Regio- and Stereoselective Rhodium(II)-Catalyzed C–H Functionalization of Organosilanes by Donor/Acceptor Carbenes Derived from Aryldiazoacetates

Zachary J. Garlets, ¹ Elliot F. Hicks, ¹ Jiantao Fu, ¹ Eric A. Voight, ² and Huw M. L. Davies ^{1*}

¹Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322 (USA)

²Research & Development, AbbVie, 1 North Waukegan Road, North Chicago, Illinois, 60064 (USA)

Supporting Information Placeholder

ABSTRACT: The regioselective and enantioselective intermolecular sp³ C–H functionalization of silicon-substituted alkanes with aryldiazoacetates was accomplished using the recently developed dirhodium catalyst Rh₂(S-TPPTTL)₄. These reactions generate a diverse array of stereodefined substituted silacycloalkanes with high enantioselectivity and diastereoselectivity.

The selective functionalization of unactivated C-H bonds has rapidly matured into a useful and attractive synthetic strategy for constructing complex organic molecules.1 One approach to C-H functionalization is the selective intermolecular insertion of donor/acceptor carbenes stabilized by dirhodium tetracarboxylate catalysts into C-H bonds.2 Over the course of the development of this reaction, several functional groups have emerged which serve to stabilize the putative positive charge development in the transition state and ultimately enhance the lability of specific C-H bonds. These effects include conjugation, inductive, and steric effects. In addition to understanding and implementing these effects, our group is currently developing a suite of catalysts, which can functionalize C-H bonds at will depending on the catalyst and the functional groups present.3 As shown in **Scheme 1**, several new catalysts can pinpoint specific C-H bonds through carbene-induced sp³ C–H functionalization at a variety of different sites. For example, while transformations at activated benzylic sites are precedented, 3a,b three different catalysts, $Rh_2(R-3,5-di(p-tBuC_6H_4)TPCP)_4$, $Rh_2(S-TCPTAD)_4$, and $Rh_2(R-3,5-di(p-tBuC_6H_4)TPCP)_4$ tris(p-tBuC6H4)TPCP)4 can selectively functionalize either secondary, 3c tertiary, 3d or primary 3e unactivated C-H bonds, respectively. Furthermore, Rh₂(S-2-Cl-5BrTPCP)₄ achieved selective functionalization of remote C-H bonds in the presence of electronically activated benzylic C-H bonds.3f Most recently, Rh₂(S-TPPTTL)₄ was shown to be capable of desymmetrizing substituted cyclohexane derivatives, generating 3 stereocenters by the conversion of one C-H bond.3g

Scheme 1. Recent Developments in Selective C–H Functionalization Reactions with Donor/Acceptor Carbenes

A. Selective C-H Functionalization of Unactivated C-H Bonds

$$Rh_{2}(R-3,5-di(p-BuC_{0}H_{4})TPCP)_{4}$$

$$Rh_{2}(S-TCPTAD)_{4}$$

$$Rh_{2}(S-TCPTAD)_{4}$$

$$Rh_{2}(S-2-Cl-5BrTPCP)_{4}$$

$$Rh_{2}(S-2-Cl-5BrTPCP)_{4}$$

$$Rh_{2}(S-TCPTAD)_{4}$$

$$Rh_{3}(S-TCPTAD)_{4}$$

$$Rh_{4}(S-TCPTAD)_{5}(S-TCPTAD)_{7}$$

$$Rh_{2}(S-TCPTAD)_{8}(S-TCPTAD)_{8}$$

$$Rh_{2}(S-TCPTAD)_{8}(S-TCPTAD)_{8}(S-TCPTAD)_{8}$$

$$Rh_{2}(S-TCPTAD)_{8}(S-TCPTAD)_{8}(S-TCPTAD)_{8}(S-TCPTAD)_{8}(S-TCPTAD)_{8}(S-TCPTAD)_{8}(S-TCPTAD)_$$

Despite extensive work in the functionalization of C–H bonds, hyperconjugation has been understudied as a prominent interaction for enhancing site-selective and stereoselective C–H bond functionalization. While early work demonstrated the feasibility of utilizing the β -silicon effect to control regioselectivity in carbene reactions, none of these studies showcased a stereoselective reaction.⁴ Additional interest in organosilanes is evident in the literature related to the agrochemical,⁵ materials,⁶ and pharmaceutical industries.⁷ In particular, silicon can be incorporated into bioactive compounds for manipulating pharmacokinetic properties.⁷

