
Ryan K. Schwab1
Department of Mechanical and

Industrial Engineering,
Montana State University,

Bozeman, MT 59717-3800
e-mail: ryan.schwab@montana.edu

Heidi E. Reid1
Department of Mechanical and

Industrial Engineering,
Montana State University,

Bozeman, MT 59717-3800
e-mail: heidi.reid@montana.edu

Mark Jankauski1,2
Department of Mechanical and

Industrial Engineering,
Montana State University,

Bozeman, MT 59717-3800
e-mail: mark.jankauski@montana.edu

Reduced-Order Modeling and
Experimental Studies of
Bilaterally Coupled Fluid–
Structure Interaction in Single-
Degree-of-Freedom Flapping
Wings
Flapping wings deform under both aerodynamic and inertial forces. However, many flap-
ping wing fluid–structure interaction (FSI) models require significant computational
resources which limit their effectiveness for high-dimensional parametric studies. Here,
we present a simple bilaterally coupled FSI model for a wing subject to single-degree-of-
freedom (SDOF) flapping. The model is reduced-order and can be solved several orders
of magnitude faster than direct computational methods. To verify the model experimentally,
we construct a SDOF rotation stage and measure basal strain of a flapping wing in-air and
in-vacuum. Overall, the derived model estimates wing strain with good accuracy. In-
vacuum, the wing has a large 3ω response when flapping at approximately one-third of
its natural frequency due to a superharmonic resonance, where the superharmonic
occurs due to the interaction of inertial forces and time-varying centrifugal softening. In-
air, this 3ω response is attenuated significantly as a result of aerodynamic damping,
whereas the primary ω response is increased due to aerodynamic loading. These results
highlight the importance of (1) bilateral coupling between the fluid and structure, since uni-
laterally coupled approaches do not adequately describe deformation-induced aerody-
namic damping and (2) time-varying stiffness, which generates superharmonics of the
flapping frequency in the wing’s dynamic response. The simple SDOF model and experi-
mental study presented in this work demonstrate the potential for a reduced-order FSI
model that considers both bilateral fluid–structure coupling and realistic multi-degrees-
of-freedom flapping kinematics moving forward. [DOI: 10.1115/1.4045920]
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1 Introduction
Flapping insect wings continue to inspire several emerging tech-

nologies, such as flapping wing micro air vehicles (FWMAVs) and
elastic airfoil energy harvesting devices. FWMAVs are a robotic
platform [1–3] that could enable low-cost remote sensing with
unprecedented spatial resolution. Airfoil-based energy harvesters
have the potential for highly efficient energy extraction from
ambient flows [4–6] and could power the extensive sensor networks
employed in many “Internet of Things” applications. However, the
mathematical models necessary to design and optimize such tech-
nologies are often inefficient and require significant computational
resources. As a result, many flapping wing models are challenged
by the high-dimensional parametric studies essential for engineer-
ing design.
As an artificial or biological wing flaps, it deforms from both

fluid and structural forces. This fluid–structure interaction (FSI)
plays a critical role in flapping wing dynamics and has been
studied extensively. Many flapping wing FSI models rely on

direct computational methods, such as finite element analysis
(FEA) coupled to computational fluid dynamics (CFD) [7–13].
However, both CFD and FEA require considerable computational
resources to estimate flapping wing dynamics, and these inefficien-
cies are compounded when the two computational methods are
coupled together. From the structural standpoint, large flapping
rotations lead to periodic centrifugal forces that cause FEA stiffness
matrices to become time-varying [14]. If direct FEA is used to
calculate wing deformation, the stiffness matrix must be updated
at each interval of analysis. The result is a huge number of
degrees-of-freedom (DOFs), and the time required to evaluate the
response of all DOFs is extensive. From the fluid standpoint,
CFD must resolve the flow field over an entire control volume in
order to estimate the pressure distribution over the wing surface
[15]. This often requires solving several thousands of equations
which makes CFD computationally intensive. To reduce the com-
putational demand of the fluid dynamic solver, others have
employed unsteady vortex lattice methods (UVLMs) to investigate
flapping wing FSI [16,17]. Despite lower computation times com-
pared to CFD, UVLM is a numerical method that requires consid-
erable resources depending on the desired solution accuracy.
Thus, direct computational methods are not well suited for efficient
calculations of flapping wing FSI.
To reduce computational complexity, many researchers leverage

