
1 23

Mathematische Annalen
 
ISSN 0025-5831
Volume 370
Combined 1-2
 
Math. Ann. (2018) 370:381-421
DOI 10.1007/s00208-017-1580-9

Effective equidistribution of shears and
applications

Dubi Kelmer & Alex Kontorovich



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Deutschland. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Math. Ann. (2018) 370:381–421
https://doi.org/10.1007/s00208-017-1580-9 Mathematische Annalen

Effective equidistribution of shears and applications

Dubi Kelmer1 · Alex Kontorovich2

Received: 11 November 2015 / Revised: 1 August 2017 / Published online: 19 August 2017
© Springer-Verlag GmbH Deutschland 2017

Abstract A “shear” is a unipotent translate of a cuspidal geodesic ray in the quotient
of the hyperbolic plane by a non-uniform discrete subgroup of PSL(2, R), possibly
of infinite co-volume. We prove the regularized equidistribution of shears under large
translates with effective (that is, power saving) rates. We also give applications to
weighted second moments of GL(2) automorphic L-functions, and to counting lattice
points on locally affine symmetric spaces.
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382 D. Kelmer, A. Kontorovich

1 Introduction

In this paper, we prove the effective (meaning, with power savings rate) equidistribu-
tion of “shears” (see below for definitions) of “cuspidal” geodesic rays on hyperbolic
surfaces. Our proofs are quite “soft,” in thatwe only usemixing and standard properties
of Eisenstein series, rather than explicit spectral decompositions, special functions,
or any estimates on time spent near a cusp. This allows us to extend our methods to
surfaces of infinite volume (in fact the proofs are surprisingly easier in this case). As
a direct consequence, we complete the general problem of obtaining effective asymp-
totics for counting (in archimedean norm balls) discrete orbits on affine quadrics; as
discribed in Sect. 1.3.1, exactly two lacunary settings remained unsolved, which are
settled in this paper. Another application is to weighted second moments of GL(2)
automorphic L-functions.

When the surface has infinite volume, we discover two new and completely unex-
pected phenomena: (1) the orbit count asymptotic can be proved with a uniform power
savings error in congruence towers without inputting any information on the spectral
gap.1 And even more surprisingly, (2) orbits in such towers are not uniformly dis-
tributed among different cosets! The uniformity in cosets, were it true, would have
allowed the application of anAffine Sieve in this archimedean ordering (see, e.g. [29]);
our observation shows that the Affine Sieve procedure cannot be applied directly here,
as the standard sieve axioms are not satisfied.2

1.1 Statements of the theorems

Our main equidistribution result is the following. Let � be a discrete, Zariski-dense,3

geometrically finite4 subgroup of G := PSL2(R), and assume that the hyperbolic
surface �\H, which may have finite or infinite volume, has at least one cusp. In
particular, this forces the critical exponent5 δ of � to exceed 1/2; this will be our
running assumption throughout.

The base point

x0 ∈ T 1(�\H) ∼= �\G
in the unit tangent bundle determines the visual (under the forward geodesic flow) limit
point a on the boundary �\∂H. We call the point x0, as well as its forward geodesic
ray, x0 · A+, cuspidal if a is a cusp of �; here

A+ := {( a a−1

) : a > 1}.

1 By “spectral gap” we always mean the distance between the first eigenvalue λ1 and the base eigenvalue
λ0 of the hyperbolic Laplacian; see Sect. 2.5.
2 Of course one can instead order by wordlength in �, as is done in [3], to restore equidistribution and
apply the Affine Sieve.
3 Equivalently, non-elementary, that is, not virtually abelian.
4 For surface groups, being geometrically finite is equivalent to being finitely generated.
5 Roughly speaking, the critical exponent measures the asymptotic growth rate of �; see Sect. 2.1.
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Effective equidistribution of shears and applications 383

Fig. 1 A shear of the cuspidal geodesic ray (a) Lattice case: � = PSL2(Z) (b) Thin case: � =〈( 1 4
0 1

)
,
( 0 −1
1 0

)〉

(Note that we make no demands on the negative geodesic flow from x0.) Given such
a ray, we define its shear (the ray is no longer geodesic), at time T ∈ R, by:

x0 · A+ · sT ⊂ �\G,

where

sT := a 1√
T 2+1

nT , ay = (√
y
1/

√
y

)
, nx = (

1 x
1

)
. (1.1)

For example, if � = SL2(Z), then the base point x0 = (i,↑) has visual limit
point a = ∞, and hence is cuspidal. The shear at time T of the forward ray from x0,
projected to �\H, is then simply the Euclidean ray {reiθ }r>1, where cot θ = T . See
Figure 1a for an illustration of this ray and its projection mod PSL2(Z). Similarly,
Figure 1b gives the same picture but for a thin group �.

We are interested in the behavior of such shears as T → ∞ (and similarly for
T → −∞). To this end, define the measure μT on a smooth, compactly supported
observable � ∈ C∞

0 (�\G) by

μT (�) :=
∫

a∈A+
�(x0 · a · sT )da =

∫ ∞

1
�(x0 · ay · sT )

dy

y
. (1.2)

A slight simplification of our main result (see Theorem 3.1) is the following

Theorem 1.1
Lattice case: Assume that the quotient �\G has finite volume. Then there exists an
η > 0, depending on the spectral gap for �, such that

μT (�) = log T · μ�\G(�) + μ̃Eis (�) + O�

(
T−η

)
, (1.3)

as T → ∞. Here μ�\G is the probability Haar measure and μ̃Eis is a certain “regu-
larized Eisenstein” distribution (see Remark 1.4 below).
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384 D. Kelmer, A. Kontorovich

Thin case: Assume that � is thin, that is, the quotient �\G has infinite volume. Then
there exists an η > 0, depending only on the critical exponent δ of �, and not on its
spectral gap (!), such that

μT (�) = μEis(�) + O�

(
T−η

)
, (1.4)

as T → ∞. Here μEis is an (un-regularized) Eisenstein distribution.

Some comments are in order.

Remark 1.2 For simplicity, we have stated Theorem 1.1 for compactly supported test
functions �, but our method applies just as well to a larger class of square-integrable
functions with at least polynomial decay in the cusp a (to ensure convergence of
μT (�)); see Sect. 3.

Remark 1.3 Throughout we make no attempt to optimize the various error exponents
η, as can surely be done with a modicum of effort; our point is to illustrate a soft
method which is powerful enough to obtain new results with power savings errors.

Remark 1.4 Let us make the Eisenstein distributions arising in (1.3)–(1.4) less mys-
terious. These distributions are actually measures when � is right K -invariant; we
restrict attention to this case to simplify the discussion below. First assume that � is
a lattice, that x0 = (i,↑) with a = ∞ a cusp of � of width 1, and let �∞ = ( 1 Z

1

)
be

the isotropy group of a in �. Then one has the standard Eisenstein series

E(z, s) :=
∑

γ∈�∞\�
Im(γ z)s, (Re(s) > 1),

which is well known [46] to have meromorphic continuation and a simple pole at
s = 1 with residue vol(�\H)−1. Thus the function

Ẽ(z, s) := E(z, s) − 1

vol(�\H) (s − 1)
(1.5)

is regular at s = 1; for example, when � = PSL2(Z), we have (see, e.g., [25, (22.42),
(22.63)–(22.69)])

Ẽ(z, 1) = 3

π

(
2γ − 2

ζ ′

ζ
(2) − log

(
4y|η(z)|4

))
, (1.6)

where γ = 0.577 · · · is Euler’s constant, ζ(s) is the Riemann zeta function, and η(z)
is the Dedekind eta function. Then the measure μ̃Eis is simply given by:

μ̃Eis (�) = 〈
�, Ẽ(·, 1)〉

�\H

. (1.7)

Note that log |η(z)| grows like y in the cusp, so μ̃Eis is also a non-finite measure. See
(3.31) for the definition when � is not K -finite.
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Effective equidistribution of shears and applications 385

In the thin case of (1.4), the Eisenstein series is itself regular at s = 1, that is, we
can simply take Ẽ(z, s) = E(z, s); the spectral contribution is then all of lower order,
so the power savings obtained in (1.4) is independent of any knowledge of a spectral
gap for �.

Remark 1.5 The first factor log T on the right side of (1.3) is a manifestation of the
logarithmic divergence of the measure μT . In the lattice case, a statement of the form

μT (�) = polynomial(log T ) · μ�\G(�) ·
(
1 + o(1)

)
(1.8)

was suggested in work of Duke-Rudnick-Sarnak [15, see below (1.4)]. Recently, Oh-
Shah [39] used a purely dynamical method to prove (a variant of) (1.8) with a log-
savings rate, that is, with o(1) replaced by O(1/ log T ). With such a rate it is of
course impossible to see the second-ordermain term (that is, the regularized Eisenstein
distribution), and this identification will be key to some of our applications below.
Moreover, it is hard to imagine how a quantity like (1.6) can be captured using only
dynamics; our approach is quite different.

Before discussing the proof of Theorem 1.1, we first give some applications.

1.2 Application 1: weighted second moments of GL(2) L-functions

Integrals like μT (�) arise naturally in Sarnak’s approach (“changing the test vector”)
[45] for second moments of L-functions (see also, e.g., [12,13,19,35,53]). We illus-
trate the method in the simplest case of a weight-k holomorphic Hecke cusp form
f on PSL2(Z), though the method works just as well for any GL(2) automorphic
representation.

