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Abstract—The last mile connection is dominated by wireless
links where heterogeneous nodes share the limited and already
crowded electromagnetic spectrum. Current contention based
decentralized wireless access system is reactive in nature to
mitigate the interference. In this paper, we propose to use
neural networks to learn and predict spectrum availability in a
collaborative manner such that its availability can be predicted
with a high accuracy to maximize wireless access and minimize
interference between simultaneous links. Edge nodes have a wide
range of sensing and computation capabilities, while often using
different operator networks, who might be reluctant to share
their models. Hence, we introduce a peer to peer Federated
Learning model, where a local model is trained based on the
sensing results of each node and shared among its peers to create
a global model. The need for a base station or access point to act
as centralized parameter server is replaced by empowering the
edge nodes as aggregators of the local models and minimizing the
communication overhead for model transmission. We generate
wireless channel access data, which is used to train the local
models. Simulation results for both local and global models show
over 95% accuracy in predicting channel opportunities in various
network topology.

I. INTRODUCTION

Exponential increase [1] in data capacity requirement for

emerging applications can only be sustained by efficient usage

of electromagnetic spectrum by a variety of heterogeneous

devices. Efforts have been made to open up new spectrum,

while several unlicensed and semi-licensed models have been

proposed for a shared usage. Although, multiple operators

will prevail for licensed access, large swaths of frequencies

will be available for unlicensed use for different protocols.

We envision that future intelligent wireless networks will be

able to make distributed decisions on wireless channel access

without any aid from the centralized base station.

Distributed wireless channel access is performed using

carrier-sense and backoff mechanisms as in Wi-Fi [2]. As the

system only reacts to collisions, much of the time is wasted

in sensing, backoff and collisions as the number of nodes in

the system increases [3]. If an accurate collaborative prediction

system is appointed, we will notice a better usage of the avail-

able spectrum. Machine learning based wireless systems have

received attraction in recent years to learn hidden parameters

in a system, which are difficult to model. In this scenario,

traditional machine learning approaches require centralizing

the training data and inference processes on a single data

center. Due to the propagation characteristics of radio frequen-

cies, wireless channel is inherently distributed, and has to be

Fig. 1: Future Intelligent Wireless Network.

measured and learned at each node for optimum performance.

A base station’s view of wireless channel could be completely

different from a mobile terminal’s view, specially when they

are spatially separated. Hidden terminal problems cannot be

solved by a centralized entity when multiple parties share the

radio frequency spectrum. At the same time, many channel

properties may overlap, which can be similar in the vicinity

and learned from neighbors. Sensing at the mobile terminals

and sending the data to the base station is infeasible because

of communication costs. Moreover, there are trust and privacy

issues, which deters the operators to share their data. With

these challenges, we design our protocol to predict wireless

channel availability in a distributed wireless network.

Figure 1 shows the last mile future network, which mainly

will constitute 1) Base stations, operated by different operators

providing Internet access to mobile terminals and IoT devices,

2) IoT devices, densely deployed and often with limited

sensing and computation capabilities, 3) Mobile terminals,

including smartphones, tablets etc., which are capable of

sensing and transmitting in a wide variety of frequency bands.

Also, they may not have the capability to monitor all the

available channels all the time, but should be able to use

any of the channels when the transmission opportunity exists.

One of the major issues of decentralized wireless access is

also the hidden terminal problem, which cannot be mitigated

by sensing at the transmitter. This requires learning channel

availability at the intended receiver (one hop neighbor) and

cannot be a localized decision. This is precisely the reason

where we deploy Federated Learning [4], [5] to predict the



channel availability in each node. The first step of our system

is to sense the channel, which the mobile terminals choose

depending on any specified criteria. Based on the sensing

data, it trains a local neural network model to predict the

channel availability. Then, it broadcasts the trained local model

parameters to its neighbors using a shared control channel.

These neighbors can be connected to different operators, but

can form an overlay network with peers to share learned

models over a common unlicensed channel. Once a node

receives local models from its neighbors, it 1) concatenates

the models for which it does not have the data and 2)

aggregates the model by averaging the model parameters from

its neighbors. The first case helps a node to learn channel

availability quickly from neighbor, which it has not sensed and

thus does not have a local model. The second case addresses

the hidden terminal problem by considering channel prediction

models of it’s one-hop neighbors.

Our protocol does not require a centralized parameter server,

since we deploy global model aggregation at each node. Chan-

nel availability prediction does not require to propagate multi-

ple hops as it depends on the interference that a transmitter can

create at another intended receiver. Hence, the global model

is also small enough to be implemented at the edge. It is to

be noted here that current smartphones already deploy neural

network models in GPUs or neural processors for efficient

image processing. Hence, our assumption of deploying a local

neural network model on these smartphones at the edge of the

network is quite realistic.