quasi-static methods rooted in blade element theory (BET) [18–21].
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BET discretizes a wing into airfoils (blade elements) that run along
the wing’s chord. The elemental aerodynamic forces are estimated
over each individual blade using 2D airfoil theory and are then inte-
grated over the wing to calculate net aerodynamic forces. While this
is an efficient method to estimate aerodynamics, BET is generally
limited to rigid wings. It has been used only a handful of times to
address the effects of wing flexibility. Wang et al. developed a flap-
ping wing FSI model based upon BET, and assumed the wing’s
leading edge was rigid [22]. As a result, the model was best
suited to estimate torsional deformation rather than bending defor-
mation. Stanford et al. developed an FSI model that accounted for
bending, however their structural solver required each physical
DOF be solved for [23]—they did not leverage modal truncation
to reduce the order of the structural model. Jankauski developed a
reduced-order aeroelastic framework for flapping wings using
modal truncation and BET, but this framework was used only to
study one-way coupled FSI where the fluid was able to affect the
structure but not vice versa [24]. It is possible that bilateral coupling
between fluid and structure non-trivially affects flapping wing
dynamics in some circumstances. While differences in unilateral
and bilateral FSI models have not been studied extensively in flap-
ping wings, bilateral FSI models of wind turbines predict stresses
greater than those predicted by unilateral models [25]. Furthermore,
in simplified cases such as a flexible plate in an ambient flow, bilat-
eral FSI models predict physical phenomena missed entirely by uni-
lateral models [26]. Based on these findings in other systems,
bilateral coupling must be investigated more thoroughly in the
context of flexible flapping wings.
Based upon this literature review, there remains a need for a

reduced-order, bilaterally coupled FSI model for flapping, flexible
wings. In this work, we develop this FSI model for a rectangular
wing undergoing single-degree-of-freedom (SDOF) flapping.
Though real insect wings have complex, three-dimensional rota-
tional kinematics [27], these kinematics are challenging to replicate
experimentally at high frequencies observed in insect flight.
Further, multi-degrees-of-freedom (MDOF) kinematics give rise
to complex fluid dynamic phenomena, such as rotational lift and
damping [28]. Before formulating a reduced-order FSI model
which considers MDOF kinematics, it is sensible to first develop
and experimentally study a simpler SDOF model in order to demon-
strate the feasibility of the approach. Moving forward, we will gen-
eralize this framework in order to account for the more complex
flapping kinematics and flight conditions observed in real insects.
The work presented here is a necessary first step toward accom-
plishing this goal.
The remainder of the paper is organized as follows. First, we

derive the FSI model using the Lagrangian approach for the struc-
tural equation of motion (EoM) and BET for the fluid model. BET is
a quasi-steady method which neglects unsteady fluid dynamic phe-
nomena such as dynamic stall or vortex shedding. Next, we detail a
simple SDOF flapping experiment used to verify our model both
in-air and in-vacuum. We then compare experimental measure-
ments to simulation results, and conclude with a discussion on
how the fluid environment affects wing deformation. This paper
extends the findings originally published in our ASME IDETC
2020 conference paper [29].

2 Theory
Here, we derive a reduced-order bilaterally coupled FSI model

for flexible wings subject to SDOF flapping. We begin by determin-
ing the structural EoM via the Lagrangian method. We then identify
aerodynamic forces and coupling through a BET approach. Aerody-
namic terms are included in the EoM using the principle of virtual
work.

2.1 Structural Model. The FSI framework in this section
originated in Refs. [24,30] for a wing rotating in three dimensions,
though these previous studies considered only unilateral fluid–

structure coupling. We now consider SDOF rotation but with bilat-
eral fluid–structure coupling. The model is summarized briefly to
provide clarity to this paper. For a more thorough treatment, the
reader is directed to these references.
We assume an inertial X–Y–Z coordinate frame undergoes a finite

rotation about X with rotation amplitude α. The resulting x–y–z
coordinate frame is bound to the rigid body rotation of the wing
(Fig. 1) and has an angular velocity

Ω = α̇ ex (1)

In the rotating coordinate frame, we draw a position vector R from
the fixed reference frame origin O to an arbitrary differential mass
dm. Position vector R is

R = r1 +W(r1, t)ez (2)

where r1 describes the planar coordinates of dm with respect to the
x–y–z frame (e.g., r1 = x ex + y ey) and W(r1, t) is an infinitesimal
out-of-plane deflection dependent on both space and time.
In-plane deformation is neglected. The velocity of dm is

Ṙ =Ω × R + Ẇez (3)

Note that ez is constant with respect to the x–y–z terminal frame and
therefore has a time derivative of zero. Then, deflection W(r1, t) is
expanded as

