is stored in 
the wing, we calculate the potential energy using equa-
tion (5). We evaluate the maximum potential energy 
Umax and multiply this quantity by two because poten-
tial energy storage occurs on both the wing upstroke 
and downstroke. We divide 2Umax by the net positive 
work done W + to identify how much energy the flexi-
ble wing can recycle relative to how much is required to 
flap the wing. We evaluate 2Umax/W + over the range 
of natural frequencies from 60–90 Hz. The results are 
shown in figure 9.

The wing has the largest potential energy stored 
divided by energy required around ω1 = 79 Hz. At this 
natural frequency, the wing can store almost 30% of 
the energy that is required to flap the wing. We con-
jecture that the elastic thorax also plays a notable role 
in energy storage, however we cannot assess this claim 
because the thorax is not modeled in the present work. 
From this finding, we conclude that the wing itself is a 
viable energy storage mechanism, and one that is often 
overlooked in terms of robotic design. This requires 
that the natural frequency of the wing be tuned 
accordingly to achieve favorable energetics, which can 
be done easily via manipulation of the artificial wing 
geometric or material properties.

So why does ω1 = 79 Hz appear to be optimal in 
terms of power economy? The natural frequencies 
of the wing used in our experiment as well as those 
tested by Fitzgerald and Balachandran are close to this 
value [29]. Perhaps not by coincidence, this natural 

Table 2.  Multiple degree-of-freedom flapping kinematics.

Parameter Description Value Unit

α0 Roll amplitude 60 Degrees

β0 Pitch amplitude 45 Degrees

γ0 Yaw amplitude 0 Degrees

φαβ Pitch/roll phase 

difference

π
2 Rad

f flap Flap frequency 25 Hz
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frequency is roughly three times greater than the flap-
ping frequency. Vanella et al showed via computational 
simulation that if an insect flaps at 1/3 its wing’s natu-
ral frequency, it generates a higher lift per unit power 
relative to a rigid wing [35]. Dai et al estimated similar 
aerodynamic benefits for the same flapping-to-natural 
frequency ratio [29, 36]. Jankauski et al suggested that 
flapping at 1/3 the wing’s natural frequency improves 
inertial power economy as well [12].

Interestingly, this flapping-to-natural frequency 
relationship appears across many species of flying 
insects [37]. We believe these aerodynamic and ener-
getic benefits are brought about due to a near reso-
nant response of the wing. Because the equation  of 
motion (equation (6)) governing wing deformation is 
time-varying, even SDOF flapping at ωflap will gener-
ate wing deformation at odd harmonics of ωflap. If the 
third harmonic of the flapping frequency is near the 
wing fundamental frequency, the result will be a large 
dynamic response of the wing at three times the driv-
ing frequency. To investigate the effect of structural 
compliance at ω1 = 79 Hz more closely, we plot the 
instantaneous power for rigid and flexible wings over 
a wing beat in figure 10. For the flexible wing, we also 
plot the potential energy stored in the wing.

There are a number of interesting insights that can 
be determined from figure 10. We observe that for the 
flexible wing, the minima of negative power corre-
spond to the maxima of potential energy. This provides 
further evidence that the wing serves as an energy stor-
age mechanism. Maximum potential energy of about 
160 µJ occurs immediately before the wing reversal, 
where the wing is transitioning from downstroke to 
upstroke or visa versa. It is plausible that the wing elas-
ticity facilitates this reversal. The total energy required 
by the flexible wing over a wingbeat is 1200 µJ, how-
ever we emphasize that this number does not include 
recovered potential energy. The power delivered to the 
rigid wing also has a negative component, however the 
wing itself cannot absorb this as strain energy. Poten-
tial energy storage for the rigid wing must occur in 
the insect thorax or another compliant component. 
Nonetheless, the negative power of the rigid wing is 
smaller in magnitude compared to the flexible wing. 
This indicates that the capacity to store strain energy 
even in another flexible component is less than that of 
the flexible wing.