II. RELATED WORK

Federated learning [4] was proposed to increase commu-

nication efficiency where the entire data-set is not readily

available to the central server and mobile nodes have a small

fraction of that data available to them. They use the local

data to learn the local model and share only the model

parameters with parameter server (PS). The model parameters

are aggregated in the centralized PS to generate the global

model, which is shared with the mobile nodes. There has been

numerous applications of federated learning to model various

aspects of wireless systems, none of those have attempted

to make the system completely decentralized removing the

need of any parameter server. Authors in [6] proposed a

model segment level decentralized federated learning to pull

the models from participating nodes. Authors have taken a

segmented update approach in [7], [8], which in spite of being

a fully decentralized approach, needs number of nodes for each

gossip segment to be precisely defined for most efficient model

update. This is not needed in our system design. [9] explores

the effect of varying number of nodes updating simultaneously

to the parameter server. A federated learning approach for

packet classification has been discussed in [10], which also

requires parameter server to aggregate the model. [11]–

[17] incorporates various applications and model updates for

Federated learning, which uses base stations as the parameter

server. A peer to peer model of federated learning is proposed

in [18] where the authors assumed the data is available to each

mobile nodes. Also, there is an assumption that the data is fully

orthogonal or uncorrelated. On the contrary, in our system, the

neighbors in close proximity will have highly correlated data

based on channel sensing. Hence, none of the above mentioned

models or solutions can be applied directly in our system.

III. BACKGROUND

In this section we describe the concept of federated learning

and why it is so well suited for our problem of channel

sensing and prediction. Federated Learning enables distributed

devices to collaboratively learn a shared prediction model

while keeping all the training data on the device. Once

trained, the updated parameters are aggregated in a centralized

parameter server to create a global model. Assuming n nodes

are present in a network, and θi is the local model parameter

matrix of the node i, then the aggregator creates a global model

Θ as shown in equation 1.

1

n

n∑

i=1

θi = Θ (1)

Any wireless communication system is inherently a dis-

tributed system. Conventional ML systems work on the as-

sumption of having the entire data-set and processing capabil-

ity available in a central server. It is not feasible in our case not

only due to privacy reasons, but due to high volume of data

that needs to be shared for training purposes yielding high

communication costs. Consequently, decentralized approach

is a lucrative solution that incurs minimum communication

overhead and computation costs.

IV. PROBLEM FORMULATION

In this section we demonstrate peer to peer based federated

learning system for wireless networks for predicting channel

availability. The notion of distributed learning regime lies in

two possible scenarios: data parallelisation and model paral-

lelisation. While federated learning predominantly exploits the

data parallelisation by using the same training model with

orthogonal or non-overlapping data-set. In wireless systems,

the data might overlap, thus providing higher priority for the

overlapping data, as this is informed by frequent appearance

of relative parameter. We assume N number mobile nodes

in the network, where ith node is denoted by Ni. All the

nodes are acting as wireless sensors denoted by set N and

are participating in the distributed learning. Each node has

their model generated from channel sensing results of that

node itself, thus guaranteeing only a local view of the wireless

system owing to limited visibility of the mobile nodes. Each

local data-set is denoted by Xi and is accompanied by a label

set Yi, i ∈ N . Following our assumption that local data-sets

have overlap in wireless networks,
⋂n

i=0
Xi 6= ∅, where ∅

denotes the empty set.

Each node Ni generates a local parameter set θi, where i
denotes the node identity. These parameters are shared among

the neighboring mobile nodes. Only the model parameters

from the local model are shared with other nodes in a

broadcast signal, as it does not include any raw data from the



Fig. 2: Channel Sensing and Local Model Exchange in Hidden

Terminal Scenario.

primary node leveraging the inherent data preserving nature of

federated learning. We assume the local models implemented

in the mobile nodes has access to the local likelihood functions

that generate each local weight matrix or parameter matrix θi.

Based on our assumptions, the global parameter generated

at the node Ni can be denoted as Θi, where

‖Yi −Xiθi‖ = η1 and ‖Yi −XiΘi‖ = η2
where η2 6 η1 and ‖.‖ is the L2 norm. Since η2 denotes

the error rate in predicting channel availability while using

updated global parameter, it should be equal or less than the

error rate using local models η1, because of limited channel

information shared in local models.

V. CHANNEL AVAILABILITY PREDICTION PROTOCOL

In traditional CSMA-CA system, channel availability is

sensed by a mobile node for a short duration and if it senses the

channel busy, it backs-off for a duration w randomly chosen

from the contention window, which grows exponentially in

every iteration if the node senses the channel to be busy.