W(r1, t) =
∑∞
k=1

ϕk(r1)qk(t) (4)

where ϕk is the kth mode shape and qk is the kth modal response
to be determined. We normalize ϕk with respect to the wing mass
such that it satisfies orthonormal conditions. Finally, we determine
the total kinetic and potential energies of the wing and use the
Lagrangian approach to determine the EoM governing modal
response qk as

q̈k + 2ζkωkq̇k + (ω2
k − α̇2)qk = α̈

∫
m
yϕk dm + Qk (5)

where ωk is the wing’s kth natural frequency, ζk is the damping
ratio of the kth mode, and Qk are non-conservative modal forces
from aerodynamic loading. The explicit form of Qk is detailed in

Fig. 1 Wing drawn in the rotating reference frame. Position
vector R drawn from a fixed point of rotationO to an arbitrary dif-
ferential mass element. FN is the aerodynamic force acting
normal to the wing surface.
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Sec. 2.2. Note that the modal damping term above does not explic-
itly appear in the derivation and is added after the undamped EoM is
formulated.
Once modal responses qk are known, physical quantities such as

wing strain can easily be estimated. In this work, we measure wing
strain rather than deformation to assess model accuracy. Physical
strain is determined at r1 by

ϵ(r1, t) =
∑∞
k=1

ϵkqk (6)

where ϵk is the modal strain.

2.2 Aerodynamic Modeling and Fluid–Structure
Coupling. Now, we determine the aerodynamic modal force Qk

using a BET formulation. We assume the following:

(i) Unsteady fluid dynamic forces are negligible.
(ii) Drag is the only aerodynamic force that contributes to wing

deformation because the induced fluid velocity is always
normal to the wing’s surface.

(iii) Inertial and aerodynamic forces do not vary along the wing
chord and are assumed to act at the chord’s centroid.

(iv) The displacement of each vibration mode retained does not
vary with respect to the chord. This implies that the wing
cannot exhibit a torsional response.

For the SDOF case considered here, these assumptions appear to
be valid based on experimental findings presented later in this
paper. When this FSI framework is generalized to consider
MDOF flapping kinematics, however, these assumptions will
need to be relaxed. Under these assumptions, the aerodynamic
normal force per unit area FN is

FN = −
1
2
CD ρf Ṙ · Ṙ sgn(Ṙ) ez (7)

where ρf is the density of air and CD is an aerodynamic drag coef-
ficient. The sgn(Ṙ) ensures that the aerodynamic force is acting in
the direction opposite to the instantaneous velocity at any point
on the surface. Expanding FN while neglecting small terms of
O(W2) or higher gives

FN = −
1
2
C ρf (2α̇Ẇy + α̇2y2) sgn(Ṙ) ez (8)

where y is the spanwise component of r1 (Fig. 1) where FN acts.
Substituting the eigenfunction expansion of out-of-plane elastic
deformation W gives

FN = −
1
2
C ρf

∑∞
k=1

(2α̇q̇kϕky) + α̇2y2
[ ]

sgn(Ṙ) ez (9)

Next, we project the physical aerodynamic force into the modal
domain using the principle of virtual work [31]. The virtual work
δW done by the kth modal force is

δW = Qkδqk (10)

where δqk is a kth virtual modal response and Qk is the non-
conservative aerodynamic modal force corresponding to the kth
vibration mode. Hereafter, quantities prefaced by δ refer to virtual
quantities. More explicitly, the virtual work δW done by FN is

δW =
∫
S
FN · δW ez dS (11)

δW =
∫
S
FN ·

∑∞
k=1

ϕkδqk ez dS (12)

where dS is the differential surface over which the aerodynamic
force acts. Recognizing that dS is wing chord width c(y) multiplied

by differential length dy, we expand the above to

δW=−
1
2
Cρf

∫
y

∑∞
r=1

(2α̇q̇rϕr y)+ α̇2y2
( )

c(y)dy

[ ]∑∞
k=1

ϕkδqksgn(Ṙ)

(13)

Note that we have included a second modal index r which contains
the kth mode shape. Then, we equate the right-hand sides of
Eqs. (10) and (13) and collect similar coefficients of δqk to deter-
mine Qk as

Qk = −
1
2
Cρf α̇2

∫
y
y2c(y)ϕk dy

[
︸														︷︷														︸

QA,k

+ 2α̇
∑∞
r=1

∫
y
q̇rϕr ϕk y c(y) dy

]
sgn(Ṙ)︸																				︷︷																				︸

Qζ,k

(14)

