
Ryan Schwab
Mechanical and Industrial Engineering,

Montana State University,
Bozeman, MT 59717

e-mail: rschwab03@gmail.com

Erick Johnson
Assistant Professor

Mechanical and Industrial Engineering,
Montana State University,

Bozeman, MT 59717
e-mail: erick.johnson@montana.edu

Mark Jankauski1
Assistant Professor

Mechanical and Industrial Engineering,
Montana State University,

Bozeman, MT 59717
e-mail: mark.jankauski@montana.edu

A Novel Fluid–Structure
Interaction Framework for
Flapping, Flexible Wings
Fluid–structure interaction (FSI) plays a significant role in the deformation of flapping
insect wings. However, many current FSI models are high-order and rely on direct compu-
tational methods, thereby limiting parametric studies as well as insights into the physics
governing wing dynamics. We develop a novel flapping wing FSI framework that accommo-
dates general wing geometry and fluid loading. We use this framework to study the unilat-
erally coupled FSI of an idealized hawkmoth forewing considering two fluid models:
Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD) and blade
element theory (BET). We first compare aerodynamic modal forces estimated by the low-
order BET model to those calculated via high fidelity RANS CFD. We find that for realistic
flapping kinematics, BET estimates modal forces five orders of magnitude faster than CFD
within reasonable accuracy. Over the range flapping kinematics considered, BET and CFD
estimated modal forces vary maximally by 350% in magnitude and approximately π/2
radians in phase. The large reduction in computational time offered by BET facilitates
high-dimensional parametric design of flapping-wing-based technologies. Next, we com-
pare the contributions of aerodynamic and inertial forces to wing deformation. Under
the unilateral coupling assumption, aerodynamic and inertial-elastic forces are on the
same order of magnitude—however, inertial-elastic forces primarily excite the wing’s
bending mode whereas aerodynamic forces primarily excite the wing’s torsional mode.
This suggests that, via conscientious sensor placement and orientation, biological wings
may be able to sense independently inertial and aerodynamic forces.
[DOI: 10.1115/1.4044268]
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1 Introduction
Micro air vehicles (MAVs) have become a pervasive technology

over the past decade. They are considered for countless applications
ranging from package delivery to storm tracking and forecasting.
Many applications require MAVs to be very small so that they are
able to negotiate dense, congested environments. For example, a
MAVdesigned to identify leaks at gas refineries must be tiny enough
to negotiate complex piping networks. Unfortunately, fixed-wing or
rotor-based aircraft suffers inefficiencies at small scale that preclude
their flight. Viscous forces tend to dominate lift-generating aerody-
namic forces, and conventional rotary motors cannot effectively dis-
sipate heat [1,2]. As a result, robotic designers generally rely on
flapping wings as an alternative mechanism to produce lift and
thrust at small scale. Flapping wing micro air vehicles (FWMAVs)
are relatively new robotic platforms that have realized flight at centi-
meter lengths and milligram weights [3]. Many of these platforms
are designed using flapping wing insects as inspiration. However,
several issues preclude widespread realization of these insect-
inspired FWMAVs for useful tasks. These issues include inefficient
energetics, heavy sensors, and material fatigue. A better understand-
ing of insect flight, in particular, the flapping wing, can inform engi-
neering design to overcome many of these technological challenges.
As an insect wing flaps, it bends and twists under both aerody-

namic and inertial-elastic forces [4]. The interplay of aero and struc-
tural dynamics is called fluid–structure interaction (FSI). The
wing’s deformation is speculated to serve several important

functions, including energy management [5–7] and angular rate
sensing [8]. Flexible wings offer higher lift-to-drag ratios relative
to their rigid counterparts [9], suggesting wing deformation benefits
aerodynamic power economy; flexibility is hypothesized to reduce
inertial power requirements, as well. Unlike rigid wings, compliant
wings store strain energy while flapping [10]. Much of this stored
energy can be recruited to accelerate or decelerate the wing over
a wingbeat, and this energy recycling mechanism improves inertial
power economy [7]. Thus, wing compliance and deformation are
central to the energy efficiency of small-scale biological flight.
However, wing flexibility also provides a necessary sensing modal-
ity. Many insect wings are permeated with camaniform sensilla, a
mechanoreceptor which responds to stress and strain [11]. The low-
latency mechanical feedback encoded by these receptors allows the
insect to react quickly to environmental perturbations [8], such as
wind gusts or collisions with plants. Given the multifaceted charac-
teristics of insect wings, they are an ideal structure to emulate in
bio-inspired technologies. Nevertheless, the fluid and structural
dynamics of flapping, flexible insect wings are not well understood.
Much research in the area of insect flight focuses on experimental

studies. In a seminal study, Combes and Daniel artificially flapped a
hawkmothManduca sexta in both air and helium (≈15% the density
of air) with single degree-of-freedom (SDOF) rotation [4]. The
objective of this study was to identify if inertial-elastic or aerody-
namic forces were primarily responsible for wing deformation.
They used high-speed videography to track several points over
the wing surface while flapping and compared the deflection of
these points both in air and in helium. Interestingly, they observed
that wing deformation was similar in both cases; the natural conclu-
sion was that the wing’s dynamic response was primarily a function
of inertial-elastic forcing. Norris later conducted a similar study
with two notable differences: the wing was actuated in coarse
vacuum rather than helium, and the full-field displacement was
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measured (at limited time steps) rather than displacement at individ-
ual points [12]. Contradictory to the findings of Combes and Daniel,
Norris asserted that the contribution of fluid loading to the wing
cannot safely be neglected. The conflicting results of these two
studies suggest that the relative contribution of aerodynamic and
inertial-elastic forces to wing deformation remains unknown.
To provide deeper insight into structural deformation and flapping

wing FSI, many researchers rely on numerical simulation and mod-
eling. Most flapping wing FSI models utilize coupled finite element
analysis (FEA) and computational fluid dynamics (CFD) [13–16].
While such approaches accurately describe wing deformation and
the surrounding flow field, the time required to generate a single
solution is extensive. Both fluid and structural solvers suffer com-
putational inefficiencies and these inefficiencies are compounded
when the two physical regimes are considered together. For example,
large wing rotations give rise to centrifugal and gyroscopic effects
which cause the FEA stiffness matrix to be time-varying [17]. The
stiffness matrix must be updated at each interval of analysis, and
the result is an enormous number of degrees-of-freedom (DOFs)
on the order of number of finite elements × number of time steps.
Each physical DOF must be solved independently and the lengthy
solution time makes direct FEA simulation in an impractical analy-
sis method for dynamic systems subject to large rotation. CFD
solvers, which typically rely on Reynolds-averaged Navier–Stokes
(RANS) methods in the context of flapping flight, must resolve the
flow field over an entire control volume to estimate the pressures
on a wing. The extensive number of equations that must be solved
and conditions that must be satisfied render CFD a computationally
demanding mechanism. Therefore, given their computational
demands, direct FSI models which leverage coupled CFD and
FEA are not well suited for parameter studies.
To circumvent these computational issues, several methods were