Write the Fourier expansion of f as

f (z) =
∑

n≥1

a f (n)e(nz),

where a f (1) = 1 and the coefficients a f (n) are multiplicative, satisfying Hecke rela-
tions, and the Ramanujan bound

∣∣a f (p)
∣∣ ≤ 2p(k−1)/2 [11]. The standard L-function

of f ,

L( f, s) :=
∑

n≥1

a f (n)

ns+(k−1)/2
,

converges for Re(s) > 1, has analytic continuation to C, and a functional equation
sending s �→ 1 − s. The Rankin-Selberg L-function factors (see [26, (13.1)]) as

L( f ⊗ f̄ , s) :=
∑

n≥1

∣∣a f (n)
∣∣2

ns+(k−1)
= ζ(s)

ζ(2s)
L(sym2 f, s),
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386 D. Kelmer, A. Kontorovich

Fig. 2 A sample graph of the
smoothed archimedean weight
|Wk (

1
2 + i t, T )|2

where L(sym2 f, s) is the symmetric square L-function, known [18] to be the auto-
morphic L-function of a cohomological form on GL(3).

A shear of the standard Hecke integral (already arising implicitly in classical work
of Titchmarsch [51, Chap. VII] ) is the following calculation:

∫ ∞

0
f (T y + iy) ys+(k−1)/2 dy

y
= L( f, s)Wk(s, T ), (1.9)

where

Wk(s, T ) := (2π)
−
(
s+(k−1)/2

)
�
(
s + k−1

2

)
(1 − iT )

−
(
s+(k−1)/2

)
. (1.10)

Applying Parseval to (1.9) gives (for s = 1/2 + i t)

∫ ∞

0

∣∣ f (T y + iy)
∣∣2yk

dy

y
= 1

2π

∫

R

∣∣L( f, 1
2 + i t)

∣∣2∣∣Wk(
1
2 + i t, T )

∣∣2dt . (1.11)

A calculation with Stirling’s formula (or see Fig. 2) shows that |Wk(
1
2 + i t, T )|2

has rapid decay as soon as |t | > T 1+ε, and is of size roughly 1/T in the bulk. Thus
the quantity on the right side of (1.11) behaves like a smoothed second moment of
L( f, s) on the critical line. Applying Theorem 1.1 with � = | f |2yk (and a little more
work, see §4) gives the following.

Theorem 1.6 With notation as above, there is an η > 0 such that

1

2π

∫

R

∣
∣L( f, 1

2 + i t)
∣
∣2
∣
∣Wk(

1
2 + i t, T )

∣
∣2dt

= 2
‖ f ‖2

vol(�\H)

(
log T + 
′



(sym2 f, 1) + γ − 2

ζ ′

ζ
(2)

)

+ O f (T
−η), (1.12)
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Effective equidistribution of shears and applications 387

as T → ∞. Here γ is again Euler’s constant, ‖ f ‖ is the Petersson norm, and 
′/

is the logarithmic derivative of the completed symmetric-square L-function,


(sym2 f, s) = (4π)−(s+k−1) �(s + k − 1) L(sym2 f, s). (1.13)

Remark 1.7 One can chase the various exponents in our proof to see that (1.12) holds
with η = 1/14 − ε. Again, we are striving for simplicity of the method and not
optimal exponents, seeRemark 1.3. In fact, a straightforward refinement of the proof of
Proposition 2.2 (using explicit spectral expansions in place of soft ergodic arguments)
gives η = 16/39− ε on quoting the best-known bounds [30] towards the Ramanujan
conjectures, and η = 1/2 − ε conditionally. So in a sense, the proof of Theorem 1.6
is “sharp,” as there is no “loss” in the rate from a best-possible one.

Remark 1.8 On comparing the lower order terms on the right hand side of (1.12) with
the secondary term in (1.3), and using (1.6) and (1.7), one derives a Kronecker-type
limit formula, in the form:

〈
log
(
4y|η(z)|4) , | f |2yk 〉

‖ f ‖2 = γ − 
′



(sym2 f, 1). (1.14)

This identity is surely classical, though we were not able to locate a precise reference.

1.3 Application 2: Archimedean counting for orbits on affine quadrics

Another standard context where integrals likeμT (�) arise naturally is in the execution
of certain Margulis/Duke-Rudnick-Sarnak/Eskin-McMullen type arguments [15,16,
33] for counting discrete orbits on quadrics in archimedean balls. The setting is as
follows.

Let Q be a real ternary indefinite quadratic form (e.g., Q(x) = x2 + y2 − z2), fix
d ∈ R, and denote by V = VQ,d the affine quadric

V : Q = d. (1.15)

The real points V (R) enjoy an action byG = SO◦
Q(R), the connected component of

the identity in the real special orthogonal group preserving Q. Let� < G be a discrete,
Zariski dense, geometrically finite subgroup of G, and assume, as throughout, that the
critical exponent δ of � exceeds 1/2. Fix a base point x0 ∈ V (R), subject to the orbit

O := x0 · � ⊂ R
3

being discrete.
For a fixed archimedean norm ‖ · ‖ on R

3, let

BT = {x ∈ R
3 : ‖x‖ < T }

123

Author's personal copy



388 D. Kelmer, A. Kontorovich

Table 1 The new cases of Theorem 1.9, highlighted, are those with C1 > 0

(�, �H ) H

N A K

(Lattice, lattice) [43,54] [15,16] [10,24,46]

(Lattice, thin) Impossible by
discreteness
ofO

“Lacunary” case
settled in (1.16)

Impossible by
compactness of K

(Thin, lattice) [28] [6] [31]

(Thin, thin) [27]

{
[6], if both ξ± /∈ 
,

“Lacunary” case settled in (1.17), otherwise,
Impossible by
compactness of K

be the norm ball of radius T . A very classical and well-studied problem is to give an
effective (that is, with power savings error) estimate for

NO(T ) := |O ∩ BT | .

Despite the vast attention this problem has received over the years, there remained
exactly two lacunary cases in which hitherto resisted solution; see §1.3.1 and Table 1
below for a detailed taxonomy of the situation. Equipped with Theorem 1.1, we can
now resolve the outstanding cases.

Theorem 1.9 There exist constants C1,C2, and η > 0 such that the following holds:

• If � is a lattice in G, then

NO(T ) = (
C1T log T + C2T

)(
1 + O(T−η)

)
. (1.16)

• If � is thin, then

NO(T ) = (
C1T + C2T

δ
)(
1 + O(T−η)

)
. (1.17)

Some comments are in order:

Remark 1.10 (1) All of the previously resolved cases of this problem (in the above
generality) were such that the first term did not appear, that is, C1 = 0 (whence
C2 > 0). Our new contributions are to the cases with C1 > 0, which arise exactly
when the stabilizer of x0 in G is diagonalizable but “cuspidal” in �\G; see §1.3.1
below.

(2) If it happens thatO is not just some arbitrary real discrete orbit but is actually the
full integer quadric V (Z) (assuming of course that the quadratic form Q is rational
and that V (Z) is non-empty), then one has many more tools available to approach
the counting problem for NO(T ). Specifically, one can use, e.g., classical meth-
ods of exponential sums (see [23]), or half-integral weight automorphic forms,
Poincaré series and shifted convolutions [7,44,52], or multiple Dirichlet series
[22]. These give, when � is a lattice and C1 > 0, an estimate for NO(T ) of the
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Effective equidistribution of shears and applications 389

same strength as (1.16), that is, with a secondary main term and a power savings
error. Such tools do not seem to apply to the general orbit counting problem.

(3) In the thin case with C1 > 0, the second term C2T δ is swamped by the error,
and should not be confused with a lower order “main” term. We would like to
acknowledge here that Nimish Shah suggested to us that the main term in this
setting is of order T rather than T δ; see also [38, Remark 1.7].

(4) For the “new” cases with C1 > 0, the exponent η depends on the same quantities
as in Theorem 1.1; that is, η depends on the spectral gap in the lattice case, and
only on the critical exponent in the thin case.

(5) The constants C1,C2 can be readily determined explicitly in terms of volumes,
special values of (possibly regularized) Eisenstein series, and Patterson-Sullivan
measures.

(6) A consequence of Oh-Shah’s result discussed in Remark 1.5 gives, in the lattice
case, the estimate (1.16), but with O(T−η) replaced by the weaker error rate
O(1/(log T )η) for some small η > 0. This of course only identifies the first main
term C1T log T , as the secondary term C2T is swallowed by the error.6

1.3.1 Taxonomy

To explain the lacunary cases settled by Theorem 1.9, we begin by passing from
SO◦

Q(R) to its spin cover PSL2(R) ∼= T 1(H). Abusing notation, we continue to write
G and � for their pre-images in PSL2(R).

Let H be the stabilizer of x0 in G,

H := {h ∈ G : x0 · h = x0},

and let

�H := � ∩ H.

With x0 fixed, the norm ‖ · ‖ on R
3 induces a left-H invariant norm |||·||| on G given

by

|||g||| = ‖x0g‖. (1.18)

We further abuse notation, writing BT for the left-H -invariant norm-T ball in G, that
is, BT ⊂ H\G. Then it is easy to see that

NO(T ) = |�H\� ∩ BT |.

To investigate this counting problem more precisely, we illustrate the geometry of
BT , which is determined by whether the stabilizer H is conjugate to the groups K , N ,
or A. That is, H is either a maximal compact, a unipotent subgroup, or diagonalizable

6 Added in print: In private communication, Hee Oh has notified us that she and Nimish Shah have an
unpublished manuscript in which they obtain a result similar to (1.16) in the lattice case.
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390 D. Kelmer, A. Kontorovich

(a) (b) (c)

Fig. 3 The region BT as a subset of the hyperbolic disk D (a) Case H ∼= K (b) Case H ∼= N (c) Case
H ∼= A

(over R), and this corresponds to whether the real quadric V (R) is a two-sheeted
hyperboloid, a cone, or a one-sheeted hyperboloid, respectively. To visualize BT as a
left-H -invariant subset of G, we project to the base space H (or alternatively, assume
that the norm |||·||| is right-K -invariant), so that BT can be viewed as an H -invariant
subset of the hyperbolic disk D ∼= G/K . Then BT is illustrated in Fig. 3 in the three
cases. Note that BT has zero, one, or two limit points (denoted ξ or ξ±) on the boundary
∂D, corresponding to whether H ∼= K , H ∼= N , or H ∼= A, respectively.