Due to the paucity of stereoselective investigations for elucidating the role of hyperconjugation towards enhancing specific C-H bond lability, the selective C-H functionalization of organosilanes using Rh₂(S-NTTL)₄ and 1,2,3-N-sulfonyl triazoles as carbene precursors was recently reported.8 These reactions were effective for generating functionalized organosilanes bearing amino groups, but several limitations prompted our inquiries into improving this reaction. First, the most effective catalyst for the transformation of 1,2,3-Nsulfonyl triazoles was Rh₂(S-NTTL)₄, but this catalyst was only able to achieve modest diastereoselectivity (~5:1 dr) in reactions with unsymmetrical silanes. Additionally, challenges arose in expanding the substrate scope of the donor group on the donor/acceptor carbene. For example, the incorporation of heteroaromatic groups as the donor on 1,2,3-Nsulfonyltriazole has yet to be reported for carbene C-H insertion reactions. We reasoned that changing to aryldiazoacetate compounds could provide an opportunity to improve the stereoselectivity of the chiral substituted silacycloalkanes by testing the catalyst collection we have developed. Moreover, utilization of aryldiazoacetates would allow the exploration of heteroaromatic donors on the carbene precursor.9

To this end, we set out to optimize the reaction using commercially available silacyclobutane 1 and aryldiazoacetate 2 (Table 1). It was quickly determined that the current set of available catalysts were unsuitable for attaining enantioselectivities higher than 90% ee (entries 1-6). Even the use of Rh₂(S-NTTL)₄, which was effective for 1,2,3-N-sulfonyl triazoles,8 failed to provide satisfactory results (entry 4). Fortunately, the implementation of a recently developed catalyst, Rh₂(S-TPPTTL)₄, was able to achieve product formation in 74% yield and 96% ee (entry 7). This catalyst is readily made in two steps from commercially available reagents, and it has recently demonstrated a remarkable ability to desymmetrize cyclohexane derivatives,3g but its utility with other types of substrates had not been reported. Further optimization studies indicated that the trichloroethyl ester provided the best results compared to other ester derivatives (entries 8-10). Also, a small increase in enantioselectivity was obtained from a solvent screen in which α,α,α -trifluorotoluene was deemed optimal (entries 11-14). Finally, the reaction could be conducted on 1 mmol scale (entry 16) without negatively influencing the outcome of the reaction.

Table 1. Catalyst Optimization Studies

en- try	catalyst	product	solvent	yield , %ª	ee, % ^b
1	Rh ₂ (S-DOSP) ₄	3a	CH ₂ Cl ₂	55	58
2	$Rh_2(R-3,5-di(p-tBuC_6H_4)TPCP)_4$	3a	CH ₂ Cl ₂	67	-62
3	Rh ₂ (S-pPhTPCP) ₄	3a	CH_2Cl_2	45	72
4	Rh ₂ (S-NTTL) ₄	3a	CH_2CI_2	70	38
5	Rh ₂ (S-PTAD) ₄	3a	CH_2CI_2	59	-40
6	Rh ₂ (S-TCPTAD) ₄	3a	CH_2CI_2	57	88
7	Rh ₂ (S-TPPTTL) ₄	3a	CH_2CI_2	74	96
8	Rh ₂ (S-TPPTTL) ₄	3b	CH_2CI_2	67	88
9	Rh ₂ (S-TPPTTL) ₄	3c	CH_2CI_2	54	92
10	Rh ₂ (S-TPPTTL) ₄	3d	CH_2CI_2	68	93
11 ^c	Rh ₂ (S-TPPTTL) ₄	3a	CH_2CI_2	72	94
12	Rh ₂ (S-TPPTTL) ₄	3a	CHCl ₃	61	94
13	Rh ₂ (S-TPPTTL) ₄	3a	CICH ₂ CH ₂ CI	64	95
14	Rh ₂ (S-TPPTTL) ₄	3a	TFT	61	98
15 ^d	Rh ₂ (S-TPPTTL) ₄	3a	TFT	69	98
16 ^e	Rh ₂ (S-TPPTTL) ₄	3a	TFT	74	98

^aReaction conditions: 2 (0.25 mmol) in 3.0 mL solvent was added over 3 h to a solution of the silane substrate (0.75 mmol, 3.0 equiv.) and catalyst (1.0 mol%) in 1.5 mL solvent at room temperature. The reaction was allowed to stir an additional 2 h. All yields are isolated yields. ^bThe enantioselectivity was determined by chiral HPLC analysis of the isolated product. ^cThe reaction was conducted at reflux. ^d0.5 mmol scale. ^e1 mmol scale.