developed to study flapping wing flight more efficiently. The most
common aerodynamic model is based upon blade element theory
(BET), a quasi-steady approach that discretizes the wing into airfoils
[18–20]. BET has been used to identify power-minimizing flap-
ping kinematics [21], to explore the influence of inertial torques
on insect steering [22], and to estimate passive pitch rotation in
robotic vehicles [23]. However, while BET produces aerodynamic
force estimates extraordinarily quickly, it is conventionally applied
to rigid wings and is not widely used to study flapping wing FSI.
Notable exceptions include works by Wang et al. [24] and Stanford
et al. [25]. Wang developed a BET-based FSI model of twistable
wings and showed that torsional flexibility improves power effi-
ciency. However, their model was unable to account for spanwise
bending. Stanford’s FSI model was able to capture bending, but
the discretization was limited to coarse chord-wise elements and
could not account for the complex deformation modes observed in
insect flight. Consequently, it is unknown if FSI models rooted in
BET can adequately describe the realistic deformation of insect
wings. We recognize that BET-FSI models and other reduced-order
approaches have been used to describe other rotating systems influ-
enced by aerodynamics, such as wind turbines and rotor blades
[26–29]. However, the small length scale, high-frequency actuation,
and multidimensional rotational kinematics of flapping insect
wings render this a unique and challenging problem that has not
been adequately addressed in a reduced-order fashion.
Given the motivation, there are two objectives of this paper: (1)

evaluate the accuracy of a reduced-order flapping wing FSI model
based upon BET and (2) identify the relative contribution of
inertial-elastic and aerodynamic forces towing deformation at amoth
scale. To achieve these objectives, we develop a novel FSI model
with the following characteristics. First, the model is general
enough to accommodate arbitrary wing geometry and any fluidmod-
eling scheme, including BET and CFD. Second, the model permits
either unilateral or bilateral fluid–structure coupling. The general
model derived here is the primary research contribution of this
work. For the remainder of the paper, we stress that the primary inter-
est is the physics governing structural deformation rather than the
effect structural deformation has on the surrounding flow structure.

In this work, we consider only unilateral coupling, where the
fluid affects the structure but the deforming structure does not
affect the fluid. For unilateral coupling, aerodynamic forces are
determined assuming wing rigidity and are subsequently applied
to determine structural deformation. The assumption is most appro-
priate when wing deflections are small. To the best of our knowl-
edge, there are no existing studies that compare the accuracy of
unilaterally and bilaterally coupled FSI models of flapping wings.
Thus, while this assumption may not be appropriate for the broad
range of biological or artificial fliers, it is a suitable starting place
to begin understanding the complex FSI of flapping wings. The uni-
lateral approach enables us to study large parameter spaces more
quickly than the bilateral approach, since the bilateral approach
necessitates remeshing of the CFD grid at each interval of analysis.
This assumption also helps us to identify under what parameters
wing deformation becomes large enough to consider a bilaterally
coupled analysis. For these reasons, we focus on unilateral FSI cou-
pling for this work and will address bilateral FSI coupling in the
future research. However, we acknowledge that some dynamic phe-
nomena, for example, fluid damping, will not be present in the pro-
posed unilateral approach.
The remainder of the paper is organized as follows. First, the aero-

elastic framework is derived using the Lagrangian approach. Gener-
alized aerodynamic loading is accounted for via the principle of
virtual work. We then detail the BET and RANS CFD fluid models
used in this research. The resulting aeroelastic framework is applied
to study the FSI of a simulated hawkmoth wing. Then, we assess
the accuracy of BET for hovering flightflapping kinematics and eval-
uating the sensitivity of BET as kinematics deviate from the hovering
case.We next compare the relative contributions of aerodynamic and
inertial-elastic forces to wing deformation. Lastly, we discuss our
findings and how they are relevant to the design and optimization
of FWMAVs as well as the study of biological flight.

2 Theory
We first develop a reference frame fixed to the rigid bodymotion of

a flapping wing. We then derive the aeroelastic framework governing
the wing modal response, where the structural response is determined
via the Lagrangian formulation and nonconservative aerodynamic
modal forces are accounted for through the principle of virtual work.
We conclude by discussing the two aerodynamic loading models uti-
lized in this work, specifically BET and RANS CFD.

2.1 Aeroelastic Modeling. The structural framework detailed
in this section was originally developed by Jankauski and Shen [17].
However, the initial formulation assumed inertial-elastic forces
were solely responsible for wing deformation—aerodynamic forces
were neglected. While this assumption may be justified within the
context, there are scenarios in which aerodynamic forces contribute
nontrivially to deformation. Thus, the primary purpose of this work
is to identify how aerodynamics affect the structural dynamics of flap-
ping,flexiblewings during hoveringflight. The aeroelastic framework
required to explore this subject is derived as follows.
Consider a wing of arbitrary geometry placed into an XYZ inertial

coordinate frame (Fig. 1). The XYZ is rotated about the X axis with
amplitude α, where α denotes roll. The subsequent x″y″z″ is rotated
about the y″ axis with amplitude β, where β denotes pitch. The x′y′z′
frame undergoes a final rotation about the z′ axis with an amplitude
γ, where γ denotes yaw. The origin of the terminal xyz frame is a
fixed point. The terminal frame is bound to the rigid body motion
of the wing and has an angular velocity

�Ω = (α̇ cos β cos γ + β̇ sin γ)︸�������������︷︷�������������︸
Ωx

�ex + (β̇ cos γ − α̇ cos β sin γ)︸�������������︷︷�������������︸
Ωy

�ey

+ (γ̇ + α̇ sin β)︸�����︷︷�����︸
Ωz

�ez
(1)

061002-2 / Vol. 141, DECEMBER 2019 Transactions of the ASME

Downloaded From: https://vibrationacoustics.asmedigitalcollection.asme.org on 08/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



where �ex − �ey − �ez are unit vectors along the rotated frames x–y–z
axes and Ωx, Ωy, and Ωz are the components of the angular velocity
vector. Next, a position vector �R is drawn from the fixed reference
frame origin to a differential mass dm. For convenience, the position
vector �R is represented as �R = �r1 + �r2, where

�r1 = x�ex + y�ey (2)

�r2 =W(�r1, t)�ez (3)

Above, �r1 represents the planar coordinates of dm with respect to
the undeformed wing and �r2 represents a infinitesimal out-of-plane
elastic deformation contingent on both space and time. In-plane
motion is neglected. The velocity of dm is

�̇R = �Ω × �R + �̇r 2 (4)

We determine the kinetic and potential energy of dm and inte-
grate them over the wing’s mass and volumetric domains, respec-
tively, such that the total kinetic energy T and potential energyU are

T =
1
2

∫
m

�̇R · �̇Rdm (5)

U =
1
2

∫
V
Ŝ(W , W)dV (6)

where Ŝ is a symmetric, quadratic strain energy density function.
Next, we discretize the elastic deformation into an infinite series
of space-dependent mode shapes ϕk(�r1) multiplied by time-
dependent modal responses qk(t) such that

W(�r1, t) =
∑∞
k=1

ϕk(�r1)qk(t) (7)

Vibration mode shapes are normalized with respect to the wing
mass to satisfy the following orthonormal conditions:∫

m
ϕkϕrdm = δkr (8)

∫
V
Ŝ(ϕk, ϕr)dV = ω2

kδkr (9)

where ωk is the wing’s kth natural frequency and δkr is the Kro-
necker delta. We define two vector quantities �ak and �bk . �ak is a
weighted vector directed from the fixed origin of the rotating
frame to the inertial force center of the kth vibration mode, and �bk
is a π/2 counter-clockwise rotation of �ak. These vectors are

�ak =
∫
m
ϕk(x�ex + y�ey)dm (10)

�bk =
∫
m
ϕk(−y�ex + x�ey)dm (11)

Using these definitions, we write the canonical definitions of kinetic
and potential energy (Eqs. (5) and (6)) as

T =
1
2
�ΩT I0�Ω +

1
2
(Ω2

x +Ω2
y )
∑∞
k=1

q2k

+
1
2

∑∞
k=1

q̇2k − Ωz
�Ω ·

∑∞
k=1

�akqk − �Ω ·
∑∞
k=1

�bkq̇k

(12)