The asymptotic counting analysis depends in a fundamental way not only on
whether � is a lattice in G, but also on whether

�H is a lattice in H. (1.19)

Lemma 1.11 If (1.19) does not hold, then the discreteness of O is equivalent to the
endpoints ξ or ξ± of H not being radial limit points7 for �.

This follows from a simple topological argument; we omit the proof.We decompose
the analysis according to whether � is a lattice or thin in G.

Case I: � is a lattice

Assuming that � is a lattice in G, and also demanding that (1.19) holds, Duke–
Rudnick–Sarnak [15] and Eskin–McMullen [16] (see also [33]) showed (in much
greater generality than considered here) that there is some η > 0 with

NO(T ) = volH (�H\H)

volG(�\G)
volH\G(BT )

(
1 + O(T−η)

)
, (1.20)

as T → ∞. Here the volumes are taken to be compatible with choices of Haarmeasure
on G, H , and H\G. Note that volH\G(BT ) is of order T , so there is no logarithmic
divergence in (1.20), that is, C1 = 0 and C2 > 0 in (1.16); see also Remark 1.10(1).

With Fig. 3 and Lemma 1.11 in mind, we analyze separately the possible conjugacy
classes of H .

7 Recall that the limit set, 
, of � decomposes disjointly into cusps (i.e., parabolic fixed points) and radial
limit points (also called “points of approximation”); the complement ∂H\
 is called the free boundary
(which is empty if � is a lattice). See §2.1.
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Effective equidistribution of shears and applications 391

• First if H ∼= K is compact, then (1.19) clearly holds automatically. In this case,
the counting result (1.20) corresponds to counting in norm balls of G, which dates
back to Delsarte [10], Huber [24], and Selberg [46].

• If H ∼= N is unipotent, then by Lemma 1.11, the boundary point ξ of H must be
a cusp. That is, �H\H is a closed horocycle, so �H is a lattice in H , and (1.19) is
again automatically satisfied. In this case, the count takes place in a strip �H\G,
and the equidistribution of low-lying closed horocycles [33,43,54] can be used to
establish (1.20).

• Lastly, if H ∼= A is diagonalizable (over R), then Lemma 1.11 forces one of two
settings. Either

(i): �H is a lattice in H , whence �H\H corresponds to a closed geodesic on �\G.
Then (1.19) holds, so (1.20) follows from [15]. Or

(i i): �H is finite, but both limit points ξ+ and ξ− of H (see Figure 3c) are cusps
of �. Here we are in the diagonalizable but “cuspidal” setting referred to in
Remark 1.10(1). fig:BT This case is the only one (when � is a lattice in G) not
satisfying (1.19) despite the discreteness of the orbitO; it is precisely the new
case settled by Theorem 1.9.

Case II: � is thin

In this setting, we again decompose the problem of estimating NO(T ) into separate
cases, depending on the conjugacy class of H , and on whether condition (1.19) holds
(there are now more situations in which O is discrete but (1.19) can fail).

• When H ∼= K is compact, the condition (1.19) is again automatically satisfied,
and in this case Lax-Phillips [31] showed that

NO(T ) = C2 T
δ

(
1 + O(T−η)

)
, (1.21)

where η > 0 depends on the spectral gap for �. This corresponds to the case
C1 = 0 in (1.17); again, see Remark 1.10(1).

• If H ∼= N is unipotent, the discreteness of O forces one of two cases. Either
(i) �H is a lattice in H , so (1.19) holds, and �H\H corresponds to a closed

horocycle. In this case, the asymptotic formula is (1.21) was shown in the
second-named author’s thesis [28]. Or

(ii) �H is trivial, whence Lemma 1.11 forces the limit point ξ of H to be in the
free boundary, that is, it is not in the limit set of �. The asymptotic here is
also of the form (1.21); see [27].

• Finally, when H ∼= A is diagonalizable, there are three separate cases to consider.
The discreteness of O now implies either
(i) �H is a lattice in H , again corresponding to a closed geodesic on �\G. Then

the same asymptotic (1.21) follows from now-standard methods using the
equidistribution result of Bourgain-Kontorovich-Sarnak [6]. Or

(ii) �H is thin in H , in which case each of the two endpoints ξ± of H is either a
cusp of � or in the free boundary. If
(a) both endpoints ξ± are in the free boundary, then the methods of [6] can

again be used to show the same asymptotic (1.21). (The key is that only a
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392 D. Kelmer, A. Kontorovich

finite portion of the sheared geodesic ray interacts with the limit set— see
[27] where a similar phenomenon was studied in the case of a unipotent
stabilizer.) Otherwise,

(b) at least one of ξ± is a cusp of �. This is the other new lacunary case of
Theorem 1.9, and is the only thin case for which (1.17) has C1 > 0. Note
that if one boundary point is a cusp and the other is in the free boundary,
the former has contribution of order T , while the latter’s contribution, of
order T δ , is dominated by the former’s error term.

This concludes our taxonomy. To summarize, the following table serves to illustrate
that Theorem 1.9 above completes the effective solution to the general counting orbital
problem in our context:

Remark 1.12 When the critical exponent δ ≤ 1/2, work of Naud [36], extending
Dolgopyat’smethods [14], allows one to conclude, in the cases not excluded byLemma
1.11, an effective asymptotic of the form (1.21). So the lacunary cases do not occur
here, as there are no cusps (and hence no cuspidal geodesic rays) when δ ≤ 1/2.

Remark 1.13 As pointed out in [39, p. 917] (at least for � a lattice), the only lacunary
cases in the more general setting of Q having signature (n,m) are precisely those
of signature (2, 1), that is, those considered here; so we have lost no generality in
restricting to PSL2(R). This is because the stabilizer H is either unipotent, compact,
or fixes a form of signature (n − 1,m) or (n,m − 1). The only non-compact such not
generated by unipotents has signature (1, 1), whence Q has signature (2, 1).

1.4 Surprise: Non-equidistribution in congruence cosets!

The most unexpected consequence of Theorem 1.9 comes from studying the thin case
in cosets of congruence towers, as we now describe. Assume that Q is not just a real
quadratic form but an integral one, and that � is a subgroup of the integral special
orthogonal group

� < SOQ(Z).

Given an integer q ≥ 1, we can then form the level-q “congruence” subgroups
�(q) < �, defined as

�(q) := ker(� → SOQ(Z/qZ)).

For many applications, one wishes to study the same counting problem as above,
with the orbitO = x0 · � replaced by the congruence orbit x0 · �(q), or better yet, by
some “congruence coset” orbit,

Oq,� := x0 · � · �(q),

for a given � ∈ �/�(q). Let

Nq,� (T ) := |Oq,� ∩ BT |
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be the corresponding counting function, which we wish to estimate uniformly with q
and T (and � ) varying in some allowable range.

Theorem 1.9 applies just as well to estimateNq,� (T ), and in all previously studied
examples, the asymptotic analysis showed that

Nq,� (T ) ∼ 1

[� : �(q)]NO(T ), (T → ∞), (1.22)

that is, the asymptotic is independent of � , so the orbits are equidistributed among
congruence cosets. (Moreover, (1.22) even holds with q allowed to grow sufficiently
slowlywith T .) This equidistribution is a key input, for example, in executing anAffine
Sieve in an archimedean ordering (see, e.g., [4,5,21,27,28,32,34,37]). An analysis
of Theorem 1.9 shows that, for thin orbits, there are cosets which are not uniformly
distributed in archimedean balls!

Proposition 1.14 Assume that � is thin, and that the orbit O is has diagonalizable
and cuspidal stabilizer, that is, C1 > 0 in (1.17). Then the equidistribution (1.22) in
congruence cosets is false. For example, for each fixed q, there is some � ∈ �/�(q)

such that

Nq,� (T ) � 1

q
T, (1.23)

while

1

[� : �(q)]NO(T ) � 1

q3
T,

as T → ∞. (The implied constants above may depend on � and x0, but obviously not
on q or T .)

This means that the standard Affine Sieve procedure cannot be executed in this
ordering. (Note that the case considered in Proposition 1.14 is precisely the one omitted
in the sieving statement [34, Cor 1.19].)

1.5 Outline of the proofs and paper

Our proof of Theorem 1.1 is surprisingly simple, and proceeds in two stages. The
first is to show that μT (�) in some sense equidistributes in the “strip �∞\H”, but
with respect to dx dy/y, as opposed to Haar measure dx dy/y2 (for a hint of this,
look again at Figure 1); this fact uses only the decay of the Fourier coefficients of �

(itself a simple consequence of mixing via low-lying horocycles; see Proposition 2.2).
Then stage two is to relate this equidistribution to Eisenstein series, where we mimic
Sarnak’s approach in [43,54] to conclude the proof.

The rest of the paper proceeds as follows. In Sect. 2, we set notation and recall basic
facts needed through the paper. Then in Sect. 3, we prove the main equidistribution
result, Theorem 1.1, and its generalization (Theorem 3.1). Then Theorem 1.6 is proved
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in Sect. 4 using the Rankin-Selberg “unfolding” technique. Finally, Theorem 1.9 and
Proposition 1.14 are proved in Sect. 5.

1.6 Notation

Constants 0 < C < ∞ and 0 < η < 1 can change from line to line, and ε > 0
represents an arbitrarily small quantity. The transpose of a matrix g is written �g.
Unless otherwise specified, implied constants depend at most on �, which is treated
as fixed. The symbol 1{·} represents the indicator function of the event {·}.

2 Preliminaries

In this section, we set all notation and basic facts used throughout.