Next, the substrate scope was examined, and a number of different aryldiazoacetates were found to be effective. This included a variety of different substituted aryl rings that were competent in this transformation (**Scheme 2**). The reaction tended to suffer from lower yields for silanes bearing bulky aryl groups even though the enantioselectivity remained high. ¹⁰ Importantly, the substrate scope of the aryl donor could be expanded to heteroaromatic donors such as pyridine, pyrimidine, and thiophene (entries 15-17). The absolute configuration was determined by X-ray crystallographic analysis of **8**. ¹¹

Scheme 2. Scope of Silacyclobutane C-H Functionalization

Reaction conditions: Diazo compound (0.5 mmol) in 6.0 mL PhCF $_3$ was added over 3 h to a solution of the silane substrate (1.5 mmol, 3.0 equiv.) and catalyst Rh $_2$ (S-TPPTTL) $_4$ (0.5-1.0 mol%) in 3.0 mL PhCF $_3$ at room temperature, and then the reaction was allowed to stir for an additional 2 h. All yields are isolated yields. The enantioselectivity was determined by chiral HPLC analysis of the isolated product. 3 Reaction conducted on 3 mmol scale.

We also evaluated 5-membered ring silacyclopentane to determine if high levels of diastereoselectivity could be achieved using $Rh_2(S\text{-}TPPTTL)_4$. When 1-sulfonyl-1,2,3-triazoles were used previously for the C–H insertion of five-membered rings, lower levels of diastereoselectivity were achieved (up to 5:1 dr). To investigate the unique aptitude of this new catalyst for controlling diastereoselectivity, a catalyst screen was conducted using a variety of catalysts that have demonstrated recent success with similar transformations (Scheme 3). While all the catalysts delivered the desired compound, the levels of diastereoselectivity were low, but when $Rh_2(S\text{-}TPPTTL)_4$ was utilized as the catalyst the dr of 20 was improved up to ~13:1. The relative configuration was

assigned based on shielding effects arising from preferred conformers of the products. ¹⁴ The general success of Rh₂(S-TPPTTL)₄ for achieving highly stereoselective reactions was further evidenced by the formation of **21** with 20:1 dr and 98% ee for the major diastereomer and the formation of **22** with 10:1 dr and 87% ee for the major diastereomer. The importance of the trichloroethyl ester group was also assessed by using methyl 2-(4-bromophenyl)-2-diazoacetate in the reaction for the generation of **23**. The diastereoselectivity for this reaction dropped to 3:1 dr even though both diastereomers were produced with high enantioselectivity (major = 93% ee; minor 86% ee).

Scheme 3. Diastereoselective Silacylopentane C–H Functionalization

The success of Rh₂(S-TPPTTL)₄ in generating highly diastereoselective reactions made us curious about the possibility of selectively functionalizing either an equatorial or axial C-H bond when the substituents on silicon were different (Scheme 4). For this to be accomplished, substrates like 24 and 25 needed to undergo preferential C-H insertion at either an equatorial or axial C-H bond relative to the aryl substitution. Normally, C-H functionalization occurs preferentially at equatorial C-H bonds where sterics are minimized, so if any conformational bias is present in the molecule, some diastereoselectivity may be achieved. Indeed, the slight conformational bias of 24 was evidenced by the modest diastereoselectivity of 2:1-3:1 when Rh₂(OAc)₄ was utilized as the catalyst for formation of 26 and 27. This suggested that a catalyst framework was necessary to further enhance selectivity. This was confirmed by evaluating Rh₂(S-TPPTTL)₄ as the catalyst, where the generation of 26 and 27 was achieved