In terms of power, the maximum positive power is 
about 58 mW for the rigid wing and 95 mW for the 
flexible wing. Assuming the insect weighs between 1.5–
2.5 g and two wings are flapping symmetrically, the 
mass normalized peak power is between 46–77 W kg−1  
for the rigid wing and 75–125 W kg−1 for the flexible 
wing. Both rigid and flexible peak power values are 
on the same order of magnitude as those estimated by 
Daniel and Tu, who determined peak power require-
ments of the hawkmoth using an experimental work 
loop technique [11]. These values also agree with those 
determined by Berman and Wang, who investigated 
peak power requirements of a rigid hawkmoth wing 
computationally [17]. Thus, we feel confident our 
model is producing accurate quantitative results.

However, we should point out that these peak 
power estimates are likely greater than the real peak 
power required during flight. Two limitations of the 
present study are that (1) rotational kinematics of the 
wing are prescribed and (2) the wing cannot interact 

Figure 8.  Ratio between net energy expenditures and 
peak moments for rigid and flexible wings as a function 
of fundamental frequency ω1.

Figure 9.  Ratio between the maximum potential energy 
storage and the energy required to flap a flexible wing as a 
function of the wing natural frequency.
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with the flexible thorax. In reality, the deformation of 
the wing potentially affects the deformation of the tho-
rax, which in turn alters the rotational kinematics of 
the wing. The change in kinematics, and the release of 
potential energy stored in the thorax, may reduce the 
peak positive power for both rigid and flexible wings. 
Thus, the coupled nature of the wing-thorax must be 
modeled to fully realize the benefits of structural com-
pliance on energetic efficiency. We also note that the 
present work does not account for aerodynamic effi-
ciencies gained due to the wing deformation because 
we have assumed unilateral coupling between the fluid 
structure. Nonetheless, the methodology developed 
through this work suggests that the wing is a viable 
energy storage mechanism that may reduce the overall 
energetic cost of flight. It is probable that the flexible 
wing works synergistically with the elastic thorax on 
the system level to improve flight power economy.

The findings detailed in this section suggest that 
wing compliance can reduce energetic expenditures 
in smal, artificial flapping wing robotic vehicles. Our 
results suggest that the vehicle should flap at a fre-
quency roughly 1/3 of the wing’s natural frequency. 
This can be achieved through several simple design 
modifications, for example varying the wing’s thick-
ness or material. Many artificial flapping wings use 
small carbon fiber struts to provide support [4, 38], 
similar to how veins provide structural support in 
insect wings. Small variations in the effective diam-
eter of these struts will substantially affect the wing’s 
natural frequency—this is akin to how the natural 
frequency of a simply supported beam scales with the 
square value of its effective diameter [39]. Once the 
ωflap/ω1 = 3 ratio has been achieved via careful design, 
the wing will nearly resonate while flapping. As a result 
of the resonant response, the wing will store significant 

potential energy immediately before the stroke rever-
sal phase. Our results also indicate that the vehicles 
airframe or actuator system should also be compliant 
and capable of storing strain energy to maximize the 
energetic efficiency of flight.

5.  Conclusions

Flapping insect wings bend and deform during flight 
due to the influence of both aerodynamic and inertial 
elastic forces. This deformation gives rise to strain 
energy that can potentially be recycled over a wingbeat 
to reduce the net energy expenditures. However, 
many models of flapping wing dynamics employ 
rigid body approximations and cannot estimate the 
power required by flexible wings. Many models are too 
high order to effectively carry out parametric studies 
efficiently, where the ability to conduct parametric 
studies efficiently is critical to bio-inspired design of 
FWMAVs and other technologies.

To investigate the influence of flexibility on flapping 
wing energetics, we develop a reduced-order model 
capable of estimating the torques driving a compliant 
wing in three-dimensional rotation. We calculate the 
power by taking the inner product of the torque and 
the angular velocity. First, we fabricate a custom SDOF 
flapping mechanism and use it to flap a real hawkmoth 
forewing. We record the torques required to flap the 
wing and compare those to model predictions. Overall, 
the agreement between model and theory for flapping 
wing torque and power is good. Our model predicts 
that flexible wings have a torque response at the flap-
ping frequency and three times the flapping frequency 
whereas rigid wings have only a torque response at the 
flapping frequency. Experimental measurements of 
flexible wing torques clearly show a response at three 

Figure 10.  Power and x-axis moments for a rigid wing and a flexible wing with a natural frequency of ω1 = 79 Hz. Potential energy 
is shown for the flexible wing. The shaded gray background indicates the wing upstroke and the white background indicates the 
wing downstroke.
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times the driving frequency, which shows that certain 
dynamic features are not well predicted by rigid body 
models. The derived theory also predicts experimental 
power trends fairly well, and again captures higher-
order harmonics of instantaneous power not pre-
dicted by rigid body models.