2.1 Hyperbolic Geometry

Let H := {z ∈ C : Imz > 0} denote the hyperbolic upper half-plane. At each
point z ∈ H, and tangent vector ζ ∈ TzH ∼= C, the Riemannian structure is ‖ζ‖z :=
|ζ |/Imz. The unit tangent bundle T 1

H is then

T 1
H := {(z, ζ ) ∈ H × C : ‖ζ‖z = 1}.

The group G = PSL2(R) acts on T 1
H via

(
a b
c d

)
: (z, ζ ) �→

(
az + b

cz + d
,

ζ

(cz + d)2

)
,

and moreover we can identify G ∼= T 1
H under g �→ g(i,↑). We also use the disk

model D := {z ∈ C : |z| < 1}, identified with H under the map

H � z �→ (z − i)/(z + i) ∈ D.

Let � be a finitely generated, Zariski dense, discrete subgroup of G. As above, we
identify T 1(�\H) ∼= �\G. For a fixed base point o ∈ H, the critical exponent

δ = δ(�) ∈ [0, 1]

of � is the abscissa of convergence of the Poincaré series

∑

γ∈�

exp(−sd(γ o, o)), (Re(s) > δ).

Here d(·, ·) is hyperbolic distance, and δ does not depend on the choice of o. Let
dg be a choice of Haar measure on G; we call � a lattice if �\G has finite measure,
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Effective equidistribution of shears and applications 395

and thin otherwise. This is measured by the critical exponent δ, as δ = 1 or δ < 1
exactly when � is a lattice or thin, respectively [41]; the Zariski-density of � implies
that δ > 0. The limit set


 = 
(�) ⊂ ∂H ∼= S1 ∼= R � {∞}

of � is the set of limit points of γ o, γ ∈ �; it also does not depend on the choice of o.
The Hausdorff dimension of 
 is exactly equal to the critical exponent δ [41,50]. A
boundary point ξ ∈ ∂H is a cusp of � if it is the fixed point of a parabolic element in
�; these all lie in the limit set 
, and we let 
cusp denote the subset of cusps. A limit
point ξ ∈ 
 is called radial (or a “point of approximation”) if there is a sequence
{γno}, γn ∈ �, which stays a bounded distance away from a geodesic ray ending at
ξ . Let 
rad denote the set of radial limit points; it is a basic fact [2] that the limit set
decomposes disjointly into radial and cuspidal points,


 = 
cusp � 
rad .

The complement of the limit set in ∂H is called the free boundary of �,

F = F(�) := ∂H\
,

and F = ∅ if and only if � is a lattice. We record here the decomposition

∂H = F � 
cusp � 
rad . (2.1)

We assumehenceforth that� has at least one cusp,whence its critical exponent exceeds
1/2,

δ > 1/2. (2.2)

2.2 Spectral theory

The hyperbolic Laplace operator � := −y2(∂xx + ∂yy) acts (after unique extension)
on the space L2(�\H) of square-integrable automorphic functions, and is self-adjoint
and positive semi-definite. Let � = �(�) ⊂ [0,∞) denote the spectrum of �. The
assumption that � has at least one cusp implies the existence of continuous spectrum
above 1/4, that is, [1/4,∞) ⊂ � (there may also be embedded discrete spectrum in
this range, which only occurs when � is a lattice [40,46]). Below 1/4 the spectrum is
finite [31] and nonempty (by (2.2)); we denote these eigenvalues, often referred to as
the “exceptional spectrum,” by

0 ≤ λ0 < λ1 ≤ · · · ≤ λmax <
1

4
,
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and introduce spectral parameters 1/2 < s j ≤ 1 defined by

λ j = s j (1 − s j ),

so that

1 ≥ s0 > s1 ≥ · · · ≥ smax >
1

2
. (2.3)

The bottom eigenvalue λ0 is simple, and is related to the geometry of 
 via the
Patterson-Sullivan formula [41,50]

λ0 = δ(1 − δ),

that is, s0 = δ.

2.3 Algebra

We will use standard notation for the subgroups N , A, and K of G, given by:

N :=
(
1 R

0 1

)
, A := {diag(a, 1/a) : a > 0} , K := SO(2), (2.4)

and containing typical elements

nx :=
(
1 x

1

)
, ay :=

(√
y

1/
√
y

)
, kθ =

(
cos θ sin θ

− sin θ cos θ

)
.

As right actions, they correspond, respectively, to the unipotent flow, geodesic
flow, and rotation of the tangent vector, keeping the base point fixed. On the other
hand, as left actions, the correspond, respectively, to horizontal translation, scaling,
and motion around a hyperbolic circle centered at i . Haar measure dg in Iwasawa
coordinates g = nxaykθ is then given by dg = dx y−2dy dθ . The right-action by the
semigroup A+ := {ay : y > 1} corresponds to the positive geodesic flow, so that a
given point x0 ∈ G ∼= T 1

H gives rise to the geodesic ray x0A+.

2.4 Representation theory

By the Duality Theorem [17], the spectral decomposition (2.3) corresponds to the
decomposition of the right regular representation of G on L2(�\G) as

L2(�\G) = V0 ⊕ V1 ⊕ · · · ⊕ Vmax ⊕ Vtemp.

Here Vtemp consists of the tempered spectrum (a reducible subspace); each Vj ,
j = 1, . . . ,max is an irreducible complementary series representation of parameter
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s j ; and V0 is either the trivial representation (if � is a lattice), or a complementary
series representation of parameter s0 = δ (if � is thin).

We record here a Sobolev-norm version [8] of the exponential decay of matrix
coefficients. Fix a basis B = {X1, X2, X3} for the Lie algebra g of G, and given a
smooth test function� ∈ C∞(�\G), define the “L p, order-d” Sobolev normSp,d(�)

as

Sp,d(�) :=
∑

ord(D)≤d

‖D�‖L p(�\G).

Here D ranges over monomials inB of order at most d.

Theorem 2.1 ([9,47,53]) Let (π, V ) be a unitary G-representation, and assume there
is a number � > 1/2 so that V does not weakly contain any complementary series
with parameter s > �. Then for all smooth v,w ∈ V∞, we have

| 〈π(g).v, w〉 | � ‖g‖2(1−�)S2,1(v)S2,1(w), (2.5)

as ‖g‖2 := tr(g �g) → ∞. The implied constant is absolute.

Later we will encounter other Sobolev norms which are convex combinations of
those above.

2.5 Uniform spectral gaps

Recalling the spectral decomposition (2.3), we call a number � ∈ (1/2, δ) a spectral
gap for � if � > s1. To make sense of a uniform such gap, we assume integrality.
As in §1.4, if � consists of integer matrices, � < PSL2(Z), we may, given an integer
q ≥ 1, define the level-q “congruence” subgroup

�(q) := ker(� → PSL2(Z/qZ)).

Let �(q) be the spectrum of � on L2(�(q)\H); clearly � ⊂ �(q), and in general
this inclusion is strict. We will call a number � ∈ (1/2, δ) a uniform spectral gap
for � if, for all q ≥ 1,

�(q) ∩ (δ(1 − δ),�(1 − �)] = ∅, (2.6)

that is, there are no eigenvalues at any level q in a neighborhood of the base eigenvalue
λ0 = δ(1−δ). (Note that this definition is different from other related definitions in the
literature.) In a number of statements below, several quantities depend on the spectral
gap in the lattice case, but only on the critical exponent in the thin case; to unify the
two notions, we will say that such quantities depend on the first non-zero eigenvalue
of �.
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2.6 Eisenstein series

In this section we recall some basic facts from the theory of Eisenstein series. We will
assume here that the Eisenstein series is with respect to a cusp at ∞ and note that
Eisenstein series corresponding to other cusps are defined similarly, after conjugating
that cusp to∞. In our applications, we will not have the flexibility to demand the cusp
have width 1, so deal below with arbitrary width.

The Eisenstein series corresponding to a cusp at ∞ of width ω > 0 is defined8 in
the half-plane Re(s) > 1 by the convergent series

E(z, s) := 1

ω

∑

γ∈�∞\�
Im(γ z)s, (2.7)

where �∞ = ( 1 ωZ

0 1

)
.

Assume first that � is a lattice. Then E(z, s) has a meromorphic continuation to C

with a functional equation sending s �→ 1 − s. In fact, it is analytic in the half plane
Re(s) > 1/2 except for a simple pole at s = 1 and perhaps finitely many poles

1 > σ1 ≥ · · · ≥ σh > 1/2. (2.8)

These poles comprise the “residual spectrum,” which is a subset of the “exceptional
spectrum” in (2.3); the remaining spectrum in this range, if any, is cuspidal. The residue
at s = 1 is

Ress=1 E(s, z) = 1

vol(�\H)

and

ϕσ j (z) = Ress=σ j E(s, z)

are the residual forms.
For any integer n ∈ Z we also define the weight 2n Eisenstein series by

En(z, s) := 1

ω

∑

γ∈�∞\�
Im(γ z)sεγ (z)2n, (2.9)

where

εg(z) = cz + d

|cz + d| , g =
(
a b
c d

)
.

8 We should note that we are using a non-standard definition for the Eisenstein series, where we multiply
the series by 1

ω instead of by 1
ωs . Using the standard definition instead will result in minor changes to the

regularized Eisenstein series in the lattice case.
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Unless the weight n = 0, the En’s are all regular at s = 1, that is, E0 = E is the
only Eisenstein series with a pole at s = 1. In the range 1

2 < Re(s) < 1, the poles of
En are the same s = σ1, . . . , σh as those of E . For each such pole σ = σ j we denote
by

ϕσ,n = Ress=σ En(z, s), (2.10)

the (un-normalized) residual form of weight 2n.
We note for future reference that the weight-2n Eisenstein series and the weight-2n

residual forms all lie in the space (�, 2n) of functions on H transforming by

f (γ z) = εγ (z)2n f (z). (2.11)

Still assuming that � is a lattice, we also have the following bounds coming from
the spectral decomposition of L2(�\G), see, e.g. [26]. For any square-integrable
f ∈ (�, 2n), we have the bound

1

2π

∫

R

∣∣〈 f, En
(·, 1

2 + ir
)〉∣∣2 dr ≤ ‖ f ‖22 . (2.12)

When � is thin, we will only use the fact that the defining series in (2.7) and (2.9)
converge absolutely in the range Re(s) > δ.