OCH2CCI3

21

68% yield

>20:1 dr

major 98% ee

minor 90% ee

OCH₂CCI₃

22

56% yield

10:1 dr

major 87% ee

minor 89% ee

`OMe

23

43% yield

3:1 dr

major 93% ee

minor 86% ee

OCH₂CCI₃

20

56% yield

14:1 dr

major 99% ee

minor 96% ee

with high levels of diastereoselectivity (>20:1) in addition to high levels of enantioselectivity (96% ee and 99% ee). Additionally, the formation of **28** and **29** was accomplished with good diastereoselectivity (9:1 dr and 7:1 dr) and great enantioselectivity (97% ee and 96% ee for each major compound). The relative configuration was established by ¹H nOe analysis of the products and the absolute stereochemistry was tentatively assigned by analogy to **8** (see Supporting Information).

Scheme 4. Diastereoselective C–H Functionalization of Silacyclobutanes with Different Slyl Substituents

The structure of Rh₂(S-TPPTTL)₄ has been studied by means of X-ray-crystallographic analysis and computational studies.3g The catalyst has a deep cavity, as illustrated in Figure 1, and the sixteen phenyl rings on the four phthalimido groups adopt an orientation resulting in propeller chirality. When Rh₂(S-TPPTTL)₄ was used for the desymmetrization of alkylcyclohexanes, the enantioselectivity at the carbene center was very high, favoring the R configuration, and the shape of the cavity within the catalyst caused the reactions to be highly site-selective and diastereoselective. In the case of the current studies, the asymmetric induction at the carbene site again favors the formation of the R configuration. The distinctive shape of the pocket is likely to be a major factor explaining why reactions with this catalyst proceed with higher levels of diastereocontrol compared to all other chiral dirhodium catalysts examined.

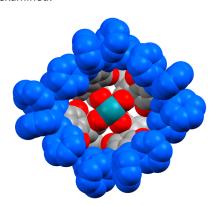


Figure 1. Space-filling representation of the structure of Rh₂(S-TPPTTL)₄ (Top-down view; 16 phenyl rings in blue)

In conclusion, the regio- and stereoselective C–H functionalization reaction of silicon-substituted alkanes was realized using aryldiazoacetates and the sterically encumbered catalyst Rh₂(S-TPPTTL)₄. These reactions show high stereoselectivity, including diastereoselectivity at the β position of silacycloalkanes, and are amenable to the incorporation of heteroaromatic donors. (Word Style "TA_Main_Text"). For full instructions, please see the journal's Instructions for Authors. A checklist is available for Organic Letters formatting conventions at the journal's home page. Do not modify the font in this or any other section, as doing so will not give an accurate estimate of the formatting for publication-

ASSOCIATED CONTENT

Supporting Information

The Supporting Information, consisting of complete experimnetal data and images of the NMR spectra and HPLC traces, is available free of charge on the ACS Publications website at DOI: XX.XXXX/XXX

AUTHOR INFORMATION

Corresponding Author

*hmdavie@emory.edu

Notes

HMLD is a named inventor on a patent entitled, Dirhodium Catalyst Compositions and Synthetic Processes Related Thereto (US 8,974,428, issued 3/10/2015). The other authors have no competing financial interests.

ACKNOWLEDGMENT

Financial support was provided by AbbVie, NSF under the CCI Center for Selective C–H Functionalization (CHE-1700982) and the NIH (GM099142-05). Z. J. G. was supported on a fellowship from the NIH (F32GM130020). Instrumentation used in this work was supported by the National Science Foundation (CHE 1531620 and CHE 1626172). We wish to thank the members of the NSF Center for C–H Functionalization (CHE-1700982) for helpful discussions regarding this work. We thank Dr. John Bacsa and Mr. Thomas Pickel at the Emory X-ray Crystallography Facility for the X-ray structural analysis.

REFERENCES

(1) (a) Gutekunst, W. R.; Baran, P. S. C–H functionalization logic in total synthesis. *Chem. Soc. Rev.* **2011**, *40*, 1976–1991. (b) Newhouse, T.; Baran, P. S. If C–H bonds could talk: selective C-H bond oxidation. *Angew. Chem. Int. Ed.* **2011**, *50*, 3362–3374. (c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals *Angew. Chem. Int. Ed.* **2012**, *51*, 8960–9009.