The first term, QA,k, is an aerodynamic modal force term dependent
only on time. QA,k is required for both unilaterally and bilaterally
coupled FSI models. We will refer to QA,k as aerodynamic
loading for the remainder of the paper. The second term, Qζ,k,
relies on coupling between the fluid and structure and is required
only for bilateral fluid–structure coupling. It is a time-varying aero-
dynamic damping term that couples all vibration modes together
and dissipates energy from wing vibration. Depending on the sign
of q̇k and sgn(Ṙ), it is possible that Qζ,k appears as a negative
damping term as well. In this case, Qζ,k may add energy to the
system until it eventually grows unstable. Equation (14) is com-
bined with Eq. (5) to give the total equation of motion governing
modal response qk.

3 Experiment
In this section, we describe a simple experiment designed to

study our SDOF FSI model. We construct an SDOF rotation
stage to prescribe flapping kinematics to a rectangular paper
wing. Mode shapes and natural frequencies of the paper wing are
estimated via FEA and are subsequently verified using a scanning
vibrometer. During flapping experiments, we measure the spanwise
strain at a point near the base of the wing using a uniaxial strain
gage. We conduct flapping experiments both in-vacuum and
in-air to verify the isolated structural and FSI models independently.

3.1 Rotation Stage. The SDOF rotation stage is pictured in
Fig. 2, and a video of the stage during operation is included in
the Supplementary Material on the ASME Digital Collection. All
mounting brackets are 3D printed with FormLabs durable resin.
A 60W DC motor (Maxon Motors, 310007) drives the motion of
the wing. The motor is equipped with an optical encoder that

Fig. 2 Annotated motorized SDOF rotation stage used for FSI
experiments
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provides position feedback to a motor controller/driver (Maxon
Motors, EPOS 24/5). The motor controller uses a proportional-
integral-derivative framework to maintain prescribed flapping kine-
matics and minimize overshoot. All motion profiles are prescribed
through a laptop computer running LabVIEW. In this work, we con-
sider discrete flapping frequencies ranging from 5 to 15Hz and a
rotation amplitude of 45 deg. All rotations are sinusoidal. Each
trial at a particular flapping frequency is conducted three times
and the measurements from each trial are averaged in the frequency
domain.
The motor connects to a wing clamp through a shaft coupler. The

clamp secures the wing edge. A 350 ohm strain gage (Omega Engi-
neering, GD-2/350-DY11) is adhered near the wing base. We use a
National Instruments NI 9236 cDAQ module to provide excitation
voltage to the gage as well as to record the temporal strain during
experiments. The wing clamp is terminated with a low friction
flange mount ball bearing. A female-end quantized analog
encoder (US Digital, MAE3-A10-250-220-7-B) records the
angular position of the terminated shaft end. The entire rotation
stage is housed in an acrylic vacuum chamber (Sanatron, Fig. 3)
capable of operating at pressures as low as 500milliTorr. At this
pressure, the medium density is roughly 0.05% of ambient air.
All vacuum feed-through components are provided by Kurt
J. Lesker company. The ability to conduct experiments in-vacuum
allows us to evaluate the accuracy of the structural model prior to
investigating the FSI model.

3.2 Experimental Paper Wing. We use a simple rectangular
paper wing in all flapping experiments. The wing is made of
thick card stock and is cut with a shear. All material and geometric
properties of the wing and the strain gage mounted to the wing are
shown in Table 1. We model the experimental wing in ABAQUS FEA

to determine its natural frequencies and mode shapes. The FEA
model assumes the wing is clamped at its base edge (Fig. 4)
which implies no rotation or translation in this clamped region.
We include the strain gage in the FEA model because it has a thick-
ness on the same order of magnitude as that of paper. According to
the manufacturer, the gage is composed primarily of polyimide film.
As a result, the gage locally stiffens the wing in a way that cannot be
neglected. The model is discretized into 250 elements, which we
found was sufficient for convergence of the first natural frequency.
For this work, we retain only a single vibration mode. Across the
experimental parameters considered, higher-order modes had a neg-
ligible contribution to the wing’s dynamic response. The first
natural frequency predicted via FEA is ω1= 31.5 Hz and corre-
sponds to a bending mode (Fig. 6).
Next, we verify FEA-predicted mode shapes and natural frequen-

cies experimentally. Because the wing is lightweight and has a large
surface area, we measure these parameters in-air as well as