2.7 Decay of Fourier coefficients

In this subsection we wish to record the basic fact that the (parabolic) Fourier coeffi-
cients of an automorphic function decay in the cusp, in a uniform sense. The method
we use to establish this is completely standard, though the requisite uniformity does
not seem to be in the literature; hence we give sketches of proofs for the reader’s
convenience. We again assume that � has a cusp at ∞ of width ω > 0, that is, the
isotropy group �∞ of ∞ is generated by the translation z �→ z + ω.

Then a smooth, square-integrable,�-automorphic function� ∈ L2∩C∞(T 1(�\H))

has a Fourier expansion:

�(x + iy, ζ ) =
∑

m∈Z

a�(m; y, ζ ) eω(mx), (2.13)

where eω(x) := e2π i x/ω, and the Fourier coefficients are given by

a�(m; y, ζ ) := 1

ω

∫ ω

0
�(x + iy, ζ )eω(−mx)dx . (2.14)

The next proposition records the decay of such as y → 0 (in a uniform statement);
the subscripts F below stand for “Fourier coefficients.”
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Proposition 2.2 There is a “Sobolev” norm SF (�) and constants 0 < CF < ∞ and
0 < αF < 1, such that, uniformly over all y > 0 and m ∈ Z\{0}, we have

|a�(m; y, ζ )| � SF (�) |m|CF yαF . (2.15)

The constants αF and CF depend on the first non-zero eigenvalue of �.

The Sobolev norm and exact values of the constants CF and αF are given below in
(2.20), (2.21), and (2.22), respectively; the last claim of the proposition is then clear,
namely, that the constants depend on the spectral gap when � is a lattice, and only
on the critical exponent when � is thin. As we are not striving for optimal exponents
(recall Remark 1.3), we have chosen to suppress their precise values so as not to clutter
the presentation. Recall also our convention that implied constantsmay depend atmost
on �, unless stated otherwise.

TheProposition is an easy consequenceof another standard fact, namely the equidis-
tribution of (pieces of) “low-lying” horocycles; the subscripts H below stand for
“Horocycle pieces.”

Proposition 2.3 There is a “Sobolev” norm SH (�) and constants CH < ∞ and
0 < αH < 1, such that, uniformly over all y > 0 and open intervals I ⊂ (0, ω), we
have

1

|I|
∫

I
�(x + iy, ζ )dx

= 1

vol(�\G)

∫

�\G
� dg + O

(
SH (�) |I|−CH yαH

)
. (2.16)

This statement holds whether � is a lattice or not, with the interpretation that the
first term on the right-hand-side of (2.16) vanishes in the thin case. The constants CH

and αH depend on the first non-zero eigenvalue of �.

Again, the norm and constants are detailed in (2.17), (2.18), and (2.19), which we
have suppressed in the interest of exposition. Much stronger versions of (2.16) exist
in the literature (at least in the lattice case, for which see, e.g., [48,49]), but for the
reader’s convenience, we provide a quick

Proof of Proposition 2.3 (Sketch) We may assume that y < 1 (for the statement is
obviously true otherwise), andwemaymoreover assume that� is right-K -invariant (or
replace � by �̃ := π(k−1

θ )�, where 2θ is the angle of ζ measured counterclockwise
from the vertical). Then the left hand side of (2.16) is

M := 1

|I|
∫

x∈I
�(nxay)dx .

Letρ be a smooth, non-negative function onRwith support in [−1, 1] and ∫
R

ρ = 1.
For η > 0 to be chosen later, concentrate ρ to ρη(x) := η−1ρ(x/η). Write N := �N ,
nx := �nx for the opposite horocyclic group and element. Then the multiplication
map
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N × A × N → G : (n, a, n) �→ nan

is bijective on an open neighborhood of the origin. Define ξ : G → R≥0, supported
in such a neighborhood, via:

ξ(nxatns) := cξ ·
(

ρη �
1

|I|1I
)

(x) · ρη(log t) · ρη(s),

where � denotes convolution, and cξ � 1 is a constant (independent of η) chosen so
that

∫
G ξ = 1. Automorphize ξ to

�(g) :=
∑

γ∈�

ξ(γ g),

which is a function on�\G with
∫
�\G � = 1. Finally, consider the matrix coefficient:

C := 〈
π(ay).�,�

〉
,

which we evaluate in two ways. Using the decay of matrix coefficients (2.5), we see
immediately that

C = 1

vol(�\G)

∫

�\G
� + O

(
y1−�S2,1(�)S2,1(�)

)
,

where � = s1 + ε is a spectral gap in the lattice case, and � = δ + ε in the thin case
(in which case the “main” term vanishes). It is easy to estimate, crudely, that

S2,1(�) � |I|−1η−3.

For a second evaluation of C , unfold the inner product to obtain

C =
∫

N AN
�(nxatnsay)ξ(nxatns)dnsdatdnx

The “wavefront lemma” (in this case, trivial) states that nsay = aynsy , andwe estimate

�(nxayatnsy) = �(nxay) + O

(
η S∞,1(�)

)
.

Hence

C =
∫

R

�(nxat )

(
ρη �

1

|I|1I
)

(x) dx + O

(
η S∞,1(�)

)

= M + O

(
η S∞,1(�)

)
.
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Combining the errors and choosing η = y(1−�)/4S2,1(�)1/4 S∞,1(�)−1/4|I|−1/4

gives (2.16) with

SH (�) := S2,1(�)1/4 S∞,1(�)3/4, (2.17)

CH := 1/4, (2.18)

and

αH := 1 − �

4
, (2.19)

as claimed. ��
Equipped with Proposition 2.3, we may now give a quick

Proof of Proposition 2.2 Againwemay assume that� is right-K -invariant and y < 1.
Let J ≥ 1 be an integer parameter to be chosen later, and write

a�(m; y) = 1

ω

J−1∑

j=0

∫ ω( j+1)/J

ω j/J
�(x + iy)eω(−mx)dx .

On each short interval, we estimate eω(−mx) = e(−mj/J ) + O(|m|/J ), whence

a�(m; y) =
J−1∑

j=0

e(−mj/J )
1

ω

∫ ω( j+1)/J

ω j/J
�(x + iy)dx + O(‖�‖∞|m|/J ).

Now on each little integral, we apply the equidistribution of pieces of “low-lying”
horocycles in the form (2.16), that is,

1

ω

∫ ω( j+1)/J

ω j/J
�(x + iy)dx = 1

J

1

vol(�\G)

∫

�\G
� dg + O

(
SH (�) yαH JCH−1

)
.

Inserting this expression into a�(m; y) and using m �= 0, the roots of unity cancel
out, leaving only error terms:

|a�(m; y)| � SH (�) yαH JCH + ‖�‖∞|m| J−1.

Setting

J �
(
SH (�)−1 y−αH ‖�‖∞ |m|

)1/(CH+1)
,

we arrive at (2.15) with

SF (�) := SH (�)1/(CH+1) ‖�‖CH /(CH+1)∞ , (2.20)

CF := CH/(CH + 1), (2.21)
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and

αF := αH/(CH + 1). (2.22)

This completes the proof. ��
Remark 2.4 It should be noted that actually Propositions 2.3 and 2.2 are equivalent,
in the sense that one can also use the uniform decay of Fourier coefficients to prove a
version of (2.3) (though with possibly worse exponents).

Remark 2.5 In the thin case, the proof of Proposition 2.2 can be made much sim-
pler. Namely, one can first trivially bound the mth coefficient by the constant one,
|a�(m; y, ζ )| ≤ |a�(0; y, ζ )|, and then use (2.16) with I = (0, ω) to estimate the
constant coefficient. (Note though that if � is a lattice, then of course a�(0; y, ζ ) need
not decay!)

3 Equidistribution of shears

Recall our running assumption that � < G = PSL2(R) is a geometrically finite,
Zariski dense, discrete group with at least one cusp, and hence critical exponent δ

exceeding 1/2. As in (1.2), we will study the limit as |T | → ∞ of the measures

μT (�) :=
∫

a∈A+
�(x0 · a · sT )da.

To study the equidistribution of such,we need an appropriate space of test functions;
in particular, we will require smoothness and at least polynomial decay at the cusp.
Toward this end, for any cusp a of � and integer m ≥ 1, we introduce the space

Pm
a (�\G) ⊂ L2 ∩ C∞(�\G)

of smooth, square-integrable, automorphic functions with the following added prop-
erty. We will state it in the case a = ∞; for a general cusp a, conjugate a to ∞ in the
standard way.

We require that, for each � ∈ Pm∞(�\G), there are constants 1 ≤ C� < ∞ and
0 < α� , such that

∣∣∣∣
∂ j

∂θ j
�(naykθ )

∣∣∣∣ < C� y−α� , (3.1)

holds uniformly for all j ≤ m, y > C� , and all n ∈ N , k ∈ K . That is, after a certain
point high up in the specified cusp, we have completely uniform polynomial decay
in � its first m derivatives in k = Lie(K ). Note that we make no demands on decay
properties (beyond square-integrability) in any other non-compact regions (cusps or
possibly flares) of �\G besides the specified cusp a. Also note that the space Pm

a
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is non-empty, since, e.g., it contains the subspace of smooth, compactly supported
functions, or better yet, cusp forms.

Our main theorem, from which Theorem 1.1 follows immediately, is the following.