U =
1
2

∑∞
k=1

ω2
kq

2
k (13)

where I0 is the inertial tensor of the wing with respect to the refer-
ence frame origin. For a flat wing of negligible thickness, I0 is

I0 =
∫
m

y2 −xy 0
−xy x2 0
0 0 x2 + y2

⎡
⎣

⎤
⎦, dm =

Ixx Ixy 0
Ixy Iyy 0
0 0 Izz

⎡
⎣

⎤
⎦

where Ixx, Iyy, and Izz are the moments of inertia about the x, y, and z
axes, respectively, and Ixy is the x–y product of inertia. Prior to for-
mulating the Lagrangian and determining the equation of motion
governing qk, we account for the nonconservative forces acting
on the wing surface. Given that in-plane deformation is neglected,
we consider only aerodynamic forces normal to the wing surface
FN. We incorporate the physical aerodynamic force into the
modal equation of motion using the principle of virtual work. The
virtual work δW done by the aerodynamic force is

δW =
∫
Sw

FN (�r1, t)δW(�r1, t)dSw (14)

δW =
∫
Sw

FN (�r1, t)
∑∞
k=1

ϕk(�r1)δqk(t)dSw (15)

where Sw is the surface area of the wing. The nonconservative
generalized force Qk corresponding to the qk degree-of-freedom is

Qk =
∫
Sw

FN (�r1, t)ϕk(�r1)dSw (16)

With each modal excitation known, we now determine the equa-
tion of motion governing generalized coordinate qk using the
Lagrangian formulation. For qk, the general form of Lagrange’s
equation is

d

dt

∂T
∂q̇k

( )
−

∂T
∂qk

+
∂U
∂qk

= Qk (17)

After substituting the explicit forms of T and U (Eqs. (12) and (13))
into Eq. (17), the equation of motion for qk is

q̈k + [ω2
k − (Ω2

x +Ω2
y )]qk = �̇Ω · �bk − Ωz

�Ω · �ak + Qk (18)

The equation of motion is linear and time-varying, where the time
variance occurs in the stiffness term due to centrifugal softening.
The modal excitation terms to the right-hand side of the equation

X,x

Y

Z

α

z

y , y

α

α

x

z, z

β

β

y

x

y

γ

r1

r2

R

β

γ

Fig. 1 Rotating reference frame attached to the rigid body
motion of the wing

Journal of Vibration and Acoustics DECEMBER 2019, Vol. 141 / 061002-3

Downloaded From: https://vibrationacoustics.asmedigitalcollection.asme.org on 08/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



correspond to the Euler force, centrifugal force, and aerodynamic
force, respectively.
The advantage of this model resides with its generality. It can

accommodate any flapping wing for which mode shape and natural
frequency data are available. Both quantities can be determined
experimentally or through numerical methods such as static FEA.
Moreover, this framework can accommodate any fluid loading
scheme, ranging from low-fidelity BET approaches to higher-fidel-
ity CFD. It can account for unilateral coupling or bilateral coupling.
In the former, the fluid affects the structure but not vice versa, and in
the latter, the structural and fluid physics are solved simultaneously.
In the sections that follow, we demonstrate the utility of our model
investigating a simulatedM. sexta insect wing.

2.2 Fluid Modeling. To determine the aerodynamic modal
forces Qk, we must first identify the physical aerodynamic force
FN. We consider two fluid modeling approaches in this work:
BET and RANS CFD. BET is a reduced-order quasistatic method
that approximates aerodynamic forces quickly; however, the
method relies on empirical coefficients and lacks the quantitative
accuracy of higher-fidelity approaches. RANS is the gold standard
for flapping wing fluid dynamics, though the appreciable computa-
tional resources required to generate CFD solutions renders this
method undesirable for parametric studies. These two fluid dynam-
ics models are detailed in Secs. 2.2.1 and 2.2.2.

2.2.1 Blade Element Theory. Quasi-steady BET is used fre-
quently in the study of insect flight and is useful for reduced-order
modeling of wings with high aspect ratios. There are numerous for-
mulations based upon BET which range from relatively basic to rea-
sonably complex [19,21,23]. While BET cannot model certain
dynamic phenomena such as clap-and-fling, wing–wake interac-
tions, or dynamic stall that are important to the flight dynamics
of many flapping wing fliers [30,31], it does provide order-of-mag-
nitude estimates of aerodynamic forces and moments at substan-
tially lower computational costs compared to direct fluid solvers
such as RANS CFD. BET is most suitable for coarse parameter
studies where absolute quantitative accuracy is not essential and
where high-order fluid solvers are prohibitive. Once approximate
solution trends have been identified via BET, high-fidelity CFD
can be used to verify the accuracy of BET for parameter sets of
interest. This verification will indicate whether or not dynamic
effects unaccounted for by the BET formulation will significantly
alter aerodynamic loading. In this work, we aim to identify a
range over which BET approximates aerodynamic modal forces
reasonably well compared to those determined via RANS CFD.
We implement a very basic form of the BET framework to illustrate
how well a crude fluid loading model performs relative to a higher-
fidelity method. The BET formulation used hereafter originated in
Ref. [22] and is summarized here for clarity. This previous work
treated the wing as rigid and did not consider FSI.
The BET method partitions the wing into chord-wise strips called

blade elements (Fig. 2). Each blade element is treated as an airfoil
with constant depth. Assuming the aerodynamic coefficients and
velocity of each blade element are known, the elemental aerody-
namic forces can be calculated and integrated over the wing
surface to yield the total forces. In general, the scalar differential
force dF acting on a blade element is

dF[·] =
1
2
C[·]ρf �V · �VdSw (19)

where (1/2)ρf �V · �V is the dynamic pressure, ρf is the fluid density,
�V is the relative velocity between the blade element and the air, C
is an arbitrary aerodynamic coefficient, and dSw is the differential
surface area of the blade element, defined by the chord-width c(r)
multiplied by the differential length dr. [ · ] denotes a placeholder
for lift (L) or drag (D). The velocity of a blade element is
assumed constant across that element with respect to a reference
point r on the wing, where r is coincident with the y axis. We choose

pitching axis as the velocity reference line to be consistent with
other flapping wing BET models [20,23]. Because we assume hov-
ering flight, the freestream air velocity is equal in magnitude and
opposite in direction of the velocity of the element. The lift and
drag coefficients to be substituted into Eq. (19) are

CL(A) = CL,max sin (2A) (20)

CD(A) =
CD,max + CD,0

2

( )
−

CD,max − CD,0

2

( )
cos (2A) (21)

where CL,max, CD,max, and CD,0 are empirically measured coeffi-
cients. The aerodynamic angle of attack A is defined as the clock-
wise angle between �V and the x axis, or

A = tan−1
�V · �ez
�V · �ex

( )
(22)

Lift and drag forces are projected onto the wing’s axial and
normal directions by a simple rotation of A such that

dFA = dFD cosA − dFL sinA (23)

dFN = dFD sinA + dFL cosA (24)

Next, we account for added mass. Insect wings are extremely
lightweight and have a large surface area; as a result, added mass
cannot safely be neglected. The normal component of added mass
acting on a blade element is

dFAM = −
π

4
ρf c(r)r[Ω̇x + ΩyΩz]dS +

π

8
ρf c(r)

2[c(r) + 2xTE(r)]Ω̇ydr

(25)

This expression for added mass originated from Ref. [32] has
been modified as per the reference frame and kinematics used in
this work. We assume that the elemental aerodynamic forces act
on the elemental center of pressure xcp(r). We estimate the location
of xcp using an approximate form of the empirical relationship in
Ref. [23] as

xcp = xLE(r) +
1
4
c(r)|A| (26)

where xLE is the wing’s leading edge. Note that the aerodynamic
force acts at a single discrete point within an element, whereas in
reality, aerodynamic pressure acts over the entire wing surface.
We stress that BET is subject to the assumptions that underlie
thin airfoil theory. Without modification, BET is not well suited
to account for large angles of attack or certain phenomena such
as dynamic stall. These assumptions may limit the parameter
space where BET provides good estimates of aerodynamic forces.