in-vacuum to remove added mass effects. We secure the paper
wing to a modal shaker (Modal Shop, K2007E007) using a metal
clamp. The shaker excites the wing at its base via a linear swept
sine signal ranging from 10 to 1000Hz over 3.2 s. We measure
basal excitation with a piezoelectric accelerometer (PCB Piezotro-
nics, 352A21) and the response velocity of the wing at several
points using a planar scanning vibrometer (Polytec PSV-400). We
acquire data at 2.56 kHz, which results in a spectral resolution of
3200 FFT lines over the frequency range considered. We average
the frequency response function over three trials at each measure-
ment point to reduce spectral noise. The FRF averaged over the
surface of the wing is shown in Fig. 5. Measured responses are
reconstructed to identify the first vibration mode shape. This
mode shape agrees well with that determined via FEA (Fig. 6).
We then calculate the frequency response function averaged over
the wing surface G(ω) and use FEMTools modal parameter extrac-
tor to estimate the first natural frequency and damping ratio from
this averaged frequency response (Table 2).
Overall, the agreement between natural frequencies calculated

via FEA (ω1= 31.5 Hz) and measured experimentally (ω1=
30.2 Hz) is good. We consider the natural frequency measured
in-vacuum for this comparison. The discrepancy is likely due to
uncertainty in Young’s modulus of the paper wing. We assume a
Young’s modulus of 9.5GPa for paper (Table 1), whereas reported

Fig. 3 Custom vacuum chamber used for testing. Chamber con-
structed by Sanatron LLC.

Table 1 Experimental wing properties

Variable Description Value Unit

Lw Wing unclamped length 5 cm
Ww Wing width 2 cm
tw Wing thickness 0.17 mm
Ew Wing Young’s modulus 9.5 GPa
Lg Gage length 5.65 mm
Wg Gage width 6.35 mm
tg Gage thickness 0.13 mm
Eg Gage Young’s modulus 2.5 GPa
m Total mass 0.21 g

Fig. 4 Experimental paper wing on the gridded mat. Each grid
box is 5 mm×5 mm. Cross hatched area indicates clamped
boundary condition.

Fig. 5 Magnitude of wing frequency response function relating
base acceleration to averaged output velocity

021012-4 / Vol. 142, APRIL 2020 Transactions of the ASME



values range between roughly 7 and 12GPa [32]. To minimize the
uncertainty in material properties, we use measured natural frequen-
cies rather than those determined via FEA for all simulations that
follow. This effectively adjusts Young’s modulus of the FEA
model to reconcile differences between it and the physical structure.
The natural frequency in-air is slightly lower than that measured

in-vacuum due to the added mass. We also observe that the damping
ratio is greater in-air, which suggests that aerodynamic damping
may affect the structural response during flapping experiments.
We found no notable differences between the mode shape measured
in-air and in-vacuum. For the simulations that follow, we use exper-
imentally measured natural frequencies and damping ratios rather
than those determined via FEA.

4 Results
In this section, we compare model predictions to measurements

taken from a wing flapping in-vacuum and in-air. We then use
the FSI model to gain insight into the mechanisms responsible for
wing deformation.

4.1 Model-Theory Comparison. We first evaluate the accu-
racy our structural model (Eq. (5)) without aerodynamics (Qk=
0). We compare model predictions of strain to those measured
from the wing flapping in-vacuum. Equation (5) is solved numeri-
cally over 50 periods (where each period is discretized into 100
uniform time-steps) to estimate the wing’s modal response. We
selected this temporal discretization such that the effective sampling
frequency is 20 times greater than the fifth harmonic of the flapping
frequency. Increasing the time-steps per period from 100 to 500
maximally affected peak wing strains by less than 0.5%, so we
maintained the 100 time-steps per period in order to facilitate effi-
cient parametric studies. We consider 100 evenly spaced flapping
frequencies from 5 to 15Hz, which is the same flapping frequency
range considered in the experiment. Strain at the location of the
gage is determined through Eq. (6). We calculate the Fourier trans-
form of strain numerically and identify peak-to-peak magnitude at
the driving frequency and each significant harmonic thereof.
Across the range of flap frequencies ω considered, we observe
appreciable response components at ω and 3ω. We see a large 5ω
response for flapping frequencies between 5 and 7Hz, however
we do not focus on these responses here given that most insects
flap at 30% or higher of their wing’s first natural frequency [33].
Then, the magnitude of ω and 3ω strain components as a function

of flapping frequency ω is shown in Fig. 7. In general, the model
predicts experimental findings fairly well. However, the predicted
strain at ω is slightly higher than what is measured experimentally