Theorem 3.1 Let x0 · A+ be a cuspidal geodesic ray ending in a cusp a of �, and let
� ∈ P2

a(�\G) be a test function (i.e., assume (3.1) is satisfied for all j ≤ 2). Then
there is a finite-order “Sobolev” norm S(�) (which depends on the constants C� and
α� in (3.1)), and an η > 0 depending only on the first non-zero eigenvalue of �, such
that: if � is a lattice,

μT (�) = log |T | μ�\G(�) + μ̃Eis(�) + O(S(�)T−η),

and if � is thin, then

μT (�) = μEis(�) + O(S(�)T−η),

as |T | → ∞. Hereμ�\G(�) := vol(�\G)−1
∫
�\G � is theHaar probabilitymeasure,

μ̃Eis is the “regularized Eisenstein” distribution given in (3.31), and μEis is the
distribution given in (3.25).

As a first simplification, we can immediately apply an auxiliary conjugation to
move x0 to the origin e ∼= (i,↑), whence the cusp a moves to ∞. Unfortunately, we
have thus exhausted our free parameters, and cannot control the width of the resulting
cusp, which we denoteω; that is, the isotropy group�∞ is generated by the translation
z �→ z + ω.

As outlined in the introduction, the proof of Theorem 3.1 now proceeds in two
stages, as encapsulated in the following two theorems.

Theorem 3.2 (Equidistribution in the “strip” S = �∞\G) For a test function � ∈
P2∞(�\G), define the measure:

μT,S(�) := 1

vol(�∞\N )

∫

n∈�∞\N

∫

a∈A+
�(n a a1/T )da dn

= 1

ω

∫ ω

0

∫ ∞

1/T
�(nx ay)

dy

y
dx . (3.2)

(Recall that in this context, day is dy/y, not dy/y2.) Then there is a “Sobolev” norm
SS(�) and a constant αS > 0, defined in (3.18) and (3.19), respectively, such that

μT (�) = μT,S(�) + O

(
SS(�)T−αS

)
, (3.3)

as |T | → ∞. Here αS only depends on the first non-zero eigenvalue of �.

Note that Theorem 3.2 makes no distinction between whether � is a lattice or thin.
This dichotomy is only evident in the second stage:
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Theorem 3.3 (Eisenstein distributions) Let � ∈ P2∞(�\G) as above. Lattice case:
If � is a lattice in G, then there is a distribution μ̃Eis defined in (3.31), and “residual”
distributions μσ j corresponding to (2.8) and defined in (3.33), such that:

μT,S(�) = μ(�) log(T ) + μ̃Eis(�)

+
h∑

j=1

T σ j−1

σ j − 1
μσ j (�) + O(S2,1(�)T−1/2).

Thin case: If � is thin in G, then there is a distribution μEis defined in (3.25) such
that:

μT,S(�) = μEis(�) + O

(
SH (�)T−αH

)
. (3.4)

Here SH and αH are as in Proposition 2.3.

It is clear that Theorem 3.1 follows immediately from Theorems 3.2 and 3.3.

3.1 Stage 1: Proof of Theorem 3.2

We proceed with a series of elementary lemmata. Beginning with the definition (1.2),
we express μT in terms of coordinates in T 1(�\H):

μT (�) :=
∫ ∞

1
�

(
yT√
T 2 + 1

+ i
y√

T 2 + 1
,↑
)
dy

y
. (3.5)

All of our manipulations below will not affect the direction of the tangent vector, so
we drop the ↑. (Alternatively, pretend � is right-K -invariant.)

Lemma 3.4 With C� and α� from (3.1), we let

U > C�T (3.6)

be a parameter to be chosen later in (3.17). Then

μT (�) = M1 + O

(
‖�‖∞T−2 + C�

(
T

U

)α�
)

, (3.7)

where

M1 :=
∫ U

1
�
(
y + i

y

T

) dy
y

. (3.8)

123

Author's personal copy



406 D. Kelmer, A. Kontorovich

Proof From (3.5), make a change of variables y �→ y
√
T 2 + 1/T , and simplify to

μT (�) =
∫ ∞

T/
√
T 2+1

�

(
y + i

y

T

)
dy

y

=
∫ ∞

1
�

(
y + i

y

T

)
dy

y
+ O

(
‖�‖∞T−2

)
.

With U as in (3.6), break the range of integration [1,∞) = [1,U ] ∪ (U,∞). On the
latter range, apply (3.1), whence (3.7) follows. ��

Now we invoke the Fourier expansion (2.13). Define

�⊥(x + iy) :=
∑

m∈Z\{0}
a�(m; y) eω(mx),

so that

�(x + iy) = a�(0; y) + �⊥(x + iy). (3.9)

Inserting (3.9) into (3.8) splitsM1 into a “main term” and “error”:

M1 = M2 + E1,

where

M2 :=
∫ U

1
a�

(
0; y

T

) dy
y

, (3.10)

and

E1 :=
∫ U

1
�⊥ (y + i

y

T

) dy
y

. (3.11)

We first analyze M2.

Lemma 3.5 Recalling the measure μT,S in (3.2), we have

M2 = μT,S(�) + O

(
C�

(
T

U

)α�
)

(3.12)

Proof Inserting (2.14) into (3.10) gives

M2 =
∫ U

1

1

ω

∫ ω

0
�
(
x + i

y

T

)
dx

dy

y
= 1

ω

∫ ω

0

∫ U/T

1/T
� (x + iy)

dy

y
dx .

Extending the y integral from U/T to ∞ and applying (3.1) again gives the claimed
main and error terms in (3.12). ��
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Returning to E1 in (3.11), our next goal is to incorporate the Fourier expansion, via
the following

Lemma 3.6 Let

E2 :=
U∑

u=1

1

u2
∑

m∈Z\{0}

∣
∣a�

(
m; u

T

)∣∣

|m| .

Then

|E1| � E2 + S∞,1(�)
logU

T
. (3.13)

Proof We first straighten out the sheared integral in (3.11) by breaking it into sums:

E1 =
U−1∑

u=1

∫ u+1

u
�⊥(y + i

y

T

) dy
y

.

On each interval, estimate

�⊥(y + i
y

T

)
= �⊥(y + i

u

T

)
+ O

(
S∞,1(�)

1

T

)
,

and Fourier expand

�⊥(y + i
u

T

)
=
∑

m �=0

a�

(
m; u

T

)
eω(my).

Thus

E1 =
U−1∑

u=1

∑

m �=0

a�

(
m; u

T

) [∫ u+1

u
eω(my)

dy

y

]
+ O

(
S∞,1(�)

logU

T

)
.

Inserting absolute values and estimating the bracketed term by partial integration gives
(3.13), as claimed. ��

Our final task is to estimate E2; we cannot directly use the decay of Fourier coef-
ficients (2.15) in the full range of m, so introduce a parameter M to be chosen later,
and decompose

E2 = E≥ + E<,

where for � ∈ {≥,<},

E� :=
U∑

u=1

1

u2
∑

0 �=|m| � M

∣∣a�

(
m; u

T

)∣∣

|m| .

We first estimate the large range trivially.
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Lemma 3.7

E≥ � ‖�‖∞ M−1/2. (3.14)

Proof Cauchy-Schwarz and Parseval give:

E≥ �
U∑

u=1

1

u2

⎛

⎝
∑

|m|≥M

∣∣∣a�

(
m; u

T

)∣∣∣
2

⎞

⎠

1/2⎛

⎝
∑

|m|≥M

1

|m|2

⎞

⎠

1/2

�
U∑

u=1

1

u2

(
1

ω

∫ ω

0

∣∣∣�
(
x + i

u

T

)∣∣∣
2
dx

)1/2
M−1/2,

which can be estimated by (3.14), as claimed. ��
Finally, we estimate the range of small m using decay of Fourier coefficients. Note

that this is the only part of the argument involving any spectral theory; nevertheless,
thanks to the uniformity of Proposition 2.2, we do not at this stage perceive any
difference between the lattice and thin cases.

Lemma 3.8 Recalling the Sobolev norm SF and constants CF and αF from Propo-
sition 2.2, we have

E< � SF (�) T−αF MCF . (3.15)

Proof Applying (2.15) gives

E< =
U∑

u=1

1

u2
∑

1≤|m|<M

∣∣a�

(
m; u

T

)∣∣

|m| �
U∑

u=1

1

u2
∑

1≤|m|<M

SF (�)|m|CF−1
∣∣∣
u

T

∣∣∣
αF

,

which is bounded as claimed in (3.15). ��
Proof of Theorem 3.2 This is now a simple matter of combining the above lemmata.
To balance (3.14) and (3.15), set

M =
(
‖�‖∞ SF (�)−1 T αF

)1/(CF+1/2)
,

for a net error, crudely, of

E2 = E≥ + E< = O
(
max(SF (�),S∞,1(�)) · T−αF/(2CF+1)

)
. (3.16)

To balance the error in (3.7) and (3.12) with that of (3.13), we take U to be some
power of T , say,

U = T 1+1/α� , (3.17)
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assuming that T is large enough for (3.6) to be satisfied. Then the errors in (3.12) and
(3.7) are O(C�/T ), and the second error term in (3.13) is O((1+ 1

α�
)S∞,1 log T/T ),

which subsumes O(‖�‖∞T−2) in (3.7). On (again, crudely) setting

SS(�) :=
(
C� + 1

α�

)
· max(SF (�),S∞,1(�)), (3.18)

and

αS := αF/(2CF + 1), (3.19)

as in (3.16), one can verify directly that the net error is as claimed in (3.3).
This completes the proof. ��

3.2 Stage 2: Proof of Theorem 3.3

We first give the proof in the thin case, as it is significantly easier.