x y, r

z

xTE

xLE

dSw

x y, r

dSw

c(r)dr

xcp

dFD

dFL
dFN + dFAM

dFA

A

Fig. 2 Blade-element discretization of a wing. Differential aero-
dynamic forces shown acting at the center of pressure xcp for a
single element.
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2.2.2 Reynolds-averaged Navier–Stokes Computational Fluid
Dynamics. RANS is one of the most widely used formulations of
the Navier–Stokes equations to simulate problems involving turbu-
lent fluid flow. Instead of solving for the instantaneous velocity and
pressure, RANS separates these variables into their mean 〈[ · ]〉 and
perturbed [ · ]′ parts. Taking the average of the incompressible form
of the equations results in conservation of mass

∂ <ui>
∂xi

= 0 (27)

and conservation of momentum

ρf
∂〈ui〉
∂t

+ ρf
∂
∂xi

〈ui〉〈uj〉
( )

=
∂P
∂xi

+ μ∇2〈ui〉 − ∂τij
∂xj

(28)

where ui is a component of fluid velocity, P is the pressure, μ is the
dynamic viscosity, and τij= ρf〈ui′uj′〉 is the Reynolds stress tensor
[33]. While the Navier–Stokes equations are largely unchanged
and permit a direct calculation of the mean velocity and pressure
fields, the perturbed velocities remain within the stress tensor and
require additional equations to model. The closure of the RANS
equations has resulted in numerous turbulence models that facili-
tate, though are often insufficient approximations, modeling flow
separation near walls.
The eddy viscosity hypothesis relies on assuming turbulence,

and momentum diffusion operates under similar mechanisms
[33]. This results in the Reynolds stress tensor being a function of
a modeled viscosity and the kinetic energy of turbulent fluctuations,
k, such that

τij = −μt
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

( )
+
2
3
ρf δijk (29)

where δij is the Kronecker delta tensor. The Spalart–Allmaras model
is a one-equation model for turbulence closure that solves the trans-
port of a modified diffusivity, which is then used to calculate the
eddy viscosity μt [34,35]. The Spalart–Allmaras model allows for
a compromise between computational efficiency and the difficulty
most turbulence models have at capturing flow separation near a
wall in highly dynamic systems.
A chimera meshing approach is adopted to account for the large

body motions [36]. Unlike small body motions within a CFD simu-
lation that shift surface nodes (and their neighbors to avoid creating
negative-volume elements), large body motions often rely on
remeshing significant portions of the entire domain. The added
computational cost of regenerating a mesh and interpolating solu-
tion variables between these grids at each time step does not,
however, guarantee that a mesh of sufficient quality is maintained.
Alternatively, multiple high-quality meshes for the fluid domain
empty of any boundaries (the background mesh) and a region sur-
rounding the moving wing (the overset mesh) can be overlapped.
These meshes remain unchanged throughout the simulation, with
the overset mesh undergoing rigid body motion following the
wing. At each time step, the region of overlap is determined and
an enveloping shell of elements near the boundary of the overset
mesh is used to interpolate between the solution in each region. A
distance-weighted interpolation is used to couple the background
and overset meshes into a strongly coupled system of equations.
dFA, dFN, and xcp are easily queried from the time-varying mean

velocity and pressure fields on the upper and lower surfaces of the
wing. The component values of wall shear stress and pressure are
transformed onto the wing reference frame and summed along
chordwise and spanwise segments in order to match the desired res-
olution of the BET model. The Spalart–Allmaras RANS model with
chimera grid within STAR-CCM+ v12.04 was used to produce the
CFD results in this work.

3 Simulation
In this section, we apply the derived model to a fictitious

hawkmoth M. sexta wing. We begin the section by describing all
simulation parameters. We then (1) compare physical and modal
aerodynamic forces predicted by BET and CFD, (2) assess the sen-
sitivity of BET-estimated modal forces with respect to flapping
kinematics, (3) compare inertial-elastic to aerodynamic modal
forces, and (4) solve for the wing’s response in air and in vacuum.

3.1 Simulation Parameters. We first identify the parameters
necessary to carry out the simulation. All parameters are shown
in Table 1. We develop an idealized model of a hawkmoth M.
sextawing using ABAQUS FEA. An image of the forewing is digitally
traced to determine the to-scale wing planform. We assume that the
wing has constant thickness and density. The values of these prop-
erties are estimated from Ref. [37]. Venation, camber, and spatial
thickness variation are neglected. The FEA model is composed of
611 shell elements, which is a sufficient number of elements to
show convergence of the wing’s first two natural frequencies
(Fig. 4). We retain the two vibration modes corresponding to
these natural frequencies. The first is a bending mode and the
second is a torsional mode (Fig. 3). Because of the geometric and
structural simplifications of the FEA model, the natural frequencies
of the wing had to be adjusted in postprocessing to agree with
experimentally reported values [38] shown in Table 1. The first
two inertial force center vectors are �a1 = −(0.57�ex + 2.0�ey) × 10−4

and �a2 = −(0.42�ex + 0.06�ey) × 10−4 in units kg/m2.
Next, we discuss the parameters used for fluid modeling. For the

CFD simulations, the wing is represented as an embedded surface
within the overset mesh region. The simulation geometry is
shown in Fig. 5. A prism layer was introduced to improve the
boundary layer representation of the wing. A time step was speci-
fied to capture approximately 10 deg of wing rotation and a total
of 10 rotation periods were simulated to reach a periodically
steady response. Axial and normal forces for every surface
element were exported at each time step. CFD parameters are sum-
marized in Table 2. We conduct a mesh independent study that
scaled the mesh size and maintained the relative size ratios through-
out the simulation space. A mesh of nearly 2 million elements was
considered converged, resulting in a root mean square error of 1.5%
(with respect to the maximum force value) and an error of 2.5% for
a grid of 442,595 elements. A time-step independence study was
performed for the selected grid, and convergence was found at a
time-step of 1.25 × 10−4 s (1.25 deg/time-step). This resulted in a
root mean square error of 4% (with respect to the maximum force
value) and a maximum peak error of 7.2% at a time-step of 1.0 ×
10−3 s. While the selected time-step only results in 40 points per
cycle, it was deemed to adequately capture the first-order forces
and their profile within the scope of this paper and with tractable

Table 1 Structural, geometric, and aerodynamic simulation
parameters

Variable Description Value Unit

ω1 First natural frequency 59 Hz
ω2 Second natural frequency 75 Hz
mw Wing mass 47 mg
CL,max Max lift coefficient 1.68 —
CD,max Max drag coefficient 3.06 —
CD,min Min drag coefficient 0.07 —
R Wing span 54 mm
AR Aspect ratio 3.48 —
A Surface area 867 mm2

�c Mean chord width 15.5 mm
ρf Fluid density 1.2 kg/m3

t Thickness 45 μm
ρw Wing density 1200 kg/m3
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computational times. Phase relationships were determined to be
independent of the time step and mesh fineness.
For BET simulations, we discretize the wing into 20 blade

elements. This number of elements showed convergence for lift
averaged over a single wingbeat. The aerodynamic coefficients
are taken from values reported in Ref. [21] for the hawkmoth.
BET simulations are conducted numerically using MATLAB. All sim-
ulations occur over 25 wingbeats, where each wingbeat is divided
into 100 equally spaced time intervals. Because CFD simulations
occur on a much coarser time scale, all CFD results are interpolated
in time to match the finer MATLAB time scale. All physical aerody-
namic forces determined either via CFD or BET are transformed
to modal aerodynamic forces through Eq. (16).
When solving for the wing modal responses, we introduce

light modal damping (ζ= 0.05) into both modes to attenuate the
wing’s free vibration. Results presented hereafter are taken once
steady-state dynamics have been achieved. For frequency domain
calculations, we use MATLAB’s curve fitting toolbox to identify
Fourier series coefficients and calculate signal magnitude and
phase from these coefficients. All flapping kinematics are idealized
as harmonic and of the form η= η0sin (ωt+ϕη), where η is a general

rotation function that represents roll, pitch, or yaw, η0 is the rotation
amplitude, ω is the flapping frequency, and ϕη is the rotation phase.
We consider only hovering flight in this work. We estimate flapping
kinematics from Ref. [39], including pitch/roll rotation amplitudes,
rotation phase, and flap frequency. We neglect wing yaw which
is typically small in insect flight [39]. All kinematic parameters
for hovering flight are shown in Table 3.