After showing that our model works well for SDOF 
flapping, we explore the energetics of more realistic 
MDOF flapping computationally. First, we investigate 
the net energy spent over a wingbeat as a function of 
fundamental frequency ω1. We find that if all nega-
tive work is stored as potential energy, a flexible wing 
requires only 75% of the energy to flap compared to a 
rigid wing if the natural frequency of the flexible wing 
is approximately 79 Hz. However, the x-axis moment 
required to flap the flexible wing when ω1 = 79 Hz are 
60% larger than those required to flap the rigid wing. 
This highlights a potential trade-off, where the flexible 
wing needs larger forces to generate motion but con-
sumes less energy than the rigid wing. We estimate that 
the flexible wing can store approximately 30% of the 
total energy required over a flapping cycle.

However, to fully examine the energetic benefits 
of structural compliance, we recognize a need to also 
include the insect thorax in future modeling efforts. 
This will enable the wing to exchange energy with the 
thorax which may potentially affect the flapping kin-
ematics. Moving forward, we will develop a general 
system-level model of the wing-thorax assembly that 
is applicable to flying insects as well as FWMAVs so we 
can investigate trends in system-level power flow.
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Appendix A.  Moments of a flexible 
rotating structure

Here, we provide a detailed derivation of the inertial 
moments governing the rotation of an elastic planar 
wing (equation (14)). We derive these moments 
starting from angular momentum. Given that the 
rotation of the wing occurs about fixed point O, the 
angular momentum H0 can be written as

H0 =

∫

m
R× Ṙ dm� (A.1)

H0 =

∫

m
(r1 +Wez)× [Ω× (r1 +Wez) + Ẇez] dm.

� (A.2)

For ease of derivation, we will break the angular 
momentum up into six terms such that

HO =
6∑

i=1

Hi.� (A.3)

The terms, and their expansion to useful form, are 
detailed as follows. The first term corresponds to rigid 
body angular momentum and is

H1 =

∫

m
r1 × (Ω× r1) dm = I0Ω ⇐=� (A.4)

where I0 is the inertial tensor if the wing were rigid. 
It is constant with respect to the rotating frame. 
Also, due to the planar wing, Ixz = Iyz = 0, and 
Ixx + Iyy = Izz. The remaining terms correspond to the 
angular momentum associated with the out-of-plane 
elastic deformation. We expand these terms as

H2 =

∫

m
r1 × (Ω×Wez) dm =

∫

m
W r1 × (Ω× ez) dm

� (A.5)

. . . =

∞∑
k=1

qk

∫

m
(φk r1)× (Ω× ez) dm� (A.6)

. . . =

∞∑
k=1

qk [ak × (Ω× ez)]� (A.7)

. . . =

∞∑
k=1

qk [Ω (ak · ez)− ez (ak ·Ω)]� (A.8)

H2 = −
∞∑
k=1

qk (ak ·Ω)ez ⇐=� (A.9)

H3 =

∫

m
r1 × Ẇez dm =

∫

m
(x ex + y ey)× Ẇ ez dm

� (A.10)

. . . = −
∞∑
k=1

q̇k

∫

m
φk(−y ex + xey) dm� (A.11)

H3 = −
∞∑
k=1

bk q̇k ⇐=� (A.12)

H4 =

∫

m
Wez × (Ω× r1) dm� (A.13)

. . . =

∞∑
k=1

qk

∫

m
φk[Ω (ez · r1)− r1(ez ·Ω)] dm�

(A.14)

H4 = −(ez ·Ω)

∞∑
k=1

ak qk ⇐=� (A.15)
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H5 =

∫

m
W ez × (Ω×W ez) dm� (A.16)