3.2.1 Assume � is thin in G

Returning to (3.2), write μT,S(�) as:

μT,S(�) = 1

ω

(∫ ∞

0
−
∫ 1/T

0

)∫ ω

0
�(z,↑) y dz =: T1 − T2,

say. Here we have set dz := dx dy/y2. We bound T2 by

|T2| ≤
∫ 1/T

0
|a�(0; y,↑)| y

dy

y2

�
∫ 1/T

0
SH (�)yαH y

dy

y2
= SH (�) T−αH , (3.20)

where we applied (2.16) (with I = (0, ω)).
Recalling that �∞ = ( 1 ωZ

1

)
< �, we next deal with

T1 := 1

ω

∫

�∞\H

�(z,↑) y dz. (3.21)

Note that the integral converges absolutely; for y → ∞, this is due to (3.1), while for
y → 0, we can again use (2.16).

For ease of exposition, it is convenient at this point to first assume that � is right-
K -invariant, that is,
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�(z, ζ ) = �(z). (3.22)

Below we detail the modifications needed to handle the general case.
Recall from (2.7) that

E(z, s) := 1

ω

∑

γ∈�∞\�
Im(γ z)s

is the Eisenstein series at∞ of a cusp of widthω. Note that the defining sum converges
absolutely and uniformly on compacta in the rangeRe(s) > δ, since � is assumed to
be a thin subgroup of G. In particular, E(z, s) is regular at s = 1.

Then, letting F be a fixed fundamental domain for �\H, we can “re-fold” and
write (3.21) as

T1 = 1

ω

∑

γ∈�∞\�

∫

γF
�(z) y dz

= 1

ω

∑

γ∈�∞\�

∫

F
�(z) Im(γ z) dz = 〈�, E(·, 1)〉 .

Setting

μEis(�) := 〈�, E(·, 1)〉 , (3.23)

we immediately see that T1 = μEis(�), which combined with (3.20) gives:

μT,S(�) = μEis(�) + O
(SH (�) T−αH

)
,

as claimed.
Finally, we remove the assumption (3.22) and extend the proof to the general case.

For a unit tangent vector ζ at z, write θ ∈ [−π, π) for the “angle” of ζ = ζθ , measured
from the vertical ↑ counterclockwise. We first decompose �(z, ζ ) in a Fourier series
in ζ , writing:

�(z, ζ ) =
∑

n∈Z

�̂n(z) χn(ζ ), (3.24)

where χn(ζθ ) = einθ in the above notation, and

�̂n(z) := 1

2π

∫ π

−π

�(z, ζθ ) χn(ζθ ) dθ.

Note that each �̂n lives in the space (�, 2n) of functions on H given in (2.11).
Returning to T1 in (3.21), we insert (3.24) (with ζ = ↑), and “re-fold ” again,

obtaining:
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T1 = 1

ω

∑

γ∈�∞\�

∫

γF

∑

n∈Z

�̂n(z) Im(z) dz

= 1

ω

∑

n

∑

γ∈�∞\�

∫

F
�̂n(z) εγ (z)2nIm(γ z) dz

=
∑

n

〈
�̂n, En(·, 1)

〉
.

Here, E2n(z, s) are the “wight-2n” Eisenstein series given by the series (2.9); these
all converge absolutely forRe(s) > δ. The absolute convergence of the sum over n is
guaranteed by (3.1) after taking two derivatives in θ and noting that ∂2�

∂θ2
∈ P0

a(�\G).
Then, on defining

μEis(�) :=
∑

n

〈
�̂n, En(·, 1)

〉
, (3.25)

(3.4) follows immediately. Note that if � is K -invariant, the two definitions (3.23)
and (3.25) agree, and moreover μEis is actually a measure. In general, μEis is a
distribution, as we need some derivatives of �̂n to ensure the convergence of (3.25).
This completes the proof in the thin case.

3.2.2 Case � is a lattice in G

In this case, our analysis precedes in a similar fashion to that in [43]. We begin with
the following

Lemma 3.9 For 1 < σ < 1 + α� , we have

μT,S(�) =
∑

n

1

2π i

∫

(σ )

T s−1

s − 1

〈
�̂n, En(·, s̄)

〉
ds. (3.26)

Proof Starting with (3.2), write

μT,S(�) = 1

ω

∫ ∞

0

∫ ω

0
�(z,↑) hT (y) dz, (3.27)

where we have set

hT (y) := y · 1{y>1/T }.

Note the Mellin transform/inverse pair:

h̃T (s) :=
∫ ∞

0
hT (y) y−s dy

y
= T s−1

s − 1
,
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and

hT (y) = 1

2π i

∫

(σ )

T s−1

s − 1
ys ds.

The first integral converges absolutely forRe(s) = σ > 1; the second is henceforth
interpreted (after partial integration) as the absolutely convergent integral

hT (y) = 1

2π i

∫

(σ )

T s−1

log(T y)(s − 1)2
ys ds. (3.28)

Inserting (3.28) into (3.27) with the above convention gives

μT,S(�) = 1

ω

1

2π i

∫

(σ )

T s−1

s − 1

∫ ∞

0

∫ ω

0
�(z,↑) ys dz ds, (3.29)

which is absolutely convergent in the range 1 < σ < 1 + α� using (3.1).
Now we proceed as in the thin case, decomposing

�(z,↑) =
∑

n

�̂n(z)

and “unfolding”; for each n ∈ Z this gives

∫

�∞\H

�̂n(z) y
s dz = 〈

�̂n, En(·, s̄)
〉
.

Summing over n and inserting into (3.29) gives (3.26), as claimed. ��
To finish the proof of Theorem 3.3, we make the following definition:

Ẽn(z, s) =
{
En(z, s) n �= 0
E(z, s) − 1

vol(�\H)(s−1) n = 0 ,

which, again, is regular at s = 1 for all n. Then (3.26) can be rewritten as

μT,S(�) = μ�\G(�) log(T ) +
∑

n∈Z

1

2π i

∫

(σ )

T s−1

s − 1

〈
�̂n, Ẽn(·, s̄)

〉
ds, (3.30)

where we used that

〈
�̂0,

1

vol(�\H)

〉
= μ�\G(�), and

1

2π i

∫

(σ )

T s−1

(s − 1)2
ds = log T .

Now shifting the contour of integration to Re(s) = 1
2 , we pick up residues from

the simple pole at s = 1 and from the residual spectrum at s = σ j as in (2.8). The
residue at s = 1 is
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∑

n∈Z

〈
�̂n, Ẽn(·, 1)

〉 =: μ̃Eis(�), (3.31)

that is, this is our “second-order” contribution, and is a distribution (as opposed to a
measure) since � is not assumed to be K -finite. Note that if � is K -fixed, then (3.31)
simplifies to just

μ̃Eis(�) = 〈
�, Ẽ0(·, 1)

〉
, (3.32)

as claimed in (1.7).

Each pole s = σ j contributes a residue T σ j−1

σ j−1 μσ j (�), where

μσ j (�) :=
∑

n∈Z

〈
�̂n, ϕσ j ,n

〉
, (3.33)

with ϕσ j ,n the “weight-2n” residual form given in (2.10). Note that these distributions
are exactly the same as those arising in Sarnak’s analysis [43, p. 737].

We thus obtain

μT,S(�) = μ(�) log(T ) + μ̃Eis(�) +
h∑

j=1

T σ j−1

σ j − 1
μσ j (�)

+
∑

n

1

2π i

∫

(1/2)

T s−1

s − 1

〈
�̂n, En(·, s̄)

〉
ds.

Finally, taking absolute values and combining Cauchy Schwartz with (2.12), we
can bound each of the terms in the last sum by

∣∣∣∣
1

2π i

∫

(1/2)

T s−1

s − 1

〈
�̂n, En(·, s̄)

〉
ds

∣∣∣∣� T−1/2‖�̂n‖2.

On estimating
∑

n ‖�̂n‖2 � S2,1(�), we finally conclude the proof of Theorem 3.3.

4 Application 1: moments of L-functions

Theorem 1.6 now follows readily from Theorem 1.1, as we explain below. Recall that
we will illustrate the method on the simplest case of f being a weight-k holomorphic
Hecke cusp form on PSL2(Z); the calculation for general cuspidal GL(2) automorphic
representations is similar.

Let�(x + iy) = | f (x + iy)|2yk , and use (1.11) to write the left hand side of (1.12)
as

1

2π

∫

R

∣∣L
(
f, 1

2 + i t
)∣∣2 ∣∣Wk

( 1
2 + i t, T

)∣∣2 dt =
(∫ 1/T̃

0
+
∫ ∞

1/T̃

)

� (T y + iy)
dy

y
,
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where we have set

T̃ :=
√
T 2 + 1

for convenience. Theorem 1.1 can be applied directly to the range [1/T̃ ,∞), but
the range (0, 1/T̃ ) must be manipulated. Changing variables y �→ 1/y, using the
automorphy of � that �(−1/z) = �(z), and changing y �→ T̃ 2y gives:

∫ 1/T̃

0
� (T y + iy)

dy

y
=
∫ ∞

1/T̃
� (−yT + iy)

dy

y
.

Now we can apply Theorem 1.1 to both contributions, giving

1

2π

∫

R

∣∣L
(
f, 1

2 + i t
)∣∣2 ∣∣Wk

( 1
2 + i t, T

)∣∣2 dt

= 2μ�\G(�) log(T ) + 2μ̃Eis(�) + O�(T−η). (4.1)

The first term is of course

μ�\G(�) = ‖ f ‖2
vol(�\H)

,

where the norm is with respect to the Petersson inner product. It remains to show that
the second term, that is, the Eisenstein measure μ̃Eis (�), can be expressed as special
value (at the edge of the critical strip) of a symmetric square L-function. Note that �
is a function onH, that is, as a function onG it is right-K -invariant; therefore μ̃Eis(�)

is determined by the simpler expression (3.32) (or (1.7)).

Proposition 4.1 With the above notation, we have

μ̃Eis (�) = ‖ f ‖2
vol(�\H)

(

′



(sym2 f, 1) + γ − 2

ζ ′

ζ
(2)

)
.