(particularly when flapping frequencies exceed 10Hz), and the peak
3ω response occurs at a lower frequency for the model than for the
experiment. We conjecture these small discrepancies stem a weak
hardening nonlinearity, which may occur in thin plates undergoing
large displacements [34].
Note the significant 3ω response when ω= 10 Hz. The strain

response at 3ω has nearly the same magnitude as the primary ω
response. For the model, the 3ω response is a result of the inertial
force (which has frequency content only at ω) interacting with the
time-varying wing stiffness (Eq. (5)). Because 3ω is near the funda-
mental frequency of the wing, the dynamic response at 3ω is large.
Thus, even though the wing model is linear, the time-variance of the
stiffness coefficient may still elicit superharmonic resonances [35].
Now that we have verified that the structural model predicts in

vacuo dynamics with reasonable accuracy, we repeat the flapping
experiment in air. We include the aerodynamic modal forces
given by Eq. (14) into the EoM assuming the aerodynamic drag
coefficient is C= 3.0 and the density of air is ρf= 1.22 kg/m3.
The aerodynamic drag coefficient and air density were not mea-
sured explicitly and are instead approximated from Refs. [19,32].
Please note that inaccuracies in these parameters may introduce sys-
tematic bias into the model, however potential errors appear to be
small in the context of this work. All other parameters are identical
to those presented for in vacuo simulations. FSI model predictions
and experimental results are compared in Fig. 8. In general, the
model-theory agreement is very good. We find the primary ω
strain response increases modestly in air, while the 3ω strain
response is substantially attenuated. We believe the increased ω
response is due to aerodynamic loading, whereas the decreased
3ω response is due to aerodynamic damping. This is discussed in
greater detail in Sec. 4.2.
In terms of computational efficiency, we are able to predict the

response over a flapping cycle in about 50ms with MATLAB’s
ODE45 solver. Unfortunately, we were unable to find any reported
computation times of direct FSI methods for comparison. However,
in the past we have used CFD to calculate pressure distributions
over a rigid flapping wing [30]. Using an equivalent time-step
and coarse surface mesh, it required approximately one hour per
wingbeat to resolve to the flow field without considering fluid–
structure coupling. Both computations are made using the same
custom workstation with the following hardware: Intel Core
i9-9900K Coffee Lake 8-Core, 16-Thread, 3.6GHz processor,
CORSAIR Vengeance LPX 32GB (2 × 16GB) 288-Pin DDR4
SDRAM, Gigabyte Z390 Aorus PRO WIFI LGA 1151 (300
Series) Intel Z390 HDMI SATA 6Gb/s USB 3.1 ATX Intel

Table 2 Experimentally measured natural frequency and
damping ratio for the first vibration mode of paper wing in-air
and in-vacuum

Air Vacuum

Natural frequency ω1 29.06Hz 30.23Hz
Damping ratio ζ1 1.29% 0.89%

Fig. 6 First vibrationmode shape of paper wing. (Left) Predicted
via FEA and (right) measured experimentally.

Fig. 7 Strain magnitude as a function of flapping frequency for
in-vacuum flapping experiments. Each diamond represents the
average of three 20-s flapping trials at a particular flapping fre-
quency. Note that flapping frequencies range from 5 to 15Hz
and 3ω harmonics of the flapping frequency range from 15 to
30Hz. Error bars for experimental strain measurements are of
small magnitude (±3μϵ maximally) and are omitted from the
figure for clarity.
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Motherboard, Seagate BarraCuda ST2000DM008 2TB 7200 RPM
256MB Cache SATA 6.0Gb/s 3.5′′ Hard Drive, and Samsung 970
Evo PLUS 2TB Internal Solid State Drive. Based on these evalua-
tion times, we estimate our new model predicts the wing response at
least four orders of magnitude faster than direct FSI methods. In
reality, the computational savings are likely much greater.