. . . =

∞∑
k=1

q2k

∫

m
φ2
k[ez × (Ω× ez)] dm� (A.17)

H5 =

∞∑
k=1

q2k [Ω (ez · ez)− ez (Ω · ez)] ⇐=� (A.18)

H6 =

∫

m
W ez × Ẇ ez dm = 0 ⇐= .� (A.19)

Lastly, we differentiate the angular momentum with 
respect to time, including the derivative of the rotating 
coordinate frame position vectors, to determine the 
moments acting on the wing. This gives

M0 = Ω×H0 + Ḣ0.� (A.20)

Appendix B.  Wing mass distribution

In this appendix, we detail our method for estimating 
the mass distribution of a hawkmoth wing. The wing 
described hereafter is not the wing used in the flapping 
experiment. Instead, we assume mass distribution 
is similar between different wings and scale the 
distribution based upon the total mass.

To estimate this distribution, one left forewing 
from a frozen adult was thawed using a moist paper 
towel and a small plastic scaffold to prevent the wing 
coming in direct contact with the moisture. We cut 
the wing into 36 approximately square pieces, each 
approximately 5 mm × 5 mm, and the individual 
pieces massed on a Mettler Toledo XS205 scale accu-
rate to 100 micrograms. We used 5 mm × 5 mm grid-
ded paper to guide the locations of cuts made to the 
wing. The wing was traced and held firm to the grid 
during and cut with a scalpel. The wing sections were 
transferred from cutting surface to scale using small 
dissection tweezers. Each piece was placed on a piece 
of weighing paper and massed individually in the scale. 
Wing sections were then placed in order on a separate 
trace, covered in parafilm, and replaced in the freezer. 
We recorded the coordinates of each piece as well as 
the corresponding mass. In MATLAB, we developed 

a second-order two dimensional polynomial fit of the 
mass distribution. We vary wing thickness while main-
taining constant density to adjust the spatial surface 
density of the wing. The thickness variation t(x, y) is

t(x, y) = 0.000 1154− 0.008 402x − 0.001 112y . . .

+ 0.1929x2 − 0.012 19y2 + 0.081 24xy,
�

(B.1)

where the origin is referenced from a point on the wing 
root (figure B1). The maximum thickness of the wing 
is approximately 110 µm and the minimum thickness 
of the wing is approximately 6.5 µm. The average 
thickness is 45 µm, consistent with the uniform 
thickness used in the FE model developed by Combes 
and Daniel [40].

ORCID iDs

Mark Jankauski  https://orcid.org/0000-0001-6305-
0564

References

	[1]	 Trimmer W S N 1989 Microrobots and micromechanical 
systems Sensors Actuators 19 267–87

	[2]	 Helbling E F and Wood R J 2018 A review of propulsion, 
power, and control architectures for insect-scale flapping-wing 
vehicles Appl. Mech. Rev. 70 010801

	[3]	 Wood R J, Finio B, Karpelson M, Ma K, Pérez-Arancibia N O, 
Sreetharan P S, Tanaka H and Whitney J P 2012 Progress on 
picoair vehicles Int. J. Robot. Res. 31 1292–302

	[4]	 Wood R J 2008 The first takeoff of a biologically inspired  
at-scale robotic insect IEEE Trans. Robot. 24 341–7

	[5]	 Srivastava P N and Rockstein M 1969 The utilization of 
trehalose during flight by the housefly, Musca domestica 
J. Insect Physiol. 15 1181–6

	[6]	 Dickinson M H and Tu M S 1997 The function of dipteran 
flight muscle Comparative Biochem. Physiol. A 116 223–38

	[7]	 Rheuben M B and Kammer A E 1987 Structure and 
innervation of the third axillary muscle of Manduca relative to 
its role in turning flight J. Exp. Biol. 131 373–402

	[8]	 Hollenbeck A C and Palazotto A N 2012 Methods used to 
evaluate the hawkmoth (Manduca sexta) as a flapping-wing 
micro air vehicle Int. J. Micro Air Vehicles 4 119–32

	[9]	 Hollenbeck A C and Palazotto A N 2013 Mechanical 
characterization of flight mechanism in the hawkmoth 
Manduca sexta Exp. Mech. 53 1189–99

	[10]	Ando N and Kanzaki R 2016 Flexibility and control of thorax 
deformation during hawkmoth flight Biol. Lett. 12 20150733

	[11]	Tu M S and Daniel T L 2004 Submaximal power output 
from the dorsolongitudinal flight muscles of the hawkmoth 
Manduca sexta J. Exp. Biol. 207 4651–62

Figure B1.  FE Thickness distribution of the wing based upon spatial mass measurements. Color bar units are in meters.