Clearly Proposition 4.1 inserted into (4.1) gives the right hand side of (1.12), com-
pleting the proof of Theorem 1.6.

Proof of Proposition 4.1 To evaluate

I := μ̃Eis(�) =
〈
| f |2yk, Ẽ(·, 1)

〉
,

use (1.5) to write

I = lim
s→1

(〈
| f |2yk, Ẽ(·, s̄)

〉)
= lim

s→1

(〈
| f |2yk, E(z, s̄)

〉
− 1

(s − 1)V
‖ f ‖2

)
,

(4.2)
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where

V := vol(�\H).

By standard Rankin–Selberg theory, we have

〈
f ḡ yk, E(·, s̄)

〉
= (4π)−(s+k−1)�(s + k − 1)L( f ⊗ ḡ, s) = 
( f ⊗ ḡ, s).

When f = g, the Rankin–Selberg L-function factors (see, e.g., [26, p. 232]) as

L( f ⊗ f̄ , s) = ζ(s)

ζ(2s)
L(sym2 f, s).

Hence

〈
| f |2yk, E(·, s̄)

〉
= 
( f ⊗ f̄ , s) = ζ(s)

ζ(2s)

(sym2 f, s), (4.3)

where 
(sym2 f, s) is as in (1.13). Taking residues at s = 1 on both sides of (4.3)
gives

‖ f ‖2
V

= 1

ζ(2)

(sym2 f, 1). (4.4)

Inserting (4.4) and (4.3) into (4.2) gives

I = lim
s→1

(
ζ(s)

ζ(2s)

(sym2 f, s) − 1

(s − 1)

1

ζ(2)

(sym2 f, 1)

)
.

Using ζ(s) − 1
s−1 → γ as s → 1 (Euler’s constant), and elementary calculus, we

have that

I = ‖ f ‖2
V

(

′



(sym2 f, 1) + γ − 2

ζ ′

ζ
(2)

)
,

on using (4.4) again. This completes the proof. ��
Note that one could also extend our method to Eisenstein series, and then evaluate

the (weighted) fourth moment of the Riemann zeta function using Theorem 1.1.

4.1 Subconvexity?

We leave open the problem of extracting from the effective second moment (1.12) a
subconvex bound

∣∣L
(
f, 1

2 + i t
)∣∣ � f |t |1/2−η
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in the t-aspect. Such is already known [19,42] in the Maass case via trace formulae,
explicit expansions, and shifted convolutions, but it would be interesting to give a new
proof using only equidistribution. (Of course the general GL(2) subconvexity problem
has been resolved [35]; the interest here would be in the method used.)

The key issue is that the archimedean factor |Wk |2 in (1.12) is a smooth weight,
which does not allow truncation; if the weight could be replaced by a sharp cutoff
while still having a power savings rate, then the subconvexity bound would follow
immediately. This could be accomplished by finding a function �X (T ) so that

∫

R

�X (T )
∣∣Wk

( 1
2 + i t, T

)∣∣2 dT ?= 1|t |<X ; (4.5)

indeed, then one would multiply both sides of (1.12) by �X (T ) and integrate in T ,
obtaining

1

2π

∫

|t |<X

∣∣L
(
f, 1

2 + i t
)∣∣2 dt =

∫

R

�X (T )
(
C1 log T + C2 + O(T−η)

)
dT

?= C ′
1X log X + C ′

2X + O(X1−η′
).

Another approach is “shorten the interval,” that is, to replace the right hand side of
(4.5) by 1|t−X |<Y , with Y < X1−η.

Either way, one would need to invert the “W-transform”:

�(T ) �→ �̃(t) :=
∫

R

�(T )
∣∣Wk

( 1
2 + i t, T

)∣∣2 dT .

Unfortunately, there are basic difficulties with said inversion, namely a Paley-
Weiner (or Heisenberg uncertainty) analysis shows that the transform has insufficient
harmonics to be invertible and functions �X as above do not exist, even in this sim-
ple holomorphic case! (Cf. the related discussion in, e.g., [20, Appendix].) The case
of non-holomorphic Hecke-Maass forms is seemingly even more complicated as the
weights (1.10) will involve Bessel functions.

A potential method to circumvent this issue (since our equidistribution theorem is
proved in the generality of the unit tangent bundle) is to use all the harmonics afforded
us by f , that is, by applying Maass raising and lowering operators. This does not
change the L-function, but results in effective second moments with a large span of
weight functionsW . One can hope that enough combinations of these can recover the
desired sharp cutoff functions �X , and we plan to return to this question later.

5 Application 2: Counting and non-equidistribution

5.1 Proof of Theorem 1.9

As the method of counting from equidistribution is by now completely standard, we
give a brief sketch (only the setup is not completely obvious). Let G = SL2(R) be
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the spin double-cover G
ι−→ SO◦

Q(R) of the (identity component of the) special
orthogonal group preserving an indefinite ternary quadratic form Q. Let � < G be
discrete, Zariski-dense, geometrically finite, and have at least one cusp, and given
x0 ∈ R

3, let O = x0 ι(�) be a discrete orbit. Let H = StabG x0 be the stabilizer of
x0 in G, and let �H := � ∩ H be the stabilizer in �. Given an archimedean norm
‖ · ‖ on R

3, we obtain a norm-T ball BT in H\G as in (1.18). Our goal is to estimate
NO(T ) = |O ∩ BT |, that is,

NO(T ) = {γ ∈ �H\� : ‖x0 ι(γ )‖ < T }.

Thanks to the discussion in §1.3.1 (see Table 1), there are only two new cases to
prove, both occurring only when H = StabG x0 is diagonalizable. We can choose the
spin cover ι up to conjugation, and hence can assume that H = A. Having made such
a choice, we will henceforth drop ι from the notation. To handle the two lacunary
cases, we may assume that �H is trivial. (In principle, �H could be finite.)

We then break NO(T ) into two contributions as follows. Recalling the shear st in
(1.1), we decompose each g ∈ G = ANK uniquely as g = ast k, and write

G± := {g = ast k ∈ G : a ∈ A±}.

Hence we can write

NO(T ) = N+
O (T ) + N−

O (T ),

say, where

N±
O (T ) := {γ ∈ � ∩ G± : ‖x0 γ ‖ < T },

and treat only N+
O (T ), the other contribution being the same (after conjugation).

If � is a lattice, then the “lacunary” case occurs only when both 0 and ∞ (that is,
the two endpoints of A) are cusps of �. When � is thin, the “lacunary” cases occur
when at least one of 0, ∞ is a cusp; Lemma 1.11 forces the other endpoint to be either
a cusp or in the free boundary. If ∞, say, is in the free boundary, then N+

O (T ) gives
a contribution of order N δ , as described below (1.21). So to restrict attention to the
lacunary case, we assume that ∞ is a cusp of �. Now we continue with the standard
smoothing/unsmoothing argument applied to the equidistribution theorem. For ease
of exposition, assume that the norm ‖ · ‖ is right-K -invariant. (This assumption is
standard to relax.)

Let ψ : G → R≥0 be a right-K -invariant bump function supported in an ε > 0
ball about the origin in G/K with

∫
G ψ = 1. Set �(g) := ∑

γ∈� ψ(γ g), so that∫
�\G � = 1. Let

f +
T (g) := 1{‖x0g‖<T, g∈G+},

and F+
T (g) := ∑

γ∈� f +
T (γ g). Then

F+
T (e) = N+

O (T )
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and

〈F+
T , �

〉 = N+
O (T )(1 + O(ε)),

since � is a bump function about the origin. Unfolding the inner product gives

〈F+
T , �

〉 =
∫

G
f +
T (g)�(g)dg =

∫

st

f +
T (st )

[∫

a∈A+
�(ast )da

]
dst .

Applying Theorem 1.1 to the bracketed term and integrating in t completes the sketch
of the two remaining cases of Theorem 1.9.

5.2 Proof of Proposition 1.14

As above, let the stabilizer H = A be diagonalizable, let ∞ be a cusp of �, and
assume for ease of exposition that the norm ‖ · ‖ is right-K -invariant. The statement
of Proposition 1.14 assumes that � < SL2(Z) is integral and thin. For an integer
q ≥ 1, let �(q) < � be its level-q principal congruence subgroup, and for a fixed
� ∈ �/�(q), let

Oq,� := x0��(q)

be the congruence coset orbit. The corresponding counting function is then

Nq,� (T ) := |Oq,� ∩ BT |.

We claim that this count depends on � , that is, is not distributed uniformly among
the cosets.

One way to explain this is to unravel the formalism of the previous proof, and note
that C1 in (1.17) is essentially the evaluation at s = 1 of an (unregularized) Eisenstein
series corresponding to one of the cusps of �(q); these values do not coincide for all
cosets, which one can see as follows.

Assume for simplicity that
(
1 Z

1

)
< �; then the isotropy group of ∞ in �(q) is

�∞,q := ( 1 qZ

1

) = �(q) ∩ �∞.

Certainly the orbit Oq,� contains the points

x0��∞,q ⊂ Oq,� ,

so

Nq,� (T ) ≥ |x0��∞,q ∩ BT |.
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Fig. 4 The orbit x0��∞,q for � = e inside BT ⊂ H

Converting Fig. 3c from the disk D to the hyperbolic plane H, we show in Fig. 4
how the shaded region BT contains the orbit points ��∞,q for � = e. A moment’s
reflection (or rather, translation) shows that (1.23) holds for this orbit.

Something similar holds when one takes congruence cosets with the subgroups

�0(q) := {( a b
c d

) ∈ � : c ≡ 0(q)},

say, instead of �(q). The isotropy group �∞ now remains unchanged, but the same
picture shows that, for the identity coset (with � = e), the number of points in an
orbit is � T , whereas is average count is of order T/q. We leave it as an interesting
challenge to develop sieve methods which apply to this non-uniformly distributed (in
the archimedean ordering) setting.
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