4.2 Unilateral Versus Bilateral Fluid–Structure Coupling.
In Sec. 4.1, we observed a large 3ω dynamic response when the
wing flapped at roughly one-third of its first natural frequency.
The 3ω response was pronounced in vacuum but significantly atten-
uated in air. Here, we aim to identify the aerodynamic mechanism
responsible for attenuating the 3ω response. There are two plausible
explanations by which aerodynamics will reduce the 3ω response.
The first mechanism is aerodynamic loading, QA, which does not
rely on structural deformation. If QA has a 3ω component, it is pos-
sible that it will either constructively or destructively interfere with
the in vacuo 3ω response depending on their relative phase. The
second mechanism is through aerodynamic damping, Qζ, which
relies on bilateral coupling of fluid and structure. This term is less
straightforward to analyze because the structural response must be
known in order to calculate it.
In order to identify which mechanism is responsible for attenuat-

ing the 3ω response in air, we simulate both unilaterally and bilat-
erally coupled FSI models. The unilateral model includes only
aerodynamic loading, QA, whereas the bilateral model considers
both aerodynamic loading QA and aerodynamic damping Qζ. We
use the same parameters and flapping frequency that were used in
previous simulations. Strain magnitude as a function of flap fre-
quency for both unilateral and bilateral FSI models is shown in
Fig. 9. Both the unilateral and bilateral FSI models suggest that
aerodynamic loading QA increases the ω response magnitude rela-
tive to the in vacuo case. The unilateral model also predicts that
strain magnitude at 3ω will approximately double from the in
vacuo case as a result of aerodynamic loading, which is not consis-
tent to what we observed experimentally. On the other hand, the
bilateral FSI accurately predicts the experimentally measured 3ω
response which suggests that aerodynamic damping Qζ is responsi-
ble for attenuating the 3ω response.
To explore this further, we calculate the magnitude of QA and Qζ

individually, as well as their sum, as a function of ω (Fig. 10). QA

has a nontrivial 3ω component that leads to the large 3ω response
predicted by the unilateral FSI model in Fig. 9. In contrast, when
QA and Qζ are considered together, their 3ω components interact

destructively due to a difference in phase. When the wing is flap-
ping at approximately one-third of its natural frequency, the net
aerodynamic force has no 3ω component. We note that Qζ is depen-
dent on the modal response and cannot be treated as a simple time-
dependent input, and thus the coupling of the fluid and structure is
ultimately what attenuates the 3ω component of the net aerody-
namic force.
Additionally, Fig. 10 indicates that over the range of flapping fre-

quencies considered, QA is always greater than Qζ and that the two
forces interfere destructively. As a result, the magnitude of QA by
itself is always greater than the magnitude of QA and Qζ summed
together. At flapping frequencies of approximately 12 Hz and
higher, Qζ grows faster than QA at ω. Consequently, the net aerody-
namic forces at ω shrink as flapping frequencies exceed 12 Hz. The
net aerodynamic forces at 3ω shrink as flapping frequencies exceed
13Hz. However, it is difficult to see the reduction in aerodynamic
loads at high frequency in the experimental results because inertial
forces tend to dominate the structural response for the wing consid-
ered. Inertial forces increase monotonically with respect to flapping
frequency, which implies wing deformation in general increases
with flapping frequency despite reductions in aerodynamic forces.

5 Discussion
The two primary insights identified by our flapping FSI model

and experiment are (1) a 3ω superharmonic resonance when the
wing flaps at one-third of its natural frequency in vacuo, and

Fig. 9 Comparison of strain magnitude as a function of flapping
frequency ω estimated by unilaterally and bilaterally coupled FSI
models

Fig. 10 Comparison ofmodal aerodynamic forcemagnitudes as
a function of flap frequency ω. Note that modal force units are not
physically meaningful and are excluded from the y-axis.

Fig. 8 Strain magnitude as a function of flapping frequency for
in-air flapping experiments. Each diamond represents the
average of three 20-s flapping trials at a particular flapping fre-
quency. Note that flapping frequencies range from 5 to 15Hz
and 3ω harmonics of the flapping frequency range from 15 to
30Hz. Error bars for experimental strain measurements are of
small magnitude (±3μϵ maximally) and are omitted from the
figure for clarity.
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(2) significant attenuation of this superharmonic resonance in air
due to aerodynamic damping. Superharmonic resonance and aero-
dynamic damping have been addressed using other analytic
[36,37] and computational [38,39] FSI models, however we
believe the framework presented here provides additional under-
standing into the mechanisms that underlie them.
The 3ω superharmonic resonance in flapping wings is often