3.2 Physical and Modal Aerodynamic Forces. We begin by
comparing the net aerodynamic normal force FN calculated via BET
and CFD. This comparison provides a baseline accuracy for the

Fig. 5 CFD simulation geometry showing the background
region (outline), overset region (shaded), and wing

Fig. 3 First two vibration modes of model hawkmoth forewing.
(Top) Spanwise bending mode and (bottom) spanwise torsion
mode.
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Fig. 4 Convergence study of the FEA model. The first and
second natural frequencies normalized by their final values are
plotted with respect to number of elements. We use 611 elements
for the simulations carried out in this work.

Table 3 Kinematic parameters for hovering flight

Variable Description Value Unit

α0 Roll amplitude 60 deg
β0 Pitch amplitude 45 deg
γ0 Yaw amplitude 0 deg
ϕαβ Pitch/roll phase difference π/2 rad
ω Flap frequency 25 Hz

Table 2 CFD simulation parameters

Variable Description Value Unit

μ Dynamic viscosity of air 1.85 × 10−5 Pa · s
Δt Time step 0.001 s
tf Simulation time 0.4 s

Dimensions of the background
mesh (L ×W×H)

200 × 110 × 100 mm

Mean element length of the
background mesh

1.0 mm

Number of elements in the
background mesh

326,538 —

Dimensions of the overset
mesh (L ×W×H)

55 × 70 × 15 mm

Mean element length of the
overset mesh

0.5 mm

Mean element length of the
wing surface

0.125 mm

Number of prism layers off the
wing

5 –

Prism layer growth rate 1.2 —
Number of elements in the
overset mesh

116,057 —

y+ Mean y-plus for one period of
rotation

3.763 —
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BET method. If BET cannot estimate bulk aerodynamic forces
within reasonable accuracy, it will be unable to estimate aerody-
namic modal forces. In this case, we treat CFD as the ground
truth. We calculate FN using both methods and plot it as a function
of wingbeat fraction t/T in Fig. 6.
Both fluid models indicate that FN oscillates primarily at the

driving frequency ω with a notable harmonic at 3ω. Overall, we
see good agreement between CFD and BET both in magnitude
and phase. Most notably, BET overestimates the primary response
magnitude by approximately 30%. This discrepancy is likely due to
aerodynamic coefficient constants as well as the idealized relation-
ship between the aerodynamic coefficients and angle of attack
(Eqs. (20) and (21)). In general, insect wings will deviate modestly
in size and geometry; it is unlikely that a universal set of aerody-
namic coefficients exits. Thus, BET is capable of estimating net
aerodynamic forces for hovering flapping kinematics with re-
asonable agreement to CFD. Quantitative accuracy of the BET
method is contingent on precise empirical aerodynamic coefficients.
Next, we consider aerodynamic modal forces Q1 and Q2. Aero-

dynamic modal forces are calculated via Eq. (16). For the CFD
model, the spatial distribution of aerodynamic forces is known.
Conversely, for the BET model, we know only the net force on
each blade element and do not know the force distribution. We
assume that the elemental aerodynamic normal force acts as a
point load at the blade elements center of pressure. Aerodynamic
modal forces calculated via CFD and BET are plotted in Fig. 7.
The corresponding numeric values are shown in Table 4.
From this comparison, we see modal forces calculated via BET

which agree qualitatively with those calculated via CFD. BET accu-
rately predicts the frequency components as well as the phase of
these components. In addition, BET agrees with CFD quantitatively
for the second aerodynamic modal force Q2. The ω components are
nearly identical in magnitude and phase, and the 3ω components
agree in magnitude. There is a slight discrepancy in the phase at
3ω. We observe that the BET-predicted second modal force is not
as smooth as that predicted by CFD. This stems from the point
load approximation used for the BET model. When the center of
pressure crosses over the nodal line of the torsional mode
(Fig. 3), the force contribution of that particular blade element to
the modal response is effectively negated. In reality, there would
be some force distribution about this center of pressure that
would generate a smoother second modal force. However, this
force distribution is unknown if the pressure coefficients cp over
the range of angles of attack for a blade element are unknown.
Then, the nonsmooth behavior arising from the point-load approx-
imation could introduce anomalous high-frequency components
into Q2, though these components likely do not affect the second
modal response given that they will occur at frequencies much
higher than the second natural frequency. Thus, even with the
point load approximation, BET predicts the second modal response
fairly well.

On the other hand, the discrepancy between CFD and BET esti-
mates ofQ1 is larger. BET overestimates the primary response mag-
nitude of Q1 by approximately 50%. This suggests that BET
predicts the spanwise location of the aerodynamic force center
further along the r axis than CFD does. To verify this, we plot
the time history of the elemental force dFN as a function of blade
element position r for both CFD and BET models. Results are
shown in Fig. 8. Note that the spanwise aerodynamic force center
moves along r over time with the CFD model and is stationary
with the BET model. CFD predicts the time-averaged spanwise
location of the aerodynamic force at r≈ 3.52 cm, whereas BET pre-
dicts it at r≈ 3.94 cm. Because the first bending mode (Fig. 3) varies
approximately quadratically along the r axis, even a small increase
in the spanwise position of the aerodynamic force center signifi-
cantly affects the first modal force.
Thus, it appears that BET can only crudely estimate the position

of the aerodynamic force center. We believe that this is in part
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Table 4 Numerical comparison between first and second
aerodynamic modal forces estimated by BET and CFD for
hovering flapping kinematics

BET CFD BET CFD

Q1 Q1 Q2 Q2

|ω| 4.52 2.84 1.92 1.91
|3ω| 0.67 0.69 0.34 0.35
∠ω (rad) 0.08 −0.04 3.25 3.03
∠3ω (rad) 1.34 1.6 4.21 4.23
|ω| % diff. 58.9 0.26
|3ω| % diff. 3.4 3.2
Δ∠ω (rad) −0.12 −0.22
Δ3∠ω (rad) 0.27 0.02
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because BET is not well suited to account for rotational forces. By
convention, the blade element velocity is referenced from a line
coincident with the y axis (Fig. 2). This implies that if a wing is
undergoing pure pitch about the y axis, BET predicts no aerody-
namic forces acting on the wing except for those imparted by
added mass. Consequently, at least some forces associated with
dynamic pitching are not accounted for simply because of the veloc-
ity reference line r. However, other rotational forces must be con-
sidered to improve the BET formulation as well. For example,
Kramer observed that rapid changes in an airfoils angle of attack
lead to short spikes in lift force [40]. He conjectured that these
spikes were associated with flow separation, where the fluid
becomes detached from the surface of an object. Given that an
insect wing changes angles of attack rapidly, these dynamic
factors may play a nontrivial role in aerodynamic loading. While
rotational terms have been incorporated into BET [18,23,41],
most are case-specific and cannot be applied with generality. We
were unable to incorporate rotational terms into our BET model
that reduced the difference between BET and RANS estimated
modal forces for all parameters considered in the sensitivity study
that follows (Fig. 9). Whitney and Wood used the BET method to
estimate the aerodynamic forces of a small flapping wing robot
and were also unable to improve model-theory agreement by incor-
porating a rotational lift term [23]. Sane and Dickinson suggest
that rotational coefficients are sensitive to the location of the
pitching axis as well as pitching rate and amplitude [18], which
makes it difficult to model as a quasi-steady force without sufficient
empirical data.