Furthermore low power mobile nodes can sense only one

channel giving rise to uneven distribution of channel resource

usage for each node. Figure 2 shows a hidden terminal

scenario, where nodes N1 and N3 are hidden to each other

when they sense the channel and transmit at the same time

to create interference at the receiver, node N2. Hence, sensing

locally and learning on only local sensing data will not address

the hidden terminal issue. It is important to capture node N2’s

sensing information in the learning parameters of both N1 and

N3. Thus, when local model θ2 of node N2 gets propagated

to both its neighbors, channel availability at receiver N2 is

also incorporated in the aggregated model. It is to be noted

here that sensing the channel creates a prediction for all the

transmissions near that node. Hence, even when IoT devices

or other nodes are not sensing the channel, their transmission

characteristics are captured by one-hop neighbors who are

sensing the channel.

A. Channel sensing

Multiple traffic arrival rates (multiple varying λs) are incor-

porated in the channel traffic model, where individual traffic

arrival follows Poisson distribution and different possible

arrivals are uniformly distributed in time. These traffic flows

may be generated by one node or multiple nodes, but, when

transmitted in a channel, is sensed by all neighbors which are

sensing or receiving in that channel. For example, multiple

IoT devices may generate different traffic rates, and might not

be sensing the channel due to power constraints. However,

a mobile node, if participating in sensing and collaboration,

will sense the channel and observe it to be busy during the

transmission period. For example, if multiple nodes around

node N1 in figure 2 generates traffic at different rates and

transmits them, then sensing at N1 will capture all those times

as channel being busy. Thus, λ1 is a combination of multiple

traffic patterns. Also, there are multiple nodes that are common

in one-hop neighborhood, thus there is a significant overlap of

data among one-hop neighbors. The mobile nodes sense the

channel for a small time period δ, where δ � Lpkt, and Lpkt is

the minimum packet transmission duration in the network. In

each δ, if the mobile terminal senses the channel busy for any

duration, it indicates the channel to be busy (denoted as 1) for

that time, thus discretizing the channel output and generating

a sequence of bits that encodes channel sensing result as a

binary time-series.

B. Training Local Model

Each node Ni generates the time-series as channel sensing

result, which includes channel activity sensed within the

coverage area of this node. This time-series is mapped is

mapped into one-hot code and fed to a two layer LSTM

network, which generates the local parameter set θi for channel

prediction depending on sensing data from node Ni only.

C. Model Sharing

Every node shares their locally learned parameter matrix θi,
for node i as a broadcast packet, thus sharing its local model

only to all one hop neighbors. These local models contain

parameters learned from only the local limited view of the

source node. The parameters learned from the neighbors are

not shared, thus limiting the model propagation to one hop

only.

D. Global Model Generation

All nodes Nj , j 6= i, j ∈ (1,M) are sensing the same

channel thus seeing a part of the same network traffic as the

primary node Ni denoted by λi along with other network

traffic denoted by λ1, λ2, ..., λM , where each of them are

association of set of different arrival rates. In the figure 2 we

can only see three nodes, but we will generalize our discussion

here. In this scenario all local parameter set θl generated from

Nl, l ∈ M will carry the information of network traffic λi.

Thus averaging, of the parameters will generate very high

accuracy of the global model of node Ni. Averaging will

reduce weights of network traffic contributed by λks. Thus



(a) Neural Network Architecture. (b) LSTM cell.

Fig. 3: Neural Network architecture in each edge node.

setting wi = 1 generates 98% accuracy for channel prediction

of node Ni So the global model becomes,

θi +
1

M

M∑

l=1

wl(θl + ηl) = Θi (2)

where wl=1, l ∈ M

E. Learning parameters for orthogonal channels

There might appear another scenario where nodes sense

different channels even in a similar network as shown in Fig-

ure 2 consequently generating local model parameters that are

entirely uncorrelated, thus aggregating parameters following

any algebraic operation is not feasible. So to predict other

channel availability we have to store the model parameters and

generate a concatenated global model for channel prediction.

Here as we are storing different models and since it is a multi-

node update process, there needs to be an optimum number

of shared models to be stored while dealing with memory

constrained edge devices.

VI. NEURAL NETWORK ARCHITECTURE

Traditional neural networks (NN) (i.e., feed-forward net-

works and CNN) are not capable of learning data sequences

such as text prediction since the output of the traditional NN

depends on the current input and is given by:

Yi = f(w, b,Xi) (3)

where f is the NN activation function, w and b are the weights

and biases of the NN, and Xi and Yi are the input and the

output respectively.

Recurrent NN (RNN) [19] solves this problem by making

the output of the RNN depends on the current input and the

input state. The input state relies on the history of the previous

inputs and the outputs of the RNN. The output of the RNN is

given by :

(Yt, ht) = f(w, b,Xt, ht−1) (4)

where ht is the state of the RNN at time t. However the

RNN can not capture the long term dependencies, since the

output depends on only one cell state ash shown in (4). Long

Short Term Memory networks (LSTMs) [20] are a special

kind of RNNs, which are capable of capturing the sequence

dependencies both long and short term.