(2) Davies, H. M. L.; Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. *Chem. Soc. Rev.* **2011**, **40**, 1857–1869.

(3) (a) Guptill, D. M.; Davies, H. M. L. 2,2,2-Trichloroethyl Aryldiazoacetates as Robust Reagents for the Enantioselective C–H Functionalization of Methyl Ethers. *J. Am. Chem. Soc.* **2014**, *136*, 17718–17721. (b) Qin, C.; Davies, H. M. L. Role of Sterically Demanding Chiral Dirhodium Catalysts in Site-Selective C–H Functionalization of Activated Primary C–H Bonds. *J. Am. Chem. Soc.* **2014**, *136*, 9792–9796. (c) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Site-selective and stereoselective func-

tionalization of unactivated C–H bonds. *Nature*, **2016**, *533*, 230–234. (d) Liao, K.; Pickel, T. C. Boyarskikh, V.; Bacsa, J.; Musaev, D. G.; Davies, H. M. L. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. *Nature*, **2017**, *551*, 609–613. (e) Liao, K.; Yang, Y.-F.; Li, Y.; Sanders, J. N.; Houk, K. N.; Musaev, D. G.; Davies, H. M. L. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. *Nature Chemistry*, **2018**, *10*, 1048–1055. (f)Liu, W.; Ren, Z.; Bosse, A. T.; Liao, K.; Goldstein, E. L.; Bacsa, J.; Musaev, D. G.; Stoltz, B. M.; Davies, H. M. L. Catalyst-Controlled Selective Functionalization of Unactivated C–H Bonds in the Presence of Electronically Activated C–H Bonds. *J. Am. Chem. Soc.* **2018**, *140*, 12247–12255. (g) Fu, J.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Davies, H. M. L. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. *Nature*, **2018**, *564*, 395–399.

(4) (a) Seyferth, D.; Washburne, S. S.; Attridge, C. J.; Yamamoto, K. Halomethylmetal compounds. XXXIV. Insertion nyl(bromodichloromethyl)mercury-derived dichlorocarbene into carbonhydrogen bonds. Tetraalkylsilicon and tetraalkyltin compounds. J. Am. Chem. Soc. 1970, 92, 4405-4417. (b) Seyferth, D.; Damrauer, R.; Andrews, S. B.; Washburne, S. S. Halomethyl metal compounds. XLIV. Reactions of phenyl (bromodichloromethyl) mercury derived dichlorocarbene with silacyclobutanes. Novel ring expansion reaction J. Am. Chem. Soc. 1971, 93, 3709-3713. (c) Seyferth, D.; Shih, H.-M.; Dubac, J.; Mazerolles, P.; Serres, B. The insertion of phenyl(bromodichloromethyl)mercuryderived dichlorocarbene into the Si-C(ring) and β C-H bonds of the \emph{cis} and trans isomers of 1,3-dimethyl-1-n-butyl-1-silacyclobutane J. Organometal. Chem. 1973, 50, 39-45. (d) Ando, W.; Konishi, K.; Migita, T. Reactions of carboalkoxycarbenes with alkylsilanes. J. Organometal. Chem. 1974, 67, C7-C9. (e) Danilkina, L. P.; Sidorenko, G. V. Interposition of Thermocatalytically Generated (ethoxycarbonyl)carbene in a C-H Bond in a Tetraorganosilane. J. Gen. Chem. USSR (Engl. Transl.), 1979, 49, 2460-2461. (f) Hatanaka, Y.; Watanabe, M.; Onozawa, S.; Tanaka, M.; Sakurai, H. Rhodium-Catalyzed Insertion of Carbenoids into β C-H Bonds of Silacycloalkanes: A Facile and General Approach to Functionalized Silacycloalkanes. J. Org. Chem. 1998, 63, 422-423.

(5) (a) Cash, G. G. Use of Graph-Theoretical Parameters to Predict Activity of Organosilane Insecticides. *Pestic. Sci.* **1997**, *49*, 29–34. (b) Moberg, W. K.; Basarab, G. S.; Cuomo, J.; Liang, P. H. Biologically Active Organosilicon Compounds: Fungicidal Silylmethyltriazoles. In *Synthesis and Chemistry of Agrochemicals*; ACS Symposium Series 355; American Chemical Society: Washington, DC, 1987; pp 288–301.