attributed to a weak cubic stiffness term in the wing’s structural
equation of motion [36,39]. Weak nonlinear cubic stiffness can gen-
erate odd harmonics for a system excited by a harmonic force at ω,
and if one of these harmonics coincides with the system’s resonant
frequency, a superharmonic resonance occurs [40]. However, linear
time-varying stiffness, a characteristic of flapping wings much less
discussed in the literature, contributes to superharmonic resonance
as well. Time-varying stiffness arises from centrifugal softening,
where centrifugal softening relies on coupling between the flapping
angular velocity and wing elastic deformation [14]. Physically, cen-
trifugal softening implies the perceived stiffness of the wing is at a
minimum as it passes its mid-stroke (maximum angular velocity)
and at a maximum upon stroke reversal (zero angular velocity).
Like a system with cubic stiffness, a system with linear time-
varying stiffness excited at a single input frequency will exhibit a
response at that input frequency and odd harmonics thereof. In
the present work, the linear time-varying approximation yields
good agreement between the experiment and theory which leads
us to believe time-variance is primarily responsible for the superhar-
monic resonance observed here. Nonetheless, we saw secondary
effects of strain hardening behavior during in vacuo experiments.
In reality, it is likely that both time-variance and structural nonlin-
earity contribute to flapping wing dynamics—additional efforts
must be made to identify under which conditions one is dominant
over the other.
Our FSI model also provides an approximate expression for aero-

dynamic damping, which relies on the interplay of the wing’s rota-
tional velocity and structural deformation. Because wing kinematics
are prescribed, the aerodynamic damping term is also linear and
time-varying. Kang and Shyy utilized a similar linear time-varying
analytic expression for aerodynamic damping, though the flapping
kinematics considered in their study are different than those consid-
ered here [37]. In contrast to this linear time-varying form, Ramana-
narivo et al. employed a nonlinear aerodynamic damping model that
does not rely on the wing’s rigid body motion [36]. Despite the dif-
ferences in the two models, both Kang and Ramananarivo found in
their respective studies that aerodynamic damping caused a phase
lag in the wing’s structural response that was beneficial to aerody-
namic thrust production. In the present study, we identify another
critical function of aerodynamic damping: to attenuate superharmo-
nic resonances. This may be important in the context of insect flight,
where several insects flap around one-third the fundamental fre-
quency of their wings [33]. While a modest 3ω wing response is
thought to be beneficial to flapping wing flight in terms of energy
efficiency [35] and aerodynamic performance [39], an extremely
large 3ω resonant response would eventually compromise lift pro-
duction or damage the wing. It is plausible that aerodynamic
damping, which scales linearly with rotation amplitude according
to our model, is responsible for maintaining beneficial deformation
amplitudes at higher order harmonics of the flapping frequency.
This must be further investigated via FSI models that can account
for MDOF flapping kinematics.

6 Conclusion
Artificial and biological wings deform under both aerodynamic

and inertial forces. This deformation is believed to play an impor-
tant role in flight and has a notable effect on aerodynamic force pro-
duction and energy efficiency. However, most flapping wing FSI
models are high-order and require long solution times, which
hinders their ability to carry out parameter studies efficiently.
Lower-order models may employ assumptions that limit their

accuracy, for example assuming unilateral coupling between fluid
and structure.
Here, we formulate a reduced-order bilaterally coupled FSI

model of a wing undergoing SDOF flapping. The structural
model is derived via the Lagrangian approach and general fluid
loading is accounted for via the principle of virtual work. We
then estimate specific fluid forces using a quasi-steady BET
approach. We find that the fluid forces can be represented as two
terms: (1) a time-dependent fluid loading term that is a function
only of rigid body flapping kinematics and (2) a fluid damping
term that is a function both of the wing’s rigid body motion and
rate of elastic deformation. The fluid damping term effectively
couples fluid and structure.
To study this model experimentally, we construct a mechanical

flapper and measure the basal strain of a paper wing flapping at
45 deg with frequencies from 5 to 15Hz. We initially flap the
wing in-vacuo to benchmark the structural model. We find that
when flapping at one-third the wing’s natural frequency, the wing
experiences a large superharmonic resonance. In air, this superhar-
monic response is attenuated substantially. Through simulation, we
determine that aerodynamic damping is responsible for attenuating
this superharmonic resonant response. The developed models
predict the strain response magnitude with good accuracy for both
in-air and in-vacuo experimental studies. In addition to its accuracy,
the model is very efficient and can be solved in milliseconds.
However, the model and experiment here are limited to SDOF

flapping. We also neglected unsteady fluid dynamic phenomena
such as vortex shedding or flow separation. It is unclear if these
assumptions will be justified in the context of real insect flight,
where the wing structure and MDOF flapping kinematics are signif-
icantly more complex. Nonetheless, we have demonstrated here that
a reduced-order, bilaterally coupled flapping wing FSI model per-
forms well in a simplified case. This motivates possible extensions
of this general modeling approach to consider more realistic flight
conditions.
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