Bioinspir. Biomim. 14 (2019) 056007

https://orcid.org/0000-0001-6305-0564
https://orcid.org/0000-0001-6305-0564
https://orcid.org/0000-0001-6305-0564
https://doi.org/10.1016/0250-6874(89)87079-9
https://doi.org/10.1016/0250-6874(89)87079-9
https://doi.org/10.1016/0250-6874(89)87079-9
https://doi.org/10.1115/1.4038795
https://doi.org/10.1115/1.4038795
https://doi.org/10.1177/0278364912455073
https://doi.org/10.1177/0278364912455073
https://doi.org/10.1177/0278364912455073
https://doi.org/10.1109/TRO.2008.916997
https://doi.org/10.1109/TRO.2008.916997
https://doi.org/10.1109/TRO.2008.916997
https://doi.org/10.1016/0022-1910(69)90228-5
https://doi.org/10.1016/0022-1910(69)90228-5
https://doi.org/10.1016/0022-1910(69)90228-5
https://doi.org/10.1016/S0300-9629(96)00162-4
https://doi.org/10.1016/S0300-9629(96)00162-4
https://doi.org/10.1016/S0300-9629(96)00162-4
https://doi.org/10.1260/1756-8293.4.2.119
https://doi.org/10.1260/1756-8293.4.2.119
https://doi.org/10.1260/1756-8293.4.2.119
https://doi.org/10.1007/s11340-013-9726-5
https://doi.org/10.1007/s11340-013-9726-5
https://doi.org/10.1007/s11340-013-9726-5
https://doi.org/10.1098/rsbl.2015.0733
https://doi.org/10.1098/rsbl.2015.0733
https://doi.org/10.1242/jeb.01321
https://doi.org/10.1242/jeb.01321
https://doi.org/10.1242/jeb.01321


15

H E Reid et al

	[12]	Jankauski M, Guo Z and Shen I Y 2018 The effect of structural 
deformation on flapping wing energetics J. Sound Vib. 
429 176–92

	[13]	Combes S A and Daniel T L 2003 Into thin air: contributions of 
aerodynamic and inertial-elastic forces to wing bending in the 
hawkmoth Manduca sexta J. Exp. Biol. 206 2999–3006

	[14]	Shahzad A, Tian F-B, Young J and Lai J C 2018 Effects of 
flexibility on the hovering performance of flapping wings with 
different shapes and aspect ratios J. Fluids Struct. 81 69–96

	[15]	Young J, Walker S M, Bomphrey R J, Taylor G K and 
Thomas A L R 2009 Details of insect wing design and 
deformation enhance aerodynamic function and flight 
efficiency Science 325 1549–52

	[16]	Lehmann F-O, Gorb S, Nasir N and Schützner P 2011 Elastic 
deformation and energy loss of flapping fly wings J. Exp. Biol. 
214 2949–61

	[17]	Berman G J and Wang Z J 2007 Energy-minimizing kinematics 
in hovering insect flight J. Fluid Mech. 582 153–68

	[18]	Stanford B, Kurdi M, Beran P and McClung A 2012 Shape, 
structure, and kinematic parameterization of a power-optimal 
hovering wing J. Aircr. 49 1687–99

	[19]	Yin B and Luo H 2010 Effect of wing inertia on hovering 
performance of flexible flapping wings Phys. Fluids 22 111902

	[20]	Tian F-B, Luo H, Song J and Lu X-Y 2013 Force production 
and asymmetric deformation of a flexible flapping wing in 
forward flight J. Fluids Struct. 36 149–61

	[21]	Nakata T and Liu H 2012 A fluid-structure interaction model of 
insect flight with flexible wings J. Comput. Phys. 231 1822–47

	[22]	Fitzgerald T, Valdez M, Vanella M, Balaras E and 
Balachandran B 2011 Flexible flapping systems: computational 
investigations into fluid-structure interactions Aeronaut. 
J. 115 593–604

	[23]	Jankauski M and Shen I Y 2014 Dynamic modeling of an insect 
wing subject to three-dimensional rotation Int. J. Micro Air 
Vehicles 6 231–51

	[24]	Schwab R, Johnson E and Jankauski M 2019 A novel fluid-
structure interaction framework for flapping, flexible wings 
(under review) J. Vib. Acoust.