A. Neural Network Structure

We use LSTMs in the local model at each edge node,

the structure of which is shown in figure 3. As depicted in

figure 3a the LSTM network has 2 layers including P nodes

in the first layer and Q nodes in the second layer followed by

a dense layer that generates the trained parameters. We have

chosen a two layer LSTM network along with a dense layer

before output, with neurons {P ,Q} pairs, where outputs from

P neurons of input layer is mapped in an one to many fashion

to neurons of second layer with Q elements, which ultimately

generates a parameter set of dimension (Q,2).

Each cell of LSTM network is based on two main com-

ponents. The first part is the conveyor belt, which shares the

network history among all the LSTM cells. The second part

is the component of the LSTM cell. The LSTM cell consists

of three sigmoid functions, which act as three main gates as

shown in figure 3b. The first gate allows the cell input update

the conveyor belt. The second one decides whether the cell

state is affected by both the conveyor belt (i.e the Network

history) and the cell input or depends on the conveyor belt.

The last one controls the cell output such that the cell output

depends on both the input and the cell state or results from

the cell state only.

B. Data mapping

In this work, we consider the channel state prediction which

has two states, either idle or busy channel. This representation

is not suitable for neural networks (NN) since they deal with

the real numbers. So, we transform the data from binary

representation to a supported data representation to construct

the data set used to train the LSTM.

Let m be the set of all possible events. We use one-of-m
representations for the channel state, given by

pk = [1(xk = Z1), 1(xk = Z2), 1(xk = Z3), .., 1(xk = Zm)]T

(5)

Therefore, the element corresponding to the event equals to 1

while the others are 0 (i.e one-hot encoding). In this work, we

only consider one channel measurement at a time (i.e m = 2).

However this representation is also valid if the node can sense

more than one channel at a single time slot. Note that Pk can

be considered as the probability mass function (PMF) of the

event to happen.

The output layer of the LSTM is a softmax layer. The

softmax layer output p̂k ∈ [0, 1] is the probability vector of

the transmitted message. The softmax function is given by:

σ(xj) =
exj

∑
i e

xi
(6)

where xj is the component j in the vector x.

In the training phase, The LSTM updates its parameters in

each training epoch to achieve the optimal parameter

w∗ = minL(p̂ = p/p) (7)

where L is the loss function between the predicted and the

actual states, which is similar to maximize log likelihood that

acts as the best estimator.
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Fig. 5: Performance of global model for multiple nodes and

different size model.

0 50 100 150

Epoch

10
-1

10
0

T
ra

in
in

g
 L

o
s
s

M=5 Q=5

M=60 Q=120

(a) Loss function with increasing
number of epochs.

0 100 200 300 400 500

Time (S)

10
-1

10
0

T
ra

in
in

g
 L

o
s
s

M=5 Q=5

M=60 Q=120

(b) Loss function with computa-
tion time.

Fig. 6: Loss function of two different model sizes for the same

node (Node 1).

Units (NPUs) and Graphics Processing Units (GPUs), which

are prevalent in current smartphones. In other words, when

deployed in edge nodes, the computation time will be even

less, thus making it a practical choice for channel availability

prediction.

3) Effect of Size of The Neural Network: The two LSTM

networks used Tb and Ts have similar structure, thus perform-

ing in the same way, but Ts is preferrable for the following

properties:

• Ts has 392 parameters (in floating point) in local model

yielding 1512 bytes, which needs to be transmitted over

the air to share with neighbors. On the other hand, Tb has

102,252 parameters in local model yielding a size of 0.4

Megabytes. Since the local model has to be shared among

peers, Tb incurs higher computation and communication

overhead than Ts.

• As shown in figure 6a, Ts requires 400 epochs to reach the

similar accuracy as of Tb, which it achieves in 40 epochs.

But if we notice the computation time requirement, both

networks converge at the same time as shown in figure 6,

thus reaching equivalent accuracy in same computation time.

• Since our primary implementation is for edge nodes with

power and hardware resource constraints, the smaller net-

work is a natural preference due to lower footprint and

computation requirement.

Thus even though in higher variance channel traffic Tb gener-

ates slightly better results there are better trade-offs to opt for

Ts for deploying in edge nodes.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a distributed framework

for peer-to-peer based federated learning to reduce the need

for centralized parameter server. Our evaluation shows it is

highly effective in predicting channel availability in a wireless

ad hoc network. Future work will require evaluation of the

system in a larger network with a variety of channel access

mechanism. Future exploration may include edge nodes to be

able to sense disjoint channel properties and aggregate them

for transfer learning.
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