Despite the limitations of BET, it remains a useful tool that pro-
vides reasonable estimates of modal forces at significantly reduced
computational costs relative to CFD. In this case, BET predicts
modal forces staggering five orders-of-magnitude faster than
CFD. This enormous reduction in computational time can expedite
parametric studies considering wing geometry, mass/stiffness distri-
butions, and flapping kinematics. However, up to this point, we
have considered only hovering flight flapping kinematics. It is pos-
sible that the BET model breaks down for deviations from these
kinematics.

3.3 Sensitivity of Blade Element Theory. In Sec. 3.2, we saw
that BET predicted the first and second aerodynamic modal forces
reasonably well for hovering flapping kinematics. In this section,
we explore how deviations from hovering flapping kinematics
affect the agreement between CFD and BET calculated modal
forces. Pohly et al. compared BET and CFD fluid models for
various flapping kinematics [42]; however, this study focused on
how well BET estimates bulk aerodynamic forces (e.g., net lift
and thrust) for rigid wings. To estimate the range of parameters
over which BET can be used to model FSI, it is more suitable to
compare aerodynamic modal forces rather than bulk aerodynamic
forces.
For our sensitivity analysis, we consider four kinematic parame-

ters; roll amplitude α0, pitch amplitude β0, phase difference between
pitch and roll ϕαβ, and driving frequency ω. Starting from their
nominal value in hovering flight (Table 3), we vary each rotation
parameter from ±π/8 in π/16 increments. We also consider
driving frequencies of 15, 25, and 35 Hz for normal hovering kine-
matics. We do not consider simultaneous variation of parameters
because of how computationally demanding CFD solutions are.
Nonetheless, varying parameters individually provides a good
initial picture of how well BET estimates modal forces under differ-
ent scenarios.
For each set of parameters, we calculate the first and second aero-

dynamic modal forces Q1 and Q2 via both BET and CFD. Because
the modal forces oscillate both at the driving frequency and three
times the frequency, we must determine the magnitude and phase
at both ω and 3ω. Across all parameters tested, we did not identify
any other significant frequency components. We then determine the
percent error between the modal force magnitude at each frequency
component assuming that CFD provides the “true” solution. We
also identify the phase differences at ω and 3ω between CFD and
BET modal forces. These calculations are tabulated numerically
in Table 4 as an example for hovering flapping kinematics. The
percent error and phase difference for deviations from hover kine-
matics are plotted in Fig. 9.
Overall, BET estimates modal forces reasonably well in both

magnitude and phase for modest deviations from hovering flight
kinematics. The magnitude error and phase difference of both ω
and 3ω components of Q1 and Q2 are fairly insensitive to
changes in driving frequency. Small changes (±π/16) in rotational
kinematic parameters generally had a minor effect on the dominant
ω component magnitude error and phase difference of Q1 and Q2.
The effect of these small changes on the 3ω components of Q1

and Q2 is somewhat more pronounced. For Q1, errors in the magni-
tude and phase of 3ω components likely do not affect the first modal
response significantly. This is because the 3ω component is much
smaller in magnitude than the ω component for Q1, and the
wing’s first natural frequency does not fall near 3ω (ω1≈ 59 Hz).
However, the 3ω errors in magnitude and phase of Q2 may more
substantially affect the second modal response because the wing’s
second natural frequency is near 3ω (ω2≈ 75 Hz). Nonetheless,
the magnitude error for both ω and 3ω of Q1 and Q2 for kinematic
deviations of ±π/16 is maximally 125%. This suggests that BET
performs fairly well for small kinematic deviations.
We observe more significant errors for larger changes (±π/8) in

rotational kinematic parameters. Such errors generally occur in
the 3ω components of modal forces. However, the largest errors
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Fig. 8 Elemental aerodynamic normal force dFN as a function of
spanwise position r for both CFD and BET models. Time history
shown over a half wingbeat. Dark lines indicate the beginning of
the half wingbeat, and lighter lines indicate the end of the half
wingbeat.
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often coincide with flapping kinematics that would not exist in
nature. For example, when the pitch amplitude is reduced by π/8,
the percent error in the 3ω component of Q1 is over 300% and
the phase difference for the 3ω component of Q2 is roughly −π/2.
While these errors are significant, the reality is that if the pitch
amplitude were reduced by π/8, the insect would produce far less
lift than required to fly. For this pitch amplitude, CFD estimates
an averaged vertical force of 12.5mN whereas a hawkmoth that
weights roughly 2.0 g [43] would require closer to 20mN vertical
force to fly. The other most significant errors occur when the
pitch/roll phase deviates ±π/8; however, these kinematics also
produce insufficient vertical force for flight.
It is difficult to identify, with absolute certainty and across all

parameters considered, why errors between CFD and BET tend to
grow as flapping kinematics deviate from those observed in hover-
ing. However, we believe that away from these nominal kinematics,
phenomena that are not modeled by BET become increasingly
important to CFD-estimated modal forces. Consider when pitch
amplitude is increased by π/8. In this case, the wing undergoes a
rotation upon stroke reversal larger than what is typical in hovering.
Since rotational affects are not accounted for via BET, we suspect
that errors may become greater for increased pitching amplitudes.
At the same time, if pitch amplitude is reduced by an equivalent
amount, the wing would be nearly vertical and have a very large
angle of attack mid-stroke. This poses issues for the classical thin
airfoil theory on which BET is based, which is more accurate for
small angles of attack because of stall effects at high angles of

attack. Thus, there are many mechanisms that could affect the
agreement between CFD and BET away from nominal hovering
kinematics, but these mechanisms must be treated on a case by
case basis.
Despite these differences, the sensitivity analysis also suggests

that certain dynamic phenomena unmodeled in BET (e.g., flow
separation) only modestly affect its agreement with CFD. Consider
the case where roll amplitude is increased from α0= π/3+ π/16 to
α0 = π/3+ π/8. CFD shows that the flow is attached to the wing
for the lesser roll amplitude, whereas it separates for the greater
roll amplitude. But, over this range of roll amplitudes, the
maximal magnitude error is 100% and the maximum phase differ-
ence is approximately π/10 for both ω and 3ω components. This
suggests that in some cases, quasi-steady aerodynamic forces are
larger than or of similar magnitude to aerodynamic forces imparted
by dynamic phenomena. Consequently, BET appears to be a rea-
sonable first approximation of aerodynamic modal forces for flap-
ping kinematics that deviate modestly from those seen in hover.