(6) (a) Jones, R. G.; Ando, W.; Chojnowski, J. *Silicon-Containing Polymers*, Springer: Berlin, 2000. (b) Kumagai, T.; Itsuno, S. Asymmetric Allylation Polymerization of Bis(allylsilane) and Dialdehyde Containing Arylsilane Structure. *Macromolecules*, **2002**, *35*, 5323–5325. (c) Bai, D.; Han, S.; Lu, Z.-H.; Wang, S. Bright blue luminescent

pyrenyl-containing organosilicon compounds with contrasting charge transport functionality — $SiPh_2(p-C_6H_4-pyrenyl)(p-C_6H_4-N-benzimidazolyl)$ and $SiPh_2(p-C_6H_4-pyrenyl)[p-C_6H_4-NPh(1-naph)]$. *Can. J. Chem.* **2008**, *86*, 230–237. (d) Su, T. A.; Widawsky, J. R.; Li, H.; Klausen, R. S.; Leighton, J. L.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Silicon Ring Strain Creates High-Conductance Pathways in Single-Molecule Circuits. *J. Am. Chem. Soc.* **2013**, *135*, 18331–18334.

(7) (a) Tacke, R.; Zilch, H. Sila-substitution—a useful strategy for drug design? *Endeavor*, **1986**, *10*, 191–197. (b) Tacke, R.; Linoh, H. Bioorgano-silicon Chemistry. In *Organic Silicon Compounds*; John Wiley & Sons, Ltd.: New York, 1989; Vol. 2, 1143. (c) Showell, G.A.; Mills, J. S. Chemistry challenges in lead optimization: silicon isosteres in drug discovery. *Drug Discovery Today* **2003**, *8*, 551–556. (d) Mills, J. S.; Showell, G. A. Exploitation of silicon medicinal chemistry in drug discovery. *Expert Opin. Invest. Drugs* **2004**, *13*, 1149–1157. (e) Franz, A. K.; Wilson. S. O. Organosilicon molecules with medicinal applications. *J. Med. Chem.* **2013**, *56*, 388–405. (f) Franz, A. K. The synthesis of biologically active organosilicon small molecules. *Curr. Opin. Drug Discovery Dev.* **2007**, *10*, 654–671. (g) Fujii, S.; Hashimoto, Y. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond. *Future Med. Chem.* **2017**, *9*, 485–505. (h) Ramesh, R.; Reddy, D. S. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds. *J. Med. Chem.* **2018**, *61*, 3779–3798.

(8) Garlets, Z. J.; Davies, H. M. L. Harnessing the β -Silicon Effect for Regioselective and Stereoselective Rhodium(II)-Catalyzed C–H Functionalization by Donor/Acceptor Carbenes Derived from 1-Sulfonyl-1,2,3-triazoles. *Org. Lett.* **2018**, *20*, 2168–2171.

- (9) Fu, L.; Mighion, J. D.; Voight, E. A.; Davies, H. M. L. Synthesis of 2,2,2,-Trichloroethyl Aryl- and Vinyldiazoacetates by Palladium-Catalyzed Cross-Coupling. *Chem. Eur. J.* **2017**, *23*, 3272–3275.
- (10) Even the use of the smaller trifluoroethyl ester resulted in poorer yield and enantioselectivity.
- (11) The X-ray crystallographic data for 8 was submitted to the Cambridge Structural Database (CCDC 1902706).
 - (12) See SI for comparative details.
- (13) The second best catalyst $Rh_2(S-NTTL)_4$ generated the desired compound with 4:1 dr, which was similar to the levels of diastereoselectivity obtained using 1-sulfonyl-1,2,3-triazoles as carbene precursors. See reference 8.
- (14) Davies, H. M. L.; Ren, P. Conformational analysis and stereochemical assignments of products derived from C–H activation at secondary sites. *Tetrahedron Letters*, **2001**, *42*, 3149–3151.
- (15) The opposite enantiomer of the catalyst was utilized to obtain sufficient separation by chiral HPLC chromatography for determining enantiomeric ratios.