	[25]	Roccia B A, Preidikman S and Balachandran B 2017 
Computational dynamics of flapping wings in hover flight: a 
co-simulation strategy AIAA J. 55 1806–22

	[26]	Willmott A P and Ellington C P 1997 The mechanics of flight 
in the hawkmoth Manduca sexta. I. Kinematics of hovering 
and forward flight J. Exp. Biol. 200 2705–22

	[27]	Bell R A, Rasul C G and Joachim F G 1975 Photoperiodic 
induction of the pupal diapause in the tobacco hornworm, 
Manduca sexta J. Insect Physiol. 21 1471–80

	[28]	Sims T W, Palazotto A N and Norris A 2010 A structural 
dynamic analysis of a Manduca sexta forewing Int. J. Micro Air 
Vehicles 2 119–40

	[29]	Fitzgerald T 2013 Nonlinear fluid-structure interactions in 
flapping wing systems PhD Thesis University of Maryland 
(https://doi.org/10.13016/4fsm-8q35)

	[30]	Hedrick T L and Daniel T L 2006 Flight control in the 
hawkmoth Manduca sexta: the inverse problem of hovering J. 
Exp. Biol. 209 3114–30

	[31]	Eberle A L, Reinhall P G and Daniel T L 2014 Fluid-structure 
interaction in compliant insect wings Bioinspiration 
Biomimetics 9 025005

	[32]	Norris A G 2013 Experimental characterization of the 
structural dynamics and aero-structural sensitivity of a 
hawkmoth wing toward the development of design rules for 
flapping-wing micro air vehicles PhD Thesis Air Force Institute 
of Technology

	[33]	Jankauski M and Shen I Y 2016 Experimental studies of an 
inertial-elastic rotating wing in air and vacuum Int. J. Micro Air 
Vehicles 8 53–63

	[34]	Sun M and Tang J 2002 Lift and power requirements 
of hovering flight in Drosophila virilis J. Exp. Biol. 
205 2413–27

	[35]	Vanella M, Fitzgerald T, Preidikman S, Balaras E and 
Balachandran B 2009 Influence of flexibility on the 
aerodynamic performance of a hovering wing J. Exp. Biol. 
212 95–105

	[36]	Dai H, Luo H and Doyle J F 2012 Dynamic pitching of an 
elastic rectangular wing in hovering motion J. Fluid Mech. 
693 473

	[37]	San Ha N, Truong Q T, Goo N S and Park H C 2013 Relationship 
between wingbeat frequency and resonant frequency of the 
wing in insects Bioinspiration Biomimetics 8 046008

	[38]	Ma K Y, Chirarattananon P, Fuller S B and Wood R J 2013 
Controlled flight of a biologically inspired, insect-scale robot 
Science 340 603–7

	[39]	Meirovitch L 2010 Fundamentals of Vibrations (Long Grove, IL: 
Waveland Press)

	[40]	Combes S A and Daniel T L 2003 Flexural stiffness in insect 
wings II. Spatial distribution and dynamic wing bending 
J. Exp. Biol. 206 2989–97