3.4 Inertial-Elastic Versus Aerodynamic Modal Forces and
Responses. We now compare inertial-elastic modal forces to aero-
dynamic modal forces. This comparison provides insight into which
physical regime dominates wing deformation in hovering flight
conditions. To clarify, both Euler and centrifugal forces (Eq. (18))
are considered inertial-elastic forces. The first and second modal
forces are shown in Fig. 10. BET estimated modal forces are
omitted from Fig. 10 for clarity.
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Overall, inertial-elastic forces are larger than aerodynamic forces
for the first vibration mode. Both force types oscillate primarily at ω
with appreciable components at 3ω. The magnitude of the primary
ω component of the inertial-elastic modal force is roughly 1.8 times
greater than that of the aerodynamic force. Aerodynamic modal
force Q1 leads the first inertial-elastic modal force by a phase of
approximately π/4. As a result, the two components interact con-
structively and the net modal force is larger than either of the indi-
vidual parts. The 3ωmagnitude is similar for both aerodynamic and
inertial-elastic modal forces and again are out-of-phase by π/4.
For the second vibration mode, aerodynamic forces are larger

than inertial-elastic forces. Again, both oscillate at ω with a har-
monic at 3ω. The magnitude at ω is approximately 1.6 times
larger for the aerodynamic force modal force Q2 compared to the
inertial-elastic force. The two forces are out of phase by nearly π.
Consequently, the components interact destructively and the net
second modal force is smaller in magnitude than the individual
aerodynamic or inertial-elastic modal force. The magnitude at 3ω
is approximately three times larger for aerodynamic modal force
Q2 compared to the inertial-elastic modal force. Despite that the
net 3ω magnitude is small for the second modal force, this compo-
nent is significant given its close proximity to the second natural
frequency (ω2≈ 75Hz). We anticipate that this harmonic will dom-
inate the second modal response due to a large gain factor.
Next, we calculate the first and second modal responses for the

flapping wing. We consider a wing flapping in air, where both
inertial-elastic and aerodynamic forces contribute to deformation,
and a wing flapping in vacuum, where only inertial-elastic forces
are present. We use both BET and CFD fluid models for the
in-air case. This simulation complements the experimental work
described in the introduction, where M. sexta wings were flapped

in air and in reduced-density mediums. The notable exception is
that we are able to simulate two rotational degrees-of-freedom,
whereas these experiments only flapped the wing about the roll
axis. We compare the modal responses rather than a physical
response (e.g., wingtip deflection), so we can more accurately
capture the full-field structural response. Comparing the response
of a single point in air and in vacuum can be misleading. Even if
that point behaves similarly, other points on the structure may
respond differently in the two mediums. We solve the first two
modal responses for flapping in air and in vacuum numerically.
To verify the accuracy of our numerical results, we developed a
closed-form approximate analytic solution (Appendix). The
approximate analytic solution agrees well with numerical findings.
Numerical results are plotted in Fig. 11, where each modal response
is normalized by the largest value in air.
Perhaps most importantly, we see aerodynamic forces contribute

significantly to the modal responses and by extension to the wing
deformation. This contradicts the findings of Ref. [4], which
suggest wing deformation is primarily a function of inertial-elastic
forcing. We acknowledge that their work considered only SDOF
roll rotation; for SDOF rotation, it is possible that the balance of
inertial-elastic and aerodynamic forces is different. However, it is
plausible that for SDOF rotation, the contribution of fluid loading
to structural deformation would be larger than if a wing was sub-
ject to nominal multi-degrees-of-freedom (MDOF) kinematics. If a
wing is subject to SDOF rotation, the induced flow is always
normal to the wing over the entire flapping cycle. This creates a
large pressure over the wing surface. For theMDOF kinematics con-
sidered in this work, the wing crosses its mean position oriented at its
maximum pitch angle. The wing will be more streamlined with the
flow, and as a result, the net fluid load on the wing is less than in
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the SDOF case. We conjecture that even for the SDOF case, fluid
loading nontrivially affects wing deformation. Indeed, a quick
SDOF numerical simulation using the BET fluid model suggests
that the first modal response is 25% larger in air than in vacuum.
We now turn our attention to the specific differences between

in-air and in-vacuum flapping. In this comparison, we consider
only the CFD fluid model. For the first mode, we see the overall
peak-to-peak magnitude of the response is roughly 35% smaller
in-vacuum than in-air. Like the first modal forces (Fig. 10), the
first modal response occurs at the driving frequency and three
times the driving frequency. Response magnitude at ω is approxi-
mately 1.4 times larger in air than in vacuum. Response magnitude
at 3ω is approximately three times larger in air than in vacuum. The
phase of the ω and 3ω components is similar in air and in vacuum.
While the first modal response q1 is somewhat similar in air and in
vacuum, differences in the second modal response q2 in air and in
vacuum are more distinct. The in-air second modal response
occurs primarily at 3ω with a lesser component at ω. The opposite
is true for the in-vacuum q2 response, where the oscillation occurs
primarily at ω with a lesser component at 3ω. These trends can be
explained by the second modal forces. As indicated by Fig. 10, the
second aerodynamic modal response Q2 has an appreciable compo-
nent at 3ω. Because the second natural frequency occurs very close
to 3ω, this modest 3ω component of Q2 dominates the response.
The second inertial-elastic modal force also has a 3ω component;
however, it is smaller than that of Q2. Thus, the in-vacuum response
of q2 is dominated by the ω component of the inertial-elastic modal
force. Lastly, we note that the phase of oscillation of q2 is quite
different in air and in vacuum. The phase difference between
in-air and in-vacuum flapping is nearly π at both ω and 3ω response
components.
Lastly, Fig. 11 shows that the in-air first and second modal

responses predicted via BET and CFD are similar. The agreement
is particularly good for the first vibration mode, since the inertial-
elastic modal force is larger than the aerodynamic modal forces pre-
dicted by either fluid model (Fig. 10). Agreement between the
second modal responses is also fairly good, though BET predicts
a slightly larger ω response than CFD. Overall, this comparison
further illustrates BET’s ability to estimate structural deformation
with low computational demands.

4 Discussion
Here, we discuss some of the findings of our study and how they

are relevant to biological and artificial flapping wing flight. First, we
concede that BET is an imperfect method. The formulations most
common to flapping wing literature are not well suited to treat
dynamic phenomena such as flow separation, wing-wake interac-
tions, or vortex shedding, all of which are observed in some biolog-
ical fliers [30]. While some researchers have included rotational
correction factors into BET formulations [21], we were unable to
improve our predictions of aerodynamic modal forces by doing
so. Nonetheless, BET with added mass captures some critical aero-
dynamic loading features required to inform FSI models. This
renders BET a powerful tool for parametric design of FWMAV
wings. Designers can leverage the framework to identify solution
trends and to tailor flapping kinematics, wing mass/stiffness distri-
butions, and geometry. Of course, it is sensible to verify model find-
ings using a higher-fidelity fluid model such as CFD, particularly if
unsteady dynamic phenomena are anticipated to play a role in the
dynamics. BET should be used primarily to move design solutions
into the proximity of an optimal solution and to reduce the param-
eter design space.
Next, we turn our attention to the physics governing wing defor-

mation. Prior to this work, the relative contribution of inertial-
elastic and aerodynamic forces to wing deformation at moth scale
was unknown. We believe that both aerodynamic and inertial-
elastic forces are on the same order-of-magnitude and as a result,
contribute to wing deformation similarly. However, different

forces appear to govern different modes of deformation. For
example, inertial-elastic forces are somewhat larger for the
bending mode whereas aerodynamic forces are modestly larger
for the torsional mode. The implications of different force types
governing different modes of deformation may be important.
More evolved insects, such as true flies and bees, have a small