Bioinspir. Biomim. 14 (2019) 056007

https://doi.org/10.1016/j.jsv.2018.05.005
https://doi.org/10.1016/j.jsv.2018.05.005
https://doi.org/10.1016/j.jsv.2018.05.005
https://doi.org/10.1242/jeb.00502
https://doi.org/10.1242/jeb.00502
https://doi.org/10.1242/jeb.00502
https://doi.org/10.1016/j.jfluidstructs.2018.04.019
https://doi.org/10.1016/j.jfluidstructs.2018.04.019
https://doi.org/10.1016/j.jfluidstructs.2018.04.019
https://doi.org/10.1126/science.1175928
https://doi.org/10.1126/science.1175928
https://doi.org/10.1126/science.1175928
https://doi.org/10.1242/jeb.045351
https://doi.org/10.1242/jeb.045351
https://doi.org/10.1242/jeb.045351
https://doi.org/10.1017/S0022112007006209
https://doi.org/10.1017/S0022112007006209
https://doi.org/10.1017/S0022112007006209
https://doi.org/10.2514/1.C031094
https://doi.org/10.2514/1.C031094
https://doi.org/10.2514/1.C031094
https://doi.org/10.1063/1.3499739
https://doi.org/10.1063/1.3499739
https://doi.org/10.1016/j.jfluidstructs.2012.07.006
https://doi.org/10.1016/j.jfluidstructs.2012.07.006
https://doi.org/10.1016/j.jfluidstructs.2012.07.006
https://doi.org/10.1016/j.jcp.2011.11.005
https://doi.org/10.1016/j.jcp.2011.11.005
https://doi.org/10.1016/j.jcp.2011.11.005
https://doi.org/10.1017/S000192400000628X
https://doi.org/10.1017/S000192400000628X
https://doi.org/10.1017/S000192400000628X
https://doi.org/10.1260/1756-8293.6.4.231
https://doi.org/10.1260/1756-8293.6.4.231
https://doi.org/10.1260/1756-8293.6.4.231
https://doi.org/10.2514/1.J055137
https://doi.org/10.2514/1.J055137
https://doi.org/10.2514/1.J055137
https://doi.org/10.1016/0022-1910(75)90210-3
https://doi.org/10.1016/0022-1910(75)90210-3
https://doi.org/10.1016/0022-1910(75)90210-3
https://doi.org/10.1260/1756-8293.2.3.119
https://doi.org/10.1260/1756-8293.2.3.119
https://doi.org/10.1260/1756-8293.2.3.119
https://doi.org/10.13016/4fsm-8q35
https://doi.org/10.1242/jeb.02363
https://doi.org/10.1242/jeb.02363
https://doi.org/10.1242/jeb.02363
https://doi.org/10.1088/1748-3182/9/2/025005
https://doi.org/10.1088/1748-3182/9/2/025005
https://doi.org/10.1177/1756829316645246
https://doi.org/10.1177/1756829316645246
https://doi.org/10.1177/1756829316645246
https://doi.org/10.1242/jeb.016428
https://doi.org/10.1242/jeb.016428
https://doi.org/10.1242/jeb.016428
https://doi.org/10.1017/jfm.2011.543
https://doi.org/10.1017/jfm.2011.543
https://doi.org/10.1088/1748-3182/8/4/046008
https://doi.org/10.1088/1748-3182/8/4/046008
https://doi.org/10.1126/science.1231806
https://doi.org/10.1126/science.1231806
https://doi.org/10.1126/science.1231806
https://doi.org/10.1242/jeb.00524
https://doi.org/10.1242/jeb.00524
https://doi.org/10.1242/jeb.00524

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Wing flexibility reduces the energetic requirements of insect flight﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Theory
	﻿﻿2.1. ﻿﻿﻿Flapping wing fluid-structure interaction
	﻿﻿2.2. ﻿﻿﻿Torques and power of flexible, flapping wings

	﻿﻿3. ﻿﻿﻿Experiment design
	﻿﻿3.1. ﻿﻿﻿Mechanical flapper
	﻿﻿3.2. ﻿﻿﻿Insect preparation
	﻿﻿3.3. ﻿﻿﻿Dynamic characterization
	﻿﻿3.4. ﻿﻿﻿Structural modeling

	﻿﻿4. ﻿﻿﻿Results and discussion
	﻿﻿4.1. ﻿﻿﻿Experiment-model comparison
	﻿﻿4.2. ﻿﻿﻿Energetic costs of flight

	﻿﻿5. ﻿﻿﻿Conclusions
	﻿﻿﻿Acknowledgments
	﻿Appendix A. ﻿﻿﻿Moments of a flexible rotating structure
	﻿Appendix B. ﻿﻿﻿Wing mass distribution
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