club-like appendage called a haltere that devolved from their hindw-
ings [44]. The haltere is a gyroscopic organ that enables insects to
identify their angular rates of rotation. Halteres generally sit in
clefts between the insect abdomen and thorax and are consequently
shielded from aerodynamic forces; haltere dynamics are governed
almost entirely by inertia. This decoupling of aerodynamic and
inertial-elastic forces is believed to be essential for proper haltere
function. How do insects who lack halteres, such as moths and but-
terflies, receive analogous angular rate feedback? Researchers
believe that this feedback stems from deforming mechanoreceptors
in the forewing. However, it is unclear how such insects decouple
inertial forces from aerodynamic forces. If inertial forces govern
some modes of deformation and aerodynamic forces govern
others, it may be possible to decouple these force types via care-
ful placement and orientation of mechanoreceptors. Indeed, the
campaniform sensilla in insect wings are directionally sensitive
and distributed widely over the wing. It is possible that their place-
ment and orientation allow for independent sensing of exogenous
forces and internal states, thereby allowing the wing to behave as
a large, flexible gyroscope.
However, we acknowledge that our findings were derived assum-

ing unilateral coupling between the fluid and the structure. In prac-
tice, wing deformation may be large in some contexts and can
indeed influence the surrounding flow field. For our model, if we
determine the displacement at all nodes, take the absolute values,
and then average them spatially, the maximum “average” time-
varying displacement is about 1.2 cm at steady-state, which may
considerably affect the flow field. For biological fliers, Nakata
and Liu estimated via computational methods that wing flexibility
increased peak vertical forces in hovering hawkmoths by approxi-
mately 22% [45]. This indicates a change in the flow field as a
result of wing deformation. On the other hand, Du and Sun found
that for hoverflies, some flow characteristics were insensitive to
wing deformation and that flexibility increased averaged lift by
only 10% [6]. In this case, it is plausible that the flow field is
only modestly affected by deformation and that unilateral coupling
between fluid and structure is better justified. Consequently, fluid–
structure coupling assumptions must be accounted for on a
case-by-case basis, though some dynamic phenomena such as aero-
dynamic damping will inevitable be absent from a unilaterally
coupled model. The unilaterally coupled model detailed in this
work can be used in part to identify where bilateral coupling may
be required.

5 Conclusion
Flapping insect wings deform under both aerodynamic and

inertial-elastic forces. However, the FSI that governs wing deforma-
tion is not well understood. This is in part because conventional
FSI models are very high order. To gain a better understanding of
the physics governing flapping wing deformation, we developed a
novel FSI framework that is (1) reduced-order in the structural
domain, (2) capable of accommodating arbitrary wing geometry,
(3) able to consider any fluid loading model, and (4) suitable for
describing unilateral or bilateral fluid–structure coupling. We
apply this framework to study the FSI of a simulated hawkmoth
wing. Through this simulation, we assess the accuracy of a low-
order BET fluid model and its applicability to FSI problems. More-
over, we identify the relative contributions of aerodynamic and
inertial-elastic forces to wing deformation. Key findings are sum-
marized as follows.
Overall, BET provides reasonable initial approximations of both

net aerodynamic properties as well as aerodynamic modal forces.
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Though BET lacks absolute quantitative accuracy, it is much
more computationally efficient relative to conventional fluid
modeling approaches. For the simulations carried out in this
work, BET estimated aerodynamic modal forces five orders of
magnitude faster than CFD. We found that for hovering flight
kinematics, aerodynamic modal forces estimated via BET agreed
fairly well both in magnitude and phase with those calculated via
CFD. The largest error (≈50%) was in the magnitude of the
primary frequency. We then addressed how well BET estimated
aerodynamic modal forces for different flapping kinematics. We
found that for small perturbations in rotation amplitude and
phase, BET predicted modal forces fairly well. The agreement
between CFD and BET began to break down for larger deviations
from hovering flapping kinematics; however, these exaggerated
cases are generally not characteristic of biological flight. We deter-
mined that inertial-elastic and aerodynamic modal forces are gener-
ally on the same order of magnitude and that inertial-elastic forces
are larger for bending modes while aerodynamic forces are larger
for torsional modes. However, additional efforts must be made to
identify if bilateral fluid–structure coupling will significantly affect
these findings.
To summarize, this novel FSI framework lays the foundation for

optimal design of small flapping wing robotic vehicles and enables
advanced studies in insect sensorimotor control. This work has
demonstrated the feasibility of low-order flapping wing FSI
models and has contributed to the understanding of the physics
that govern insect wing deformation. Moving forward, we must
consider other flight regimes such as forward flight and incorporate
more realistic FEA models of insect wings.
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Nomenclature
k = turbulent kinetic energy
r = spanwise position of the blade element
P = fluid pressure
W = out-of-plane elastic deformation
A = angle of attack
�V = blade element velocity
qk = kth modal response
ui = ith component direction of the fluid velocity
Qk = kth aerodynamic modal force
c(r) = wing chord width
dm = differential mass element
dr = blade element differential length

�ak , �bk = kth inertial force center vector
dSw = blade element differential area

xLE, xTE = wing leading/trailing edge
CD, CL = drag/lift coefficients
FA, FN = aerodynamic axial/normal forces
FL, FD = aerodynamic lift/drag forces

α = roll rotation
β = pitch rotation
γ = yaw rotation
μ = dynamic viscosity
μt = eddy (turbulent) viscosity
ρf = fluid density
τ = Reynolds stress tensor

ϕk = kth vibration mode
�Ω = angular velocity vector
ωk = kth natural frequency

Appendix: Approximate Analytic Solution
We rely primarily on numerical techniques to solve the linear

time-varying equation of motion described by Eq. (18). However,
it is prudent to develop an approximate analytic solution to verify
the accuracy of our numerical results. We use the harmonic
balance method to determine the periodic, steady-state solution of
Eq. (18). Note that because of the assumed periodicity, this
method cannot identify (1) parametric resonances associated with
the periodically varying stiffness or (2) system instability, which
may arise if the stiffness coefficient averaged over a wingbeat is
negative. The approximate analytic solution is derived as follows.
We represent Eq. (18) in the form

q̈ + g(t)q = f (t) (A1)

where q is the kth modal response (subscript dropped for clarity),
g(t) is a general time-varying stiffness term, and f (t) is a general
modal force. Each term can be represented via a complex Fourier
series such that

q(t) =
∑∞
n=−∞

Qne
jnωt (A2)

f (t) =
∑∞
k=−∞

Fke
jkωt (A3)

g(t) =
∑∞
m=−∞

Gme
2jmωt (A4)

where Qn, Fk, and Gm are complex Fourier coefficients. We assume
the primary component of g(t) varies at twice the flapping frequency
ω. Coefficients Fk and Gk are known because the flapping kinemat-
ics are prescribed, and therefore, we must solve only for Qn to char-
acterize the response. We substitute the above Fourier series into
Eq. (A1) and equate similar terms. This forms the linear algebra
problem

A(Gm)�Q = �F (A5)

where A(Gm) is a square matrix containing known
coefficients Gm. Then, �Q = [Q−n · · ·Q−1, Q0, Q1 · · ·Qn]T and
�F = [F−k · · ·F−1, F0, F1 · · ·Fk]T . Equation (A5) can be readily be
solved to determine the unknown modal response coefficients Qn.
Specific to our problem, we assume a three-term Fourier expansion
of the modal response, modal force, and stiffness. We consider the
flapping kinematics shown in Table 3 and assume the flapping to
occur in air. We solve Eq. (18) both numerically and via our approx-
imate method. The comparison between solutions for the first and
second modal responses is shown in Fig. 12. Overall, the agreement
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Fig. 12 Comparison between the approximate analytic solution
and the numeric solution for the first modal response
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is quite good, both in terms of magnitude and phase. The modest
difference can be reconciled by assuming a higher-order Fourier
expansion; however, harmonics greater than 5ω are very small for
all modal forces observed for hovering flight kinematics.
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